Statistics 150: Spring 2007

May 2, 2008

1 Introduction

Definition 1.1. A sequence $Y=\left\{Y_{n}: n \geq 0\right\}$ of real-valued random variables is a martingale with respect to the sequence $X=\left\{X_{n}: n \geq 0\right\}$ of random variables if, for all $n \geq 0$,

1. $\mathbb{E}\left[\left|Y_{n}\right|\right]<\infty$
2. $\mathbb{E}\left[Y_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right]=Y_{n}$.

Example 1.2 (Simple random walk). Let X_{i} be i.i.d. random variables such that $X_{i}=1$ with probability p and $X_{i}=-1$ with probability $q=1-p$. Then $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ satisfies $\mathbb{E}\left[\left|S_{n}\right|\right] \leq n$ and

$$
\mathbb{E}\left[S_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right]=S_{n}+(p-q)
$$

and $Y_{n}=S_{n}-n(p-q)$ defines a martingale with respect to X.

Example 1.3 (De Moivre's martingale). A simple random walk on the set $\{0,1,2, \ldots, N\}$ is begun at k and stops when it first hits either of the absorbing barriers at 0 and at N; what is the probability that it stops at the barrier 0?

Write X_{1}, X_{2}, \ldots, for the steps of the walk, and S_{n} for the position after n steps, where $S_{0}=k$. Define $Y_{n}=(q / p)^{S_{n}}$. We assume that $0<p<1$.
The process $\left\{Y_{1}, Y_{2}, \ldots\right\}$ is a martingale:

$$
\mathbb{E}\left[Y_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right]=Y_{n} \quad \text { for all } n .
$$

To show that $\mathbb{E}\left[Y_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right]=Y_{n}$, first consider the cases in which the process has stopped by time n.

If S_{n} equals 0 or N, then $S_{n+1}=S_{n}$; and therefore $Y_{n+1}=Y_{n}$.
On the other hand, if $0<S_{n}<N$, then

$$
\begin{aligned}
\mathbb{E}\left[Y_{n+1} \mid X_{1}, X_{2}, \ldots, X_{n}\right] & =\mathbb{E}\left[\left.\left(\frac{q}{p}\right)^{S_{n}+X_{n+1}} \right\rvert\, X_{1}, X_{2}, \ldots, X_{n}\right] \\
& =\left(\frac{q}{p}\right)^{S_{n}}\left[p\left(\frac{q}{p}\right)+q\left(\frac{q}{p}\right)^{-1}\right] \\
& =Y_{n},
\end{aligned}
$$

Therefore, $\left(Y_{n}\right)_{n \geq 0}$ is a martingale, and in particular, we see that $\mathbb{E}\left[Y_{n+1}\right]=\mathbb{E}\left[Y_{n}\right]$ for all n, and hence $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[Y_{0}\right]=(q / p)^{k}$ for all n.

Let T be the number of steps before the absorption of the particle at either 0 or N. Since $S_{0}=k$, we have that $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]=(q / p)^{k}$. Expanding $\mathbb{E}\left[Y_{T}\right]$, we have that

$$
\mathbb{E}\left[Y_{T}\right]=(q / p)^{0} p_{k}+(q / p)^{N}\left(1-p_{k}\right)
$$

where $p_{k}=\mathbb{P}\left\{\right.$ absorbed at $\left.0 \mid S_{0}=k\right\}$. Therefore

$$
p_{k}=\frac{\rho^{k}-\rho^{N}}{1-\rho^{N}} \quad \text { where } \rho=q / p
$$

Example 1.4 (Markov chains). Let X be a discrete-time Markov chain taking values in the countable state space S with transition matrix \mathbf{P}. Suppose that $\phi: S \rightarrow \mathbb{R}$ is bounded and harmonic, which is to say that

$$
\sum_{j \in S} p_{i j} \phi(j)=\phi(i) \quad \text { for all } i \in S
$$

It is easily seen that $Y=\left\{\phi\left(X_{n}\right): n \geq 0\right\}$ is a martingale with respect to X :

$$
\begin{aligned}
\mathbb{E}\left[\phi\left(X_{n+1}\right) \mid X_{1}, X_{2}, \ldots, X_{n}\right] & =\mathbb{E}\left[\phi\left(X_{n+1}\right) \mid X_{n}\right] \\
& =\sum_{j \in S} p_{X_{n}, j} \phi(j)=\phi\left(X_{n}\right)
\end{aligned}
$$

Definition 1.5 (Filtrations). Given a random variable Z we use the shorthand $\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]$ for $\left[Z \mid X_{0}, X_{1}, \ldots X_{n}\right]$. We call $\mathcal{F}=\left\{\mathcal{F}_{0}, \mathcal{F}_{1}, \ldots\right\}$ a filtration.

A sequence of random variables $Y=\left\{Y_{n}: n \geq 0\right\}$ is said to be adapted to the filtration \mathcal{F} if Y_{n} is \mathcal{F}_{n}-measurable for all n, that is, if Y_{n} is a deterministic function of $X_{0}, X_{1}, \ldots, X_{n}$.

Definition 1.6. Let \mathcal{F} be a filtration and let Y be a sequence of random variables which is adapted to \mathcal{F}. We can rewrite our previous definition of a martingale by saying that the pair $(Y, \mathcal{F})=\left\{\left(Y_{n}, \mathcal{F}_{n}\right): n \geq 0\right\}$ is a martingale if for all $n \geq 0$,

1. $\mathbb{E}\left[\left|Y_{n}\right|\right]<\infty$
2. $\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n}$

Note that $\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]=Y_{n}$ implies that Y_{n} is \mathcal{F}_{n}-measurable, e.g. that Y is adapted to \mathcal{F}.

