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1 Introduction

Definition 1.1. A sequence Y = {Y,,: n > 0} of real-valued random
variables is a martingale with respect to the sequence
X = {X,: n >0} of random variables if, for all n > 0,

1. E[|Y,]] <

2. E[Yi1lXo0, X1,..., Xp] =Y.
Example 1.2 (Simple random walk). Let X; be i.i.d. random variables
such that X; = 1 with probability p and X; = —1 with probability
gq=1—p. Then S, = X1 + X5 + - -- + X, satisfies E|[|S,,|] < n and

1D [Sn_|_1|X1,X2, . o ,X'n] — Sn =+ (p _ Q)a

and Y,, = S5,, — n(p — q) defines a martingale with respect to X.




Example 1.3 (De Moivre's martingale). A simple random walk on the
set {0,1,2,..., N} is begun at k£ and stops when it first hits either of
the absorbing barriers at 0 and at N; what is the probability that it
stops at the barrier 07

Write X1, X5, ..., for the steps of the walk, and S,, for the position

after n steps, where Sy = k. Define Y,, = (¢/p)°". We assume that
0<p<l.

The process {Y7,Y5,...} is a martingale:

E[Yn+1|X1,X2,...,Xn] :Yn for all n.




To show that E |Y,, 11| X1, Xs, ..., X,] =Y, first consider the cases
in which the process has stopped by time n.

If S, equals O or N, then S,,.1 = S5,,; and therefore Y,, 11 =Y,,.
On the other hand, if 0 < S,, < N, then
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p

) (2) +a(2)]

Therefore, (Yn)nzo is a martingale, and in particular, we see that

E[Y,+1] = E[Y,] for all n, and hence E[Y,,] = E [Yy] = (q/p)* for all
n.
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Let T' be the number of steps before the absorption of the particle at
either 0 or N. Since Sy = k, we have that E [Yr] = E[Y,] = (¢/p)*.

Expanding E [Y7] , we have that

E[Yr] = (¢/p)°pr + (¢/p)™ (1 — pi)

where p, = P{absorbed at 0|Sy = k}. Therefore

k_ N
pl_ppN where p = q/p

Pk =




Example 1.4 (Markov chains). Let X be a discrete-time Markov chain
taking values in the countable state space S with transition matrix P.
Suppose that ¢: S — R is bounded and harmonic, which is to say that

> pij¢(i) =¢(i)  forallies.

jeS
It is easily seen that Y = {¢(X},): n > 0} is a martingale with respect
to X:

E[¢p(Xnt1)| X1, Xo, ..., Xy E [¢(Xn+1)[Xn]
> px,.900) = 6(Xn).
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Definition 1.5 (Filtrations). Given a random variable Z we use the
shorthand E[Z|F,,] for [Z]| Xy, X1,...X,]. We call F = {Fy, F1,...}
a filtration.

A sequence of random variables Y = {Y,,: n > 0} is said to be
adapted to the filtration F if Y,, is F,,-measurable for all n, that is, if
Y,, is a deterministic function of X, X1,...,X,.




Definition 1.6. Let F be a filtration and let Y be a sequence of
random variables which is adapted to F. We can rewrite our previous

definition of a martingale by saying that the pair
(Y, F) ={(Yn, Fn): n >0} is a martingale if for all n > 0,

1. E[|Y,|] < ¢
2. EYyi1|F,] = Vi

Note that E [Y,,11|F,] = Y., implies that Y,, is F,,-measurable, e.g.
that Y is adapted to F.




2 Hoeffding’s inequality

Proposition 2.1 (Hoeffding's inequality). Let (Y, F) be a martingale,
and suppose that there exists a sequence K1, Ko, ... of real numbers
such that P{|Y,, — Y,._1| < K,} =1 for all n. Then

P il
{‘Yn_Y()' ZCE}SQGXP _Zn K2 ) x > 0.
1=1"%14




Proof: Observe that for ¢ > 0 the function g(d) = e¥? is convex and

1 1
et < (11— d)e ¥ + S(1+ d)e? if |d| < 1.

Applying this to a random variable D having mean 0 and satisfying
P{|D| <1} =1, we obtain

E[e¥P] < Z(e7¥ +e¥) < ez’

by a comparison of the coefficients of 1*" for n > 0.

Using Markov's inequality we have

P{Y, — Yy, >z} <e %E [eQ(Y“_YO),} for 6 > 0.




