Physics 161:

Physics of Energy and the Environment

October 21, 2008

Prof. Raghuveer Parthasarathy raghu@uoregon.edu Fall 2008

Lecture 7: Announcements

- Reading: Wolfson, Chapter 4
- Homework: Problem Set 4. Due Thurs. Oct. 23
- Midterm: Thurs, Oct. 30
 - Covers material through Oct. 23 & PS4
 - Short answer + simple calculations
 - No books, no calculators
 - Additional advice, comments later.
- RP's office hours next week:
 - *Monday*: 12.30-2.00 pm
 - Tuesday: Cancelled.

Last Lecture

 Thermodynamics: a fundamental limit on the conversion of thermal energy to "mechanical work" (any low entropy form of energy):

Carnot efficiency e = Work out / Heat In

$$e_{max} = 1 - \frac{T_C}{T_H}$$

- Depends on ratio of "hot & cold" temperatures
- Actual efficiency must be less than this.
- Necessarily: waste heat.

Heat

- Heat: Energy that flows due to a temperature difference.
- How does heat flow? ("Heat transfer")
 - Three mechanisms
 - Conduction
 - Convection
 - Radiation

First, a quick overview.

- Conduction: Collisions between atoms and molecules transfer kinetic energy, and hence thermal energy.
- Example: Hot stove burner \rightarrow Hot pot \rightarrow Hot water.
- Note: all in contact.
- We'll return to this shortly

Convection

- Convection: bulk motion of a fluid (liquid or gas)
- E.g. hot gas becomes less dense, rises, and conveys thermal energy to higher regions.
- [Demo: candle and air flow]
- General behaviors:
 - Bigger temperature difference → more convection
 - Smaller "pores" \rightarrow convective flow more difficult (wool sweater)

- Radiation. The sun... a fireplace... a hot stove burner...
- All objects emit electromagnetic radiation
- It need not be visible EM radiation. You, for example, mostly emit infrared radiation.
- "Night vision," Infrared thermometers (demo)

- EM radiation can travel through vacuum doesn't need "stuff." (E.g. sunlight)
- Recall: Any EM radiation has a particular wavelength.

Source: Leiden University

- Quantum physics (early 20th century): In some ways, light behaves like a particle ("photon") that carries a particular amount of energy
- Shorter wavelength ↔ higher energy

- All objects radiate EM waves
 - because atoms, molecules always in motion, and made of charged particles
- Higher T (More thermal energy) \rightarrow
 - More photons emitted AND
 - Photons with shorter wavelengths

Note that "thermal radiation" isn't the only way to emit light. A fluorescent bulb, for example, emits light unrelated to its temperature.

 Based on what we've learned (properties) of radiation; you emit mostly IR, etc.) which should have a longer wavelength: visible light or infrared radiation?

- A. Infrared
- B. Visible

 Based on what we've learned (properties of radiation; you emit mostly IR, etc.) which should have a longer wavelength: visible light or infrared radiation?

• A. Infrared

• B. Visible

You: IR radiation.

The sun: visible light.

You are cooler than the sun.

Cooler = longer wavelength.

- The Earth receives EM radiation from the sun (mostly visible) and emits radiation to space (mostly infrared).
- As we'll see later, altering the balance of radiated power to & from the Earth's surface is the essence of the greenhouse effect.

Thermos

- Mechanisms of heat flow
- A thermos: minimize heat flow
 - low conduction: vacuum
 - low convection: vacuum
 - low radiation: reflective

istockphoto.com

Heat

- Heat: Energy that flows due to a temperature difference.
- Heat transfer mechanisms
 - Conduction
 - Convection
 - Radiation

Some more detail.

- Conduction: collisions of particles
- What physical parameters should heat transfer depend on?
- (Ask)

Imagine, e.g. you're the blue box, and you get to pick which block to use avoid getting burned

- What physical parameters should heat transfer depend on?
- Temperature difference: $\Delta T = T_{hot} T_{cold}$
- Thickness of the block: thicker \rightarrow less heat
- Area: wider → more heat
- Material the block is made

of

- What's the simplest expression we could make that captures this? proportional to
- ∧T
- Thickness of the block, d
- Area of the block, A
- Material the block is made of – some "intrinsic property," call it "thermal conductivity" k.

- Heat H
- $H \propto \Lambda T$
- \bullet $H \propto A$
- \bullet $H \propto k$

Combining all this:

- Heat H
- $H \propto \Lambda T$
- \bullet $H \propto A$
- \bullet $H \propto k$

In fact, this is the correct expression for heat flow by conduction!

Heat = energy flow (i.e. energy / time), so same units as power

Thermal conductivity

$$H = \frac{k A \Delta T}{d}$$

- A, d depend on geometry
- k (thermal conductivity) is a characteristic of the material.
- [*Demo: wax*]
- [Demo: blocks]

Building Insulation and R

$$H = \frac{k A \Delta T}{d}$$

- The properties of building insulation are often described by "R"
- R = d/k
- Typically ft² °F h / Btu
- Annoying: R isn't an intrinsic property of the material. (Why?)

