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The penetration of a fluid into a porous medium 
or Hele-Shaw cell containing a more 

viscous liquid 

BY P. G. SAFFMAN AND SR GEOFFREY TAYLOR, F.R.S. 

Cavendish Laboratory, University of Cambridge 

(Received 17 January 1958-Read 17 April 1958) 

[Plates 2 and 3] 

When a viscous fluid filling the voids in a porous medium is driven forwards by the pressure 
of another driving fluid, the interface between them is liable to be unstable if the driving 
fluid is the less viscous of the two. This condition occurs in oil fields. To describe the normal 
modes of small disturbances from a plane interface and their rate of growth, it is neces- 
sary to know, or to assume one knows, the conditions which must be satisfied at the inter- 
face. The simplest assumption, that the fluids remain completely separated along a definite 
interface, leads to formulae which are analogous to known expressions developed by 
scientists working in the oil industry, and also analogous to expressions representing the 
instability of accelerated interfaces between fluids of different densities. In the latter case the 
instability develops into round-ended fingers of less dense fluid penetrating into the more 
dense one. Experiments in which a viscous fluid confined between closely spaced parallel 
sheets of glass, a Hele-Shaw cell, is driven out by a less viscous one reveal a similar state. 
The motion in a Hele-Shaw cell is mathematically analogous to two-dimensional flow in a 
porous medium. 

Analysis which assumes continuity of pressure through the interface shows that a flow is 
possible in which equally spaced fingers advance steadily. The ratio A = (width of finger)/ 
(spacing of fingers) appears as the parameter in a singly infinite set of such motions, all of 
which appear equally possible. Experiments in which various fluids were forced into a narrow 
Hele-Shaw cell showed that single fingers can be produced, and that unless the flow is very 
slow A = (width of finger)/(width of channel) is close to , so that behind the tips of the 
advancing fingers the widths of the two columns of fluid are equal. When A = i the cal- 
culated form of the fingers is very close to that which is registered photographically in the 
Hele-Shaw cell, but at very slow speeds where the measured value of A increased from i to 
the limrlit 1 0 as the speed decreased to zero, there were considerable differences. Assuming that 
these might be due to surface tension, experiments were made in which a fluid of small 
viscosity, air or water, displaced a much more viscous oil. It is to be expected in that case 
that A would be a function of ,tU/T only, where It is the viscosity, U the speed of advance 
and T the interfacial tension. This was verified using air as the less viscous fluid penetrating 
two oils of viscosities 030 and 4-5 poises. 

1. THE STABILITY OF THE INTERFACE BETWEEN TWO 

FLUIDS IN A POROUS MEDIUM 

It has been pointed out (Taylor 1950) and verified experimentally (Lewis 1950) 
that when two superposed fluids of different densities and negligible viscosities are 
accelerated in a direction perpendicular to their interface, this surface is stable or 
unstable for small deviations according as the acceleration is directed from the more 
dense to the less dense fluid or vice versa. 

An analogous instability can occur when two superposed viscous fluids are forced 
by gravity and an imposed pressure gradient through a porous medium. If the 
steady state is one of uniform motion with velocity V vertically upwards and the 
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Penetration of a fluid into a more viscous liquid 313 

interface between the two fluids is horizontal, then it can be shown that the inter- 
face is stable for small deviations from the steady state if 

(k12 
111 

V+(P2-P09 g>O,(1 

and unstable if (/2 l) V+(P2-Pl)9<0, (2) 

where the suffix 1 refers to the upper fluid and the suffix 2 to the lower. The motion 
of the fluids through the medium is here supposed to be governed by Darcy's law 
which asserts that the velocity of the fluid is given by 

k 
u = - - grad(p+pgx) = gradq5, say, (3) 

where u denotes the velocity, It the viscosity and p the density, k is the permeability 
of the medium to the fluid, g the acceleration due to gravity, x the vertical height 
above some horizontal plane, and 0 is called the velocity potential. 

To describe a disturbance of the surface of separation, take rectangular co- 
ordinates (x, y, z), the instantaneous position of the undisturbed interface coinciding 
with the plane x = 0. Suppose the interface is deformed slightly into a wave-like 
corrugation of wavelength 27T/n described by 

x = aeiny+ot. (4) 

Assuming that the fluids are incompressible and that the medium is of uniform 
porosity, the equation of continuity satisfied by the velocity field is div u = 0 and 
the velocity potential therefore satisfies Laplace's equation V2qS = 0. 

It is now necessary to make some assumption about the nature of the motion in 
the vicinity of the interface because, in fact, a sharp interface between the two fluids 
does not exist but there is, rather, an ill-defined transition region in which the two 
fluids intermingle. This region is often not very thick and we shall assume that the 
fluids do not interpenetrate to any marked extent and that the width of the transi- 
tion zone is small compared with the length scale of the motion. It is then reasonable 
to assume for the purpose of mathematical analysis that the two fluids are separated 
by a sharp interface, across which the normal component of velocity and the pressure 
are continuous (surface tension or any other similar effect is neglected).t 

It follows from the continuity of normal velocity that the velocity potentials in 
the upper and lower fluid satisfy on x -, to the first order in the deviation 

a_ = aO2= V + ao- enyi+T( 
ax ax 

t The assumption that one fluid completely expels the other may sometimes be relaxed 
and the analysis can be modified to treat cases in which a proportion of one fluid is left behind 
to be surrounded by the oncoming fluid. The continuity of normal velocity across the interface 
no longer holds, but provided that the mixture of fluids can be regarded as homogeneous and 
the proportion left behind the interface is constant, then it is found that the interface moves 
as if it separated two fluids whose viscosities and densities differ from those of the original two 
fluids but which completely expel one another. The values of these viscosities and densities 
depend upon the physical properties of the mixture and the proportion left behind. In this 
connexion, see also the Appendix. 
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314 P. G. Saffman and Sir Geoffrey Taylor 

Hence, = Vx- (ao/n) ein-n+ 

and 02= Vx + (aojn) eiflY+nx+, 

these being the appropriate solutions of V20 = 0 which satisfy (5) and for which 
the disturbance vanishes at infinity. 