2 Hoeffding's inequality

Proposition 2.1 (Hoeffding's inequality). Let (Y, \mathcal{F}) be a martingale, and suppose that there exists a sequence K_{1}, K_{2}, \ldots of real numbers such that $\mathbb{P}\left\{\left|Y_{n}-Y_{n-1}\right| \leq K_{n}\right\}=1$ for all n. Then

$$
\mathbb{P}\left\{\left|Y_{n}-Y_{0}\right| \geq x\right\} \leq 2 \exp \left(-\frac{\frac{1}{2} x^{2}}{\sum_{i=1}^{n} K_{i}^{2}}\right), \quad x>0 .
$$

Proof: Observe that for $\psi>0$ the function $g(d)=e^{\psi d}$ is convex and

$$
e^{\psi d} \leq \frac{1}{2}(1-d) e^{-\psi}+\frac{1}{2}(1+d) e^{\psi} \quad \text { if }|d| \leq 1 .
$$

Applying this to a random variable D having mean 0 and satisfying $\mathbb{P}\{|D| \leq 1\}=1$, we obtain

$$
\mathbb{E}\left[e^{\psi D}\right] \leq \frac{1}{2}\left(e^{-\psi}+e^{\psi}\right)<e^{\frac{1}{2} \psi^{2}},
$$

by a comparison of the coefficients of $\psi^{2 n}$ for $n \geq 0$.
Using Markov's inequality we have

$$
\mathbb{P}\left\{Y_{n}-Y_{0} \geq x\right\} \leq e^{-\theta x} \mathbb{E}\left[e^{\theta\left(Y_{n}-Y_{0}\right)},\right] \quad \text { for } \theta>0
$$

Writing $D_{n}=Y_{n}-Y_{n-1}$ and conditioning on \mathcal{F}_{n-1}, we obtain

$$
\begin{aligned}
\mathbb{E}\left[e^{\theta\left(Y_{n}-Y_{0}\right)} \mid \mathcal{F}_{n-1}\right] & =e^{\theta\left(Y_{n-1}-Y_{0}\right)} \mathbb{E}\left[e^{\theta D_{n}} \mid \mathcal{F}_{n-1}\right] \\
& \leq e^{\theta\left(Y_{n-1}-Y_{0}\right)} \exp \left(\frac{1}{2} \theta^{2} K_{n}^{2}\right)
\end{aligned}
$$

We take expectations and iterate to find

$$
\mathbb{E}\left[e^{\theta\left(Y_{n}-Y_{0}\right)}\right] \leq \mathbb{E}\left[e^{\theta\left(Y_{n-1}-Y_{0}\right)}\right] \exp \left(\frac{1}{2} \theta^{2} K_{n}^{2}\right) \leq \exp \left(\frac{1}{2} \theta^{2} \sum_{i=1}^{n} K_{i}^{2}\right)
$$

and therefore

$$
\mathbb{P}\left\{Y_{n}-Y_{0} \geq x\right\} \leq \exp \left(-\theta x+\frac{1}{2} \theta^{2} \sum_{i=1}^{n} K_{i}^{2}\right), \quad \text { for all } \theta>0 .
$$

Suppose that $x>0$, and set $\theta=\frac{x}{\sum_{i=1}^{n} K_{i}^{2}}$ (this is the value which minimizes the exponent); we obtain

$$
\mathbb{P}\left\{Y_{n}-Y_{0} \geq x\right\} \leq \exp \left(-\frac{\frac{1}{2} x^{2}}{\sum_{i=1}^{n} K_{i}^{2}}\right)
$$

The same argument is valid with $Y_{n}-Y_{0}$ replaced by $Y_{0}-Y_{n}$, and the claim of the theorem follows by adding the two (identical) bounds together.

Example 2.2 (Large deviations). Let X_{1}, X_{2}, \ldots be independent random variables, X_{i} having the Bernoulli distribution with parameter p. We set $S_{n}=X_{1}+\ldots+X_{n}$ and $Y_{n}=S_{n}-n p$ to obtain a martingale Y. It is a consequence of Hoeffding's inequality that

$$
\mathbb{P}\left\{\left|S_{n}-n p\right| \geq x \sqrt{n}\right\} \leq 2 \exp \left(-\frac{1}{2} x^{2}\right) \quad \text { for } x>0 .
$$

3 Sub- and Supermartingales

Definition 3.1. Let \mathcal{F} be a filtration of the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let Y be a sequence of random variables which is adapted to \mathcal{F}. We call the pair (Y, \mathcal{F}) a submartingale if, for all $n \geq 0$,

1. $\mathbb{E}\left[Y_{n}^{+}\right]<\infty$
2. $\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \geq Y_{n}$

It is a supermartingale if, for all $n \geq 0$,
3. $\mathbb{E}\left[Y_{n}^{-}\right]<\infty$
4. $\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \leq Y_{n}$

Definition 3.2. We call the pair (S, \mathcal{F}) predictable if S_{n} is \mathcal{F}_{n-1}-measurable for all $n \geq 1$. We call a predictable process (S, \mathcal{F}) increasing if $S_{0}=0$ and $\mathbb{P}\left\{S_{n} \leq S_{n+1}\right\}=1$ for all n.

Proposition 3.3 (Doob decomposition). A submartingale (Y, \mathcal{F}) with finite means may be expressed in the form

$$
Y_{n}=M_{n}+S_{n}
$$

where (M, \mathcal{F}) is a martingale, and (S, \mathcal{F}) is an increasing predictable process. This decomposition is unique.

