Measuring Higgs Couplings

Tilman Plehn

Universität Heidelberg

Eugene, 4/2012
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma\gamma$
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma\gamma$

⇒ way too early for model building
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma \gamma$
⇒ way too early for model building

If we really want to chase this ambulance...

- Standard Model fine
- UV/IR fixed points right there
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma\gamma$

⇒ way too early for model building

If we really want to chase this ambulance...

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine
 MSSM one example [tons of papers]
 hypersphere in $m_{t_{L/R}}$, $\tan \beta$, A_t, μ, m_A predicting little $[x_t^2/(m_{t_1} m_{t_2}) \gtrsim 1]$
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ \([\text{in many channels}]\)
- compared to low-mass SM Higgs expectations
- mass and rate from \(H \rightarrow \gamma\gamma\)
\(\Rightarrow\) way too early for model building

If we really want to chase this ambulance...

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine
 MSSM one example \([\text{tons of papers}]\)
 hypersphere in \(m_{\tilde{t}_{L/R}}, \tan \beta, A_t, \mu, m_A\) predicting little \([x_t^2/(m_{\tilde{t}_1} m_{\tilde{t}_2}) \gtrsim 1]\)
- strongly interacting light Higgs fine
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma \gamma$
⇒ way too early for model building

If we really want to chase this ambulance...

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine
 MSSM one example [tons of papers]
 hypersphere in $m_{t_L/R}$, $\tan \beta$, A_t, μ, m_A predicting little $[x_t^2/(m_{t_1} m_{t_2}) \gtrsim 1]$
- strongly interacting light Higgs fine
- Higgs portal fine
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma\gamma$

\Rightarrow way too early for model building

If we really want to chase this ambulance...

- Standard Model fine
 - UV/IR fixed points right there
- reasonably decoupling theories all fine
 - MSSM one example [tons of papers]
 - hypersphere in $m_{\tilde{t}_L/R}$, $\tan \beta$, A_t, μ, m_A predicting little $[x_2^2/(m_{\tilde{t}_1} m_{\tilde{t}_2}) \gtrsim 1]$
 - strongly interacting light Higgs fine
- Higgs portal fine
- your Higgs model of course fine [except for Graham’s]
Where we stand

Around Moriond 2012

- ATLAS and CMS results published
- official line: ‘exclusion gone wrong’ [in many channels]
- compared to low-mass SM Higgs expectations
- mass and rate from $H \rightarrow \gamma\gamma$

⇒ way too early for model building

If we really want to chase this ambulance...

- Standard Model fine
 UV/IR fixed points right there
- reasonably decoupling theories all fine
 MSSM one example [tons of papers]
 hypersphere in $m_{\tilde{t}_L/R}$, $\tan \beta$, A_t, μ, m_A predicting little $[x_t^2/(m_{\tilde{t}_1} m_{\tilde{t}_2}) \gtrsim 1]$
- strongly interacting light Higgs fine
- Higgs portal fine
- your Higgs model of course fine [except for Graham’s]

⇒ but Graham wants technical details [skipping references, wrote the talk on plane]
Where we are going

The model

– assume: we see a scalar $\left[ZZ \text{ and WBF correlations} \right]$
 it is a narrow resonance
 SM-like D4 structures
 self coupling out of reach $\left[\text{Baur et al} \right]$

– production & decay combinations

$$
\begin{align*}
gg & \rightarrow H \\
qq & \rightarrow qqH \\
gg & \rightarrow ttH \\
q\bar{q}' & \rightarrow WH \\
\text{plus a little problem}
\end{align*}
$$

$$
\begin{align*}
H & \rightarrow ZZ \\
H & \rightarrow WW \\
H & \rightarrow b\bar{b} \\
H & \rightarrow \tau^+\tau^- \\
H & \rightarrow \gamma\gamma \\
H & \rightarrow Z\gamma \\
\ldots
\end{align*}
$$

signal \times trigger
backgrounds
Gauss/Poisson statistics
systematics
theory errors
Where we are going

The model

– assume: we see a scalar \[ZZ \text{ and WBF correlations}\]
 it is a narrow resonance
 SM-like D4 structures
 self coupling out of reach \[\text{[Baur et al]}\]

– production & decay combinations

\[
\begin{array}{c}
gg \to H \\
qq \to qqH \\
gg \to t\bar{t}H \\
q\bar{q}' \to WH \\
\text{plus a little problem}
\end{array}
\quad \leftrightarrow \quad
\begin{array}{c}
H \to ZZ \\
H \to WW \\
H \to b\bar{b} \\
H \to \tau^+\tau^- \\
H \to \gamma\gamma \\
H \to Z\gamma \\
\ldots
\end{array}
\]

signal \times \text{trigger}
backgrounds
Gauss/Poisson statistics
systematics
theory errors