The pressure, Pl, in the upper fluid is - (lll/k1) l -p1gx and that, P2, in the lower 
fluid is - (/a2/k2) 02 -p2 gx. Equating the values of Pi and P2 on the interface (4), 
we find that, to the first order in the deviation, o must satisfy 

,, (ittl +k) =(Pl-P2) g+(k -k )2V. (6) 

If the right-hand side of (6) is positive, then o is positive and the amplitude of 
the deviation increases at an exponential rate and the interface is then unstable to 
small disturbances. If the right-hand side is negative, the deviation is damped at 
an exponential rate and the motion is stable to small disturbances. Thus, the results 
(1) and (2) are true for all wavelengths and consequently for all types of small 
disturbance. They can also be put as follows. When two superposed fluids of different 
viscosities are forced through a porous medium in a direction perpendicular to 
their interface, this surface is stable or unstable to small deviations according as 
the direction of motion is directed from the more viscous to the less viscous fluid or 
vice versa, whatever the relative densities of the fluids, provided that the velocity 
is sufficiently large. 

It appears that this result is not essentially new and that mining engineers and 
geologists have long been aware of it. In certain types of oil wells the oil taken out 
of the ground is replaced by encroaching water which comes from the expansion of 
a large water accumulation or seepage from the surface. Since oil is lighter than water 
but somewhat more viscous, it follows from (2) that when the velocity of extraction 
is too large the interface will become unstable. It is indeed observed in practice 
that when the velocity of extraction is too large, long tongues or cones of water 
penetrate the oil and it comes out of the well mixed with water. This phenomenon 
is known in the literature as 'water tonguing or coning'. However, earlier writers 
(e.g. Dietz '953; Kidder I956) do not appear to have considered explicitly the 
stability of the interface, but rather the conditions necessary in certain cases for 
a steady interface to exist. 

2. AN ANALOGUE FOR TWO-DIMENSIONAL FLOW IN A POROUS MEDIUM 

The motion of fluid in a porous medium according to Darcy's law can be derived 
from a potential q- (k/lt) (p +pgx). Motion in two dimensions can therefore be 
studied experimentally by means of an analogue devised by Hele-Shaw (I898). 

This makes use of the result that the motion of a viscous fluid, between two fixed 
parallel plates which are sufficiently close together, is such that the components of 
the mean velocity across the stratum are 

b2 asiP a2p = - l2M (az 
+P9f) > V = -_ 

l2,z aP(7) 

where b denotes the distance between the plates (see, for example, Lamb 1932, ? 330). 
The plates are here taken as vertical, the x-axis is vertically upwards, the y-axis 
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Penetration of a flutd into a more viscous 1liquid 315 

parallel to the plates, and the z-axis perpendicular to the plates; u and v are the 
components of mean velocity in the x- and y-directions, respectively. 

These are the equations satisfied by the velocity in a porous media of permeability 
b2/12 and there is thus a direct analogy between two-dimensional flow in a porous 
medium and the flow between parallel plates, the velocity in the former case corre- 
sponding to the mean velocity in the latter. In this way, for example, the streamlines 
for the flow around bodies of arbitrary shape can be determined experimentally. 

The analogue can also be used to reproduce experimentally the (two-dimensional) 
motion of the interface between two fluids in a porous medium. Consider the motion 
between parallel plates of two immiscible fluids of viscosities a, ,2 and densities 
Pi' P2, respectively, aind suppose the direction of motion is away from fluid 2 towards 
fluid 1. Now the fluid 1 is not necessarily completely expelled or replaced by fluid 2, 
a film of fluid 1 may wet the plates and adhere to them, while a tongue of fluid 2 
advances along the middle of the gap between the plates. The thickness of the tongue 
may be taken as a fraction t, say, of the gap between the plates and the analysis 
which follows is applicable and the analogue valid provided that t is constant. 

In experiments to be described later, one of the fluids (fluid 2) was air and in 
order to find out what proportion of fluid 1 was left behind after the interface 
(or the tip of the meniscus) has passed, subsidiary experiments were made in which 
a measured volume of air was blown centrally into the narrow space (0.09 cm) 
between the flat base of a metal vessel containing oil or glycerine and a circular 
flat glass disk. The rather irregular outline of the bubble so formed was photographed 
and the area contained within it determined. In several such trials it was found that 
the volume of the bubble divided by the area gave a thickness which was always 
less than 0-09 cm but was never more than 12 % less. The rate at which the air was 
blown into the apparatus had to be kept low for otherwise the instability which 
gives rise to the irregular outlines of the interface made it difficult to measure the 
area. The velocity of the interface was, however, of the same order as those occurring 
in the experiments to be described later. In discussing those experiments, it is 
therefore legitimate to assume that t = 1 and the outlines which were observed and 
photographed represent interfaces completely separating the two fluids. 

The thickness of the filmi of liquid left behind when a bubble moves in a capillary 
tube has been investigated (Fairbrother & Stubbs 1935) and shown to depend on the 
non-dimensional parameter ,a UIT, where It is the viscosity, U is the velocity of the 
bubble and T the surface tension. The value of the parameter in our experiments 
was such that only a small fraction of the fluid would be expected to remain 
behind. 

