1. Let \(f(x) = x^2 - x \) and let \(g(x) = 3x + 4 \).

 (a) (3pt) Find and simplify \((f \circ g)(x)\).

 Answer: \((f \circ g)(x) = 9x^2 + 21x + 12\)

 (b) (3pt) Find and simplify \((g \circ f)(x)\).

 Answer: \((g \circ f)(x) = 3x^2 - 3x + 4\)

2. (4pt) The function \(h(x) = 3 + 5 \ln(x-1) \) is invertible. Find and simplify its inverse.

 Answer: \(h^{-1}(y) = 1 + e^{\frac{1}{5}(y-3)} \)

3. **This problem has been corrected since it was administered in class. The change is highlighted in blue and underlined.**

 An engineer notices that a chemical is leaking from a pipe. This leak causes a steady accumulation of the chemical on the floor in the shape of a circle which is slowly growing outward. He records that \(t \) minutes after he noticed the leak, the circle has a radius of \(R(t) \) cm where

 \[R(t) = 3 + \frac{1}{2} t. \]

 Of course, the area of a circle of radius \(r \) cm is \(A(r) \) cm\(^2\) where

 \[A(r) = \pi r^2. \]

 (a) (5pt) Find a function \(Q \) such that \(t \) minutes after the engineer noticed the leak, the area of the accumulated chemical is \(Q(t) \) cm\(^2\).

 Answer: \(Q(t) = \frac{25}{4} t^2 + 3\pi t + 9\pi \)

 (b) (5pt) Find a function \(f \) such that when the radius of the circle of accumulated chemical is \(r \) cm it has been \(f(r) \) minutes since the engineer noticed the leak.

 Answer: \(f(r) = 2r - 6 \)