Why 125 GeV is just perfect \[\text{[Zeppenfeld et al; Dührssen et al; SFitter 2009]}\]

– parameters: Higgs couplings to \(W, Z, t, b, \tau, g, \gamma\) \[\text{[SM-like D4 operators]}\]

\[
g_{HXX} = g_{HXX}^{SM} (1 + \Delta_X) \quad g_{HWW} > 0
\]

– measurements: \(GF: H \to ZZ, WW, \gamma\gamma\)
 \(WBF: H \to ZZ, WW, \gamma\gamma, \tau\tau\)
 \(VH: H \to b\bar{b}\)
 \(t\bar{t}H: H \to \gamma\gamma, b\bar{b}\)

\[\Rightarrow \text{perfect application for SFitter}\]
Markov chains

Probability maps [statistics questions go to Kyle]

- honest LHC parameters: weak-scale Lagrangean
 [Higgs, MSSM, dark matter,...]
- likelihood map: data given a model \(p(d|m) \sim |\mathcal{M}|^2(m) \)
- Bayes’ theorem: \(p(m|d) = p(d|m) \frac{p(m)}{p(d)} \)
 \([p(d) \text{ normalization, } p(m) \text{ prejudice}]\)

Markov chains

- problem in grid: huge phase space, find local best points?
 problem in fit: domain walls, find global best points?
- construct ‘representative’ poll
- classical: representative set of spin states
 compute average energy on this reduced sample
- BSM or Higgs: map \(p(d|m) \) of parameter points
 evaluate whatever you want
- Metropolis-Hastings
 starting probability \(p(d|m) \) vs suggested probability \(p(d|m') \)
 1– accept new point if \(p(d|m') > p(d|m) \)
 2– or accept with \(p(d|m')/p(d|m) < 1 \)
SFitter 1: Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation
 measure of ‘representative’: probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count
 bin with inverse averaging

\[
P_{\text{bin}}(p \neq 0) = \frac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}
\]

- good choice for \(O(6) \) dimensions
SFitter 1: Markov chains

Weighted Markov chains [Lafaye, TP, Rauch, Zerwas; Ferrenberg, Swendsen]

- special situation
 measure of ‘representative’: probability itself
- example with 2 bins, probability 9:1
 10 entries needed for good Markov chain
 2 entries needed if weight kept
- binning with weight would double count
 bin with inverse averaging
 \[
 P_{\text{bin}}(p \neq 0) = \frac{\text{bincount}}{\sum_{i=1}^{\text{bincount}} p^{-1}}
 \]
- good choice for $\mathcal{O}(6)$ dimensions

Cooling Markov chains [Lafaye, TP, Rauch, Zerwas]

- zoom in on peak structures [inspired by simulated annealing]
- modified condition
 Markov chain in 100 partitions, numbered by j
 \[
 \frac{p(m')}{p(m)} > r^{100/j} \quad \text{with} \quad c \sim 10, \quad r \in [0, 1] \quad \text{random number}
 \]
- check for parameter coverage with many Markov chains
 ⇒ exclusive likelihood map first result
SFitter 2: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters
- uninteresting parameters
- unphysical parameters [JES part of m_t extraction]

- two ways to marginalize likelihood map

1. integrate over probabilities
 normalization etc mathematically correct
 integration measure unclear
 noise accumulation from irrelevant regions
 classical example: convolution of two Gaussians
SFitter 2: Frequentist vs Bayesian

Getting rid of model parameters

- poorly constrained parameters
- uninteresting parameters
- unphysical parameters [JES part of \(m_t \) extraction]

- two ways to marginalize likelihood map

1. integrate over probabilities
 - normalization etc mathematically correct
 - integration measure unclear
 - noise accumulation from irrelevant regions
 - classical example: convolution of two Gaussians

2. profile likelihood \(\mathcal{L}(\ldots, x_{j-1}, x_{j+1}, \ldots) \equiv \max_{x_j} \mathcal{L}(x_1, \ldots, x_n) \)
 - no integration needed
 - no noise accumulation
 - not normalized, no comparison of structures
 - classical example: best-fit point

- one-dimensional parameter distributions second target
SFitter 3: Error analysis

Sources of uncertainty

- statistical error: Poisson
 systematic error: Gaussian, if measured
 theory error: not Gaussian

- simple argument
 LHC rate 10% off: no problem
 LHC rate 30% off: no problem
 LHC rate 300% off: Standard Model wrong