The mean velocity across the stratum of fluid 1 ahead of the interface is given by 
(assuming b to be sufficiently small) 

u =-(b2/12jt1) grad (p + pgx) grad q1, say, (8) 

taking the plates vertical and the x-axis vertically upwards. Taking t 1 and fluid 1 
to be completely expelled, the mean velocity across the stratum of fluid 2 is given by 

= - (b2/12,a2) grad (p + p2x) = grad O2 say. (9) 

20 Vol. 245. A. 
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316 P. G. Saffman and Sir Geoffrey Taylor 

Now when b is small, the width of the projection of the meniscus on to the plates is 
small, and expressions (8) and (9) can be supposed to hold (for the purposes of the 
analysis) right up to the interface which may be regarded as a sharp line. It follows 
from continuity that the components of ul and u2 normal to the interface are 
continuous across the interface; if surface tension effects are negligible the pressure 
is constant across the interface (see, further, ? 5 below), and the motion of the two 
fluids will then reproduce the two-dimensional motion of the interface between two 
fluids of viscosities It, and g2 in a porous medium of permeability b2/12. 

The analogue is still valid when t * 1, provided that t is constant. For this case, 
the interface can be identified with the tip of the meniscus between the two fluids. 
The modifications that are required are given in the Appendix. 

The considerations of ? 1 apply to the motion in the Hele-Shaw cell and it will be 
noticed that when the cell is vertical there is a critical velocity for the interface, 
which separates unstable from stable conditions. This is given by (1) and (2) with 
k1 and k2 replaced by b2/12. When the Hele-Shaw apparatus is set horizontal the 
analysis applies with g put equal to zero, and it follows that the interface is always 
unstable when the less viscous fluid is driving the more viscous. 

3. EFFECT OF SURFACE TENSION ON STABILITY IN THE HELE-SHAW CELL 

The effect of surface tension on the stability of the interface may depend on a 
variety of physical conditions. The simplest assumption is to take the pressure drop 
through the interface as T(2/b + 1/R), where R is the radius of curvature of the 
projection on the planes bounding the cell of the tip of the meniscus. In discussing 
the stability of a plane interface in the Hele-Shaw apparatus, this may be taken as 
T(2/b + d2x/dy2), where x is given by (4), and it is easily seen that (6) is thereby 
altered to 

b2 f(/t1+1t2) = ?({ (&&lV-(/t)+g(PlP2)- 13 (10) 

where CT is the amplification factor of disturbances of wavelength I = 2rT/n. 
It will be seen that this effect of surface tension is to limit the range of disturb- 

ances which are unstable to those of wavelength greater than 

1crit, = 27TVb{12 V(a1 - 2) + b2g( - P2)}-. (11) 

That surface tension should have this effect was pointed out to us by Dr Chuoke in 
a similar connexion, the amplification factor is a maximum for disturbances of 
wavelength 4/3 1crit.. 

4. EXPERIMENTS USING THE HELE-SHAW CELL 

It was shown experimentally (Lewis I950) that the unstable accelerating inter- 
face between two fluids of different density develops in such a way that long fingers 
of the less dense fluid penetrate into the more dense one, and beyond the level to 
which these fingers have penetrated into the more dense fluid the acceleration has 
the same value it would have if the interface had remained plane. Analogous results 
are obtained when the I1-ele-Shaw apparatus contains two immiscible fluids. 
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Penetration of a fluid into a more vi0cous liquid 317 

In the first apparatus, two pieces of commercially flat plate glass were separated 
by strips of rubber 009 cm thick laid long their long edges. The channel 009 x 12 x 
38 cm thus formed was connected at its two ends with vessels containing the two 
fluids. The pressure gradient along the channel was produced by applying air 
pressure or suction to the airspace above the fluid in one of the end vessels and the 
pressure at the other was maintained at that of the atmosphere. The apparatus 
which is shown in the sketch (figure 1) could be used either vertically or horizontally 
and the meniscus of the interface could be photographed as a sharp line. The three- 
cock shown in figure 1 on the left side of the top of the front view made it possible 

O -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ I 

- ____ -j ~ ~ ~ - 

FIGUURE 1. Sketch of Hele-Shaw cell. 

to change the pressure in the air chamber rapidly from pressure to suction. The 
first experiments were made with the apparatus vertical and with glycerine as the 
more viscous and air as the less viscous fluid. In this case the critical velocity is 
downwards and the unstable disturbances are to be expected when the air is above 
if the velocity is downwards and greater than this. If the glycerine lies above the 
air the flow becomes stable when the downwards velocity is greater than the 
critical. 

In the experiment shown in figure 2, plate 2, the fluid was sucked up to near the 
top of the Hele-Shaw channel and allowed to fall with a velocityless than the critical 
and then maintained at rest for a short time. The fluid left behind on the glass then 
gathered itself together to form vertical streaks which produced on the interface 
a small variation in level. The air pressure was then turned on; this is indicated by 
the mercury manometer seen to the left of the channel. The photograph was taken 
by a flash bulb after the glycerine had been forced downwards through a few 
centimetres. It will be seen that the instability has already manifested itself. In 

20-2 
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318 P. G. Saffman and Sir; Geoffrey Taylor 

this experiment V was 0 I cm/s and the critical wavelength given by (11) was 
1 2 cm; the average wavelength of the disturbance shown in figure 2 was 2 2 cm, 
so that instability was to be expected. 

