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1 Introduction

Definition 1.1. A sequence Y = {Yn : n ≥ 0} of real-valued random

variables is a martingale with respect to the sequence

X = {Xn : n ≥ 0} of random variables if, for all n ≥ 0,

1. E [|Yn|] <∞

2. E [Yn+1|X0, X1, . . . , Xn] = Yn.

Example 1.2 (Simple random walk). Let Xi be i.i.d. random variables

such that Xi = 1 with probability p and Xi = −1 with probability

q = 1− p. Then Sn = X1 +X2 + · · ·+Xn satisfies E[|Sn|] ≤ n and

E [Sn+1|X1, X2, . . . , Xn] = Sn + (p− q),

and Yn = Sn − n(p− q) defines a martingale with respect to X.
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Example 1.3 (De Moivre’s martingale). A simple random walk on the

set {0, 1, 2, . . . , N} is begun at k and stops when it first hits either of

the absorbing barriers at 0 and at N ; what is the probability that it

stops at the barrier 0?

Write X1, X2, . . . , for the steps of the walk, and Sn for the position

after n steps, where S0 = k. Define Yn = (q/p)Sn . We assume that

0 < p < 1.

The process {Y1, Y2, . . .} is a martingale:

E [Yn+1|X1, X2, . . . , Xn] = Yn for all n.
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To show that E [Yn+1|X1, X2, . . . , Xn] = Yn, first consider the cases

in which the process has stopped by time n.

If Sn equals 0 or N , then Sn+1 = Sn; and therefore Yn+1 = Yn.

On the other hand, if 0 < Sn < N , then

E [Yn+1|X1, X2, . . . , Xn] = E
[

(
q

p
)Sn+Xn+1

∣∣∣∣X1, X2, . . . , Xn

]
=
(
q

p

)Sn
[
p

(
q

p

)
+ q

(
q

p

)−1
]

= Yn,

Therefore, (Yn)n≥0 is a martingale, and in particular, we see that

E [Yn+1] = E [Yn] for all n, and hence E [Yn] = E [Y0] = (q/p)k for all

n.
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Let T be the number of steps before the absorption of the particle at

either 0 or N . Since S0 = k, we have that E [YT ] = E[Y0] = (q/p)k.

Expanding E [YT ] , we have that

E [YT ] = (q/p)0pk + (q/p)N (1− pk)

where pk = P{absorbed at 0|S0 = k}. Therefore

pk =
ρk − ρN

1− ρN
where ρ = q/p
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Example 1.4 (Markov chains). Let X be a discrete-time Markov chain

taking values in the countable state space S with transition matrix P.

Suppose that φ : S → R is bounded and harmonic, which is to say that∑
j∈S

pijφ(j) = φ(i) for all i ∈ S.

It is easily seen that Y = {φ(Xn) : n ≥ 0} is a martingale with respect

to X:

E [φ(Xn+1)|X1, X2, . . . , Xn] = E [φ(Xn+1)|Xn]

=
∑
j∈S

pXn,jφ(j) = φ(Xn).
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Definition 1.5 (Filtrations). Given a random variable Z we use the

shorthand E[Z|Fn] for [Z|X0, X1, . . . Xn]. We call F = {F0,F1, . . .}
a filtration.

A sequence of random variables Y = {Yn : n ≥ 0} is said to be

adapted to the filtration F if Yn is Fn-measurable for all n, that is, if

Yn is a deterministic function of X0, X1, . . . , Xn.
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Definition 1.6. Let F be a filtration and let Y be a sequence of

random variables which is adapted to F . We can rewrite our previous

definition of a martingale by saying that the pair

(Y,F) = {(Yn,Fn) : n ≥ 0} is a martingale if for all n ≥ 0,

1. E[|Yn|] <∞

2. E [Yn+1|Fn] = Yn

Note that E [Yn+1|Fn] = Yn implies that Yn is Fn-measurable, e.g.

that Y is adapted to F .
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2 Hoeffding’s inequality

Proposition 2.1 (Hoeffding’s inequality). Let (Y,F) be a martingale,

and suppose that there exists a sequence K1,K2, . . . of real numbers

such that P {|Yn − Yn−1| ≤ Kn} = 1 for all n. Then

P {|Yn − Y0| ≥ x} ≤ 2 exp
(
−

1
2x

2∑n
i=1K

2
i

)
, x > 0.
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Proof: Observe that for ψ > 0 the function g(d) = eψd is convex and

eψd ≤ 1
2

(1− d)e−ψ +
1
2

(1 + d)eψ if |d| ≤ 1.

