(1) Let $\left(Y_{n}, \mathcal{F}_{n}\right)_{n \geq 0}$ be a martingale.
(i) Show that $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[Y_{0}\right]$ for all n.
(ii) Show that $\mathbb{E}\left[Y_{n+m} \mid \mathcal{F}_{n}\right]=Y_{n}$ for all $n, m \geq 0$.
(2) A supermartingale is a sequence $\left(X_{k}, \mathcal{F}_{k}\right)_{k \geq 0}$ for which $\mathbb{E}\left[X_{k}^{-}\right]<\infty$ and $\mathbb{E}\left[X_{k+1} \mid \mathcal{F}_{k}\right] \leq X_{k}$. Let X be a discrete-time Markov chain with countable state space S and transition matrix \mathbf{P}. Suppose that $\psi: S \rightarrow \mathbb{R}$ is bounded and satisfies $\sum_{j \in S} p_{i j} \psi(j) \leq \lambda \psi(i)$ for some $\lambda>0$ and all $i \in S$. Show that $\lambda^{-n} \psi\left(X_{n}\right)$ constitutes a supermartingale.
(3) Let S_{n} be a symmetric, simple random walk with $S_{0}=0$. Use Hoeffding's inequality to show that

$$
\mathbb{P}\left\{\left|S_{n}^{2}-n\right| \geq x n^{3 / 2}\right\} \leq 2 e^{-x^{2} / 6}
$$

(4) If T_{1} and T_{2} are stopping times with respect to a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 0}$, show that $T_{1}+T_{2}$, $\max \left\{T_{1}, T_{2}\right\}$, and $\min \left\{T_{1}, T_{2}\right\}$ are stopping times also.
(5) Let $\left\{S_{n}\right\}$ be a simple random walk with $S_{0}=0$ such that $0<p=\mathbb{P}\left\{S_{1}=1\right\}<\frac{1}{2}$. Note that the walk escapes to $-\infty$ a.s., so there exists some (random) point above which the walk never reaches. Use de Moivre's martingale to show that $\mathbb{E}\left[\sup _{m \geq 0} S_{m}\right]=\frac{p}{1-2 p}$.

