
Rapid, accurate particle tracking by calculation of radial symmetry

centers

Raghuveer Parthasarathy

Department of Physics, Materials Science Institute, and Institute for Molecular Biology

The University of Oregon, Eugene, Oregon, USA

Supplementary Software

Code for

• generating simulated images,

• determining particle center locations via various methods including the radial-

symmetry-based method introduced in this manuscript, and

• calculating and plotting localization accuracy.

Disclaimer / License

All code was written by Raghuveer Parthasarathy, The University of Oregon, Copyright 2011-2012.

This set of programs is free software: you can redistribute it and/or modify it under the terms of the

GNU General Public License as published by the Free Software Foundation, either version 3 of the License,

or (at your option) any later version.

This set of programs is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License (gpl.txt) along with this

program. If not, see <http://www.gnu.org/licenses/>.

Language requirements. All functions are written in MATLAB and have been tested using version 2011a.

The Statistics Toolbox is required for generation of Poisson-distributed noise (in modelimage.m), and the

Optimization Toolbox is required for numerical fitting to Gaussian functions using nonlinear least squares

and maximum likelihood estimation.

Functions

Radial-symmetry-based particle localization algorithm

• radialcenter.m – radial symmetry based particle localization. This function implements the
particle tracking method introduced in this paper

Other particle localization algorithms

• gaussfit2Dnonlin.m – nonlinear least squares Gaussian fitting
• gaussfit2DMLE.m – maximum likelihood estimation of a Gaussian form
• fluorobancroft.m – particle localization using the FluoroBancroft algorithm for a symmetric

Gaussian form, as described in Andersson, S. Opt. Express 16, 18714-18724 (2008).

Assessment and plotting functions

• modelimage.m – generates model CCD images of single particles, pixelated and with Poisson-
distributed noise

• tracking_tests_RP_Apr2012.m – assesses the accuracy of various algorithms’ localization of
model images

• make_singleSNr_plots.m – creates plots, like Figure 2a, from the output of
tracking_tests_RP_Feb2012.m calculated at a single SNr

• make_multiSNr_plots.m – creates plots, like Figure 2a, from the output of
tracking_tests_RP_Feb2012.m calculated at a range of SNr values

• interleaveplot.m – called by make_singleSNr_plots.m ; creates plots with interleaved values.
• usual_labels_for_tracking_tests.m – called by make_singleSNr_plots.m ; sets font

sizes, etc.

Other functions

• fitline.m – simple line fit
• psf2d.m – theoretical 2D point spread function

Functions not included in this collection (not written by Raghuveer Parthasarathy)

• errorbarlogx.m – properly plots error bars on logarithmic graphs. (F. Moisy, 2006, availalable
on the Mathworks FileExchange: http://www.mathworks.com/matlabcentral/fileexchange/9715-
errorbarlogx-m)

• gauss2dcirc.m – Weighted linearized Gaussian fitting, from the authors of Anthony, S. M. &

Granick, S. Langmuir 25, 8152-60 (2009), available at

http://groups.mrl.uiuc.edu/granick/software.html

Procedure (examples)

Please see the comments in the code for descriptions of inputs, outputs, and parameters. This document is

not intended to serve as a detailed set of instructions, but rather as a quick set of examples to examine.

To run various localization algorithms on images at a single signal-to-noise ratio, one can use

tracking_tests_RP_Apr2012.m as follows:
[sigma time bias sigbias toterror] = tracking_tests _RP_Apr2012(1000, 0.5,20,
'single_SNr_output.mat');

In this example, 1000 images with SNr=20 are created and localized. Graphs of the output can be made, for

example, using: make_singleSNr_plots('single_SNr_output.mat', 'SNrp lots_');

The “'SNrplots _toterror.png” output graph should look similar to Figure 2a.

To run various localization algorithms on images at a range of signal-to-noise ratios, one can use

tracking_tests_RP_FApr012.m as follows:
[sigma time bias sigbias toterror] = tracking_tests _RP_Feb2012(1000, 0.5,[9 120 15],
'multi_SNr_output.mat');

In this example, 1000 images each with SNr from 9 to 120 are created and localized. Graphs of the output

can be made, for example, using:
make_multiSNr_plots('multi_SNr_output.mat', [], 1:5 , 'MultiSNrplots_');

The “...toterror_x.png” output graph should look similar to Figure 2b.

