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1 Introduction

We study the effect of adult mortality in a lifecycle economy with dynastic households. Specif-
ically, we emphasize a novel channel through which it affects the pattern of investment and
economic development.

There are multiple ways in which mortality is linked to household consumption and savings
decisions. A commonly studied one is its negative effect on the enjoyment of future utilities
because of which households prioritize present consumption and invest less. This can discour-
age economic development as in Ram and Schultz (1979), Gersovitz (1983), Chakraborty (2004),
Lorentzen et al. (2005) and Jayachandran and Lleras-Muney (2009) among others.

That assets can be passed down generations mitigates the problem for altruistic households.
Yet, not all assets can be readily bequeathed. Physical assets such as capital, land and livestock
are tangible and transferable in a way that human capital is not. This introduces a difference
in how parents subjectively value investment in physical assets relative to human capital. The
difference is particularly salient under lifetime uncertainty if parents value unintended bequests.
As a result, the risk of premature death tilts portfolio choice towards tangible investment.1 It
follows that the predominant form of asset accumulation in developing countries with high
mortality will be physical capital; patterns of investment and production shift towards human
capital when lifecycle uncertainty falls with economic development.

Two stylized facts are relevant for this result. First, mortality declined sharply in the late
nineteenth and early twentieth centuries in the West due, in large measure, to exogenous im-
provements in public health and medicine (Wrigley and Schofield (1981), Szreter (1988), Dobson
(1997), Cutler and Miller (2005)). Secondly, as documented by Abramovitz and David (2000),
Goldin and Katz (2001) and Galor and Moav (2004), there was a concomitant transition from
physical capital to human capital as the primary engine of growth. These two transitions become
related in our model: during the initial stages of development, high mortality is accompanied
by investment in transferable assets (physical capital, land) while in later stages, lower mortal-
ity from (possibly exogenous) health improvements is accompanied by investment in human
capital.2

There are two distinct mechanisms through which mortality influences the accumulation of
human capital in the model. First, high mortality lowers the expected return on human capital
vis-a-vis physical capital. Secondly, high mortality makes human capital investment riskier. The
latter may induce risk-averse agents to underinvest in human capital even when the expected

1The premise that human capital investment has an inherently non-diversifiable idiosyncratic risk component
is not new in the literature; see, for example, Levhari and Weiss (1974), Eaton and Rosen (1980), Krebs (2003)
and Gottardi et al. (2015). Much of this literature identifies the non-diversifiable risk with unemployment risk,
whereas here it comes from lifecycle uncertainty and the non-transferability of human capital. The latter has deeper
consequences for household decisions beyond the production side arbitrage based on expected returns.

2For example, 2010 life expectancy (at birth) in Swaziland was 53.6 years while that in Iceland was 81.8 years
(http://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends/en/). More relevant to
our work is working-age mortality. In 2010, the mortality rate of 15 year old men dying before reaching the age 60
was 76.5% in Swaziland, highest in the world, compared to 6.5 % in Iceland, lowest in the world (Rajaratnam et al.,
2010).
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return to human capital rises. To the extent that technological progress is complementary to
human capital, high mortality may therefore result in delayed adoption of modern technologies
when they are available.3

Evidence of the differential effect of mortality is discernible even in contemporary experi-
ences. For example, Fortson (2011) argues that while the growth effect of the HIV epidemic in
sub-Saharan Africa has been ambiguous, it had a definite negative effect on schooling and hu-
man capital formation. This would suggest that the loss of output from lower human capital
formation was attenuated by other effects; a shift towards physical assets is one possibility. Put
differently, the tendency of altruistic families to over-accumulate physical assets under lifecy-
cle uncertainty suggests that the cost of epidemic shocks can be relatively lower in developing
countries that face already-high mortality risks.

Indeed adjusting the portfolio of asset stocks for consumption smoothing purposes in the
face of idiosyncratic income (not necessarily mortality) shocks is not uncommon in developing
countries where insurance mechanisms are weak. Examining data from rural India, Jacoby and
Skoufias (1997) find that seasonal fluctuations in income were accompanied by seasonal fluc-
tuations is children’s school attendance where child labor was used as a mechanism to smooth
consumption instead of borrowing. Based on a study of consumption and investment behavior
of Indian farmers, Rosenzweig and Wolpin (1993) conclude that when hit by adverse weather
conditions, farmers are more likely to sell their livestock than jewelry or land. Similar self-
insurance mechanism for consumption smoothing are reported by Janzen and Carter (2013) in
the context of Kenya.

It is well known in the literature that adult mortality affects the return to investment and
growth.4 Many of these studies look at either the relationship between mortality and the effec-
tive rate of time preference or a single productive asset. Even when both physical and human
capital are considered, the difference in their inheritability does not play a role. Razin (1976) is
an early contribution that links mortality to the choice between human capital and other invest-
ments. His analysis is restricted to exogenous factor prices and impure altruism. In a dynamic
general equilibrium framework, asset returns respond to factor accumulation and incentives
change over time. By identifying clearly general equilibrium effects that amplify the portfolio
choice margin and how resource sharing within households responds to mortality, our work em-
phasizes the role of the mortality in the transition from physical capital to human capital based
development.

Also related is Minamimura and Yasui’s (2019) recent work in which high mortality delays
the transition from physical to human capital by lowering the latter’s expected return. Human
capital risk has no role in their story. Yet risk is a central element of human capital acquisition.
First, the inalienability of human capital limits the scope for diversification (Levhari and Weiss,

3The inverse relationship between risk aversion and technology adoption is established in the literature. This lit-
erature differentiates between production risks and consumption risks. Indeed attempts at consumption smoothing
by risk averse households can hinder technology adoption as documented by Dercon and Christiaensen (2011).

4See Blackburn and Cipriani (1998), Kalemli-Ozcan et al. (2000), Bhattacharya and Qiao (2007), Zhang and Zhang
(2009), Boucekkine and Lafargue (2010), Chakraborty et al. (2016), Yasui (2016) and Gehringer and Prettner (2019)
for various theoretical mechanisms.
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1974). Secondly, that same inalienability also restricts the investment choice of firms that offer
various insurance instruments (e.g., annuities, life insurance) for household risk diversification.
Therefore, as long as mortality risk is high, physical capital will continue to be a major channel
for investment, either directly by households or indirectly by insurance providers who earn their
return on the capital market.