Writing D,, =Y, — Y,,_1 and conditioning on F,,_1, we obtain
| o0 (Yn—Y0) |]_—n_1} _ AV —Yo)g [eeDn |an—1]
< HYnm1=Y0) oxp( L2 2

We take expectations and iterate to find

E {eQ(Y”_YO)} < E[e?(Yn-1—Y0)] exp( 92K2 < exp ( i ZK2> .

and therefore

1 n
P{Y, — Yy > x} <exp (—933 + 592 ZK?) , forall 8 > 0.

1=1




Suppose that x > 0, and set ) = "= (this is the value which
1=1 2

minimizes the exponent); we obtain

P{Yn—YOZCL"}SeXP(— )

2
> i1 K7
The same argument is valid with Y,, — Y} replaced by Yy — Y,,, and the

claim of the theorem follows by adding the two (identical) bounds
together. (]




Example 2.2 (Large deviations). Let X3, X5, ... be independent
random variables, X; having the Bernoulli distribution with parameter
p. Weset S,,=X1+...+X,, and Y,, = 5,, — np to obtain a
martingale Y. It is a consequence of Hoeffding's inequality that

1

P{|S, —np| > zv/n} < 2€Xp(—§a}2) for x > 0.




3 Sub- and Supermartingales

Definition 3.1. Let F be a filtration of the probability space
(Q2, F,P), and let Y be a sequence of random variables which is
adapted to F. We call the pair (Y, F) a submartingale if, for all n. > 0,

. E[YF] < o0

CEY,1|Fal > Y,

It is a supermartingale if, for all n > 0,




Definition 3.2. We call the pair (S, F) predictable if S,, is
F._1-measurable for all n > 1. We call a predictable process (S, F)

increasing if Sp =0 and P{S,, < S,11} =1 for all n.




Proposition 3.3 (Doob decomposition). A submartingale (Y, F) with
finite means may be expressed in the form

where (M, F) is a martingale, and (S, F) is an increasing predictable
process. This decomposition is unique.

The process (S, F) is called the compensator of the submartingale
(Y, F). Note that compensators have finite mean, since
0<S, <Yt — M, implying that

E|S,| <E[Y,F] 4+ E|M,].




Proof: We define M and S explicitly as follows:

My
So
Mn—l—l — Mn




4 Exercises

1) Let X1, X5, ... be random variables such that the partial sums
S, = X1+ Xo+ -+ X, determine a martingale. Show that
E[X:X;]=0ifi#].

2) Let Xy, X1, X5, -+ be a sequence of random variables with finite
means and satisfying E[X,, 11| X0, X1, -+, X,] = aX,, + bX,,_1 for
n>1, where 0 < a,b<1and a+ b=1. Find a value of a for which
S, = aX, + X, _1, n > 1 defines a martingale with respect to the
sequence X.




3) (i) If (Y,F) is a martingale, show that E[Y,,] = E [Yp] for all n.

(ii) If (Y, F) is a submartingale (respectively supermatingale) with
finite means, show that E [Y,,] > E [Yy] (respectively E [Y,,] < E [Yp]).

4) Let (Y, F) be a martingale. Show that E [Y,,1.,,|F.] = Y, for all

n,m > 0.




5) Let {S,, : n > 0} be a simple symmetric random walk on the

integers with Sy = k. Show that S? — n is a martingale. Arguing as

we did for the probability of ruin, find the expected duration of the
game for the gambler’s ruin problem.

6) Let X be a discrete-time Markov chain with countable state space
S and transition matrix P. Suppose that 1) : S — R is bounded and

satisfies } ;g pij¥(7) < AY(i) for some A > 0 and all < € S. Show

that A" (X,,) constitutes a supermartingale.




5 Stopping times

Definition 5.1. A random variable T' taking values in

{0,1,2,...} U{oo} is called a stopping time with respect to the
filtration F if the indicator of the event {T" = n} is F,,-measurable for
all n > 0.

Note that the indicator of the event
{T >n}={T <n}°

is F-measurable for all n. We write [Z|Fr] for [Z| X, X1,..., X7].




Example 5.2 (First passage times). For each (sufficiently nice) subset
B of R define the first passage time of X to B by

Tp = min{n: X,, € B}

with T = oo if X,, ¢ B for all n. It is easily seen that T is a

stopping time.




