Using Stein–Chen — an example: Consider a chessboard that measures 1 unit of length on each side, with N squares in total. You and I each pick m distinct squares, uniformly at random. For some subset A of the squares, with total area $|A|$ (and composed of $|N| |A|$ squares), let S_A be the number of squares in A that we both picked. If N is large and $m \approx \sqrt{\lambda N}$, then S_A is approximately Poisson with mean $\lambda |A|$.

Remark: Recall that a Poisson point process (PPP) with rate λ in a region U is a random collection of points with the property that if $N(A)$ is the number of points falling in the subset A of U, then for disjoint subsets U_1, \ldots, U_n, $N(U_1), \ldots, N(U_n)$ are independent and Poisson distributed with means equal to $\lambda |U_1|, \ldots, \lambda |U_n|$. It turns out that for a random collection of points to be a PPP, it suffices that for any subset A of U composed of a union of rectangles, the probability that A contains no points is $\exp(-\lambda |A|)$. This therefore (mostly) proves that the random set of locations we have both picked converges as $N \to \infty$ to a PPP on the chessboard. (more on this in a few weeks)

Proof:
For each k, let X_k be the indicator that we both picked the kth square. First, we should check that

$$E[S_A] = \sum_{k \in A} E[X_k] = N |A| \left(\frac{m}{N} \right)^2 = \lambda |A|,$$

as promised. In particular, $p_k = E[X_k] = (m/N)^2 = \lambda/N$.

We now define V_k, by defining a closely related set of picks: if we did not pick square k, reassign randomly chosen picks to k as needed. To make this explicit, suppose that I pick squares $i = \{i_1, i_2, \ldots, i_m\}$, and you pick $j = \{j_1, j_2, \ldots, j_m\}$. We will define picks i' and j' by slightly adjusting i and j. Let L and L' be iid numbers chosen uniformly from $\{1, 2, \ldots, m\}$; then i_L and $j_{L'}$ will be the picks we rearrange if necessary. If $k \in i$, then let $i = i'$. Otherwise, define $i' = i \setminus \{i_L\} \cup \{k\}$. Define j' in terms of j similarly, reallocating $j_{L'}$ if necessary. Then V_k is the size (cardinality) of the set $i' \cap j' \cap (A \setminus \{k\})$, namely, the number of resulting shared picks in A, excluding square k.

We can be slightly more explicit about checking that i' and j' have the correct distributions, namely, the distribution of i and j given that $k \in i \cap j$ (given that we both picked k). It suffices to check for just i, and for $k = 1$. Since the distribution of i is invariant under permutations of $\{1, 2, \ldots, N\}$, the distribution of i conditioned on the event $\{1 \in i\}$ is invariant under permutations of $\{2, 3, \ldots, N\}$. This property also holds for i'. Therefore, each have the same distribution, namely, that of $\{1\}$ along with a uniformly chosen collection of $m - 1$ numbers from $\{2, 3, \ldots, N\}$. We also know therefore that V_k has the distribution of $S_A - 1$, conditioned on $X_k = 1$.

We now want to bound $E[|S_A - V_k|]$. Note that S_A can differ from V_k in three ways: if $X_k = 1$; if my pick chosen to reallocate was matched to one of yours that lay in A; and if your pick chosen to reallocate was matched to one of mine that lay in A. Then $E[|S_A - V_k|] = E[S_A - V_k]$ is no greater than the sum of the probabilities of these three events. More carefully, let $U V$, and W
be the respective indicators of these things,

\[U = X_k \quad (1) \]

\[V = \begin{cases}
1 & \text{if } i_L \in A \cap j' \\
0 & \text{otherwise}
\end{cases} \quad (2) \]

\[W = \begin{cases}
1 & \text{if } j_L' \in A \cap j' \\
0 & \text{otherwise}
\end{cases} \quad (3) \]

Then \(|S_A - V| = |S_A - V_k| \leq U + V + W\), and so \(E[|S_A - V_k|] \leq E[U] + E[V] + E[W]\).

We know \(E[U] = (m/N)^2\), and since \(V\) depends on choosing one of \(S_A\) things out of a total of \(m\), \(E[V|S_A] = E[W|S_A] = S_A/m\), so

\[
E[V] = \sum_n P\{S_A = n\} E[V|S_A = n] = \sum_n P\{S_A = n\} \frac{S_A}{m} = \frac{E[S_A]}{m},
\]

and so

\[
E[|S_A - V_k|] \leq \left(\frac{m}{N} \right)^2 + 2 \frac{E[S_A]}{m} = \frac{\lambda}{N} + 2 \frac{\lambda |A|}{\sqrt{\lambda N}}.
\]

Therefore,

\[
d_{TV}(S_A, P) \leq (1 \wedge (\lambda|A|)^{-1}) \sum_{k \in A} p_k E[|S_A - V_k|] \\
\leq (1 \wedge (\lambda|A|)^{-1}) N \frac{\lambda|A|}{N} \left(\frac{\lambda}{N} + 2 \frac{\lambda |A|}{\sqrt{\lambda N}} \right) \\
\leq 2(1 \wedge (\lambda|A|)|A|) \sqrt{\frac{\lambda}{N}}.
\]