The structure of the paper is as follows. The following section presents the overall frame-
work. Section 3 analyzes household decisions and the portfolio allocation problem. In section
4, we study corner equilibria in which households invest in only one asset. The general equi-
librium analysis of section 5 looks at the growth effects of the mortality transition and other
empirical implications. Section 6 concludes.

2 Structure of the Economy

In a discrete-time overlapping-generations economy, a unit measure of agents are born every
period. Each agent potentially lives for two periods, “youth” and “middle-age”. She lives in
youth for sure but survives into middle-age with a constant (exogenous) probability p ∈ [0, 1].
She gives birth to a single offspring in youth (before the mortality shock is realized) and does
not do wage work, implicitly spending her time raising the child, managing assets and acquiring
human capital, if at all.

A young agent receives an endowment in the first period from her parent that is used for own
consumption and asset accumulation. There are two income-generating assets she can invest
in: tangible physical capital and intangible human capital. Physical capital is transferable across
agents while human capital is not. If the agent survives into middle age, she earns capital income
and labor income from the investments made in youth. She consumes a partθ of this income and
transfers the remainder to her offspring as intended bequest. If she dies prematurely, instead, the
offspring inherits the tangible asset of the parent, income from which constitutes her first period
endowment. We call this unintended or accidental bequest. The altruistic agent derives utility
from both forms of bequests.

2.1 Preferences

Agents have identical preferences. The expected lifetime utility Vt of a young adult at t with
income endowment yt received either as intended or unintended bequest, both of which bring
utility, is

Vt = u(c1t) +βpu(c2t+1) + γEtVt+1. (1)

Here β ∈ (0, 1) is the subjective discount rate, γ > 0 represents the intensity of parental altruism
and consumption utility from death has been normalized to zero. Standard Inada conditions
apply to u. Even though altruism is pure in that parents care about their offspring’s lifetime
welfare, they do not necessarily discount their offspring’s lifetime utility at the same rate as they
discount their own future consumption. It may be plausibly assumed that γ ≤ β.
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2.2 Income and Endowment

All individuals are born with the same level of innate skills normalized to zero. We also assume
that the physical capital stock depreciates completely within one generation.

Let wt denote the wage rate per unit of human capital (skill) and ρt denote the return on
physical capital in period t. Suppose a young agent has invested xt units in physical capital and
et units in human capital in the first period of her life. Assuming full depreciation, future asset
levels are kt+1 = xt for physical capital and, if she survives, ht+1 = et for human capital.

Hence, should the agent survive to middle age, with probability p, she will earn the income
wt+1et + ρt+1xt and share 1−θt ∈ [0, 1] proportion of it with her offspring. On the other hand
if she dies prematurely, with probability 1− p, the offspring inherits the entire physical capital
stock xt and receives the income ρt+1xt. Thus the first period endowment of the offspring is
stochastic, given by

yt+1 =

{
(1−θt) (ρt+1xt + wt+1et) w.p. p,
ρt+1xt w.p. 1− p.

Note the asymmetry in the endowment process: the offspring does not get to access any portion
of the parent’s labor earnings in case of premature death while she receives the entire capital
income.

We anticipate that in equilibrium, θt < 1. Since consumption in youth comes out of parental
income, the agent will always choose to share with her offspring because of the Inada condi-
tion on u(c1t+1). One way to allow for a no-sharing equilibrium is to introduce an independent
source of income, like labor earnings, in youth. As in standard dynastic models, no-sharing
would occur for low values of γ. For θt = 1, the offspring does not materially benefit from
parental survival but still receives the entire capital income from parental death. Expectation of
this unintended bequest brings utility to the parent (as long as γ > 0) even when she does not
leave intended bequest. It is this margin that differentially affects the perceived return on phys-
ical capital5 and makes the decision problem different from the standard dynastic household
framework where an inoperative (intended) bequest motive breaks the intergenerational link.

2.3 Aggregate Production

The unique final good is produced from aggregate capital K and labor H using a technology
F(K, H) that is CRS and subject to diminishing marginal products. Perfectly competitive goods

5The difference is amplified if physical capital does not fully depreciate and the offspring puts it to further use.
Note that we assumed full depreciation of h because of its inalienability: it is lost when the parent dies.

Household models in the Beckerian tradition often assume that parental human capital positively affects the
productivity of children’s human capital investment often through an externality. Incorporating that kind of in-
tergenerational effect introduces a different wedge: lower p implies a greater loss of learning opportunities for
children that does not apply to inherited tangible assets. Depending on model specification, that may adversely
affect parental investment in own or child’s human capital.
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and factor markets imply the standard factor pricing relations

ρt = FK(Kt, Ht) and wt = FH(Kt, Ht) (2)

for all t, for the rental rate of capital and wage per unit of human capital respectively. The implicit
interest rate rt = ρt− 1 applies to saving and investment in period t− 1 that yields capital at the
beginning of t.

3 Household Optimization

We start by studying how mortality affects the portfolio allocation problem in partial equilibrium
where rates of return to physical and human capital are exogenous to household decisions. In
fact these returns are taken to be time-invariant, ρt = ρ, wt = w for all t, a conjecture verified
later as general equilibrium outcomes for two aggregate technologies.

As noted above, a generation-t agent has the stochastic endowment yt. It depends on parental
survival whose realization we denote by zt−1 ∈ {a, d} corresponding to “alive” and “deceased”
respectively:

yt ≡ y(zt−1) =

{
(1−θt−1) (ρxt−1 + wet−1) , if zt−1 = a,
ρxt−1, if zt−1 = d.

(3)

Given yt, her decision problem then is

Vt(yt) = max {u(c1t) +βpu(c2t+1) + γEtVt+1 (yt+1)}

subject to

c1t + xt + et = yt,

c2t+1 = θt(ρxt + wet),

and (3) led one period forward. Expectations are taken with respect to yt+1 which depends on
zt ∈ {a, d} that is i.i.d. across agents belonging to generation t.