Figure 3, plate 2, shows a later stage of the instability (not in the same experiment 
as that of figure 2). In this case the pressure was turned on when the nearly straight 
interface was at the level of the top of the mark seen projecting from the left-hand 
side of the channel. A characteristic feature of the later stages of the growth of 
'instability' into 'fingers', is shown in figure 3, namely the tendency of the fingers 
to space themselves so that the width of the air fingers and the columns of fluid 
between them are of approximately the same breadth. The development of these 
fingers is very similar to those recorded by Lewis for the later states of instability 
of an accelerated interface, but it differs from them in that the air fingers in Lewis's 
experiment were separated by very narrow columns of fluid. 

The reason for the narrow columns in Lewis's experiment was that the water 
left behind after the passage of the front of 'fingers' is in a field of uniform pressure, 
and therefore moves uniformly at the speed at which it was passed by the front, 
while the fluid ahead of this front is accelerating away from it. There is thus a 
longitudinal rate of strain in the columns so that they must continually decrease 
in thickness as the front leaves them. 

Figure 4, plate 2, shows another characteristic feature, the inhibiting effect on 
the growth of its neighbours that happens when the end of one of the fingers gets 
ahead of them. On the right-hand side of this photograph can be seen three fingers 
which started to grow at the same time. The middle finger, however, was slightly 
larger than its neighbours and at the stage shown in figure 4 has almost completely 
inhibited their growth and as it passed them it spread laterally. The inhibiting 
effect on the growth of neighbours by any finger which gets ahead of them also 
occurred in Lewis's experiments and was due to the same cause. 

In attempting to form a mathematical description of the mechanics of the forma- 
tion of 'fingers' we were naturally led to consider an infinite set of equal and equally 
spaced fingers all advancing at the same speed. Since each finger is then identical 
mathematically with all the others and the fluid on the straight lines halfway 
between neighbours has no transverse component of velocity, we considered only a 
single finger propagating itself in a channel of fixed width. The details of the 
analysis will be given in the next section. 

DESCRIPTION OF PLATE 2 

FIGURE 2. Interface between air and glycerine at an early stage of the instability. 

FIGURE 3. Development of instability. 

FIGURE 4. Inhibiting effect of a finger which gets ahead of its neighbour. 

FIGURE 8. An air finger advancing into glycerine. 

FIGURE 9. Enlarged forward portion of the finger shown in figure 8. O, points calculated 
from (17) using A-. 
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FIGURE 2 FIGURE 3 FICGURE 4 

FIGUJRE 8 
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FiGURE 9 (Facing P. 318) 
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4 3 2 1 

FIGURE 11. Finger of oil (g, = 4-5 P) penetrating glycerine (Q = 9 P). 

FIGURE 12. Finger of water penetrating oil (Shell Diala). 

FIG-URE 13. Water penetrating into oil at slow speed. Profile calculated 
from (17) for A = 0-87 superposed. 
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Penetration of a fluid into a more viscous liquid 319 

5. PENETRATION OF A SINGLE 'FINGER INTO A CHANNEL 

In this section we consider the analysis of the motion of a long bubble or 'finger' 
of fluid moving through an infinite channel in the Hele-Shaw cell filled with aviscous 
fluid and bounded by straight parallel walls. As described in the previous section, 
the motion of these bubbles is connected with the mechanics of the formation and 
propagation of 'fingers' and, by virtue of the analogue, also bears on the question 
of how long it would take for a vertical tube or channel. of saturated porous material 
to drain when closed at the top and open at the bottom. The analogous problem for 
inviscid liquids of the motion of bubbles through liquids in tubes and channels has 
been studied experimentally and theoretically in some detail (see, for example, 
Davies & Taylor I950; Garabedian I957). The present problem is of particular 
interest, since it is possible to obtain exact solutions of the equations of motion in 
closed form and compare them with experiment. 

y 
B_ y=1, fl=V C 

A 0" 
Al A 

2F-D x 

y=-1, ytl=-V E 

FIGURE 5. Finger moving into a channel. 

A bubble of fluid of viscosity 4a2 and density P2 is supposed to be moving steadily 
through a vertical channel in the Hele-Shaw cell filled with fluid of viscosity I,u 
and density Pi_ In figures 5, BC and FE are the walls of the channel, AOG is the 
surface of the bubble or interface between the two fluids, the x-axis is taken vertic- 
ally upwards along the centre of the channel, the y-axis horizontal and perpen- 
dicular to the walls, and the origin is at the nose of the bubble which is supposed to 
be of infinite extent and symmetrical about the centre of the channel. The velocity 
of the bubble is denoted by U and the velocity of the fluid at infinity in front of the 
bubble by V. The walls of the channel are taken as y = + 1, and the width of the 
bubble at infinity as 2A, where A is a parameter which is for the present unspecified 
except that it lies between 0 and 1. Suffixes 1 and 2 refer to quantities outside and 
inside the bubble, respectively. 

The mean velocity across the stratum is given by equations (8) and (9) and the 
equation of continuity takes the form 

u av 
_+_= 0, 
ax ay 

where u and v are the components of mean velocity parallel to the axes. A stream 
function i/ can be defined by 

ax ay' 8 ay ax 
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320 P. G. Saffman and Sir Geoffrey Taylor 

and it follows from the Cauchy-Riemann equations that w = S + iVr is an analytic 
function of z-x + iy. 