Applying this to a random variable D having mean 0 and satisfying

P {|D| ≤ 1} = 1, we obtain

E
[
eψD

]
≤ 1

2
(e−ψ + eψ) < e

1
2ψ

2
,

by a comparison of the coefficients of ψ2n for n ≥ 0.

Using Markov’s inequality we have

P {Yn − Y0 ≥ x} ≤ e−θxE
[
eθ(Yn−Y0),

]
for θ > 0.
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Writing Dn = Yn − Yn−1 and conditioning on Fn−1, we obtain

E
[
eθ(Yn−Y0) | Fn−1

]
= eθ(Yn−1−Y0)E

[
eθDn | Fn−1

]
≤ eθ(Yn−1−Y0) exp(

1
2
θ2K2

n).

We take expectations and iterate to find

E
[
eθ(Yn−Y0)

]
≤ E[eθ(Yn−1−Y0)] exp(

1
2
θ2K2

n) ≤ exp

(
1
2
θ2

n∑
i=1

K2
i

)
.

and therefore

P {Yn − Y0 ≥ x} ≤ exp

(
−θx+

1
2
θ2

n∑
i=1

K2
i

)
, for all θ > 0.
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Suppose that x > 0, and set θ = xPn
i=1K

2
i

(this is the value which

minimizes the exponent); we obtain

P {Yn − Y0 ≥ x} ≤ exp
(
−

1
2x

2∑n
i=1K

2
i

)
.

The same argument is valid with Yn − Y0 replaced by Y0 − Yn, and the

claim of the theorem follows by adding the two (identical) bounds

together. �
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Example 2.2 (Large deviations). Let X1, X2, . . . be independent

random variables, Xi having the Bernoulli distribution with parameter

p. We set Sn = X1 + . . .+Xn and Yn = Sn − np to obtain a

martingale Y . It is a consequence of Hoeffding’s inequality that

P
{
|Sn − np| ≥ x

√
n
}
≤ 2 exp(−1

2
x2) for x > 0.
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3 Sub- and Supermartingales

Definition 3.1. Let F be a filtration of the probability space

(Ω,F ,P), and let Y be a sequence of random variables which is

adapted to F . We call the pair (Y,F) a submartingale if, for all n ≥ 0,

1. E[Y +
n ] <∞

2. E [Yn+1|Fn] ≥ Yn
It is a supermartingale if, for all n ≥ 0,

3. E[Y −n ] <∞

4. E [Yn+1|Fn] ≤ Yn
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Definition 3.2. We call the pair (S,F) predictable if Sn is

Fn−1-measurable for all n ≥ 1. We call a predictable process (S,F)
increasing if S0 = 0 and P {Sn ≤ Sn+1} = 1 for all n.
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Proposition 3.3 (Doob decomposition). A submartingale (Y,F) with

finite means may be expressed in the form

Yn = Mn + Sn

where (M,F) is a martingale, and (S,F) is an increasing predictable

process. This decomposition is unique.

The process (S,F) is called the compensator of the submartingale

(Y,F). Note that compensators have finite mean, since

0 ≤ Sn ≤ Y +
n −Mn, implying that

E|Sn| ≤ E
[
Y +
n

]
+ E|Mn|.
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Proof: We define M and S explicitly as follows:

M0 = Y0,

S0 = 0,

Mn+1 −Mn = Yn+1 − E [Yn+1|Fn] ,

Sn+1 − Sn = E [Yn+1|Fn]− Yn.

�
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4 Exercises

1) Let X1, X2, . . . be random variables such that the partial sums

Sn = X1 +X2 + · · ·+Xn determine a martingale. Show that

E [XiXj ] = 0 if i 6= j.