There are two sources of uncertainty in the model. The first period endowment received
by an agent depends on the realization of parental mortality. But it is known to the agent by
the time she takes consumption and investment decisions. Given the endowment, utilities from
second period consumption and bequest left to the progeny are also uncertain: they depend
on the realization of own mortality shock. The agent’s decisions will, therefore, depend on her
attitude towards risk. In what follows, we assume that agents are risk-averse with preferences
taking the CRRA/CES form

u(c) =
c1−σ − 1

1−σ
, σ > 0. (4)

The coefficient of risk aversion is σ while the intertemporal elasticity of substitution is 1/σ . As
σ → 1, u(c) → ln c. A strictly positive σ indicates risk aversion and ensure strict concavity of
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the objective function and positive saving/investment at all values of p.6

Physical capital, because of its ready transferability, is a relatively safe asset: it generates
utility in both states of nature. Human capital, on the other hand, is riskier in that it generates
utility only when the agent survives to middle-age. A forward-looking young agent decides on
her optimal asset portfolio after taking into consideration the future risk and return of the two
assets. Two alternative institutional setups are considered. In the first, θ is exogenously given,
for example, by social customs and convention. In the second case, parents optimally determine
how much to share with their offspring taking into account associated trade-offs. While there is
additional insight to be gained in how lifetime uncertainty affects θ, the fundamental portfolio
allocation problem is not sensitive to whether or not θ is exogenous.

3.1 Portfolio choice under exogenous θ

For exogenous θ and (4), optimization with respect to xt and et yield the following first order
conditions (FOCs) in an interior optima

c−σ1t = pβθρ c−σ2t+1 +γEt

[
∂Vt+1

∂xt

]
c−σ1t = pβθw c−σ2t+1 +γEt

[
∂Vt+1

∂et

]
with the corresponding Envelope conditions

Et

[
∂Vt+1

∂xt

]
= p(1−θ)ρ ( c1t+1|zt=a)

−σ + (1− p)ρ ( c1t+1|zt=d)
−σ ,

Et

[
∂Vt+1

∂et

]
= p(1−θ)w ( c1t+1|zt=a)

−σ .

As is common to this class of dynamic programming problems with homothetic preferences
and full depreciation of capital, we exploit the guess and verify method to solve for investment
decisions. Let us conjecture that the investments are proportional to the endowment received,
such that

xt = µyt(zt−1)

et = νyt(zt−1)

}
for all t; zt−1 ∈ {a, d} ,

where µ and ν are the (yet unknown) investment propensities in physical and human capital
respectively. Denoting by ya

t and yd
t the endowments for zt−1 = a and zt−1 = d, we then have

the consumption functions: c1t|zt−1=a = (1−µ−ν)ya
t , c1t|zt−1=d = (1−µ−ν)yd

t , c2t+1|zt−1=a =

θ (ρµ + wν) ya
t and c2t+1|zt−1=d = θ (ρµ + wν) yd

t . Using these in the FOCs above gives a pair of

6Under linear utility, risk-neutral agents may choose to consume their entire endowment in youth if p is low
enough which will, within one period, drive all generations to zero consumption.
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equations that solve for the investment rate µ and ν:

(1−µ − ν)−σ = pβρθ1−σ (ρµ + wν)−σ + pγρ (1−θ)1−σ (ρµ + wν)−σ (1−µ − ν)−σ

+ (1− p)γρ (ρµ)−σ (1−µ − ν)−σ (5)

(1−µ − ν)−σ = pβwθ1−σ (ρµ + wν)−σ + pγw (1−θ)1−σ (ρµ + wν)−σ (1−µ − ν)−σ (6)

The solutions are constant, as conjectured:

µ = [γ(1− p)] 1/σ 1
ρ

(
wρ

w− ρ

)1/σ

, (7)

ν =
(pγw)1/σ + (pβw)1/σ

w + (pβw)1/σ
−
(
ρ+ (pβw)1/σ

w + (pβw)1/σ

)
µ. (8)

Note that the solution to µ makes sense only if w > ρ. It is easy to see why it is necessary. If
w < ρ, physical capital dominates human capital – it is less risky and yields a return which is at
least as high – and no investment in human capital would occur; neither (7) nor (8) would apply.
The actual restriction required for ν > 0 is, however, tighter, and analyzed below in section 4.

From (7) and (8) it is easy to see that in an interior equilibrium and given factor prices, µ is a
decreasing function of p while ν is an increasing function of p. In other words, since investment
in both comes out of the same endowment, a higher survival probability shifts investment to-
wards human capital. Interestingly, the investment propensities are independent of θ. Societies
where close-knit family ties and social customs dictate income sharing within the household
differ from others only in terms of investment level, not propensities. The homotheticity of u(c)
ensures that the intertemporal decisions – saving and investment – depend on relative consump-
tion across periods, not their levels. This separates it from within-period sharing of income, that
is, the consumption level achieved by the parent in middle age. Moreover, since a fraction of
total income is being shared when the realized state is zt = a, the parent’s subjective costs and
benefits are symmetric for physical and human capital investment within the period. Hence θ

does not affect the trade-off between physical and human capital.

3.2 Portfolio Choice under Endogenous θ

Suppose now that parents also optimize over how much of middle-age income to share with
their offspring. Similar to before, in an interior optimum, we have the FOCs

c−σ1t = pβθtρ c−σ2t+1 +γEt

[
∂Vt+1

∂xt

]
c−σ1t = pβθtw c−σ2t+1 +γEt

[
∂Vt+1

∂et

]
pβρc−σ2t+1xt +γEt

[
∂Vt+1

∂et

]
= 0
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for xt, et and θt, and the corresponding Envelope conditions

Et

[
∂Vt+1

∂xt

]
= p(1−θt)ρ ( c1t+1|zt=a)

−σ + (1− p)ρ ( c1t+1|zt=d)
−σ

Et

[
∂Vt+1

∂et

]
= p(1−θt)w ( c1t+1|zt=a)

−σ

Et

[
∂Vt+1

∂θt

]
= −p ( c1t+1|zt=a)

−σ (ρxt) .

