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Supplementary Software 

Code for  

• generating simulated images,  

• determining particle center locations via various methods including the radial-

symmetry-based method introduced in this manuscript, and  

• calculating and plotting localization accuracy. 

 

 

Disclaimer / License   

All code was written by Raghuveer Parthasarathy, The University of Oregon, Copyright 2011-2012. 

This set of programs is free software: you can redistribute it and/or modify it under the terms of the 

GNU General Public License as published by the Free Software Foundation, either version 3 of the License, 

or (at your option) any later version. 

This set of programs is distributed in the hope that it will be useful, but WITHOUT ANY 

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A 

PARTICULAR PURPOSE.  See the GNU General Public License for more details. 

You should have received a copy of the GNU General Public License (gpl.txt) along with this 

program.  If not, see <http://www.gnu.org/licenses/>. 

 

Language requirements.  All functions are written in MATLAB and have been tested using version 2011a. 

The Statistics Toolbox is required for generation of Poisson-distributed noise (in modelimage.m ), and the 

Optimization Toolbox is required for numerical fitting to Gaussian functions using nonlinear least squares 

and maximum likelihood estimation. 

 

Functions 

Radial-symmetry-based particle localization algorithm 

• radialcenter.m – radial symmetry based particle localization.  This function implements the 
particle tracking method introduced in this paper 

Other particle localization algorithms 

• gaussfit2Dnonlin.m – nonlinear least squares Gaussian fitting  
• gaussfit2DMLE.m – maximum likelihood estimation of a Gaussian form 
• fluorobancroft.m – particle localization using the FluoroBancroft algorithm for a symmetric 

Gaussian form, as described in Andersson, S. Opt. Express 16, 18714-18724 (2008). 



 

Assessment and plotting functions 

• modelimage.m – generates model CCD images of single particles, pixelated and with Poisson-
distributed noise 

• tracking_tests_RP_Apr2012.m – assesses the accuracy of various algorithms’ localization of 
model images 

• make_singleSNr_plots.m – creates plots, like Figure 2a, from the output of 
tracking_tests_RP_Feb2012.m  calculated at a single SNr 

• make_multiSNr_plots.m – creates plots, like Figure 2a, from the output of 
tracking_tests_RP_Feb2012.m  calculated at a range of SNr values 

• interleaveplot.m – called by make_singleSNr_plots.m ; creates plots with interleaved values. 
• usual_labels_for_tracking_tests.m – called by make_singleSNr_plots.m ; sets font 

sizes, etc. 
 

Other functions 

• fitline.m – simple line fit 
• psf2d.m – theoretical 2D point spread function 

 

Functions not included in this collection (not written by Raghuveer Parthasarathy) 

• errorbarlogx.m – properly plots error bars on logarithmic graphs.  (F. Moisy, 2006, availalable 
on the Mathworks FileExchange: http://www.mathworks.com/matlabcentral/fileexchange/9715-
errorbarlogx-m ) 

• gauss2dcirc.m  – Weighted linearized Gaussian fitting, from the authors of Anthony, S. M. & 

Granick, S. Langmuir 25, 8152-60 (2009), available at 

http://groups.mrl.uiuc.edu/granick/software.html  

 

Procedure (examples) 

 

Please see the comments in the code for descriptions of inputs, outputs, and parameters.  This document is 

not intended to serve as a detailed set of instructions, but rather as a quick set of examples to examine.  

 

To run various localization algorithms on images at a single signal-to-noise ratio, one can use 

tracking_tests_RP_Apr2012.m  as follows:   
[sigma time bias sigbias toterror] = tracking_tests _RP_Apr2012(1000, 0.5,20, 
'single_SNr_output.mat');  

In this example, 1000 images with SNr=20 are created and localized.  Graphs of the output can be made, for 

example, using:   make_singleSNr_plots('single_SNr_output.mat', 'SNrp lots_'); 

The “'SNrplots _toterror.png” output graph should look similar to Figure 2a. 

 

To run various localization algorithms on images at a range of signal-to-noise ratios, one can use 

tracking_tests_RP_FApr012.m  as follows:   
[sigma time bias sigbias toterror] = tracking_tests _RP_Feb2012(1000, 0.5,[9 120 15], 
'multi_SNr_output.mat');  

In this example, 1000 images each with SNr from 9 to 120 are created and localized.  Graphs of the output 

can be made, for example, using: 
make_multiSNr_plots('multi_SNr_output.mat', [], 1:5 , 'MultiSNrplots_'); 

The “...toterror_x.png” output graph should look similar to Figure 2b. 