2) Let X0, X1, X2, · · · be a sequence of random variables with finite

means and satisfying E[Xn+1|X0, X1, · · · , Xn] = aXn + bXn−1 for

n ≥ 1, where 0 < a, b < 1 and a+ b = 1. Find a value of α for which

Sn = αXn +Xn−1, n ≥ 1 defines a martingale with respect to the

sequence X.
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3) (i) If (Y,F) is a martingale, show that E [Yn] = E [Y0] for all n.

(ii) If (Y,F) is a submartingale (respectively supermatingale) with

finite means, show that E [Yn] ≥ E [Y0] (respectively E [Yn] ≤ E [Y0]).

4) Let (Y,F) be a martingale. Show that E [Yn+m|Fn] = Yn for all

n,m ≥ 0.
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5) Let {Sn : n ≥ 0} be a simple symmetric random walk on the

integers with S0 = k. Show that S2
n − n is a martingale. Arguing as

we did for the probability of ruin, find the expected duration of the

game for the gambler’s ruin problem.

6) Let X be a discrete-time Markov chain with countable state space

S and transition matrix P. Suppose that ψ : S → R is bounded and

satisfies
∑
j∈S pijψ(j) ≤ λψ(i) for some λ > 0 and all i ∈ S. Show

that λ−nψ(Xn) constitutes a supermartingale.
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5 Stopping times

Definition 5.1. A random variable T taking values in

{0, 1, 2, . . .} ∪ {∞} is called a stopping time with respect to the

filtration F if the indicator of the event {T = n} is Fn-measurable for

all n ≥ 0.

Note that the indicator of the event

{T > n} = {T ≤ n}c

is Fn-measurable for all n. We write [Z|FT ] for [Z|X0, X1, . . . , XT ].
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Example 5.2 (First passage times). For each (sufficiently nice) subset

B of R define the first passage time of X to B by

TB = min{n : Xn ∈ B}

with TB =∞ if Xn /∈ B for all n. It is easily seen that TB is a

stopping time.
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Proposition 5.3. Let (Y,F) be a martingale and let T be a stopping

time with respect to F . Then the sequence (Z,F), where Zn = YT∧n,

is a martingale.

Proof: We may write

Zn =
n−1∑
t=0

Yt1T=t + Yn1T≥n,

whence Zn is Fn-measurable and

E [Zn] ≤
n∑
t=0

E [Yt] <∞.

Also Zn+1 − Zn = (Yn+1 − Yn)1T>n, whence

E [Zn+1 − Zn | Fn] = E [Yn+1 − Yn | Fn] 1T>n = 0.

by the martingale property. �
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6 Optional stopping

Proposition 6.1 (Optional sampling theorem, I). Let (Y,F) be a

martingale. If T is a stopping time for which P {T ≤ N} = 1 for some

fixed N(<∞), then E [YT ] <∞ and E [YT | F0] = Y0.

Proof: Suppose P {T ≤ N} = 1. Let Zn = YT∧n, so that (Z,F) is a

martingale. Therefore E [ZN ] <∞ and

E [ZN | F0] = Z0 = Y0,

and the proof is finished by observing that ZN = YT∧N = YT a.s.
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Example 6.2 (Hitting times of a nearest-neighbor martingale). Let

(Sn)n≥0 be a martingale such that |Sn+1 − Sn| ∈ {0, 1} for all n, and

let T be the hitting time of {−a, b} for some positive integers a and b,

e.g.

T = min{n ≥ 0 : Sn = −a or Sn = b}.

Fix an integer N > 0, and let pa,b = P{ST∧N = −a|T ≤ N}. Then

E[ST∧N ] = −aP{ST∧N = −a}+ bP{ST∧N = b}+ E[SN1T>N ]

= P{T ≤ N}(−apa,b + b(1− pa,b)) + E[SN1T>N ],

and by the previous theorem, E[ST∧N ] = E[S0] = 0, so

pa,b =
b− E[SN1T>N ]/P{T ≤ N}

b+ a
→ b

a+ b
as N →∞

as long as P{T > N} → 0 as N →∞.

24



Proposition 6.3 (Optional sampling theorem, II). Let (Y,F) be a

martingale and let T be a stopping time. If

1. P {T <∞} = 1,

2. E[|YT |] <∞, and

3. E [Yn1T>n]→ 0 as n→∞,

then E [YT ] = E [Y0].
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Proof: Note that YT = YT∧n + (YT − Yn)1T>n. Taking expectations

and using the fact that E [YT∧n] = E [Y0], we find that

E [YT ] = E[YT1T≤n] + E[YT1T>n]

= E [YT∧n] + E [YT1T>n]− E [Yn1T>n.]