Apply again the guess and verify method to solve for optimal xt, et and θt by conjecturing that
decision rules are proportional to endowment, xt = µyt(zt−1) and et = νyt(zt−1), where µ and
ν are to be determined. Substituting these into the FOCs, (µ,ν,θt) solve

(1−µ − ν)−σ = pβρθ1−σ
t (ρµ + wν)−σ + pγρ (1−θt)

1−σ (ρµ + wν)−σ (1−µ − ν)−σ

+(1− p)γρ (ρµ)−σ (1−µ − ν)−σ (9)

(1−µ − ν)−σ = pβwθ1−σ
t (ρµ + wν)−σ + pγw (1−θt)

1−σ (ρµ + wν)−σ (1−µ − ν)−σ (10)

βθ−σt (ρµ + wν)−σ = γ (1−θt)
−σ (ρµ + wν)−σ (1−µ − ν)−σ (11)

The first two are identical to the exogenous θ case. Hence the solutions for µ and ν will be the
same, (7) and (8) that are independent of θt. Then from (11), the optimal value of θt is

θt =
(1−µ − ν)(β/γ)1/σ

1 + (1−µ − ν)(β/γ)1/σ
= θ (12)

which is time invariant. The constancy of θ follows from the constancy of µ and ν, which
of course is possible because of homothetic preferences, full depreciation of capital and time-
invariant factor returns.

3.2.1 Log Specification

To understand how these choices depend on p, lets first consider log preferences (σ = 1) for
which analytically simple expressions can be obtained:

µ = γ(1− p)
(

w
w− ρ

)
(13)

ν =
γ + pβ
1+pβ

−µ (14)

θ =
(1−µ − ν)(β/γ)

1 + (1−µ − ν)(β/γ)
(15)

Here µ + ν is clearly increasing and θ falling in p.
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3.2.2 General Specification

For the more general CES function with σ 6= 1, we rely on numerical results. Figure 1 presents
three cases based on σ that show θ to be monotonically decreasing in p.7 Where σ matters is

p

θ

σ=0.1

p
θ

σ=0.5

p

θ

σ=1.3

Figure 1: Optimal θ for σ ∈ {0.1, 0.5, 1.3}

in determining the responsiveness of θ to p: for higher values, θ falls more slowly with p. To
understand why, rewrite the FOCs in terms of consumption

(c1t)
−σ = pβθρ (c2t+1)

−σ +γp(1−θ)ρ ( c1t+1|zt=a)
−σ +γ(1− p)ρ ( c1t+1|zt=d)

−σ (16)

(c1t)
−σ = pβθw (c2t+1)

−σ +γp(1−θ)w ( c1t+1|zt=a)
−σ (17)

β(c2t+1)
−σ = γ ( c1t+1|zt=a)

−σ (18)

Using the offspring’s budget constraint and investment rules in (18) we get the optimality con-
dition

θ

(1−θ)(1−µ − ν)
=

c2t+1

c1t+1|zt=a
=

(
β

γ

)1/σ

that shows how the parent allocates consumption between herself and her offspring. The higher
is β relative to γ, the more does the parent want to consume relative to her offspring and higher
will θ be. Secondly, as long as β > γ, lower σ increases θ, ignoring for now its effect on invest-
ment propensities. Here σ plays the role of the inverse of the elasticity of substitution between
parent’s and offspring’s consumption: a lower σ means higher substitutability and the parent
responds by shifting consumption towards herself since β > γ.

That leaves the 1−µ − ν term which comes from the offspring’s investment behavior. Since
investment propensities are invariant across generations, we can use the parent’s optimality
conditions to understand how µ and ν change in response to p and σ . Use (18) in (16) and (17)
to obtain the no-arbitrage condition

pβρ (c2t+1)
−σ +γ(1− p)ρ ( c1t+1|zt=d)

−σ = (c1t)
−σ = pβw (c2t+1)

−σ . (19)

The first equality captures consumption smoothing via physical capital, the second via human
capital. Givenσ , as p rises, if investments do not change, the average future utility at the margin

7The next section shows that investments may be at a corner. Butθ is always given by (12) for appropriate values
of µ and ν that are taken into account in Figure 1.
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from human capital (right hand side of (19)) goes up proprtionately more than the average future
utility from physical capital (left hand side of (19)). Therefore, agents will switch from physical
to human capital, causing ν to rise and µ to fall. What happens to µ + ν is unclear from the
algebra alone. Intuitively, however, the higher relative price of consumption in youth due to
higher p must prompt the offspring to shift towards consumption in middle age. This can only
happen if she saves a higher fraction of her endowment, that is, µ + ν rises. Anticipating this,
the parent will partially compensate by increasing the offspring’s share, 1−θ. That is, θ must
fall. The magnitude of the response of consumption will depend onσ which, here, is tied to risk-
aversion. Under higher risk-aversion (higher σ), even when the expected return from human
capital dominates that from physical capital, the offspring will shift less towards human capital
for a given increase in p and the parent needs to compensate less; θ falls by less.

To summarize, p lowers θ, shifting more resources towards future generations as a way to
compensate for lower consumption in youth. The investment propensities µ and ν, however,
do not depend on θ whether or not the latter is determined optimally. Hence the basic trade-off
whereby higher longevity favors human capital investment over physical capital is robust to the
institutional arrangement guiding inter-generational resource sharing.

4 Portfolio Choice with Corner Solutions

A necessary condition for the interior optima in section 3 is w > ρ. Otherwise physical capital
dominates human capital for sure and all saving is channelized to physical capital alone. It is
conceivable, however, that physical capital dominates even when this condition is satisfied. This
is likely if the survival probability (p) is low enough for risk-averse agents to shy away from the
riskier asset, human capital.

We derive the Kuhn-Tucker conditions associated with the household’s optimization prob-
lem. Inequality constraints forθ are not necessary. Similar to whyθ = 1 can be ruled out (section
2), the Inada condition on the parent’s own middle-age utility precludes θ = 0 as long as σ > 0.
This also means, since endogenously chosen θ is always in the interior, its expression is identical
to (12) above except for the different values of µ and ν depending on the cases below.