Thermal conductivity

Thermal conductivity

- Table (text)
- Note:
 - Air: low k
 - Metals: high k

Material	(W/m·K)
Air	0.026
Aluminum	237
Concrete (typical)	1
Fiberglass	0.042
Glass (typical)	0.8
Rock (granite)	3.37
Steel	46
Styrofoam (extruded polystyrene foam)	0.029
Water	0.61
Wood (pine)	0.11
Urethane foam	0.019

Source: istockphoto.com

Thermal conductivity: example

- Suppose I have coffee (≈70°C) in a ceramic cup $(k \approx 1 \text{ W / m / K})$. At what rate is the coffee's thermal energy being lost through the walls of the cup?
- $d \approx 1 \text{ cm} = 0.01 \text{ m}$
- $A \approx 10 \text{ cm} \times 10 \text{ cm} = 0.01 \text{ m}^2$.
- $\Delta T \approx (70-20 \, ^{\circ}\text{C}) = 50 \, ^{\circ}\text{C} = 50 \, \text{K also}!$
- $H = k A \Delta T/d \approx$

1 W / m / K × 0.01 m² × 50 K / 0.01 m \approx 50 W

i.e. to counteract this, I'd need to supply the coffee with 50W of power

Thermal conductivity: example

- We just calculated the heat loss through the cup walls of my 70°C coffee.
- If I wait, is will the heat flow increase or decrease? (Hint: What does H depend on? Are any of these things changing?)
- A. increase
- B. decrease

Source: istockphoto.com

Thermal conductivity: example

- We just calculated the heat loss through the cup walls of my 70°C coffee.
- If I wait, is will the heat flow increase or decrease? (Hint: What does H depend on? Are any of these things changing?)
- A. increase
- decrease

Heat flow \rightarrow T drops $\rightarrow \Delta$ T $drops \rightarrow less heat flow$

Source: istockphoto.com

Thermal conductivity: example

- We just calculated the heat loss through the cup walls of my 70°C coffee.
- Is conduction through the walls the only mechanism by which my coffee transfers heat? List / explain others.

- Conduction through bottom, top
- Convection of heated air above
- Radiation

Source: istockphoto.com

Thermal Radiation

- Thermal radiation emitted by everything
- Many different wavelengths are emitted
- E.g. the sun:
- "Spectrum" Power vs. wavelength
- Total power depends on temperature
- Peak wavelength depends on temperature

http://en.wikipedia.org/wiki/Image:Solar_Spectrum.png

Thermal Radiation

 Total emitted power depends strongly on temperature:

emissivity

Total emitted power depends strongly on

temperature:

 $P = \varepsilon \sigma A T^4$

[Demo]

 ε = emissivity; describes how well EM radiation is absorbed or emitted (same)

Black = perfect absorber, perfect emitter; $\varepsilon = 1$.

Shiny = bad absorber, emitter. ε near zero.

Transparent = bad absorber, emitter. ε near zero.

emissivity

• Total emitted power: $P = \mathcal{E}\sigma A T^4$

 ε = emissivity;

Emissivity can vary with wavelength.

For example: coatings on windows:

high ε in infrared wavelength range,

low ε (transparent) in visible range

Very important to climate!

Thermal Radiation

- Peak wavelength depends on temperature
- Higher $T \rightarrow$ More energy per photon \rightarrow shorter wavelength
 - •The sun: T = 6000 K; peak $\lambda \approx 0.5 \times 10^{-6} \text{ m}$
 - •You: T = 300 K; peak $\lambda \approx 10 \times 10^{-6}$ m
 - •The Universe: T = 2.7 K; peak $\lambda \approx 2$ mm

Thermal Radiation

- The Universe: T = 2.7 K; peak $\lambda \approx 2$ mm
- "Cosmic Microwave Background"

Heat

- Heat: Energy that flows due to a temperature difference.
- How does heat flow? ("Heat transfer")
 - Three mechanisms
 - Conduction
 - Convection
 - Radiation

- We've discussed how $\Delta T \rightarrow$ heat transfer
- What about the opposite: Suppose you supply energy (of any form), how much does T change?
- The relation between energy, Q, and ΔT depends on
 - how much material there is: Mass, M
 - intrinsic property: "specific heat," c

text's symbol, also commonly used for heat.

- The relation between energy, Q, and ΔT depends on
 - how much material there is: Mass, M
 - intrinsic property: "specific heat," c
- $Q = M c \Delta T$
- What (SI) units should c have?
 - A. $kg \times K \times J$
 - B. W / K / kg <
- note: both kg and K in denominator

C. J / kg / K

- The relation between energy, Q, and ΔT depends on
 - how much material there is: Mass, M
 - intrinsic property: "specific heat," c
- $Q = M c \Delta T$
- What (SI) units should c have?

A.
$$kg \times K \times J$$

$$J = kg \times (J/kg/K) \times K$$

- $Q = M c \Delta T$
- Specific heat: units of J/kg/K (or J/kg/°C)
- Shows the energy needed to raise T of 1 kg of the material by 1 °C
- Note: Water has a very high specific heat!

Table 4.3 Specific Heats (J/kg/K) of Some Common Materials	
Aluminum	900
Concrete	880
Glass	753
Steel	502
Stone (granite)	840
Water Liquid Ice	4,184 2,050
Wood	1,400

?

- Heat Input → Temperature rises (usually)
- Can you think of a situation in which adding heat does not lead to a change in temperature?...

Latent Heat

- Phase transitions (e.g. ice \rightarrow water, water \rightarrow steam) often involve a "heat of transformation" or "latent heat" to alter the intermolecular arrangements
- Latent heat = Energy required per unit mass (e.g. water melting: 334 kJ/kg)
- E.g. ice at -10 °C;
 - add heat... T rises... -6°C ... -3°C ... 0 °C
 - continue to add heat. T remains at 0°C, but ice \rightarrow water... all ice has melted
 - continue to add heat. T of water rises...

Physics of Energy

- Our survey of the Physics of Energy is complete
 - Energy, Power
 - Forms of Energy and Energy Conversion
 - Thermal Energy and Heat

Coming Attractions

Next:

 A bit of review + thoughts on how to think about physical relations

• Then:

- Specific Sources of Energy
- Climate and Climate Change