It will be assumed that the experiment described in ? 2 is valid, i.e. one fluid 
completely expels the other, and that the meniscus separating the two fluids is 
a sharp line, so that the components of mean velocity normal to the interface are 
continuous, i.e. 

an1 = -02 _ U cos 0, (12) 

where 0 is the angle between the x-axis and the outward normal n to the interface. 
Now a/an = aVr/as where a/as denotes differentiation along the interface, and 
cos 0 = ay/ls, from which it follows that 

f1 = f2 = Uy (13) 
on the surface of the bubble. 

If the pressure change due to surface tension at the interface is ignored, the 
equation for continuity of pressure is 

(12/b2) (a,1 0 1- 2 02) =(P2-p1) x. (14) 

The same equation is valid if the change in pressure on passing through the inter- 
face is constant, since an arbitrary constant may be added to the velocity potential. 
If the fluid wets the plane surfaces it might be expected that under static conditions 
the pressure drop would be T(2/b + 1/R), where R is the radius of curvature of the 
meniscus on the plane of the two parallel sheets which bound the cell. The assump- 
tion that this is constant amounts to neglecting 1/R in comparison with 2/b and to 
assuming that the surface tension and curvature of the interface are identical with 
their static values. The range of validity of equation (14) will be discussed later. 

The remaining conditions on the velocity potentials and stream functions are 

01 Vx as x -+ oc, 02 Ux as x E--c, and Vr1 = + V on y = ? 1, since the walls of 
the channel must be streamlines. (We neglect the edge effects which occur at solid 
boundaries in the Hele-Shaw cell and invalidate the equations of motion (8) and (9) 
within a distance of order b from these boundaries.) 

We examine first the case in which the fluid inside the bubble is of negligible 
viscosity and density, and suppose also that gravity forces are negligible, i.e. that 
the imposed pressure gradient which moves the fluid is large compared with that 
due to gravity. This case corresponds to the experimental arrangement described 
in ? 7 below when a bubble of air is blown through glycerine. 

Equation (14) now reduces to 01 = 0 on the bubble surface. Further, the flow 
becomes uniform a lonlg way behind the nose of the bubble, i.e. as x -? - oo, and 
since 5, is zero on the interface, 0 -?> 0 as x -+- - oo and the fluid is at rest at x = - oo. 
Hence, the stream function has the same value at A as at B (and also at a as at F) 
and it follows from (13) that 

V = AU. (15) 

Equation (15) gives the velocity of the bubble in terms of its width and the velocity 
at infinity; the latter velocity will be determined by the external means by which 
the motion is generated. 
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Penetration of a fluid into a more viscous liquid 321 

The shape of the interface is as yet unknown and to solve this free boundary 
problem, we transform into the qS, 3f plane and consider x + iy as an analytic func- 
tion of 0 + iVr (for brevity we drop the suffix 1). t In figure 6, corresponding points 
in the physical and potential planes are marked with the same letter; the exterior 
of the bubble transforms into the semi-infinite strip 0 >0, - V <?3b < V, the surface 
of the bubble to the q axis between , = ? V, and the walls of the channel to r = + V. 

B f=V, y=1 C 
A 

0 D 

G -____y-V, y=-1 
F E 

FIGURE 6. The potential plane for motion in a channel. 

Now y is a harmonic function of 0 and 3f which has the values -1 on FE, 0 on DO, 
+ 1 on BC, y = -fr/U on GA (the surface of the bubble), and y -*fr/V as 0 -> + so. 

Take, therefore, y ni ?/ ng -f ng 
it -+EA sin Vexp~V 

This is a harmonic function satisfying all the boundary conditions, provided 

_f fllTVfn7n 
ilu=i+YA sin , for -V<#f<V. 

Calculating the coefficients by the usual method of Fourier series, we find that 

n 7( U) ( ) 

and therefore 
z = 

-+-(I 

-A)ln1/[+expl wl 

(16) V 7T2V 

This equation determines the complex potential implicitly as a function of z. 
The pressure then follows from the relation 

b2 
p = _-b2q+const. 

The parametric equation of the interface is obtained by putting 0 in equation 
(16) and it follows that the bubble surface is 

7r 2( )(7 

This completes the solution for the case of a bubble of fluid of negligible viscosity 
when effects due to gravity forces and departures from equation (14) are un- 
important. 

t We are grateful to Mr F. Ursell for first suggesting this transformation to us. 
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Before discussing this further, we give briefly the solution for the more general 
case in which the viscosity of the fluid in the bubble is not neglected and pressure 
gradients due to gravity are taken into account. The equations of motion for the 
fluid inside the bubble can be satisfied by taking 

02?i42 = U(X+iy). (18) 

The boundary condition for 01 then becomes 01 =-U*x on the bubble, where 

bP = g(Pl P2)- . ( 19) 

Define now W-=(D+iT =wi+ U*z. (20) 

On the interface, (D 0, T (U+ U*)y; further TF = + (V+ U*) on y = + 1 and 
W-? (V + U*) z as x + oo. The problem is thus reduced to the simpler case con- 
sidered above and the complex potential for the motion outside the bubble is given 
by (15) and (16) with V replaced by V + U*, U by U + U*, and w by W. The bubble 
surface corresponds to (F = 0 and is therefore given by (17) also. It is worth noticing 
that if the asymptotic width at infinity is fixed, then the shape of the bubble is 
independent of the physical properties of the fluids. The width 2A of the bubble is 
given in terms of U (the velocity of the bubble), V (the velocity at infinity), and the 
physical properties of the fluids by 

V+U* 
U+ U*. 