Proposition 5.3. Let (Y, F) be a martingale and let T' be a stopping
time with respect to F. Then the sequence (Z,F), where Z,, = Yran,
IS @ martingale.

Proof: We may write

n—1

Zn =Y Yilp—y+ Y, 1rsy,
t=0

whence Z,, is F,,-measurable and

E[Z,] < Y E [V;] < o0.

t=0

Also Z,11 — Z, = (Yni1 — Yn)17s,, whence

E[Zn+1—Zn‘fn]:E[Yn+1—Yn‘fn]1T>n:O

by the martingale property.




6 Optional stopping

Proposition 6.1 (Optional sampling theorem, I). Let (Y, F) be a
martingale. If T is a stopping time for which P{T < N} =1 for some
fixed N(< o0), then E[Yr| < 0o and E |Yr | Fy] = Yo.

Proof: Suppose P{T' < N} =1. Let Z,, = Yrpp, so that (Z,F) is a
martingale. Therefore E [Zx] < oo and

E[Zn | Fo] = Zo = Yo,

and the proof is finished by observing that Zy = Yoy = Y as. [




Example 6.2 (Hitting times of a nearest-neighbor martingale). Let
(Sn)n>0 be a martingale such that |S,,+1 — S,| € {0, 1} for all n, and
let T" be the hitting time of {—a, b} for some positive integers a and b,
e.g.

T =min{n >0:S5, = —aor S, = b}.

Fix an integer N > 0, and let p,p = P{Stan = —a|T < N}. Then

E[ST/\N] = —CLP{ST/\N = —a} + bP{ST/\N = b} + E[SN1T>N]

— P{T S N}(_apa,b + b(l — pa,b)) + E[SN]-T>N]7
and by the previous theorem, E[StAn] = E[Sg] = 0, so

b—E[Sny1pr-n]/P{T < N} \ b
b+ a a-+b

Pab = as N — oo

as long as P{T'> N} — 0 as N — o0.




Proposition 6.3 (Optional sampling theorem, Il). Let (Y,F) be a
martingale and let T' be a stopping time. If

1. P{T < o0} =1,
2. E[|Yz|] < 00, and

3 ElY,1r>,] — 0 asn — oo,

then E [Vr] = E [Yp].




Proof: Note that Y = Ypa, + (Yr — Y,,)1r~,. Taking expectations
and using the fact that E [Y7A,]| = E[Yp], we find that

ElYr] = ElYrlr<,|+E[Yrlrs,]
= K [YT/\n] + K [YT1T>n] — K [Yn1T>n]
= E [YQ] + K [YT1T>n] — K [Yn1T>n-]

Now E|Y,17~,] — 0 as n — oo by assumption, and

E[Yrlrsa] = Y E[Yrly—g]
k=n-+1

is the tail of the convergent series E [Yr| = ), E[Yr17—k]; therefore
K [YT1T>n] — 0 as n — oo. []




Example 6.4 (Random walk with inertia). Let { X, X1, X5,...} be
{+1, —1}-valued random variables with distribution:

1
P{Xo = —|—1} — IP){XO — —1} — 5, and

Xn,_1 with probability %

y

Xpn =4 +1 with probability 5

. aps 1
| —1 with probability 3

Let S, =Y, Xk. Notice that E[X,,1|F,] = %Xn, which leads us
to the martingale
Y, =X, +5,.




Let 7= min{n > 0:.5, € {—a,b}}. The last theorem applies to T,
so we have that E[Yy] = E[Yr], and so if we let p, , = P{ST = —a},
then

E[Yo] 0 =E[Y7]

(_1 _ a)pa,b + (1 + b)(l — pa,b)a

which implies that
1+

24+a+b

Pa,b =




Example 6.5 (Markov chains). Let X be an irreducible persistent
Markov chain with countable state space S and transition matrix P,
and let ¢: S — R be a bounded function satisfying

sz‘jlb(j) = (%) for all i € S.
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Then ¢(X,,) constitutes a martingale. Let T; be the first passage time
of X to the state ¢, that is, T; = min{n: X,, =i}. The sequence
{¥(X,)} is bounded and we obtain E [¢)(X1,)| = E [¢)(X()]|, whence
E [v(Xo)] = (i) for all states i and all choices of X. Therefore v is

a constant function.