The process (S, \mathcal{F}) is called the compensator of the submartingale (Y, \mathcal{F}). Note that compensators have finite mean, since $0 \leq S_{n} \leq Y_{n}^{+}-M_{n}$, implying that

$$
\mathbb{E}\left|S_{n}\right| \leq \mathbb{E}\left[Y_{n}^{+}\right]+\mathbb{E}\left|M_{n}\right| .
$$

Proof: We define M and S explicitly as follows:

$$
\begin{aligned}
M_{0} & =Y_{0}, \\
S_{0} & =0, \\
M_{n+1}-M_{n} & =Y_{n+1}-\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right], \\
S_{n+1}-S_{n} & =\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]-Y_{n} .
\end{aligned}
$$

4 Exercises

1) Let X_{1}, X_{2}, \ldots be random variables such that the partial sums $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ determine a martingale. Show that $\mathbb{E}\left[X_{i} X_{j}\right]=0$ if $i \neq j$.
2) Let $X_{0}, X_{1}, X_{2}, \cdots$ be a sequence of random variables with finite means and satisfying $\mathbb{E}\left[X_{n+1} \mid X_{0}, X_{1}, \cdots, X_{n}\right]=a X_{n}+b X_{n-1}$ for $n \geq 1$, where $0<a, b<1$ and $a+b=1$. Find a value of α for which $S_{n}=\alpha X_{n}+X_{n-1}, n \geq 1$ defines a martingale with respect to the sequence X.
3) (i) If (Y, \mathcal{F}) is a martingale, show that $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[Y_{0}\right]$ for all n.
(ii) If (Y, \mathcal{F}) is a submartingale (respectively supermatingale) with finite means, show that $\mathbb{E}\left[Y_{n}\right] \geq \mathbb{E}\left[Y_{0}\right]$ (respectively $\mathbb{E}\left[Y_{n}\right] \leq \mathbb{E}\left[Y_{0}\right]$).
4) Let (Y, \mathcal{F}) be a martingale. Show that $\mathbb{E}\left[Y_{n+m} \mid \mathcal{F}_{n}\right]=Y_{n}$ for all $n, m \geq 0$.
5) Let $\left\{S_{n}: n \geq 0\right\}$ be a simple symmetric random walk on the integers with $S_{0}=k$. Show that $S_{n}^{2}-n$ is a martingale. Arguing as we did for the probability of ruin, find the expected duration of the game for the gambler's ruin problem.
6) Let X be a discrete-time Markov chain with countable state space S and transition matrix \mathbf{P}. Suppose that $\psi: S \rightarrow \mathbb{R}$ is bounded and satisfies $\sum_{j \in S} p_{i j} \psi(j) \leq \lambda \psi(i)$ for some $\lambda>0$ and all $i \in S$. Show that $\lambda^{-n} \psi\left(X_{n}\right)$ constitutes a supermartingale.

5 Stopping times

Definition 5.1. A random variable T taking values in $\{0,1,2, \ldots\} \cup\{\infty\}$ is called a stopping time with respect to the filtration \mathcal{F} if the indicator of the event $\{T=n\}$ is \mathcal{F}_{n}-measurable for all $n \geq 0$.

Note that the indicator of the event

$$
\{T>n\}=\{T \leq n\}^{c}
$$

is \mathcal{F}_{n}-measurable for all n. We write $\left[Z \mid \mathcal{F}_{T}\right]$ for $\left[Z \mid X_{0}, X_{1}, \ldots, X_{T}\right]$.

Example 5.2 (First passage times). For each (sufficiently nice) subset B of \mathbb{R} define the first passage time of X to B by

$$
T_{B}=\min \left\{n: X_{n} \in B\right\}
$$

with $T_{B}=\infty$ if $X_{n} \notin B$ for all n. It is easily seen that T_{B} is a stopping time.

Proposition 5.3. Let (Y, \mathcal{F}) be a martingale and let T be a stopping time with respect to \mathcal{F}. Then the sequence (Z, \mathcal{F}), where $Z_{n}=Y_{T \wedge n}$, is a martingale.

Proof: We may write

$$
Z_{n}=\sum_{t=0}^{n-1} Y_{t} \mathbf{1}_{T=t}+Y_{n} \mathbf{1}_{T \geq n}
$$

whence Z_{n} is \mathcal{F}_{n}-measurable and

$$
\mathbb{E}\left[Z_{n}\right] \leq \sum_{t=0}^{n} \mathbb{E}\left[Y_{t}\right]<\infty
$$

Also $Z_{n+1}-Z_{n}=\left(Y_{n+1}-Y_{n}\right) \mathbf{1}_{T>n}$, whence

$$
\mathbb{E}\left[Z_{n+1}-Z_{n} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[Y_{n+1}-Y_{n} \mid \mathcal{F}_{n}\right] \mathbf{1}_{T>n}=0 .
$$

by the martingale property.

6 Optional stopping

Proposition 6.1 (Optional sampling theorem, I). Let (Y, \mathcal{F}) be a martingale. If T is a stopping time for which $\mathbb{P}\{T \leq N\}=1$ for some fixed $N(<\infty)$, then $\mathbb{E}\left[Y_{T}\right]<\infty$ and $\mathbb{E}\left[Y_{T} \mid \mathcal{F}_{0}\right]=Y_{0}$.

Proof: Suppose $\mathbb{P}\{T \leq N\}=1$. Let $Z_{n}=Y_{T \wedge n}$, so that (Z, \mathcal{F}) is a martingale. Therefore $\mathbb{E}\left[Z_{N}\right]<\infty$ and

$$
\mathbb{E}\left[Z_{N} \mid \mathcal{F}_{0}\right]=Z_{0}=Y_{0},
$$

and the proof is finished by observing that $Z_{N}=Y_{T \wedge N}=Y_{T}$ a.s.