= E [Y0] + E [YT1T>n]− E [Yn1T>n.]

Now E[Yn1T>n]→ 0 as n→∞ by assumption, and

E [YT1T>n] =
∞∑

k=n+1

E [YT1T=k]

is the tail of the convergent series E [YT ] =
∑
k E [YT1T=k]; therefore

E [YT1T>n]→ 0 as n→∞. �
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Example 6.4 (Random walk with inertia). Let {X0, X1, X2, . . .} be

{+1,−1}-valued random variables with distribution:

P{X0 = +1} = P{X0 = −1} =
1
2
, and

Xn =


Xn−1 with probability 1

2

+1 with probability 1
4

−1 with probability 1
4

.

Let Sn =
∑n
k=1Xk. Notice that E[Xn+1|Fn] = 1

2Xn, which leads us

to the martingale

Yn = Xn + Sn.

27



Let T = min{n ≥ 0 : Sn ∈ {−a, b}}. The last theorem applies to T ,

so we have that E[Y0] = E[YT ], and so if we let pa,b = P{ST = −a},
then

E[Y0] = 0 = E[YT ]

= (−1− a)pa,b + (1 + b)(1− pa,b),

which implies that

pa,b =
1 + b

2 + a+ b
.
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Example 6.5 (Markov chains). Let X be an irreducible persistent

Markov chain with countable state space S and transition matrix P,

and let ψ : S → R be a bounded function satisfying∑
j∈S

pijψ(j) = ψ(i) for all i ∈ S.

Then ψ(Xn) constitutes a martingale. Let Ti be the first passage time

of X to the state i, that is, Ti = min{n : Xn = i}. The sequence

{ψ(Xn)} is bounded and we obtain E [ψ(XTi
)] = E [ψ(X0)], whence

E [ψ(X0)] = ψ(i) for all states i and all choices of X0. Therefore ψ is

a constant function.
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Proposition 6.6 (Optional Sampling Theorem, III). Let (Y,F) be a

martingale, and let T be a stopping time. Then E [YT ] = E [Y0] if the

following hold:

1. P {T <∞} = 1, E[T ] <∞, and

2. there exists a constant c such that E [|Yn+1 − Yn| | Fn] ≤ c for all

n < T .

We omit the proof.
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Example 6.7 (Wald’s equation). Let X1, X2, . . . be independent

identically distributed random variables with finite mean µ, and let

Sn =
∑n
i=1Xi. Then Yn = Sn − nµ is a martingale with respect to

the filtration {Fn} where Fn = σ(Y1, Y2, . . . , Yn). Now

E [|Yn+1 − Yn| | Fn] = E[|Xn+1 − µ|] = E[|X1 − µ|] <∞.

Thus E [YT ] = E [Y0] = 0 for any stopping time T with finite mean,

implying that

E [ST ] = µE [T ] .
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Example 6.8 (Wald’s identity). Let X1, X2, . . . be independent

identically distributed random variables with common moment

generating function M(t) = E
[
etX
]
; suppose that there exists at least

one value of t( 6= 0) such that 1 ≤M(t) <∞, and fix t accordingly.

Let Sn =
∑n
i=1Xi. Define

Y0 = 1, Yn =
etSn

M(t)n
for n ≥ 1.

It is clear that (Y,F) is a martingale. Let T be a stopping time with

finite mean, and note that

E [|Yn+1 − Yn| | Fn] = YnE
[
| e

tX

M(t)
− 1|

]
≤ Yn

M(t)
E
[
etX +M(t)

]
= 2Yn.
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Suppose that T is such that

|Sn| ≤ C for n < T, (6.1)

where C is a constant. Now M(t) ≥ 1, and

Yn =
etSn

M(t)n
≤ e|t|C

M(t)n
≤ e|t|C for n < T.

