2.3.1. Consider \(f \) and \(g \) in the table below.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>0</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>(g(x))</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

(a) Is \(f \) invertible?
Answer: Yes
(b) Is \(g \) invertible?
Answer: No

2.3.2. The functions \(p \) and \(q \) are defined such that
\[p(x) = x^2 + 4x \quad \text{and} \quad q(x) = 6x + 1. \]

(a) Find and simplify \((p \circ q)(x)\).
Answer: \((p \circ q)(x) = 36x^2 + 36x + 5\)
(b) Find and simplify \((pq)(x)\).
Answer: \((pq)(x) = 6x^3 + 25x^2 - 4x\)
(c) The function \(q \) is invertible. Find its inverse.
Answer: \(q^{-1}(x) = \frac{1}{6}x - \frac{1}{6}\)
(d) Explain briefly why \(p \) is not invertible.
Answer: Since \(p(-5) = 5 \) and \(p(1) = 5 \), \(p \) cannot be invertible.

2.3.3. The following functions are invertible. Find their inverses:

(a) \(f(x) = -\frac{2}{3}x - 6 \)
Answer: \(f^{-1}(x) = -\frac{3}{2}x - 9 \)
(b) \(r(x) = \frac{1}{4}x - 1 \)
Answer: \(r^{-1}(x) = 3x + 3 \)
(c) \(t(x) = -\frac{4}{5}x + 3 \)
Answer: \(t^{-1}(x) = -\frac{7}{4}x + \frac{21}{4} \)
(d) \(w(x) = 3x - 1 \)
Answer: \(w^{-1}(x) = \frac{1}{3}x + \frac{1}{3} \)
(e) \(g(x) = x^3 + 4 \)
Answer: \(g^{-1}(x) = \sqrt[3]{x - 4} \)
(f) \(h(x) = \frac{2x + 3}{x + 1} \)
Answer: \(h^{-1}(x) = \frac{3 - x}{x - 2} \)
(g) \(p(x) = 1 - 2e^x \)
Answer: \(p^{-1}(x) = \ln\left(-\frac{1}{2}x + \frac{1}{2}\right) \)
(h) \(q(x) = \ln(x - 3) \)
Answer: \(q^{-1}(x) = 3 + e^x \)
(i) \(s(x) = 3 + \sqrt{x - 2} \)
Answer: \(s^{-1}(x) = x^2 - 6x + 11 \)
(j) \(v(x) = 1 - \sqrt{x + 4} \)
Answer: \(v^{-1}(x) = -\frac{1}{7}x^3 + \frac{3}{4}x^2 - \frac{3}{2}x - \frac{3}{7} \)

2.3.4. Sketch the inverse of the function \(y = f(x) \) graphed below:

(k) \(z(x) = 3 + 3\log(x + 5) \)
Answer: \(z^{-1}(x) = -5 + 10^{(y-3)/3} \)

2.3.5. A function \(y = h(x) \) is graphed below. Draw the graph of \(h^{-1} \).

Answer: On graph below
2.3.6. Is the function \(f(x) = \frac{2}{2x+3} \) invertible? If so, find its inverse.

Answer: Yes, \(f^{-1}(y) = \frac{2-3y}{2y} \)

2.3.7. Is the function \(g(x) = 3x - 1 \) invertible? If so, find its inverse.

Answer: Yes, \(g^{-1}(y) = \frac{1}{3}y + \frac{1}{3} \)

2.3.8. Is the function \(h(x) = |2x + 3| - 1 \) invertible? If so, find its inverse.

Answer: No

2.3.9. Is the function \(p(x) = 2\log(x) + 3 \) invertible? If so, find its inverse.

Answer: Yes, \(p^{-1}(y) = 10^{(y-3)/2} \)

2.3.10. Are the following functions invertible? If so, find their inverses.

(a) \(f(x) = 3x + 7 \)

Answer: Yes, \(f^{-1}(x) = \frac{1}{3}x - \frac{7}{3} \)

(b) \(g(x) = 1 - \frac{3}{2-x} \)

Answer: Yes, \(g^{-1}(x) = 2 - \frac{3}{1-x} \)

(c) \(h(x) = x^2 - 4 \)

Answer: No

(d) \(p(x) = \frac{2}{3}x - \frac{1}{2} \)

Answer: Yes, \(p^{-1}(x) = \frac{3}{2}x + \frac{3}{11} \)

(e) \(q(x) = \frac{5-3x}{2x+1} \)

Answer: Yes, \(q^{-1}(x) = \frac{5-y}{2y+3} \)

(f) The function \(y = r(x) \) is graphed below. You may draw the inverse if it is invertible.