Example 6.2 (Hitting times of a nearest-neighbor martingale). Let $\left(S_{n}\right)_{n \geq 0}$ be a martingale such that $\left|S_{n+1}-S_{n}\right| \in\{0,1\}$ for all n, and let T be the hitting time of $\{-a, b\}$ for some positive integers a and b, e.g.

$$
T=\min \left\{n \geq 0: S_{n}=-a \text { or } S_{n}=b\right\} .
$$

Fix an integer $N>0$, and let $p_{a, b}=\mathbb{P}\left\{S_{T \wedge N}=-a \mid T \leq N\right\}$. Then

$$
\begin{aligned}
\mathbb{E}\left[S_{T \wedge N}\right] & =-a \mathbb{P}\left\{S_{T \wedge N}=-a\right\}+b \mathbb{P}\left\{S_{T \wedge N}=b\right\}+\mathbb{E}\left[S_{N} \mathbf{1}_{T>N}\right] \\
& =\mathbb{P}\{T \leq N\}\left(-a p_{a, b}+b\left(1-p_{a, b}\right)\right)+\mathbb{E}\left[S_{N} \mathbf{1}_{T>N}\right],
\end{aligned}
$$

and by the previous theorem, $\mathbb{E}\left[S_{T \wedge N}\right]=\mathbb{E}\left[S_{0}\right]=0$, so

$$
p_{a, b}=\frac{b-\mathbb{E}\left[S_{N} \mathbf{1}_{T>N}\right] / \mathbb{P}\{T \leq N\}}{b+a} \rightarrow \frac{b}{a+b} \text { as } N \rightarrow \infty
$$

as long as $\mathbb{P}\{T>N\} \rightarrow 0$ as $N \rightarrow \infty$.

Proposition 6.3 (Optional sampling theorem, II). Let (Y, \mathcal{F}) be a martingale and let T be a stopping time. If

1. $\mathbb{P}\{T<\infty\}=1$,
2. $\mathbb{E}\left[\left|Y_{T}\right|\right]<\infty$, and
3. $\mathbb{E}\left[Y_{n} 1_{T>n}\right] \rightarrow 0$ as $n \rightarrow \infty$,
then $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]$.

Proof: Note that $Y_{T}=Y_{T \wedge n}+\left(Y_{T}-Y_{n}\right) 1_{T>n}$. Taking expectations and using the fact that $\mathbb{E}\left[Y_{T \wedge n}\right]=\mathbb{E}\left[Y_{0}\right]$, we find that

$$
\begin{aligned}
\mathbb{E}\left[Y_{T}\right] & =\mathbb{E}\left[Y_{T} \mathbf{1}_{T \leq n}\right]+\mathbb{E}\left[Y_{T} \mathbf{1}_{T>n}\right] \\
& =\mathbb{E}\left[Y_{T \wedge n}\right]+\mathbb{E}\left[Y_{T} \mathbf{1}_{T>n}\right]-\mathbb{E}\left[Y_{n} \mathbf{1}_{T>n} .\right] \\
& =\mathbb{E}\left[Y_{0}\right]+\mathbb{E}\left[Y_{T} \mathbf{1}_{T>n}\right]-\mathbb{E}\left[Y_{n} \mathbf{1}_{T>n} .\right]
\end{aligned}
$$

Now $\mathbb{E}\left[Y_{n} \mathbf{1}_{T>n}\right] \rightarrow 0$ as $n \rightarrow \infty$ by assumption, and

$$
\mathbb{E}\left[Y_{T} \mathbf{1}_{T>n}\right]=\sum_{k=n+1}^{\infty} \mathbb{E}\left[Y_{T} \mathbf{1}_{T=k}\right]
$$

is the tail of the convergent series $\mathbb{E}\left[Y_{T}\right]=\sum_{k} \mathbb{E}\left[Y_{T} \mathbf{1}_{T=k}\right]$; therefore $\mathbb{E}\left[Y_{T} \mathbf{1}_{T>n}\right] \rightarrow 0$ as $n \rightarrow \infty$.

Example 6.4 (Random walk with inertia). Let $\left\{X_{0}, X_{1}, X_{2}, \ldots\right\}$ be $\{+1,-1\}$-valued random variables with distribution:

$$
\begin{gathered}
\mathbb{P}\left\{X_{0}=+1\right\}=\mathbb{P}\left\{X_{0}=-1\right\}=\frac{1}{2}, \quad \text { and } \\
X_{n}= \begin{cases}X_{n-1} & \text { with probability } \frac{1}{2} \\
+1 & \text { with probability } \frac{1}{4} \\
-1 & \text { with probability } \frac{1}{4}\end{cases}
\end{gathered}
$$

Let $S_{n}=\sum_{k=1}^{n} X_{k}$. Notice that $\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\frac{1}{2} X_{n}$, which leads us to the martingale

$$
Y_{n}=X_{n}+S_{n} .
$$

Let $T=\min \left\{n \geq 0: S_{n} \in\{-a, b\}\right\}$. The last theorem applies to T, so we have that $\mathbb{E}\left[Y_{0}\right]=\mathbb{E}\left[Y_{T}\right]$, and so if we let $p_{a, b}=\mathbb{P}\left\{S_{T}=-a\right\}$, then

$$
\begin{aligned}
\mathbb{E}\left[Y_{0}\right] & =0=\mathbb{E}\left[Y_{T}\right] \\
& =(-1-a) p_{a, b}+(1+b)\left(1-p_{a, b}\right)
\end{aligned}
$$

which implies that

$$
p_{a, b}=\frac{1+b}{2+a+b}
$$

Example 6.5 (Markov chains). Let X be an irreducible persistent Markov chain with countable state space S and transition matrix \mathbf{P}, and let $\psi: S \rightarrow \mathbb{R}$ be a bounded function satisfying

$$
\sum_{j \in S} p_{i j} \psi(j)=\psi(i) \quad \text { for all } i \in S .
$$

Then $\psi\left(X_{n}\right)$ constitutes a martingale. Let T_{i} be the first passage time of X to the state i, that is, $T_{i}=\min \left\{n: X_{n}=i\right\}$. The sequence $\left\{\psi\left(X_{n}\right)\right\}$ is bounded and we obtain $\mathbb{E}\left[\psi\left(X_{T_{i}}\right)\right]=\mathbb{E}\left[\psi\left(X_{0}\right)\right]$, whence $\mathbb{E}\left[\psi\left(X_{0}\right)\right]=\psi(i)$ for all states i and all choices of X_{0}. Therefore ψ is a constant function.