Proposition 6.6 (Optional Sampling Theorem, Ill). Let (Y, F) be a
martingale, and let T be a stopping time. Then E [Yr] = E [Yp] if the
following hold:

1. P{T < o0} =1, E[T]| < o0, and

2. there exists a constant ¢ such that E[|Y, 11 — Y,| | Fn] < ¢ for all
n<T.

We omit the proof.




Example 6.7 (Wald's equation). Let X7, X5,... be independent
identically distributed random variables with finite mean u, and let
Sn=> 1 X;. ThenY, =S, —nu is a martingale with respect to
the filtration {F,,} where F,, = o(Y1,Y5,...,Y,). Now

E[[Yni1 = Yol | Ful = E[|Xpq1 — pl] = E[| X7 — pf] < oo

Thus E [Y7| = E[Yy] = 0 for any stopping time T" with finite mean,
implying that
E[St] = pE[T].




Example 6.8 (Wald's identity). Let X7, Xo,... be independent
identically distributed random variables with common moment
generating function M(t) = E [etx}; suppose that there exists at least
one value of ¢(# 0) such that 1 < M (t) < oo, and fix t accordingly.

Let S, = > ", X;. Define

otSn
Y, = fi > 1.
M) or n >

It is clear that (Y, F) is a martingale. Let T' be a stopping time with

finite mean, and note that

E HYn+1 — Yn‘ ‘ ]:n]




Suppose that 7" is such that
S| <C for n<T,

where C is a constant. Now M (t) > 1, and

tSn oItIC

Y, = <etC for n<T.

M@ = M@ =

In summary, if T is a stopping time with finite mean such that (6.

holds, then

Ele®®M(t)" "] =1 whenever M(t) > 1.




Example 6.9 (Simple random walk). Suppose that {S,,} is a simple
random walk whose steps {X;} take the values 1 and —1 with
respective probabilities p and ¢(= 1 — p). For positive integers a and
b, we have from Wald’s identity that

e "E[M®#) Tlgpe—a] +e®E[ME#) T1lg,mp] =1 if M(t)>1
(6.2)

where T is the first exit time of (—a,b) as before, and

M(t) = pet + ge™*.

Setting M (t) = s~ we get e/ = \{(s) or e’ = \a(s) where

1+ V1 — 4pgs?
N 2ps

1 V1 — 4pgs?
N 2ps '

)\1(8) y )\2(8)




Substituting these into equation (6.2)), we obtain two linear equations

in the quantities

Pi(s) =E [STlgT:_a,] Py(s) =E [sTlgT:b}

with solutions

_ AP — A9

Pi(s) = Py(s) = — 12

" \ya+b a-+b
)\1 o )\2

a-+b a+b 7
)‘1 o >‘2

which we add to obtain the probability generating function of T.

E[ST} :P1(8)+P2(S), 0<s<l1.

(6.3)




Suppose we let a — 00, so that T becomes the time until the first
passage to the point b. From (6.3), Pi(s) = 0asa — 0 if 0 <s <1
and Py(s) — Fy(s) where

2qs

b
Fy(s) (1—\/1—4pq32> |

Notice that I, (1) = (min{1,p/q})°.




7 Crossing and convergence

Proposition 7.1 (Martingale convergence theorem). Let (Y, F) be a
submartingale and suppose that E[Y,F] < M for some M and all n.
There exists a random variable Y, such that Y,y =25 Y., asn — oo.

Corollary 7.2. If (Y, F) is either a non-negative supermartingale or a
non-positive submartingale, then Y., = lim,,_, Y,, exists almost

surely.




Suppose that y = {y,,: n > 0} is a real sequence and [a, )] a real

]
interval. Let U, (a,b;y) be the number of up-crossings of [a, b| by the

subsequence Yo, Y1, - - -, Yn, and let U(a, b;y) = lim,_, o, Uy, (a,b;y) be
the total number of such up-crossings by .

Lemma 7.3. IfU(a,b;y) < oo for all rationals a and b satisfying
a < b, then lim,, . y, exists (but may be infinite).




Suppose now that (Y, F) is a submartingale, and let U, (a,b;Y") be
the number of up-crossing of |a,b] by Y up to time n.

Proposition 7.4 (Up-crossing inequality). If a < b then

E[(Y,—a)"]
b—a '

E[U,(a,b;Y)] <




Proof. Set Z,, = (Y,, —a)™, so that U,(a,b;Y) = U,(0,b — a; Z).