The choices of xt and et are associated with the Kuhn-Tucker conditions8:

−(c1t)
−σ + pβθρ (c2t+1)

−σ +γp(1−θ)ρ ( c1t+1|zt=a)
−σ +γ(1− p)ρ ( c1t+1|zt=d)

−σ ≤ 0

−(c1t)
−σ + pβθw (c2t+1)

−σ +γp(1−θ)w ( c1t+1|zt=a)
−σ ≤ 0.

Whenever either of the above holds with strict inequality, the optimal value of the correspond-
ing choice is zero. Conversely, whenever xt or et is positive, the corresponding Kuhn-Tucker
condition holds with strict equality.

8Since the objective function is concave and the constraint functions are either linear or concave, these Kuhn-
Tucker conditions are necessary and sufficient.

11



As before, conjecture that the investment functions are proportional to the endowment, xt =

µyt(zt−1) and et = νyt(zt−1), zt−1 ∈ {a, d}, which leads to

(1−µ − ν)−σ ≥ pβρθ1−σ (ρµ + wν)−σ + pγρ (1−θ)1−σ (ρµ + wν)−σ (1−µ − ν)−σ

+ (1− p)γρ (ρµ)−σ (1−µ − ν)−σ (20)

(1−µ − ν)−σ ≥ pβwθ1−σ (ρµ + wν)−σ + pγw (1−θ)1−σ (ρµ + wν)−σ (1−µ − ν)−σ (21)

Obviously µ and ν cannot simultaneously be zero: since σ > 0, the right-hand side of both (20)
and (21) would violate the inequalities. For the same reason, µ cannot be zero as the third term
on the right-hand side of (20) would then go to infinity.9 Therefore only two possibilities arise:
(i) µ, ν > 0, and (ii) µ > 0, ν = 0.

4.1 Case (i): µ, ν > 0

Both (20) and (21) hold with equality and we get back the interior values of µ and ν, derived
earlier in (7) and (8). These choices are consistent with case (i) if and only if ν > 0, that is,

[γ(1− p)] 1/σ 1
ρ

(
wρ

w− ρ

)1/σ

<
(pγw)1/σ + (pβw)1/σ

ρ+ (pβw)1/σ
(22)

which can be interpreted as a restriction of the form p > p̂ given σ , β, γ, ρ and w.

4.2 Case (ii): µ > 0, ν = 0

Only (20) holds with equality. Setting ν = 0, we get

(ρµ)σ − pβρθ1−σ(1−µ)σ = pγρ (1−θ)1−σ + (1− p)γρ (23)

which implicitly defines the corner solution for µ. An analytical solution is possible only under
log utility (see below).

4.3 An Example: Log Utility

When σ = 1, cases (i) and (ii) are characterized as follows:

Case (i): µ, ν > 0
Here we get the interior solutions for µ and ν in (13) and (14) above while (22) becomes

ρ <
pγ + {1−γ(1− p)}pβ

γ + pβ
w < w. (24)

9To elaborate further, second period consumption is c2t+1 = θ(ρµ + wν)yt. If µ and ν are simultaneously zero,
c2t+1 goes to zero which can never be optimal for CRRA preferences that satisfy the Inada conditions. Likewise if µ
is zero, accidental bequest ρµyt is zero which, again, cannot be optimal.
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We noted earlier that investment in human capital requires w > ρ. Condition (24) shows
that the requirement for human capital investment is tighter. In fact, it can be rewritten as
[pγ + {1−γ(1− p)}pβ] /(γ + pβ) > ρ/w, where the left-hand side is an increasing function
of p for plausible values of the parameters. Therefore, given all other parameter values and
factor prices, this condition requires p to be higher than some threshold value p̂.

Case (ii): µ > 0, ν = 0
In this case we have

µ =
γ + pβ
1 + pβ

. (25)

Unlike in the interior solution where µ was a decreasing function of p as the agent shifted in
favor of human capital investment, here µ is increasing in p. The reason is obvious: higher p in-
centivizes future consumption to which agents respond by investing more. When they invest in
physical capital alone, it goes up. When they invest in human capital too, they scale back phys-
ical capital investment and scale up human capital investment more than one-for-one because
the non-transferability of human capital becomes less of a concern at the margin. This length-of-
life effect (Chakraborty, 2004) is not specific to logarithmic utility, it applies to the general case
of (23) too as shown in Figure 2 below.

These solutions are obtained under exogenously given w and ρ. In general equilibrium, in-
vestment will determine factor returns, which in turn may rule out some cases. Before turning
our attention to that, it is important to note that we have so far assumed away the availability
of life insurance. The appeal of life insurance policies is to allow altruistic parent to circumvent
the problem of non-transferability of human capital (Fischer, 1973). So the relevant question is
to what extent investment in the risky asset (human capital) along with life insurance (which
allows agents to diversify bequest risks) can substitute for investment in the safe asset (physical
capital). The Appendix shows that it does not make a qualitative difference to the basic result
that mortality has a differential effect on tangible versus intangible investment.

5 General Equilibrium and Dynamics

In general equilibrium, the core intuition from above generalizes but there are additional factors
to consider. For example, an increase in p will have a demographic effect as more people survive,
and this will shift out the the aggregate supply of human capital. Moreover, complementarity
between physical and human capital matters: higher human capital investment from higher p
will raise the return to physical capital, encouraging its accumulation too.

5.1 Aggregation

By the law of large numbers, a p fraction of each cohort survives into middle age. Dynasties in
our model will have heterogeneous parental survival histories. Since parental survival makes
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the initial endowment stochastic, this will generate within-cohort wealth inequality. What al-
lows us to ignore this heterogeneity is the linearity of decision rules due to homothetic prefer-
ences and full depreciation of capital. Specifically, we can track the macroeconomic behavior
by focusing on an “average agent”each period, that is an agent with the average endowment
ȳt ≡ Eyt, where yt follows the process (3).