Proposition 6.6 (Optional Sampling Theorem, III). Let (Y, \mathcal{F}) be a martingale, and let T be a stopping time. Then $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]$ if the following hold:

1. $\mathbb{P}\{T<\infty\}=1, \mathbb{E}[T]<\infty$, and
2. there exists a constant c such that $\mathbb{E}\left[\left|Y_{n+1}-Y_{n}\right| \mid \mathcal{F}_{n}\right] \leq c$ for all $n<T$.

We omit the proof.

Example 6.7 (Wald's equation). Let X_{1}, X_{2}, \ldots be independent identically distributed random variables with finite mean μ, and let $S_{n}=\sum_{i=1}^{n} X_{i}$. Then $Y_{n}=S_{n}-n \mu$ is a martingale with respect to the filtration $\left\{\mathcal{F}_{n}\right\}$ where $\mathcal{F}_{n}=\sigma\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$. Now

$$
\mathbb{E}\left[\left|Y_{n+1}-Y_{n}\right| \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\left|X_{n+1}-\mu\right|\right]=\mathbb{E}\left[\left|X_{1}-\mu\right|\right]<\infty
$$

Thus $\mathbb{E}\left[Y_{T}\right]=\mathbb{E}\left[Y_{0}\right]=0$ for any stopping time T with finite mean, implying that

$$
\mathbb{E}\left[S_{T}\right]=\mu \mathbb{E}[T]
$$

Example 6.8 (Wald's identity). Let X_{1}, X_{2}, \ldots be independent identically distributed random variables with common moment generating function $M(t)=\mathbb{E}\left[e^{t X}\right]$; suppose that there exists at least one value of $t(\neq 0)$ such that $1 \leq M(t)<\infty$, and fix t accordingly. Let $S_{n}=\sum_{i=1}^{n} X_{i}$. Define

$$
Y_{0}=1, \quad Y_{n}=\frac{e^{t S_{n}}}{M(t)^{n}} \quad \text { for } \quad n \geq 1
$$

It is clear that (Y, \mathcal{F}) is a martingale. Let T be a stopping time with finite mean, and note that

$$
\begin{aligned}
\mathbb{E}\left[\left|Y_{n+1}-Y_{n}\right| \mid \mathcal{F}_{n}\right] & =Y_{n} \mathbb{E}\left[\left|\frac{e^{t X}}{M(t)}-1\right|\right] \\
& \leq \frac{Y_{n}}{M(t)} \mathbb{E}\left[e^{t X}+M(t)\right] \\
& =2 Y_{n} .
\end{aligned}
$$

Suppose that T is such that

$$
\begin{equation*}
\left|S_{n}\right| \leq C \quad \text { for } \quad n<T \tag{6.1}
\end{equation*}
$$

where C is a constant. Now $M(t) \geq 1$, and

$$
Y_{n}=\frac{e^{t S_{n}}}{M(t)^{n}} \leq \frac{e^{|t| C}}{M(t)^{n}} \leq e^{|t| C} \quad \text { for } \quad n<T
$$

In summary, if T is a stopping time with finite mean such that (6.1) holds, then

$$
\mathbb{E}\left[e^{t S} M(t)^{-T}\right]=1 \quad \text { whenever } \quad M(t) \geq 1
$$

Example 6.9 (Simple random walk). Suppose that $\left\{S_{n}\right\}$ is a simple random walk whose steps $\left\{X_{i}\right\}$ take the values 1 and -1 with respective probabilities p and $q(=1-p)$. For positive integers a and b, we have from Wald's identity that

$$
\begin{equation*}
e^{-a t} \mathbb{E}\left[M(t)^{-T} \mathbf{1}_{S_{T}=-a}\right]+e^{t b} \mathbb{E}\left[M(t)^{-T} \mathbf{1}_{S_{T}=b}\right]=1 \quad \text { if } \quad M(t) \geq 1 \tag{6.2}
\end{equation*}
$$

where T is the first exit time of $(-a, b)$ as before, and $M(t)=p e^{t}+q e^{-t}$.
Setting $M(t)=s^{-1}$ we get $e^{t}=\lambda_{1}(s)$ or $e^{t}=\lambda_{2}(s)$ where

$$
\lambda_{1}(s)=\frac{1+\sqrt{1-4 p q s^{2}}}{2 p s}, \quad \lambda_{2}(s)=\frac{1-\sqrt{1-4 p q s^{2}}}{2 p s} .
$$

Substituting these into equation (6.2), we obtain two linear equations in the quantities

$$
\begin{equation*}
P_{1}(s)=\mathbb{E}\left[s^{T} \mathbf{1}_{S_{T}=-a},\right] \quad P_{2}(s)=\mathbb{E}\left[s^{T} \mathbf{1}_{S_{T}=b}\right] \tag{6.3}
\end{equation*}
$$

with solutions

$$
P_{1}(s)=\frac{\lambda_{1}^{a} \lambda_{2}^{a}\left(\lambda_{1}^{b}-\lambda_{2}^{b}\right)}{\lambda_{1}^{a+b}-\lambda_{2}^{a+b}}, \quad P_{2}(s)=\frac{\lambda_{1}^{a} \lambda_{2}^{a}}{\lambda_{1}^{a+b}-\lambda_{2}^{a+b}}
$$

which we add to obtain the probability generating function of T.

$$
\mathbb{E}\left[s^{T}\right]=P_{1}(s)+P_{2}(s), \quad 0<s \leq 1
$$

Suppose we let $a \rightarrow \infty$, so that T becomes the time until the first passage to the point b. From (6.3), $P_{1}(s) \rightarrow 0$ as $a \rightarrow \infty$ if $0<s<1$ and $P_{2}(s) \rightarrow F_{b}(s)$ where

$$
F_{b}(s)=\left(\frac{1-\sqrt{1-4 p q s^{2}}}{2 q s}\right)^{b}
$$

Notice that $F_{b}(1)=(\min \{1, p / q\})^{b}$.

