Problem solutions, 18 April 2012

D. E. Soper
University of Oregon
27 April 2012

Problem 5.1 is pretty simple, so I do not write out the solutions.

Problem 5.2 The probability to find the unperturbed eigenstate $|k^{(0)}\rangle$ in the exact eigenstate $|k(\lambda)\rangle$ is

$$P = \frac{|\langle k^{(0)}|k(\lambda)\rangle|^2}{\langle k(\lambda)|k(\lambda)\rangle} . \quad (1)$$

Note that we need the denominator because, with the conventions we are using, $|k(\lambda)\rangle$ is not normalized. In fact, our normalization convention for $|k(\lambda)\rangle$ is $\langle k^{(0)}|k(\lambda)\rangle = 1$, so

$$P = \frac{1}{\langle k(\lambda)|k(\lambda)\rangle} . \quad (2)$$

Now with

$$|k(\lambda)\rangle = |k^{(0)}\rangle + \lambda|k^{(1)}\rangle + \lambda^2|k^{(2)}\rangle + \cdots \quad (3)$$

and $\langle k^{(0)}|k^{(0)}\rangle = 1$, $\langle k^{(n)}|k^{(0)}\rangle = 0$ for $n > 0$, we have

$$\langle k(\lambda)|k(\lambda)\rangle = 1 + \lambda^2\langle k^{(1)}|k^{(1)}\rangle + \cdots . \quad (4)$$

Thus

$$P = 1 - \lambda^2\langle k^{(1)}|k^{(1)}\rangle + \cdots . \quad (5)$$

Recall that

$$|k^{(1)}\rangle = \frac{Q_k}{E_k^{(0)} - H_0} V|n^{(0)}\rangle . \quad (6)$$

Thus

$$\langle k^{(1)}|k^{(1)}\rangle = \langle k^{(0)}|V\frac{Q_k}{[E_k^{(0)} - H_0]^2} V|k^{(0)}\rangle . \quad (7)$$
Inserting a complete set of unperturbed eigenstates, this is
\[
\langle k^{(1)} | k^{(1)} \rangle = \sum_{l \neq k} \langle k^{(0)} | V | l^{(0)} \rangle \frac{1}{[E_k^{(0)} - E_l^{(0)}]^2} \langle l^{(0)} | V | k^{(0)} \rangle .
\] (8)

Thus
\[
P = 1 - \lambda^2 \sum_{l \neq k} \frac{|\langle l^{(0)} | V | k^{(0)} \rangle|^2}{[E_k^{(0)} - E_l^{(0)}]^2} + \ldots.
\] (9)

Problem 5.3 Our particle is in a two dimensional box. The energy eigenfunction for the ground state is
\[
\psi(x, y) = \frac{2}{L} \sin(\pi x/L) \sin(\pi y/L)
\] (10)

For the first excited energy level, there are two states
\[
\psi(x, y) = \frac{2}{L} \sin(2\pi x/L) \sin(\pi y/L),
\]
\[
\psi(x, y) = \frac{2}{L} \sin(\pi x/L) \sin(2\pi y/L).
\] (11)

Thus

The energy shift for the ground state is just
\[
\Delta = \int_0^L dx \int_0^L dy \, |\psi(x, y)|^2 \lambda xy
\]
\[
= \frac{4\lambda}{L^2} \left(\int_0^L dx \, x \sin^2(\pi x/L) \right)^2
\]
\[
= \frac{4\lambda}{L^2} \left(\frac{1}{2} \int_0^L dx \, (x + L - x) \sin^2(\pi x/L) \right)^2
\]
\[
= \frac{4\lambda}{L^2} \left(\frac{L^2}{4} \right)^2
\]
\[
= \frac{\lambda L^2}{4} .
\] (12)

The zeroth order energy eigenfunction is just the unperturbed ground state wave function.

For the first excited energy level, there is a twofold degeneracy at zeroth order so we need degenerate perturbation theory. However, we note that the
perturbation is invariant under the operator P that interchanges x and y. Thus we can diagonalize P along with H. The eigenstates of P within the space spanned by the first excited states are

$$
\psi_+(x,y) = \frac{\sqrt{2}}{L} \{ \sin(2\pi x/L) \sin(\pi y/L) + \sin(\pi x/L) \sin(2\pi y/L) \},
$$
\[\text{(13)} \]

$$
\psi_-(x,y) = \frac{\sqrt{2}}{L} \{ \sin(2\pi x/L) \sin(\pi y/L) - \sin(\pi x/L) \sin(2\pi y/L) \}.
$$

