1. The graph of a periodic function \(y = f(x) \) is shown below.

 \[
 \begin{align*}
 y &= f(x) \\
 \end{align*}
 \]

 (a) [2pt] Find the period of \(f \).

 \textbf{Answer:} 8

 (b) [2pt] Find the midline of \(f \).

 \textbf{Answer:} \(y = -2 \)

 (c) [2pt] Find the amplitude of \(f \).

 \textbf{Answer:} 3

 (d) [2pt] Find \(f(21) \).

 \textbf{Answer:} 1

2. Suppose that \(\theta \) is an angle such that \(\cos(\theta) = 0.56 \) and \(\sin(\theta) < 0 \).

 (a) [1pt] True or False: \(\theta = \cos^{-1}(0.56) \). \textit{Hint: What do you know about the inscription point corresponding to } \theta?\textit{?}

 \textbf{Answer:} False

 (b) [5pt] Find \(\sin(\theta) \). Round to two decimal places.

 \textbf{Answer:} -0.83

 (c) [2pt] Find \(\tan(\theta) \). Round to two decimal places.

 \textbf{Answer:} -1.48

3. Consider the figure shown below: \textit{(Note: It is not drawn exactly to scale.)}

 \[
 \begin{align*}
 \end{align*}
 \]

 (a) [3pt] Find \(h \). Round to two decimal places.

 \textbf{Answer:} 7.42

 (b) [3pt] Find \(\theta \). Round to two decimal places.

 \textbf{Answer:} 47.90°

 (c) [3pt] Find \(\ell \). Round to two decimal places.

 \textbf{Answer:} 6.70
4. [5pt] A child is spinning on a carousel in the playground of a school. This carousel has a diameter of 12 ft and its center is 11 ft from the school. Find a function d such that when the child is at an angle of θ as shown in the diagram below, the child is $d(\theta)$ feet from the school.

![Diagram of a carousel with a child at an angle θ from the school]

Answer: $d(\theta) = 6 \sin(\theta) + 11$

5. State street runs north and south while Main street runs east and west. These two streets intersect in the city of Green. 19 mi north of their intersection there is a train station on State street and 13 mi east of their intersection there is a second train station on Main street. There is a train which runs in a straight line between these two train stations.

(a) [3pt] How far is the train ride between the two train stations? Round to two places.

Answer: 23.02 mi

(b) [3pt] Find the acute angle between State street and the train tracks. Round to two places.

Answer: 34.38°

6. Let $f(x) = 2x - 1$ and let $g(x) = x^2 + x - 2$.

(a) [3pt] Find and simplify $(f - g)(x)$.

Answer: $(f - g)(x) = -x^2 + x + 1$

(b) [3pt] Find and simplify $(g \circ f)(x)$.

Answer: $(g \circ f) = 4x^2 - 2x - 2$

(c) [3pt] Let $h(x) = \frac{1}{2}x + \frac{1}{2}$. Are f and h inverses of one another? Verify your answer.

Answer: Yes

7. [5pt] A city planner is studying the population of the city of Green. He finds a function P which describes this population. That is, t years from today the population will be $P(t)$ people where

$$P(t) = 2000e^{0.015t}.$$

Find (and simplify) a function Y such that $Y(n)$ is the amount of time (from today) before the city’s population reaches n people.
Answer: \(Y(n) = \frac{200}{3} \ln(0.0005n) \)

8. [5pt] An engineer is doing an analysis on the efficiency of a certain car. She finds two relationships. First, she finds that if this car is going at a speed of \(r \) miles per hour then its gas mileage is \(M(r) \) miles per gallon where

\[
M(r) = -0.01r^2 + 0.5r + 30.
\]

Additionally, she finds that if this car’s gas mileage is \(m \) miles per gallon then it emits \(C(m) \) grams of carbon per mile where

\[
C(m) = 5m + 220.
\]

Find (and simplify) a function \(f \) such that when the car is going at a speed of \(r \) miles per hour then it emits \(f(r) \) grams of carbon per mile.

Answer: \(f(r) = -0.05r^2 + 2.5r + 370 \)

9. [1pt] True or False: If \(f \) and \(g \) are any functions such that \((f \circ g)(x) = x \) for all values of \(x \) in the domain of \(f \circ g \) then \(f \) and \(g \) must be inverses of each other.

Answer: False

10. [1pt] True or False: \(\sin^{-1}(\sin(\theta)) = \theta \) for all angles \(\theta \).

Answer: False

11. [1pt] True or False: The function \(y = f(x) \) graphed below is an invertible function.

Answer: True

12. [1pt] True or False: The function \(y = f(x) \) graphed below is a periodic function.

Answer: False

13. [1pt] True or False: If \(\theta \) is an angle such that \(\cos(\theta) = \frac{\sqrt{3}}{2} \) then it must be the case that \(\theta = 30^\circ \).

Answer: False