7 Crossing and convergence

Proposition 7.1 (Martingale convergence theorem). Let (Y, \mathcal{F}) be a submartingale and suppose that $\mathbb{E}\left[Y_{n}^{+}\right] \leq M$ for some M and all n. There exists a random variable Y_{∞} such that $Y_{n} \xrightarrow{\text { a.s. }} Y_{\infty}$ as $n \rightarrow \infty$.

Corollary 7.2. If (Y, \mathcal{F}) is either a non-negative supermartingale or a non-positive submartingale, then $Y_{\infty}=\lim _{n \rightarrow \infty} Y_{n}$ exists almost surely.

Suppose that $y=\left\{y_{n}: n \geq 0\right\}$ is a real sequence and $[a, b]$ a real interval. Let $U_{n}(a, b ; y)$ be the number of up-crossings of $[a, b]$ by the subsequence $y_{0}, y_{1}, \ldots, y_{n}$, and let $U(a, b ; y)=\lim _{n \rightarrow \infty} U_{n}(a, b ; y)$ be the total number of such up-crossings by y.

Lemma 7.3. If $U(a, b ; y)<\infty$ for all rationals a and b satisfying $a<b$, then $\lim _{n \rightarrow \infty} y_{n}$ exists (but may be infinite).

Suppose now that (Y, \mathcal{F}) is a submartingale, and let $U_{n}(a, b ; Y)$ be the number of up-crossing of $[a, b]$ by Y up to time n.

Proposition 7.4 (Up-crossing inequality). If $a<b$ then

$$
\mathbb{E}\left[U_{n}(a, b ; Y)\right] \leq \frac{\mathbb{E}\left[\left(Y_{n}-a\right)^{+}\right]}{b-a}
$$

Proof. Set $Z_{n}=\left(Y_{n}-a\right)^{+}$, so that $U_{n}(a, b ; Y)=U_{n}(0, b-a ; Z)$. Let $\left[T_{2 k-1}, T_{2 k}\right], k \geq 1$, be the up-crossing by Z of $[0, b-a]$, and define the indicator function

$$
I_{i}= \begin{cases}1 & \text { if } i \in\left(T_{2 k-1}, T_{2 k}\right] \text { for some } k, \\ 0 & \text { otherwise }\end{cases}
$$

Note that I_{i} is \mathcal{F}_{i-1}-measurable. Now

$$
(b-a) U_{n}(0, b-a ; Z) \leq\left(\sum_{i=1}^{n}\left(Z_{i}-Z_{i-1}\right) I_{i}\right) .
$$

However

$$
\begin{aligned}
\mathbb{E}\left[\left(Z_{i}-Z_{i-1}\right) I_{i}\right] & =\mathbb{E}\left[\mathbb{E}\left[\left(Z_{i}-Z_{i-1}\right) I_{i} \mid \mathcal{F}_{i-1}\right]\right] \\
& =\mathbb{E}\left[I_{i}\left[\mathbb{E}\left[Z_{i} \mid \mathcal{F}_{i-1}\right]-Z_{i-1}\right]\right] \\
& \leq \mathbb{E}\left[\mathbb{E}\left[Z_{i} \mid \mathcal{F}_{i-1}\right]-Z_{i-1}\right] \\
& =\mathbb{E}\left[Z_{i}\right]-\mathbb{E}\left[Z_{i-1}\right]
\end{aligned}
$$

and so

$$
(b-a) U_{n}(0, b-a ; Z) \leq \mathbb{E}\left[Z_{n}\right]-\mathbb{E}\left[Z_{0}\right] \leq E\left(Z_{n}\right)
$$

[Proof of proposition (7.1)] Suppose (Y, \mathcal{F}) is a submartingale and $\mathbb{E}\left[Y_{n}^{+}\right] \leq M$ for all n. From the up-crossing inequality we have that, if $a<b$,

$$
\mathbb{E} U_{n}(a, b ; Y) \leq \frac{\mathbb{E}\left[Y_{n}^{+}\right]+|a|}{b-a}
$$

so that $U(a, b ; Y)=\lim _{n \rightarrow \infty} U_{n}(a, b ; Y)$ satisfies

$$
\mathbb{E} U(a, b ; Y)=\lim _{n \rightarrow \infty} \mathbb{E} U_{n}(a, b ; Y) \leq \frac{M+|a|}{b-a}
$$

for all $a<b$. Therefore $U(a, b ; Y)<\infty$ a.s. for all $a<b$. Since there are only countably many rationals, it follows that, with probability 1 , $U(a, b ; Y)<\infty$ for all rational a and b. And the sequence Y_{n} converges almost surely to some limit Y_{∞} (which could be infinite).

We omit the proof that Y_{∞} is actually finite with probability one.

Example 7.5 (Random walk). Consider De Moivre's martingale, namely

$$
Y_{n}=(q / p)^{S_{n}},
$$

where S_{n} is the position after n steps of the usual simple random walk.
The sequence $\left(Y_{n}\right)_{n \geq 0}$ is a non-negative martingale, and hence converges almost surely to some finite limit Y as $n \rightarrow \infty$. This is not of much interest if $p=q$, since $Y_{n}=1$ for all n in this case. Suppose that $p \neq q$.

The random variable Y_{n} takes values in the set $\left\{\rho^{k}: k=0, \pm 1, \ldots\right\}$, where $\rho=q / p$. Certainly Y_{n} cannot converge to any given (possibly random) member of this set, since this would necessarily entail that S_{n} converges to a finite limit (which is obviously false).

Therefore Y_{n} converges to a limit point of the set, not lying within the set. The only such limit point which is finite is 0 , and therefore

$$
Y_{n} \rightarrow 0 \quad \text { a.s.. }
$$

Hence,

$$
S_{n} \rightarrow-\infty \quad \text { a.s. if } p<q
$$

and

$$
S_{n} \rightarrow+\infty \quad \text { a.s. if } p>q
$$

Note that Y_{n} does not converge in mean, since $\mathbb{E}\left[Y_{n}\right]=\mathbb{E}\left[Y_{0}\right] \neq 0$ for all n.