With a slight abuse of notation continue to denote this average agent’s holding of the two
assets by k and h. Since Lt = L0 = 1 ∀t, aggregate capital stocks are simply

Kt = kt, Ht = pht (26)

We saw earlier that decision rules take the stationary forms xt = µyt, et = νyt and θt = θ under
constant factor prices. But agents may not always invest in human capital. When they do not, for
p ≤ p̂, µ is implicitly given by (23), ν = 0 andθ is given by (12). This means kt+1 = µ(1− pθ)ρkt

and ht+1 = 0 because basic labor productivity has been normalized to zero. On the other hand,
for p > p̂, decisions are given by (7), (8) and (12) and the agent’s future capital stocks are

kt+1 = xt = µ ȳt = µ [(1− pθ)ρkt + p(1−θ)wht] , (27)

ht+1 = et = ν ȳt = ν [(1− pθ)ρkt + p(1−θ)wht] . (28)

Using these in (26), we can see that the aggregate physical-to-human capital ratio when there is
investment in the latter is time-invariant

Kt+1

Ht+1
=

µ

pν
≡ κ ∀t. (29)

We use two specifications of the aggregate technology F(K, H), both capable of generating
endogenous growth, and study the effect of p on relative investment and the growth rate of
output.10 Both technologies lead to constant equilibrium rental and efficiency wage rates along
the dynamic path, as was assumed above.

5.2 Linear Production

Consider first a linear technology that is additive in capital and labor:

Yt = aKt + bHt

with a, b > 0, b > a, and factor returns to capital and labor independent of each other. Following
(2), these returns are ρt = a, wt = b ∀t. Despite b = w > ρ = a, the agent may not invest in
human capital if condition (22) is not met (p ≤ p̂). In that case, Ht = 0 and aggregate production

10As capital depreciates fully and the capital-labor ratio is time-invariant, there is no adjustment period to the
balanced growth path. If p is steadily increasing over time, however, the growth of aggregate output has to be
balanced against the growing population to arrive at the growth of per capita output.
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is entirely physical capital based, Yt = aKt. From (27) and equilibrium factor prices,

Kt+1 = µ ȳt = aµ(1− pθ)Kt

is sufficient to describe the behavior of the aggregate economy. Hence the economy’s growth
factor is

g =
Yt+1

Yt
=

Kt+1

Kt
= aµ(1− pθ) (30)

that is assumed to exceed unity. For p > p̂, on the other hand, Yt = Ht[aκ + b]. Then from (28)
we have

Ht+1 = pν [(1− pθ)ρκ + (1−θ)w] Ht

and
g ≡ Yt+1

Yt
=

Ht+1

Ht
= pν [(1− pθ)aκ + (1−θ)b] . (31)

Though a higher p lowersθ, across a range of numerical simulations included those reported
below, pθ is increasing in p. Therefore, below p̂, while the length-of-life effect working through
µ encourages physical capital accumulation, pθ discourages it. Effectively below p̂, the loss of
accidental bequest from higher parental survival, lowers the accumulation of physical capital.

Above p̂, additional effects are at work. First is the positive human capital effect working
through νp: the greater willingness to invest in human capital as people live longer and the
supply effect from having more skilled workers survive. Counteracting it is the slower accu-
mulation of physical capital, operating through κ, as households shift towards human capital.
We know, however, that since µ + ν is increasing in p, overall investment rises. Then there is
the negative effect, the 1− pθ term, of lower accidental bequests that is counteracted by higher
intended bequests, the 1−θ term, from the parent’s labor income. How these competing effects
play off each other depends on the parameter space.

We turn to numerical simulations using empirically reasonable parameter values that ensure
positive growth. The human capital effects of p turn out to dominate. Figure 2 shows two
representative examples based on σ = 0.1 (near linearity) and σ = 1 (log).11 The kink in both
occurs at p̂. Below p̂, higher survival encourages physical capital accumulation and growth.
Above p̂ there is rising substitution in favor of human capital, and growth accelerates. Two
aspects of these figures are worth pointing out. The transition of survival from below p̂ to above
is accompanied by a growth slowdown as households prioritize human capital over physical in
their portfolio allocation: µ falls sharply as ν rises gradually. Growth picks up when the latter is
a strong enough force, at higher values of p. This result is in line with Minamimura and Yasui’s
(2019) empirical finding that a higher initial level of human capital increases the likelihood of
higher income per capita from a decrease in mortality. Here the effect is on the growth rate.

Secondly, note the convexity of the g(p) function. It shows how substantial the contribution
of a mortality transition can be to economic growth in the long run. Shorter bursts of mortal-
ity reduction, on the other hand, may or may not have appreciable economic payoffs. Until p

11Results are qualitatively similar for exogenous θ.
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reaches the threshold p̂, there is little boost to growth. A corollary to this is, a reduction in p at
higher levels of survival lead to proportionately higher growth loss than an equivalent reduction
at lower levels of p. In effect, above p̂, a relatively low-p society self-insures against mortality
shocks by allocating more towards transferable assets.12 As a result, a mortality shock that low-
ers p, such as an HIV or ebola outbreak affecting the adult population, will cost less in terms of
growth in high-mortality (low p) environments than in low-mortality ones (high p). This predic-
tion is based on aggregate output; the growth rate of output per capita (or its level) will fall less
because of a smaller population base.

p

μ

σ=0.1

p

ν

σ=0.1

p

g

σ=0.1

p

μ

σ=1

p

ν

σ=1

p

g

σ=1

Figure 2: Effects of p under linear production
σ = 0.1 (top row), σ = 1 (bottom row)

5.3 Cobb-Douglas Production

Now consider the Cobb-Douglas technology

Yt = F(Kt, Ht) = AKα
t H1−α

t

where A > 0 and α ∈ (0, 1). Human capital investment now is necessarily positive, that is, the
restriction pw < ρ < [γ + 1−γ(1− p)] pw/(γ + pβ) from Table 1 (Appendix) always binds.
For if it did not, the scarcity of human capital would drive wages up sufficiently until investing
in it became worthwhile.13 In perfectly competitive markets, factor prices are again constant,
wt = (1−α)Aκα and ρt = αAκα−1 ∀t because of (29).

12Below p̂, on the other hand, no productive asset is lost from mortality shocks as offspring inherit parental
physical capital.

13If raw labor were normalized to a positive number, it is possible, under suitable parametric restrictions for
ν = 0 to be sustained in general equilibrium. This produces results similar to the additive technology case above.