Thus these are the zeroth order energy eigenstates. The corresponding energy shifts are

$$
\Delta_\pm = \int_0^L dx \int_0^L dy |\psi_\pm(x,y)|^2 \lambda xy
$$

$$
= \frac{2\lambda}{L^2} \left(\int_0^L dx \ x \sin^2(2\pi x/L) \right) \left(\int_0^L dy \ y \sin^2(\pi y/L) \right) + \frac{2\lambda}{L^2} \left(\int_0^L dx \ x \sin^2(\pi x/L) \right) \left(\int_0^L dy \ y \sin^2(2\pi y/L) \right)
$$

$$
\pm \frac{4\lambda}{L^2} \left(\int_0^L dx \ x \sin(\pi x/L) \sin(2\pi x/L) \right) \left(\int_0^L dy \ y \sin(\pi y/L) \sin(2\pi y/L) \right)
$$

$$
\times \left(\int_0^L dy \ y \sin(\pi y/L) \sin(2\pi y/L) \right)
$$

$$
= \frac{2\lambda}{L^2} \left(\frac{L^2}{4} \right) \left(\frac{L^2}{4} \right) + \frac{2\lambda}{L^2} \left(\frac{L^2}{4} \right) \left(\frac{L^2}{4} \right) \pm \frac{4\lambda}{L^2} \left(\frac{8L^2}{9\pi^2} \right) \left(\frac{8L^2}{9\pi^2} \right)
$$

$$
= \lambda L^2 \left\{ \frac{1}{4} \pm \frac{256}{81\pi^4} \right\}.
$$

\[\text{(14)} \]

Problem 5.4 We have a harmonic oscillator in the x-direction and a harmonic oscillator in the y-direction. The energies are

$$
E(n_x,n_y) = (n_x + n_y + 1)\omega,
$$
\[\text{(15)} \]

where n_x and n_y are non-negative integers. Thus the lowest energy levels are

$$
E(0,0) = \omega,
$$
$$
E(1,0) = 2\omega,
$$
$$
E(0,1) = 2\omega.
$$
\[\text{(16)} \]
The second energy level has a double degeneracy.

The first order energy shift for the ground state \(|0,0\rangle \) is just
\[
\Delta = \delta m \omega^2 \langle 0,0 | xy | 0,0 \rangle = 0 .
\] (17)

That is, the ground state energy remains equal to \(\omega \) at first order.

For the first excited energy level, there is a twofold degeneracy at zeroth order so we need degenerate perturbation theory. However, we note that the perturbation is invariant under the operator \(P \) that interchanges \(x \) and \(y \). Thus we can diagonalize \(P \) along with \(H \). The eigenstates of \(P \) within the space spanned by the first excited states are
\[
|\pm\rangle = \frac{1}{\sqrt{2}} \left\{ |1,0\rangle \pm |0,1\rangle \right\} .
\] (18)

Thus these are the zeroth order energy eigenstates. The corresponding first order energy shifts are
\[
\Delta_\pm = \frac{\delta m \omega^2}{2} \left\{ \langle 1,0 | xy | 1,0 \rangle + \langle 0,1 | xy | 0,1 \rangle \pm \langle 1,0 | xy | 0,1 \rangle \pm \langle 0,1 | xy | 1,0 \rangle \right\}
\]
\[
= \pm \delta m \omega^2 \left\{ \langle 1 | x | 0 \rangle \langle 0 | y | 1 \rangle + \langle 1 | y | 0 \rangle \langle 0 | x | 1 \rangle \right\}
\] (19)

where in the second line the first matrix element refers to the \(x \)-oscillator and the second matrix refers to the \(y \)-oscillator. These matrix elements are
\[
\langle 1 | x | 0 \rangle = \langle 0 | x | 1 \rangle = \langle 1 | y | 0 \rangle = \langle 0 | y | 1 \rangle = \frac{1}{\sqrt{2m\omega}}
\] (20)

Thus
\[
\Delta_\pm = \pm \frac{\delta m \omega}{m} .
\] (21)

The energy eigenvalues correct to first order in the perturbation are then
\[
E_{\pm} = 2\omega \pm \frac{\delta m \omega}{m} .
\] (22)

Now, let’s solve this exactly. We have
\[
H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{m\omega^2}{2} (x^2 + y^2 + \frac{\delta m}{m} 2xy)
\] (23)
This is

\[H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{(m + \delta m)\omega^2}{4}(x + y)^2 + \frac{(m - \delta m)\omega^2}{4}(x - y)^2 . \]

(24)

Let us define new coordinates

\[
\bar{x} = \frac{x + y}{\sqrt{2}}, \\
\bar{y} = \frac{x - y}{\sqrt{2}},
\]

(25)

Then

\[H = \frac{p_{\bar{x}}^2}{2m} + \frac{p_{\bar{y}}^2}{2m} + \frac{(m + \delta m)\omega^2}{2}\bar{x}^2 + \frac{(m - \delta m)\omega^2}{2}\bar{y}^2 . \]

(26)

Now we have two independent oscillators. The total energy is

\[E(n_{\bar{x}}, n_{\bar{y}}) = \left(n_{\bar{x}} + \frac{1}{2}\right)\omega\sqrt{1 + \frac{\delta m}{m}} + \left(n_{\bar{y}} + \frac{1}{2}\right)\omega\sqrt{1 - \frac{\delta m}{m}} . \]

(27)

Up to first order in \(\delta m \), this is

\[E(n_{\bar{x}}, n_{\bar{y}}) \approx (n_{\bar{x}} + n_{\bar{y}} + 1)\omega + (n_{\bar{x}} - n_{\bar{y}})\frac{\delta m}{m} . \]

(28)

This agrees with what we found by applying first order perturbation theory directly.