Lemma 7.6. Let (Y, \mathcal{F}) be a martingale. Then Y_{n} converges in mean if and only if there exists a random variable Z with finite mean such that $Y_{n}=\mathbb{E}\left[Z \mid \mathcal{F}_{n}\right]$. If $Y_{n} \xrightarrow{1} Y_{\infty}$, then $Y_{n}=\mathbb{E}\left[Y_{\infty} \mid \mathcal{F}_{n}\right]$.

Remark. That is, Y_{∞} is a possible choice of Z, and the unique one that is \mathcal{F}_{∞}-measurable.

8 Exercises

1) If T_{1} and T_{2} are stopping times with respect to a filtration \mathcal{F}, show that $T_{1}+T_{2}, \max \left\{T_{1}, T_{2}\right\}$, and $\min \left\{T_{1}, T_{2}\right\}$ are stopping times also.
2) Let X_{1}, X_{2}, \ldots be a sequence of non-negative independent random variables and let $N(t)=\max \left\{n: X_{1}+X_{2}+\cdots+X_{n} \leq t\right\}$. Show that $N(t)+1$ is a stopping time with respect to a suitable filtration to be specified.
3) Let (Y, \mathcal{F}) be a submartingale and let S and T be stopping times satisfying $0 \leq S \leq T \leq N$ for some deterministic N. Show that $\mathbb{E}\left(Y_{0}\right) \leq \mathbb{E}\left(Y_{S}\right) \leq \mathbb{E}\left(Y_{T}\right) \leq \mathbb{E}\left(Y_{N}\right)$.
4) Let $\left\{S_{n}\right\}$ be a simple random walk with $S_{0}=0$ such that $0<p=\mathbb{P}\left\{S_{1}=1\right\}<\frac{1}{2}$. Use de Moivre's martingale to show that $\mathbb{E}\left(\sup _{m} S_{m}\right)=\frac{p}{1-2 p}$.
5) Let $\left\{S_{n}: n \geq 0\right\}$ be a simple symmetric random walk with $S_{0}=0$. Show that

$$
Y_{n}=\frac{\cos \left\{\lambda\left[S_{n}-\frac{1}{2}(b-a)\right]\right\}}{(\cos \lambda)^{n}}
$$

constitutes a martingale if $\cos \lambda \neq 0$.
6) Let $S_{n}=a+\sum_{r=1}^{n} X_{r}$ be a simple symmetric random walk. The walk stops at the earliest time T when it reaches either of the two positions 0 or K where $0<a<K$. Show that $M_{n}=\sum_{r=0}^{n} S_{r}-\frac{1}{3} S_{n}^{3}$ is a martingale and deduce that $\mathbb{E}\left(\sum_{r=0}^{T} S_{r}\right)=\frac{1}{3}\left(K^{2}-a^{2}\right) a+a$.

9 The maximal inequality

Let's denote $Y_{n}^{*}=\max \left\{Y_{i}: 0 \leq i \leq n\right\}$.
Proposition 9.1 (Maximal inequality). 1. If (Y, \mathcal{F}) is a submartingale, then

$$
\mathbb{P}\left\{Y_{n}^{*} \geq x\right\} \leq \frac{\mathbb{E}\left[Y_{n}^{+}\right]}{x} \quad \text { for } \quad x>0
$$

2. If (Y, \mathcal{F}) is a supermartingale and $\mathbb{E}\left|Y_{0}\right|<\infty$, then

$$
\mathbb{P}\left\{Y_{n}^{*} \geq x\right\} \leq \frac{\mathbb{E}\left[Y_{0}\right]+\mathbb{E}\left[Y_{n}^{-}\right]}{x} \text { for } x>0 .
$$

Proof. Let $T=\min \left\{n: Y_{n} \geq x\right\}$ where $x>0$. Suppose first that (Y, \mathcal{F}) is a submartingale. Then $\left(Y^{+}, \mathcal{F}\right)$ is a non-negative submartingale with finite means and $T=\min \left\{n: Y_{n}^{+} \geq x\right\}$. Applying the optional sampling theorem with stopping times $T_{1}=T \wedge n$, $T_{2}=n$, we obtain $\mathbb{E}\left[Y_{T \wedge n}^{+}\right] \leq \mathbb{E}\left[Y_{n}^{+}\right]$. However,

$$
\begin{aligned}
\mathbb{E}\left[Y_{T \wedge n}^{+}\right] & =\mathbb{E}\left[Y_{T}^{+} \mathbf{1}_{T \leq n}\right]+\mathbb{E}\left[Y_{n}^{+} \mathbf{1}_{T \leq n}\right] \\
& \geq x \mathbb{P}\{T \leq n\}+\mathbb{E}\left[Y_{n}^{+} \mathbf{1}_{T \leq n}\right]
\end{aligned}
$$

whence

$$
\begin{aligned}
x \mathbb{P}\{T \leq n\} & \leq \mathbb{E}\left[Y_{n}^{+}\left(1-\mathbf{1}_{T>n}\right)\right] \\
& =x \mathbb{E}\left[Y_{n}^{+} \mathbf{1}_{T \leq n}\right] \leq \mathbb{E}\left[Y_{n}^{+} .\right]
\end{aligned}
$$

Suppose next that (Y, \mathcal{F}) is a supermartingale. By optional sampling $\mathbb{E}\left[Y_{0}\right] \geq \mathbb{E}\left[Y_{T \wedge n}\right]$.

Now

$$
\begin{aligned}
\mathbb{E}\left[Y_{T \wedge n}\right] & =\mathbb{E}\left[Y_{T} \mathbf{1}_{T \leq n}+Y_{n} \mathbf{1}_{T>n}\right] \\
& \geq x \mathbb{P}\{T \leq n\}-\mathbb{E}\left[Y_{n}^{-},\right]
\end{aligned}
$$

whence $x \mathbb{P}\{T \leq n\} \leq \mathbb{E}\left[Y_{0}\right]+\mathbb{E}\left[Y_{n}^{-}\right]$.