16



Because factor prices now respond to mortality and investment behavior, they can amplify the
effect of mortality on investment and growth. Figure 3 illustrates the general equilibrium effects
of higher p. Investment propensities, except in the case of log, depend on how factor prices
respond to higher survival. As κ is decreasing in p, ρ rises and w falls with p. Hence, from (7),
the effect of equilibrium prices is to drive up µ when p rises even as the direct effect is to lower
it.

Forσ = 0.1 andσ = 0.5 in Figure 3, the general equilibrium price effect dominates such that
µ is increasing in p over much of the domain. Observe how, for σ = 0.1, µ and ν remain low
(but positive) at low values of p. This is due to the high degree of intertemporal substitution at
σ = 0.1: households strongly prioritize present consumption at low p values. In contrast, For
log preference, on the other hand, µ steadily falls with p as factor prices do not affect it. Across
all these figure g is increasing in p. The convexity of g(p) is again apparent for the first two cases,
weaker for the log case due to the absence of amplifying general equilibrium price effects.14

p

μ

σ=0.1

p

ν

σ=0.1

p
g

σ=0.1

p

μ

σ=0.5

p

ν

σ=0.5

p

g

σ=0.5

p

μ

σ=1

p

ν

σ=1

p

g

σ=1

Figure 3: Effects of p under Cobb-Douglas production
σ = 0.1 (top row), σ = 0.5 (middle row), σ = 1 (bottom row)

14Results for σ > 1 are qualitatively similar to log for both production functions.
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5.4 Discussion

Taken together, the results in this paper emphasize a new mechanism through which health and
mortality affect the macroeconomy.

Much has been written about the changes unleashed by widespread mortality reductions
– spanning child and infant survival to adult survival – in late nineteenth and early twenti-
eth century Western Europe (Cutler et al, 2006). To that literature we add the possibility that
those mortality reductions catalyzed the skill-biased technological innovations that followed.
Abramovitch (1993) observes for example,

“In the nineteenth century, technological progress was heavily biased in a physical
capital-using direction. ... In the twentieth century, however, the physical capital-
using bias weakened; it may have disappeared altogether. The bias shifted in an
intangible (human and knowledge) capital-using direction and produced the sub-
stantial contribution of education and other intangible capital accumulation to this
century’s productivity growth...”

A common explanation for why the technological bias changed is the supply side effect work-
ing through directed technological change. In Galor and Moav’s (2004) theory, the supply of
skilled labor increased during the second phase of industrialization due to a technological differ-
ence in the accumulation of physical and human capital. Specifically, the return to human capital
production is bounded above at zero investment because of which, in a physical capital scarce
economy, its returns are dominated. In other words, households do not invest in human capital
until industrialization has proceeded far enough to make returns on the two capitals compara-
ble. For us, a high enough mortality rate is sufficient to discourage human capital investment
without appealing to production function asymmetries. That means a mortality transition can
lower the threshold level of capital accumulation at which human capital investment becomes
rewarding. Indeed, the physical-to-human capital transition can begin even if returns to human
capital initially remain low or unaffected by technological change.

Human capital risk, stemming from mortality risk, drives this transformation. In traditional
societies, the family often plays a central role in diversifying the risk associated with physical
assets. In effect, intergenerationally linked families act like annuity markets that make physical
capital a safe asset as shown in Chakraborty and Das (2019). The family does not have to be large
for this to work; all that is needed is they derive some utility from knowing survivors will inherit
their (tangible) assets. But the family’s role is limited regarding human capital risk because of its
non-transferability. This is in sharp contrast to Minamimura and Yasui’s (2019) assumption that
all human capital risk is fully diversified within large families and the main effect of mortality is
lost labor.15

Several implications for developing countries follow from our work. If newer technologies
in the twentieth century have been skill-intensive in keeping with the skill base of the advanced

15Even in a family-based framework, the family has to be large enough for the law of large numbers to apply.
Besides, the institution of the family itself undergoes a transformation as fertility falls and extended family connec-
tions get tenuous. These forces are sure to disrupt traditional risk-diversification avenues.
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economies, their adoption in the developing world would depend on mortality. For instance,
an increase in the return to human capital, from the flow of skill-intensive technologies, in a
low-p country would have a more muted response on skill acquisition compared to a high-
p country. High mortality, in other words, works as a barrier to technology adoption. One
testable implication is that countries with similar exposure to foreign technologies, say, through
shared colonial history or global trade, would differ in their adoption of skill-biased technologies
depending on their adult mortalities. Globally there is substantial variation in adult mortality,
as documented by Rajaratnam et al. (2010), for such a test to be feasible.

The theory also demonstrates how a high mortality society partially insures itself by dispro-
portionately investing in tangible assets. A mortality shock would curtail labor supply but leave
tangible assets relatively unaffected as they can be productively used by survivors. It stands
to reason then that if output per worker depends on factor intensity, the economic impact of a
mortality shock will not be large as is commonly feared. The same shock hitting a low mortality
society, on the other hand, can deplete skilled labor and cause significant economic damage. Pre-
liminary quantitative evidence in Chakraborty and Perez-Sebastian (2018) point to the relevance
of this mechanism in regions that were affected by the HIV/AIDS crisis.

Beyond economic growth, our work bears upon the demographic transition. Lifetime uncer-
tainty affects fertility choice and the willingness to invest in child human capital. Parents who
expect their offspring to have short lifespans and face the same non-transferability problem of
intangible assets as themselves, have little incentive to invest in child quality. Under the usual
quantity-quality tradeoff, fertility rates will be high which, conditional on child survival, will
further incentivize tangible investment. The demographic transition, in this interpretation, be-
comes tightly linked to the adult health transition through a mechanism different from those
emphasized in the literature such as Kalemli-Ozcan et al. (2000), Soares (2005) and Aksan and
Chakraborty (2014).

6 Conclusion

Our study of the effect of mortality on economic development makes two contributions. First
we show that intergenerational wealth transfer can mitigate the investment loss that can occur
from future consumption uncertainty. Secondly, lifetime uncertainty introduces human capital
risk because of which mortality intensifies investment in tangible assets that can be passed on
to survivors. These results have implications for long-run growth, convergence, and technology
adoption.