Let [Tok_1,Tok]|, kK > 1, be the up-crossing by Z of [0,b — al, and
define the indicator function

1 ifi€ (Tog_1,Tok| for some k,

0 otherwise

Note that I; is F;,_1-measurable. Now

(b= ) (0,b— 0 2) < (i(&- - zH)f) |

1=1




However

El(Zi — Zi—1)1; | Fi-l]
LIE(Z; | Fica] = Zi—]]
E|Z; | Fi—1] = Zi—A]
Z;| = E|Z;—]

(b o a)Un(Ovb — a, Z) < E[Zn] o E[ZO] < E(Zn)




[Proof of proposition (7.1)] Suppose (Y, F) is a submartingale and

E[Y,F] < M for all n. From the up-crossing inequality we have that, if

a < b,

E[Y,]+ |a
b—a

so that U(a,b;Y) = lim,, .o U,(a, b;Y) satisfies

EU,(a,b;Y) <

M
EU(a,b;Y) = lim EU,(a,b;Y) < *la

n— 00 b—CL

for all a < b. Therefore U(a,b;Y) < 0o a.s. for all a < b. Since there
are only countably many rationals, it follows that, with probability 1,
U(a,b;Y) < oo for all rational a and b. And the sequence Y,
converges almost surely to some limit Y., (which could be infinite).

We omit the proof that Y, is actually finite with probability one. [




Example 7.5 (Random walk). Consider De Moivre's martingale,

namely
Yn — (Q/p)sna
where S,, is the position after n steps of the usual simple random walk.

The sequence (Y;,)n>0 is a non-negative martingale, and hence
converges almost surely to some finite limit Y as n — oo. This is not
of much interest if p = ¢, since Y,, = 1 for all n in this case. Suppose

that p # q.

The random variable Y,, takes values in the set {p* : k = 0,£1,...},
where p = q/p. Certainly Y,, cannot converge to any given (possibly

random) member of this set, since this would necessarily entail that .S,
converges to a finite limit (which is obviously false).




Therefore Y,, converges to a limit point of the set, not lying within the
set. The only such limit point which is finite is 0, and therefore

Y, — 0 as..

S, — —oo a.s. ifp <y,

S, — +oo a.s. ifp>q.

Note that Y,, does not converge in mean, since E[Y,,| = E[Yy] # O for
all n.
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Lemma 7.6. Let (Y, F) be a martingale. ThenY,, converges in mean

if and only if there exists a random variable Z with finite mean such
that Y, = E[Z | Ful. If Y, 5 Yoo, then Y,, = E Yoo | Fol.

Remark. That is, Y, is a possible choice of Z, and the unique one
that is F..-measurable.
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8 Exercises

1) If T and T5 are stopping times with respect to a filtration F, show
that 77 + T5, max{Ty,7T5}, and min{T},T5} are stopping times also.

2) Let X1, X5, ... be a sequence of non-negative independent random
variables and let N(t) = max{n : X; + Xo +--- + X,, <t}. Show
that N(t) + 1 is a stopping time with respect to a suitable filtration to

be specified.




3) Let (Y, F) be a submartingale and let .S and T" be stopping times
satisfying 0 < § < T < N for some deterministic N. Show that
E(Yy) <E(Ys) <E(Yr) <E(Yyn).

4) Let {S,} be a simple random walk with Sy = 0 such that
0 <p=P{S; =1} < 5. Use de Moivre's martingale to show that

E(Supm Sm) — 1_pgp-
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5) Let {S,, : m > 0} be a simple symmetric random walk with Sy = 0.
Show that
B cos{A|S,, — %(b —a)l}
" (cos A\)" '

constitutes a martingale if cos A # 0.

6) Let S, =a+>."_, X, be a simple symmetric random walk. The
walk stops at the earliest time 1" when it reaches either of the two
positions 0 or K where 0 < a < K. Show that M,, = Z?:o S, —

is a martingale and deduce that E(3_,_, S,) = 3(K? — a?)a +a.

1g3
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9 The maximal inequality

Let's denote Y," = max{Y;: 0 <1i < n}.
Proposition 9.1 (Maximal inequality). 1. If (Y,F) isa
submartingale, then

E[Y '
P{Y* >z} < Y for x> 0.

x
2. If (Y, F) is a supermartingale and E|Y;| < oo ,then

E[Yo] + E[Y, ]

P{Y* > <
V7 za} < .

for x > 0.