Example 9.2 (Doob-Kolmogorov inequality). Let (Y, \mathcal{F}) be a martingale such that $\mathbb{E}\left[Y_{n}^{2}\right]<\infty$ for all n. Then $\left(Y_{n}^{2}, \mathcal{F}_{n}\right)$ is a submartingale, whence

$$
\mathbb{P}\left(\max _{0 \leq k \leq n}\left|Y_{k}\right| \geq x\right)=\mathbb{P}\left(\max _{0 \leq k \leq n} Y_{k}^{2} \geq x^{2}\right) \leq \frac{\mathbb{E}\left[Y_{n}^{2}\right]}{x^{2}}
$$

for $x>0$.

Example 9.3 (Gambling systems). For a given game, write Y_{0}, Y_{1}, \ldots for the sequence of capitals obtained by wagering one unit on each play; that is Y_{0} is the initial capital, and Y_{n} is the capital obtained after n gambles each involving a unit stake.

A general betting strategy would allow the gambler to vary her stake. If she bets S_{n} on the nth play, her profit is $S_{n}\left(Y_{n}-Y_{n-1}\right)$ since $Y_{n}-Y_{n-1}$ is the profit resulting from a stake of one unit. Hence the gambler's capital Z_{n} after n plays satisfies

$$
Z_{n}=Z_{n-1}+S_{n}\left(Y_{n}-Y_{n-1}\right)=Y_{0}+\sum_{i=1}^{n} S_{i}\left(Y_{i}-Y_{i-1}\right)
$$

Notice that (S, \mathcal{F}) must be a predictable process. The sequence Z is called the transform of Y by S. If Y is a martingale, we call Z a martingale transform.

Proposition 9.4. Let (S, \mathcal{F}) be a predictable process, and let Z be the transform of Y by S. Then:

1. if (Y, \mathcal{F}) is a martingale, then (Z, \mathcal{F}) is a martingale as long as $\mathbb{E}\left|Z_{n}\right|<\infty$ for all n,
2. if (Y, \mathcal{F}) is a submartingale and in addition $S_{n} \geq 0$ for all n, then (Z, \mathcal{F}) is a submartingale as long as $\mathbb{E} Z_{n}^{+}<\infty$ for all n.

Proof:

$$
\begin{aligned}
\mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]-Z_{n} & =\mathbb{E}\left[S_{n+1}\left(Y_{n+1}-Y_{n}\right) \mid \mathcal{F}_{n}\right] \\
& =S_{n+1}\left[\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right]-Y_{n}\right] .
\end{aligned}
$$

A number of special cases are of value.

1. Optional skipping. At each play the gambler either wagers a unit stake or skips the round; S equals either 0 or 1 .
2. Optional stopping. The gambler wagers a unit stake on each play until the (random) time T, when she gambles for the last time. That is,

$$
S_{n}=\left\{\begin{array}{lll}
1 & \text { if } & n \leq T \\
0 & \text { if } & n>T
\end{array}\right.
$$

and $Z_{n}=Y_{T \wedge n}$. Now $\{T=n\}=\left\{S_{n}=1, S_{n+1}=0\right\} \in \mathcal{F}_{n}$, so that T is a stopping time. It is a consequence of Proposition (9.4) that $\left(Y_{T \wedge n}, \mathcal{F}_{n}\right)$ is a martingale whenever Y is a martingale, as established earlier.
3. Optional starting. The gambler does not play until the $(T+1)$ th play, where T a stopping time. In this case $S_{n}=0$ for $n \leq T$.

Let (X, \mathcal{F}) and (Y, \mathcal{F}) be two martingales with respect to the filtration \mathcal{F}. Let T be a stopping time with respect to $\mathcal{F} ; T$ is the switching time from X to Y.
Proposition 9.5 (Optional switching). Suppose that $X_{T}=Y_{T}$ on the event $\{T<\infty\}$. Then

$$
Z_{n}= \begin{cases}X_{n} & \text { if } n<T, \\ Y_{n} & \text { if } n \geq T,\end{cases}
$$

defines a martingale with respect to \mathcal{F}.

Proof: Note that

$$
Z_{n}=X_{n} \mathbf{1}_{n<T}+Y_{n} \mathbf{1}_{n \geq T}
$$

is \mathcal{F}_{n}-measurable. Also $\mathbb{E}\left|Z_{n}\right| \leq \mathbb{E}\left|X_{n}\right|+\mathbb{E}\left|Y_{n}\right|<\infty$. By the martingale property of X and Y,

$$
\begin{aligned}
Z_{n} & =\mathbb{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right] \mathbf{1}_{n<T}+\mathbb{E}\left[Y_{n+1} \mid \mathcal{F}_{n}\right] \mathbf{1}_{n \geq T} \\
& =\mathbb{E}\left[X_{n+1} \mathbf{1}_{n<T}+Y_{n+1} \mathbf{1}_{n \geq T} \mid \mathcal{F}_{n} .\right]
\end{aligned}
$$

Now

$$
\begin{aligned}
X_{n+1} \mathbf{1}_{n<T}+Y_{n+1} \mathbf{1}_{n \geq T} & =Z_{n+1}+X_{n+1} \mathbf{1}_{n+1=T}-Y_{n+1} \mathbf{1}_{n+1=T} \\
& =Z_{n+1}+\left(X_{T}-Y_{T}\right) \mathbf{1}_{n+1=T} .
\end{aligned}
$$

By the assumption that $X_{T}=Y_{T}$ on the event $\{T<\infty\}$, we have that $Z_{n}=\mathbb{E}\left[Z_{n+1} \mid \mathcal{F}_{n}\right]$, so that (Z, \mathcal{F}) is a martingale.