In summary, if T is a stopping time with finite mean such that (6.1)

holds, then

E[etSM(t)−T ] = 1 whenever M(t) ≥ 1.
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Example 6.9 (Simple random walk). Suppose that {Sn} is a simple

random walk whose steps {Xi} take the values 1 and −1 with

respective probabilities p and q(= 1− p). For positive integers a and

b, we have from Wald’s identity that

e−atE
[
M(t)−T1ST =−a

]
+ etbE

[
M(t)−T1ST =b

]
= 1 if M(t) ≥ 1

(6.2)

where T is the first exit time of (−a, b) as before, and

M(t) = pet + qe−t.

Setting M(t) = s−1 we get et = λ1(s) or et = λ2(s) where

λ1(s) =
1 +

√
1− 4pqs2

2ps
, λ2(s) =

1−
√

1− 4pqs2

2ps
.
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Substituting these into equation (6.2), we obtain two linear equations

in the quantities

P1(s) = E
[
sT1ST =−a,

]
P2(s) = E

[
sT1ST =b

]
(6.3)

with solutions

P1(s) =
λa1λ

a
2(λb1 − λb2)

λa+b1 − λa+b2

, P2(s) =
λa1λ

a
2

λa+b1 − λa+b2

which we add to obtain the probability generating function of T .

E
[
sT
]

= P1(s) + P2(s), 0 < s ≤ 1.
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Suppose we let a→∞, so that T becomes the time until the first

passage to the point b. From (6.3), P1(s)→ 0 as a→∞ if 0 < s < 1
and P2(s)→ Fb(s) where

Fb(s) =

(
1−

√
1− 4pqs2

2qs

)b
.

Notice that Fb(1) = (min{1, p/q})b.
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7 Crossing and convergence

Proposition 7.1 (Martingale convergence theorem). Let (Y,F) be a

submartingale and suppose that E [Y +
n ] ≤M for some M and all n.

There exists a random variable Y∞ such that Yn
a.s.−−→ Y∞ as n→∞.

Corollary 7.2. If (Y,F) is either a non-negative supermartingale or a

non-positive submartingale, then Y∞ = limn→∞ Yn exists almost

surely.
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Suppose that y = {yn : n ≥ 0} is a real sequence and [a, b] a real

interval. Let Un(a, b; y) be the number of up-crossings of [a, b] by the

subsequence y0, y1, . . . , yn, and let U(a, b; y) = limn→∞ Un(a, b; y) be

the total number of such up-crossings by y.

Lemma 7.3. If U(a, b; y) <∞ for all rationals a and b satisfying

a < b, then limn→∞ yn exists (but may be infinite).
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Suppose now that (Y,F) is a submartingale, and let Un(a, b;Y ) be

the number of up-crossing of [a, b] by Y up to time n.

Proposition 7.4 (Up-crossing inequality). If a < b then

E[Un(a, b;Y )] ≤ E [(Yn − a)+]
b− a

.
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Proof. Set Zn = (Yn − a)+, so that Un(a, b;Y ) = Un(0, b− a;Z).

Let [T2k−1, T2k], k ≥ 1, be the up-crossing by Z of [0, b− a], and

define the indicator function

Ii =

1 if i ∈ (T2k−1, T2k] for some k,

0 otherwise

Note that Ii is Fi−1-measurable. Now

(b− a)Un(0, b− a;Z) ≤

(
n∑
i=1

(Zi − Zi−1)Ii

)
.
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However

E [(Zi − Zi−1)Ii] = E [E[(Zi − Zi−1)Ii | Fi−1]]

= E [Ii[E [Zi | Fi−1]− Zi−1]]

≤ E [E [Zi | Fi−1]− Zi−1]

= E [Zi]− E [Zi−1]

and so

(b− a)Un(0, b− a;Z) ≤ E [Zn]− E [Z0] ≤ E(Zn).
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[Proof of proposition (7.1)] Suppose (Y,F) is a submartingale and

E [Y +
n ] ≤M for all n. From the up-crossing inequality we have that, if

a < b,

EUn(a, b;Y ) ≤ E [Y +
n ] + |a|
b− a

so that U(a, b;Y ) = limn→∞ Un(a, b;Y ) satisfies

EU(a, b;Y ) = lim
n→∞

EUn(a, b;Y ) ≤ M + |a|
b− a

for all a < b. Therefore U(a, b;Y ) <∞ a.s. for all a < b. Since there

are only countably many rationals, it follows that, with probability 1,

U(a, b;Y ) <∞ for all rational a and b. And the sequence Yn

converges almost surely to some limit Y∞ (which could be infinite).