Answer: Yes, the inverse is on the graph below.

2.3.11. True or False: The functions \(f(x) = 1 + 7x^3 \) and \(g(x) = \sqrt[3]{\frac{1}{x-1}} \) inverses of each other.

Answer: True

2.3.12. True or False: The functions \(f(x) = 1 - \frac{1}{x-1} \) and \(g(x) = 1 + \frac{1}{x} \) inverses of each other.

Answer: False

2.3.13. For each of the following pairs of functions, decide whether or not they are inverses for one another.
2.3.14. Find any two functions \(f \) and \(g \) such that \((f \circ g)(x) = x \) for all \(x \) but there exists a number \(t \) such that \((g \circ f)(t) \neq t \).
Answer: There are a lot of answers. I imagine the most popular answer will be \(f(x) = x^2 \) and \(g(x) = \sqrt{x} \).

2.3.15. Hint: The two parts of this question have different answers. Why is that?
(a) Are the functions \(f(x) = 3 + \sqrt{x - 1} \) and \(g(x) = (x - 3)^3 + 1 \) inverses of one another?
Answer: Yes
(b) Are the functions \(f(x) = 3 + \sqrt{x - 1} \) and \(g(x) = (x - 3)^2 + 1 \) inverses of one another?
Answer: No

2.3.16. The graphs of two functions, \(y = f(x) \) and \(y = g(x) \), are shown below.

(a) Is \(f \) an invertible function?
Answer: Yes
(b) Is \(g \) an invertible function?
Answer: No
(c) Sketch the graph of \(y = (f + g)(x) \).
Answer: Shown on graph

2.3.17. The airspeed velocity of a European swallow is proportional to its heart rate. That is, if a European swallow’s heart rate is \(h \) bpm then its airspeed is \(A(h) = 0.01h \) m/s.
(a) The average heart beat of a European swallow is 900 bpm. What is the airspeed velocity of such a swallow?
Answer: 9 m/s
(b) If a European swallow flies at 11.5 m/s, find its heart rate.
Answer: 1150 bpm

2.3.18. Cindy works at an hourly job where her pay is determined by a function \(P \). If Cindy works an average of \(t \) hours a week over the course of a year then she makes \(P(t) \) dollars in that year where
\[
P(t) = 600t + 800.
\]
Additionally, the amount that Cindy puts into savings depends on the amount of money that she makes in a year according to the function \(S \). That is, if she makes \(d \) dollars in a year then she will put \(S(d) \) dollars into her savings account that year where
\[
S(d) = \frac{3d - 8000}{20}.
\]
(a) She wants to know how many hours a week that she needs to work in order to make a given amount of money. Find a function \(f \) such that if she wants to make \(d \) dollars in a year then the average number of hours she needs to work per week during that year is \(f(d) \).
Answer: \(f = P^{-1} \) so \(f(d) = \frac{d - 800}{600} \)
(b) Cindy’s mom is worried about her and wants to know how much she will save depending on how many hours she works. Find a function \(g \) such
that if she works an average of \(t \) hours a week over the course of a year then she put \(g(t) \) dollars into savings in that year.

Answer: \(g = S \circ P \) so that \(g(t) = 90t - 280 \)

(c) Cindy also wants to know how many hours a week that she needs to work in order to save a given amount of money. Find a function \(h \) such that if she wants to save \(m \) dollars in a year then the average number of hours she needs to work per week during that year is \(h(m) \).

Answer: This can be done with either \(h = g^{-1} \) or \(h = P^{-1} \circ S^{-1} \) so that \(h(m) = \frac{m + 280}{90} \).