Proof. Let T = min{n: Y,, > x} where z > 0. Suppose first that

(Y, F) is a submartingale. Then (Y™, F) is a non-negative
submartingale with finite means and "= min{n: Y,* > x}. Applying
the optional sampling theorem with stopping times 17 =T A n,

Ty = n, we obtain E [V, | <E[Y,]. However,

E Y, =E[Yilr<,] + E [V, 1r<,]

> aP{T <n}+E|Y, 1r<,]

whence
2P{T <n} <E [V, (1—1rs,)]
= 2E [V 17<n] <E[V]




Suppose next that (Y, F) is a supermartingale. By optional sampling
E[Yo] > E [Yran].

Now

K [YT/\n] =K [YT]-Tgn + Yn1T>n]

> aP{T <n}-E[Y,,]

whence zP{T <n} <E[Ys]+E[Y, ]




Example 9.2 (Doob-Kolmogorov inequality). Let (Y, F) be a
martingale such that E |Y,?| < oo for all n. Then (Y2, F,) is a

submartingale, whence

P(max ‘YHZCC) :P<max Y,fZa:Q) <
0<k<n 0<k<n

for x > 0.




Example 9.3 (Gambling systems). For a given game, write Yy, Y7, ...
for the sequence of capitals obtained by wagering one unit on each
play; that is Y{ is the initial capital, and Y, is the capital obtained

after n gambles each involving a unit stake.

A general betting strategy would allow the gambler to vary her stake.
If she bets S,, on the nth play, her profit is S,,(Y,, — Y,,_1) since
Y, — Y, _1 is the profit resulting from a stake of one unit. Hence the

gambler's capital Z,, after n plays satisfies

T =Zn-1+ Sn(Yn—Yuo1) =Yo+ ) _ Si(Y;—Yiq).
1=1

Notice that (S, F) must be a predictable process. The sequence Z is
called the transform of Y by S. If Y is a martingale, we call Z a
martingale transform.




Proposition 9.4. Let (S,F) be a predictable process, and let Z be
the transform of Y by S. Then:

1. if (Y,F) is a martingale, then (Z, F) is a martingale as long as
E|Z,| < oo for all n,

2. if (Y,F) is a submartingale and in addition S,, > 0 for all n, then
(Z,F) is a submartingale as long as EZ 1 < oo for all n.

Proof:
E [Zn+1 ‘ fn] — Ln — E[Sn+1(yn+1 - Yn) | fn]
— Sn+1[E [Yn+1 | ]:n] - Yn]-
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A number of special cases are of value.

1. Optional skipping. At each play the gambler either wagers a unit
stake or skips the round; S equals either 0 or 1.

. Optional stopping. The gambler wagers a unit stake on each play
until the (random) time T', when she gambles for the last time.
That is,

1 if n<T,
0 if n>T,
and Z,, = Ypran. Now {T' =n} ={S, =1,5,11 =0} € F,, so

that T is a stopping time. It is a consequence of Proposition (9.4
that (Yran, Frn) is @ martingale whenever Y is a martingale, as

established earlier.

. Optional starting. The gambler does not play until the (7" + 1)th
play , where T a stopping time. In this case S,, =0 forn < T.
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Let (X, F) and (Y, F) be two martingales with respect to the
filtration F. Let T' be a stopping time with respect to F; T is the
switching time from X to Y.

Proposition 9.5 (Optional switching). Suppose that X1 = Y on the
event {I' < co}. Then

X, ifn<T,
Y, ifn>T,

Ly =

defines a martingale with respect to F.




Proof: Note that

Zn — Xn]-n<T =+ Yn]-nZT;

is F,,-measurable. Also E|Z,| < E|X, |+ E|Y,| < co. By the
martingale property of X and Y,

Zn =K [Xn—l—l ’ Fn] 1n<T +E [Yn—i—l | Fn] ]-nZT
=E [ Xp+1lper +Yor1losr | Frl

Now
Xnt1lpcr +Yoi1losr = Znp1 + X1 lppi=7 — Yor1lnsi=1

= Zpt1+ (X —Y7r)lap1=71.

By the assumption that X1 = Y7 on the event {T" < oo}, we have
that Z, = E[Z,.1 | F,], so that (Z,F) is a martingale.
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