We omit the proof that Y∞ is actually finite with probability one.
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Example 7.5 (Random walk). Consider De Moivre’s martingale,

namely

Yn = (q/p)Sn ,

where Sn is the position after n steps of the usual simple random walk.

The sequence (Yn)n≥0 is a non-negative martingale, and hence

converges almost surely to some finite limit Y as n→∞. This is not

of much interest if p = q, since Yn = 1 for all n in this case. Suppose

that p 6= q.

The random variable Yn takes values in the set {ρk : k = 0,±1, . . .},
where ρ = q/p. Certainly Yn cannot converge to any given (possibly

random) member of this set, since this would necessarily entail that Sn

converges to a finite limit (which is obviously false).
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Therefore Yn converges to a limit point of the set, not lying within the

set. The only such limit point which is finite is 0, and therefore

Yn → 0 a.s..

Hence,

Sn → −∞ a.s. if p < q,

and

Sn → +∞ a.s. if p > q.

Note that Yn does not converge in mean, since E [Yn] = E [Y0] 6= 0 for

all n.
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Lemma 7.6. Let (Y,F) be a martingale. Then Yn converges in mean

if and only if there exists a random variable Z with finite mean such

that Yn = E [Z | Fn]. If Yn
1−→ Y∞, then Yn = E [Y∞ | Fn].

Remark. That is, Y∞ is a possible choice of Z, and the unique one

that is F∞-measurable.
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8 Exercises

1) If T1 and T2 are stopping times with respect to a filtration F , show

that T1 + T2, max{T1, T2}, and min{T1, T2} are stopping times also.

2) Let X1, X2, . . . be a sequence of non-negative independent random

variables and let N(t) = max{n : X1 +X2 + · · ·+Xn ≤ t}. Show

that N(t) + 1 is a stopping time with respect to a suitable filtration to

be specified.
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3) Let (Y,F) be a submartingale and let S and T be stopping times

satisfying 0 ≤ S ≤ T ≤ N for some deterministic N . Show that

E(Y0) ≤ E(YS) ≤ E(YT ) ≤ E(YN ).

4) Let {Sn} be a simple random walk with S0 = 0 such that

0 < p = P {S1 = 1} < 1
2 . Use de Moivre’s martingale to show that

E(supm Sm) = p
1−2p .
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5) Let {Sn : n ≥ 0} be a simple symmetric random walk with S0 = 0.

Show that

Yn =
cos{λ[Sn − 1

2 (b− a)]}
(cosλ)n

.

constitutes a martingale if cosλ 6= 0.

6) Let Sn = a+
∑n
r=1Xr be a simple symmetric random walk. The

walk stops at the earliest time T when it reaches either of the two

positions 0 or K where 0 < a < K. Show that Mn =
∑n
r=0 Sr −

1
3S

3
n

is a martingale and deduce that E(
∑T
r=0 Sr) = 1

3 (K2 − a2)a+ a.
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9 The maximal inequality

Let’s denote Y ∗n = max{Yi : 0 ≤ i ≤ n}.
Proposition 9.1 (Maximal inequality). 1. If (Y,F) is a

submartingale, then

P {Y ∗n ≥ x} ≤
E [Y +

n ]
x

for x > 0.

2. If (Y,F) is a supermartingale and E|Y0| <∞ ,then

P {Y ∗n ≥ x} ≤
E [Y0] + E [Y −n ]

x
for x > 0.
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Proof. Let T = min{n : Yn ≥ x} where x > 0. Suppose first that

(Y,F) is a submartingale. Then (Y +,F) is a non-negative

submartingale with finite means and T = min{n : Y +
n ≥ x}. Applying

the optional sampling theorem with stopping times T1 = T ∧ n,

T2 = n, we obtain E
[
Y +
T∧n

]
≤ E [Y +

n ]. However,

E
[
Y +
T∧n

]
= E

[
Y +
T 1T≤n

]
+ E

[
Y +
n 1T≤n

]
≥ xP {T ≤ n}+ E

[
Y +
n 1T≤n

]
whence

xP {T ≤ n} ≤ E
[
Y +
n (1− 1T>n)

]
= xE

[
Y +
n 1T≤n

]
≤ E

[
Y +
n .
]
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Suppose next that (Y,F) is a supermartingale. By optional sampling

E [Y0] ≥ E [YT∧n].