The maximum velocity of propagation again corresponds to A = 0 and is 

Umax. V+ -(P1-P2) 
/k2 12jt2 

6. NON-UNIQUENESS OF THE SOLUTION 

There is nothing in the preceding mathematical analysis to determine the width 
of the bubble and the value of A, i.e. the fraction of the channel occupied by the bubble 
after the nose has passed. In other words, if only the velocity at infinity ahead of 
the bubble is specified (this is equivalent to specifying the pressures driving the 
less viscous finger into the more viscous fluid), then the free-boundary problem does 
not have a unique solution and there are an infinite number of possible steady shapes, 
each with a different velocity of propagation. These shapes are the members of the 
family of curves given by (17) for values of A between 0 and 1. The velocity of 
propagation of the bubble corresponding to each of these shapes is related to the 
velocity at infinity by (15). The two extreme members are given by A 1 when the 
interface extends in a straight line across the whole width of the channel, and 
A = 0 when the bubble has zero width and propagates with infinite velocity. The 
calculated shapes for A = 0-2, 0 5 and 0-8 are shown in figure 7. 

It was pointed out recently by Garabedian (I957) that the analogous free- 
boundary problem for the propagation of an air bubble through a vertical tube or 
channel containing an inviscid liquid also does not possess a unique solution, and 
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that there are many possible 'equilibrium' shapes which a bubble can have, each 
again corresponding to a different velocity of rise. (Garabedian did not demon- 
strate explicitly the multiplicity of solutions and it is of some interest that this can 
be done for the problem we are considering.) He gave arguments based on the 
hypothesis of a maximum rate of loss of potential energy to show that in practice 
only one of these possible shapes would occur, the one occurring being that with the 
maximum velocity of propagation. 

08 

05 

FIGURE 7. Calculated profiles for A = 02, 05 and 08. 

These arguments do not apply to motion in a porous medium or a ilele-Shaw 
cell, since the motion is then dissipative and in any case the maximum velocity of 
propagation according to the analysis is infinite, but we should still expect on the 
grounds of physical experience that only one of all the possible shapes would occur 
in practice. It should be noted that the hypothesis of a maximum or minimum rate 
of dissipation of energy by viscosity does not determine a unqique value for A, since 
this rate for a channel of finite, but very large length is proportional to the product 
of the velocity at infinity and the pressure difference between the ends of the channel, 
and it follows from (16) that the value of this product becomes independent of A 
as the length of the channel tends to infinity. (The terms involving A, which tend 
to zero as the length increases, are monotonic in A and a hypothesis of maximum 
or minimum dissipation would in any case give A = 1 orA 0.) 

Our experiments with the Hele-Shaw cell indicate that, as the speed of flow for 
any given fluid increases, A rapidly decreases to A = 0 and remains close to this 
value over a large range of speeds, till at high speeds of flow the tongue or finger 
of the advancing fluid itself breaks down and divides into smaller fingers. 
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7. EXPERIMENTS IN CHANNELS 

The apparatus with which the photographs of figures 2 to 4 were taken was not 
suitable for producing single steadily moving bubbles of the type considered in the 
analysis. It was not long enough to permit one of the fingers to grow at the expense 
of the others and thus be propagated as a single steadily moving column. The 
apparatus was therefore modified by inserting liners between the plates which 
limited the width of the viscous fluid channel to 5-6 cm, leaving the length (38 cm) 
and thickness (0.09 cm) unchanged, and it was used horizontally. With this width 
it was possible to obtain bubbles which for several inches behind the advancing 
meniscus were parallel sided. Figure 8, plate, 2 is a photograph of one. It will be 
seen that the 'finger' starting from an artificial initial disturbance, produced by 
blowing a small central air bubble close to the initially straight meniscus, swells 
out to a definite breadth and is then propagated without further change down the 
channel. The outer edge of the outline of the bubble represents the outer edge of the 
meniscus and, measuring the breadth of this at its widest section on the enlarged 
photograph of figure 8, it was found to be 5 10 cm. The two liners which limit the 
breadth of the channel appear black in figure 8 and the width between them 
measured on this photograph with a reading microscope was 10 29 cm, so that 

A 1029 = 0496. 

In several experiments, A was found to be within 2 % of 0-50. 
To compare the shape of the bubble with the results of calculation, the photo- 

graph was enlarged till the distance between the walls was 20 0 cm and the points 
calculated from expression (17) for the case when A = 050 were pricked through 
transparent squared paper laid on the photograph. Small ink circles were then 
centred on these pinholes and the result reproduced in figure 9. It will be seen that 
the bubble profile agrees very well with the calculation when A is taken as 0 50. 

8. EXPERIMENTS WITH PAIRS OF VISCOUS FLUIDS 

In the experiments so far described, air was used to drive out glycerine. The 
viscosity of air is only 1/50 000th of that of glycerine, but according to our calcula- 
tions the same kind of instability would occur whatever the viscosity of the driving 
fluid, provided it is less than that of the fluid it is displacing. On the other hand, 
since we have no clue on theoretical grounds as to what determines the value of A 
which will occur, it seemed possible that it might depend on the ratio of the vis- 
cosities, Pt2/I1. For this reason experiments were made in which a shell oil mixture 
of viscosity 2-75 P was used to drive coloured glycerine of viscosity 8 P through our 
channel. It was found that when the two viscosities are comparable the length of 
run required before the driving fluid penetrates into the more viscous fluid in the 
form of a steadily moving 'finger' was much greater than when one is air. For this 
reason, a new channel was built of Perspex 2-54 x 91 x 0Q08 cm. This is shown in 
figure 10. The camera A points vertically downwards at the channel B which is 
illuminated by a flash-bulb D placed under a traccing-paper screen C. The driving 
pressure was produced by raising a water vessel K so as to increase the air pressure 
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in the bottle J. This raised the pressure above the fluid contained in the upstream 
reservoir L. The more viscous fluid was supplied from a vessel F, so as to fill the 
upstream reservoir E. If the pressure in E were maintained constant, as it would 
be if the pipe connecting E and F were left open, the velocity of the finger would 
increase as the length of the column of more viscous fluid decreased. To maintain 
a more constant velocity the cock G between E and F was closed during an experi- 
ment and the fluid in E escaped to the atmosphere through a needle valve H, the 
resistance of which was greater than that of the channel itself. By measuring the 
velocity of the head of the advancing finger before and after passing under the 
camera A, it was possible to obtain a good estimate of the velocity at the moment 
the photograph was taken. 