An interesting avenue to extend this work is the long-run effects of mortality when parental
altruism develops to respond to the environment. For example, if altruism requires parental
time investment, developing a sufficiently high altruism comes at the opportunity cost of time
devoted to building human capital. Thus altruism is likely to be high when parents are engaged
in occupations that are less skill intensive, like primary production. At the same time, high mor-
tality itself makes investment in physical capital more profitable than human capital following
the logic of this paper. In the initial stages of development these two mechanisms work in tan-
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dem so that high mortality leads to a concentration of production in the primary sector and a
high degree of altruism that sustains that production pattern for a long time until some disrup-
tion, for instance an exogenous improvement to mortality or the arrival of technologies, breaks
the cycle.
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cles and Health Transitions”, Macroeconomic Dynamics, 20(1): 189-213.
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Appendix: Life Insurance

Continue to assume factor returns (ρ and w) are exogenously given constants and consider only
the case of exogenous θ. This is not restrictive as we have seen endogenizing θ does not alter
investment plans.

The Kuhn-Tucker analysis tells us that when physical and human capitals are the only assets
available, the agent invests in physical capital for sure and may or may not invest in human cap-
ital. This is because physical capital alone allows the transfer of resources in case of premature
parental death. Yet in modern societies with reasonably developed financial markets, there exist
instruments like life insurance whose role is exactly that, to allow agents to transfer resources
to their survivors. This begs the question: to what extent does our conclusion depend on the
absence of life insurance? We proceed to show it does not.

Suppose an agent has the option of investing in life insurance with the objective of transfer-
ring a part of her total earnings (from physical as well as human capital) to her offspring even
in the event of premature death. Life insurance firms operate on a no-profit no-loss basis and
invest the funds in the capital market. The returns from this are transferred to those whose par-
ents have died prematurely. Young agents whose parents are alive to make an end-of-the-period
intended bequest get nothing. Since human capital is inalienable, the only investment vehicle
available to life insurance companies is physical capital which means for every unit invested in
life insurance, the policy payout is ρ/(1− p).

Let st denote a young agent’s purchase of life insurance. The decision problem at time t is to
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maximize expected lifetime utility (1) now subject to

c1t + xt + et + st = yt,

c2t+1 = θ(ρxt + wet),

and

yt+1 =

 (1−θ) (ρxt + wet) , if zt = a,

ρ

(
xt +

st

1− p

)
, if zt = d,

where accidental bequests now include life insurance payouts. Conjecturing that the decision
rules take the form xt = µyt(zt−1), et = νyt(zt−1), and st = λyt(zt−1), where zt−1 ∈ {a, d}, we
get the Kuhn-Tucker conditions

(1−µ − ν − λ)−σ ≥ pβρθ1−σ (ρµ + wν)−σ + pγρ (1−θ)1−σ (ρµ + wν)−σ (1−µ − ν − λ)−σ

+ (1− p)γρ
(
ρµ +

ρλ

1− p

)−σ
(1−µ − ν − λ)−σ (32)

(1−µ − ν − λ)−σ ≥ pβwθ1−σ (ρµ + wν)−σ + pγw (1−θ)1−σ (ρµ + wν)−σ (1−µ − ν − λ)−σ

(33)

γρ

(
ρµ +

ρλ

1− p

)−σ
≤ 1 (34)

for xt, et and st respectively.
Because our aim is to demonstrate robustness of results with respect to life insurance, we

work with log utility that yields explicit expressions for µ, ν and λ; optimality conditions for
the general CRRA case are analytically intractable. As before, µ and ν cannot simultaneously
be zero as that will violate Kuhn-Tucker conditions (32) and (33). Likewise, µ and λ cannot
simultaneously be zero as that will violate (32) and (34). That leaves four possibilities: (i) µ,
λ > 0, ν = 0, (ii) ν, λ > 0, µ = 0, (iii) µ, ν > 0, λ = 0, and (iv) µ > 0, ν, λ = 0.

Case (i): µ, λ > 0, ν = 0

Conditions (32) and (34) hold with equality. Substituting (34) in (32) and σ = 1, we get

1
(1−µ − λ)

=
pβ
µ

+
pγ
µ

1
(1−µ − λ)

+
(1− p)

(1−µ − λ)

and simplifying, λ = − [β(1−γ)(1− p)] /(1 + pβ) < 0, which is not possible. Therefore, Case
(i) cannot be an equilibrium outcome.

Case (ii): ν, λ > 0, µ = 0

In this case (33) and (34) hold with equality. Setting ν = 0 we get λ = γ(1 − p) and ν =

[pγ + pβ {1−γ(1− p)}] /(1 + pβ). The Kuhn-Tucker inequality (32) will be satisfied if and
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ρ ≥
[
γ+{1−γ(1−p)}β

γ+pβ

]
pw µ > 0; ν, λ = 0

pw < ρ <
[
γ+[1−γ(1−p)]β

γ+pβ

]
pw µ > 0, ν > 0; λ = 0

ρ ≤ pw µ = 0; ν > 0, λ > 0

Table 1: Equilibrium outcomes under life insurance

only if
pw ≥ ρ.

An increase in p lowers λ and raises ν.

Case (iii): µ, ν > 0, λ = 0

In this case (32) and (33) hold with equality. Setting λ = 0 and solving, we get back the interior
solution derived earlier in equations (13) and (14) for which inequalities (33) and (34) are satisfied
if

pw < ρ <
pγ + [1−γ(1− p)]pβ

γ + pβ
w.

Case (iv): µ > 0, ν, λ = 0

Only (32) holds with equality. Setting ν, λ = 0 and solving, µ = (γ + pβ)/(1 + pβ) for which
inequality (33) is satisfied if

ρ ≥ pγ + {1−γ(1− p)}pβ
γ + pβ

w.

Inequality (34) is always satisfied.

These results are collected in Table 1. It is clear that even when life insurance policies are
available, agents do not opt for such policies unless p ≥ ρ/w. Given w and ρ, societies with high
mortality (i,e, low p) are less likely to satisfy this condition. It is only when mortality improves
substantially that we find agents switching from physical capital investment to a combination
of human capital and life insurance. Even so, note that those life insurance purchases ultimately
finance physical capital accumulation: in effect, insurance providers invest in capital on behalf
of households. And as without insurance, higher p shifts investment from physical capital (life
insurance) to human.
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