Now

E [YT∧n] = E [YT1T≤n + Yn1T>n]

≥ xP {T ≤ n} − E
[
Y −n ,

]
whence xP {T ≤ n} ≤ E [Y0] + E [Y −n ].

51



Example 9.2 (Doob-Kolmogorov inequality). Let (Y,F) be a

martingale such that E
[
Y 2
n

]
<∞ for all n. Then (Y 2

n ,Fn) is a

submartingale, whence

P
(

max
0≤k≤n

|Yk| ≥ x
)

= P
(

max
0≤k≤n

Y 2
k ≥ x2

)
≤

E
[
Y 2
n

]
x2

for x > 0.
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Example 9.3 (Gambling systems). For a given game, write Y0, Y1, . . .

for the sequence of capitals obtained by wagering one unit on each

play; that is Y0 is the initial capital, and Yn is the capital obtained

after n gambles each involving a unit stake.

A general betting strategy would allow the gambler to vary her stake.

If she bets Sn on the nth play, her profit is Sn(Yn − Yn−1) since

Yn − Yn−1 is the profit resulting from a stake of one unit. Hence the

gambler’s capital Zn after n plays satisfies

Zn = Zn−1 + Sn(Yn − Yn−1) = Y0 +
n∑
i=1

Si(Yi − Yi−1).

Notice that (S,F) must be a predictable process. The sequence Z is

called the transform of Y by S. If Y is a martingale, we call Z a

martingale transform.
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Proposition 9.4. Let (S,F) be a predictable process, and let Z be

the transform of Y by S. Then:

1. if (Y,F) is a martingale, then (Z,F) is a martingale as long as

E|Zn| <∞ for all n,

2. if (Y,F) is a submartingale and in addition Sn ≥ 0 for all n, then

(Z,F) is a submartingale as long as EZ+
n <∞ for all n.

Proof:

E [Zn+1 | Fn]− Zn = E[Sn+1(Yn+1 − Yn) | Fn]

= Sn+1[E [Yn+1 | Fn]− Yn].

�
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A number of special cases are of value.

1. Optional skipping. At each play the gambler either wagers a unit

stake or skips the round; S equals either 0 or 1.

2. Optional stopping. The gambler wagers a unit stake on each play

until the (random) time T , when she gambles for the last time.

That is,

Sn =

1 if n ≤ T,
0 if n > T,

and Zn = YT∧n. Now {T = n} = {Sn = 1, Sn+1 = 0} ∈ Fn, so

that T is a stopping time. It is a consequence of Proposition (9.4)

that (YT∧n,Fn) is a martingale whenever Y is a martingale, as

established earlier.

3. Optional starting. The gambler does not play until the (T + 1)th

play , where T a stopping time. In this case Sn = 0 for n ≤ T .
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Let (X,F) and (Y,F) be two martingales with respect to the

filtration F . Let T be a stopping time with respect to F ; T is the

switching time from X to Y .

Proposition 9.5 (Optional switching). Suppose that XT = YT on the

event {T <∞}. Then

Zn =

Xn if n < T,

Yn if n ≥ T,

defines a martingale with respect to F .
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Proof: Note that

Zn = Xn1n<T + Yn1n≥T ;

is Fn-measurable. Also E|Zn| ≤ E|Xn|+ E|Yn| <∞. By the

martingale property of X and Y ,

Zn = E [Xn+1 | Fn] 1n<T + E [Yn+1 | Fn] 1n≥T

= E [Xn+11n<T + Yn+11n≥T | Fn.]

Now

Xn+11n<T + Yn+11n≥T = Zn+1 +Xn+11n+1=T − Yn+11n+1=T

= Zn+1 + (XT − YT )1n+1=T .

By the assumption that XT = YT on the event {T <∞}, we have

that Zn = E [Zn+1 | Fn], so that (Z,F) is a martingale. �
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