DX 

FIGURE 10. Arrangement of long Hele-Shaw cell for photographing fingers. 

Figure 11, plate 3, shows a 'finger' of the oil penetrating at 1 mm/s into the 
tinted glycerine. It will be seen that the outline is very similar to that obtained with 
air and glycerine. Measurements of A = (width of finger)/(width of channel) were 
made at four sections which are marked on the photograph. These gave the following 
results: 

position 1 2 3 4 

A 0 485 0 502 0*508 0.514 

It will be seen that after running a distance of 70 cm, i.e. 28 times the width of the 
channel, the finger has nearly, but not quite, settled down to a constant width of 
a little more than half the width of the channel. 

Figure 12, plate 3, covers a larger part of the channel and shows water pene- 
trating into oil in the form of a very uniform finger. 

9. EFFECT ON THE SHAPE OF THE BUBBLE OF SURFACE 

STRESS AT THE INTERFACE 

The good agreement between the photograph of the bubble shape (figure 9) and 
that calculated for the case when A =- is an indication that the boundary condition 
(14), which expresses the assumption that the pressure difference between the two 
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sides of the interface is constant over its length, is justifiable at the flow speed used. 
When experiments were made at much lower speeds, however, it was found that 
the bubble was wider but that the wider forms do not conform to the corresponding 
profiles calculated for the same value of A from equation (17). Figure 13, plate 3, 
for instance, shows water penetrating into an oil (Shell Diala) at a speed 0226 cm/s 
in the channel of dimensions 0-08 x 2-54 x 91 cm. The value of A obtained by 
measuring this photograph is 0 87. The contour for A = 0 87 calculated using (17) 
is shown superposed on the photograph. The calculated contour is one along which 
the pressure in the fluid is constant. The fact that the observed contour is less flat 
than the calculated curve indicates intuitively that the pressure in the fluid in- 
creases on passing along it from the vertex. (It is hoped later to investigate quanti- 
tatively the actual pressure distribution and verify this directly.) Since the pressure 
inside the finger must be nearly constant along the contour, this means that the 
pressure difference which is supported by the interface must decrease on passing 
from the vertex towards the parallel portion. This pressure difference can only be 
attributed to surface tension or some equivalent surface stress. Under that general 
heading, however, various physical effects might be distinguished. 

If, for instance, they are due to a constant surface tension of a fluid which wets 
the walls of the channel and leaves only a negligible amount of the penetrated fluid 
behind after the interface has passed, one would naturally look to the curvature of 
the meniscus in the plane midway between the parallel sheets. If, on the other hand, 
the interface has a finite angle of contact it might be necessary to study how that 
angle of contact varies when the interface moves over the plane surface. Possible 
differences between surface tension measured statically and that which acts over 
newly formed surfaces should also be studied. These things involve fuzther experi- 
mental work, some of which is now being carried out at the Cavendish Laboratory, 
and it may be some time before the results are available. In the present note we 
propose to discuss only those which afford justification for the use of the boundary 
condition (14) in the theoretical discussion. 

Confining attention to the case when a viscous fluid of interfacial tension T is 
driven slowly by a fluid of much smaller viscosity such as water or air, it is to be 
expected on dimensional grounds that the shape of the meniscus in a channel of 
given shape should be a function of auU/T only, when the shape of the channel is 
fixed and the fluid wets the flat slides of the channel. It was found that neither water 
nor glycerine wet the Perspex which was used to construct the channel; accordingly 
two oils of very different viscosities, which have in static experiments nearly the 
same interfacial tension, were used to test whether A is a function of,aU/T only. 

The two oils used were Shell Diala (,a = 0 30P, p = 0875g/cM3) and Shell 
Talpa (,t = 4 5 P, p =-090g/cm3), and measurements were made using both water 
and air as the less viscous fluid. The viscosities were determined by measuring the 
flow through a Veridia accurate bore tube of 1 0 mm bore at 20 'C. To measure the 
interfacial tension between these oils and air a tube of 0 5 mm bore was dipped into 
the oil and the height to which the meniscus rose was observed. The surface tension 
of Diala was found to be between 27 and 30 dyn/cmn at 20 ?C, and that of Talpa 
slightly higher. The interfacial tension between the oils and water was measured 
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by two methods. In the first a vertical short length of O 5 mm tube was lowered 
through a thick layer of oil lying above water, till the upper end was submerged in 
the oil and the lower end penetrated into the water. The oil wetted the tube and a 
meniscus convex upwards was formed in the tube. The depth of this below the level 
of the oil/water interface was measured. The high viscosities of the oils and the com- 
paratively small difference in density of the oil and water made the meniscus move 
slowly, but consistent results were obtained even with the more viscous oil when 
an hour or so was allowed to elapse between inserting the tube and measuring the 
height of the interface. 

In this way interfacial tensions between 13 5 and 15 dyn/ccm were measured for 
the Diala/water interface. The other method was to insert a longer piece of 2 mm 
tube through the oil into the water. There were then two interfaces in the tube: 
an oil/air interface concave upwards and an oil/water interface downwards. The 
positions of these in relation to the levels of the flat oil and water surfaces outside 
the tube were measured. Knowing the densities of oil and water, and assuming 
that the oil wets the glass as it appeared to do, we obtain with this method the 
difference between the surface tensions at the two interfaces. Independent measure- 
ments gave the surface tension at the oil/air interface. This second method gave 
values for the interfacial tensions of Diala/water and Talpa/water of between 
14 and 16'5. 

The results of the experiments with water are shown in figure 14 in which the 
measured values of A = (width of finger)/(width of channel) are plotted as ordinates 
and ,uU/T as abscissae. It will be seen that in spite of a 15: 1 ratio in the viscosities 
the points obtained with the two oils appear to fall nearly on the same curve. Some 
of the points were obtained by direct measurement after the finger had been formed 
for some time while others were obtained by measuring the photographs. It will be 
noticed that the direct measurement points, particularly for the larger values of 
1tU/T, correspond with rather smaller values of A than those derived photographic- 
ally.This seems to be because at the higher values of ,aU/T a small amount of the 
fluid is left behind after the passage of the air finger, and this fluid then flows slowly 
outwards towards the sides of the channel thus slightly reducilig the width of the 
air finger. 

The most interesting feature of the results exhibited in figure 14, and of similar 
sets of observations using air instead of water as the finger, or using oil penetrating 
into glycerine, is that in all cases the value of A rapidly decreases asa uU/T increases 
till it reaches a value which is very close to 2. We have never measured values of A 
appreeiably less than 2. 

As ,iU/T increases, the effect of surface tension in determining the shape of the 
interface decreases relatively to that of viscous stress. The fact that A tends rapidly 
to 1 as ,tU/T increases, is an indication that when the physical conditions are such 
that the boundary condition (14) can legitimately be used, the only one of the set 
of shapes described by (17) which can actually occur is that for which A = 2. The 
probability that this conclusion is correct is strengthened by the very close agree- 
ment between the shape of the contour shown in the photograph of figure 9 with 
that calculated using A = -2 in (17). 
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We have found no theoretical reason for this deduction from observation, but 
we have noticed a few purely analytical features which distinguish the particular 
shape corresponding with A = W from those corresponding with other values of A. 
These have been omitted from the present paper owing to lack of any obvious 
physical meaning. 

- It is perhaps worth mentioning, in conclusion, that we have investigated theo- 
retically the stability for infinitesimal disturbance of the shapes given by (17) for 
the case in which the fluid inside the bubble is of negligible viscosity. The not 
entirely unexpected result was found that if surface tension effects are neglected, 
i.e. if the velocity potential is taken as constant along the perturbed surface, then 
all the shapes are unstable, whatever the value of A. The analysis gives no indication 
about why the shape with A = is observed in practice. 
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0 005 010 015 020 025 030 035 
FIGURE 14. Measured values of A for water penetrating into two oils: A, Diala (photographic 

measurements); 0, Diala (direct measurement); 0, Talpa (direct measurements). 

APPENDIX 

In this appendix we give for completeness the modifications of the analysis of 
? 2 which are required when the penetrating fluid (fluid 2) does not completely expel 
the other (fluid 1), but a tongue of fluid 2, occupying a constant fraction t of the 
stratum between the plates bounding the Hele-Shaw cell, advances along the gap. 
It is assumed that the gap is small so that the mean velocity may be calculated by 
assuming that the motion is everywhere parallel to the plates, and that derivatives 
of the velocity in directions other than normal to the plates can be neglected in 
comparison with those along the normal. Using the co-ordinate system introduced 
in ? 2, the mean velocity in fluid 1 ahead of the tongue is 

b 2 
Ul -12,ugrad (p +pgx). (A 1) 

After the passage of the tongue, the mean velocity of fluid 2 is 

U2 =-62(t2 + 2(1 -t2)) grad (p +?pgx), (A 2) 

where 4 = P2 I + pl{2A( t2 + 32(1p-t2)1* 
(A 3) 

This content downloaded from 184.171.106.7 on Wed, 28 Aug 2013 10:35:46 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Penetration of a fluid into a more viscous liquid 329 

The mean velocity of the film of fluid 1 left adhering to the plates is 

___ b2t( I - t) 
u12 12(1t) ( I+t) grad (p +p1px) 8( grad(P2-P1)gX. (A4) 

The interface is taken as the tip of the meniscus, which advances with velocity 
U-n . u2 normal to itself, where n is the outwards normal to the projection of the 
tip of the meniscus on the plates. The equation of continuity across the interface is 

n.ul = tn .u2 +(l-t) n .u12. (A 5) 
If we define u' by 

Ui - 62 grad (p +p1( + B) gx) (A 6) 

where 

A = t -F 
1t2( 2 

]-t 
= 

( 1-t)2 ((I1+ lt) (p _I 1)-2t(P2_ 1)) 

then it can be shown that 
U = n.ul, 

at the interface. 

Hence, the motion of the interface in the case in which a constant fraction t of 
fluid 2 penetrates fluid 1 corresponds, according to the analysis, with the motion of 
the interface between a fluid of viscosity #2 and density p2 which completely expels 
a fluid of viscosity A,ll and density pl(l + B). Thus, the kinematics of the motion 
are unaltered by a constant fraction of the penetrated fluid being left adhering to 
the plates bounding the cell. 
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