- theory likelihood flat centrally and zero far away

- profile likelihood construction: RFit \cite{CKMFitter}

\[-2 \log L = \chi^2 = \tilde{\chi}_d^T C^{-1} \tilde{\chi}_d\]

\[
\chi_{d,i} = \begin{cases}
0 & |d_i - \bar{d}_i| < \sigma_i^{(\text{theo})} \\
\frac{|d_i - \bar{d}_i| - \sigma_i^{(\text{theo})}}{\sigma_i^{(\text{exp})}} & |d_i - \bar{d}_i| > \sigma_i^{(\text{theo})}
\end{cases}
\]
SFitter 3: Error analysis

Sources of uncertainty

– statistical error: Poisson
 systematic error: Gaussian, if measured
 theory error: not Gaussian

– profile likelihood construction: RFit \[\text{RFit}\] [CKMFitter]
 \[-2 \log L = \chi^2 = \chi_d^T C^{-1} \chi_d\]
 \[\chi_{d,i} = \begin{cases}
0 & |d_i - \bar{d}_i| < \sigma_i^{(\text{theo})} \\
|d_i - \bar{d}_i| - \sigma_i^{(\text{theo})} & |d_i - \bar{d}_i| > \sigma_i^{(\text{theo})} \end{cases} \]

Combination of errors

– Gaussian \otimes Gaussian: half width added in quadrature
 Gaussian/Poisson \otimes flat: RFit scheme
 Gaussian \otimes Poisson: ??

– approximate formula
 \[\frac{1}{\log L_{\text{comb}}} = \frac{1}{\log L_{\text{Gauss}}} + \frac{1}{\log L_{\text{Poisson}}}\]

– modified Minuit gradient fit last step
Higgs couplings

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009; Contino et al]

- light Higgs around 125 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF : H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses]
 $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting]
 $VH : H \rightarrow b\bar{b}$ [BDRS crucial]
 $t\bar{t}H : H \rightarrow \gamma\gamma, WW, b\bar{b}$... [useful but later]
- parameters: couplings $W, Z, t, b, \tau, g, \gamma$ [plus Higgs mass]
- hope: cancel uncertainties

 $(WBF : H \rightarrow WW)/(WBF : H \rightarrow \tau\tau)$
 $(WBF : H \rightarrow WW)/(GF : H \rightarrow WW)$...
- all wrong because of exclusive $H + n$ jets... [later]
Higgs Couplings
Tilman Plehn

Where we stand
Where we are going
Markov chains
Errors
SFitter
After Moriond
Hypotheses
To do

Higgs couplings

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009; Contino et al]

- light Higgs around 125 GeV: over 10 channels ($\sigma \times BR$)
- measurements: $GF : H \rightarrow ZZ, WW, \gamma\gamma$ [first analyses]
 $WBF : H \rightarrow ZZ, WW, \gamma\gamma, \tau\tau$ [just starting]
 $VH : H \rightarrow b\bar{b}$ [BDRS crucial]
 $t\bar{t}H : H \rightarrow \gamma\gamma, WW, b\bar{b}$... [useful but later]

- parameters: couplings W, Z, b, τ, g, γ [plus Higgs mass]
- hope: cancel uncertainties
 $(WBF : H \rightarrow WW)/(WBF : H \rightarrow \tau\tau)$
 $(WBF : H \rightarrow WW)/(GF : H \rightarrow WW)...$
- all wrong because of exclusive $H + n$ jets... [later]

Total width

- myths about scaling

\[N = \sigma BR \propto \frac{g_p^2}{\sqrt{\Gamma_{tot}}} \frac{g_a^2}{\sqrt{\Gamma_{tot}}} \sim \frac{g^4}{g^2 \sum \frac{\Gamma_i(g^2)}{g^2} + \Gamma_{unobs}} \quad g^2 \rightarrow 0 = 0 \]

 gives constraint from \[\sum \frac{\Gamma_i(g^2)}{g^2} < \Gamma_{tot} \rightarrow \Gamma_H|_{\min} \]

- $WW \rightarrow WW$ unitarity: $g_{WWH} \lesssim g_{WWH}^{SM} \rightarrow \Gamma_H|_{\max}$
- assume in SFitter $\Gamma_{tot} = \sum_{obs} \Gamma_j$ [plus generation universality]
Higgs couplings

Higgs-sector analysis [Zeppenfeld et al; Dührssen et al; SFitter 2009; Contino et al]

- light Higgs around 125 GeV: over 10 channels \((\sigma \times BR)\)
- measurements: \(GF : H \rightarrow ZZ, WW, \gamma \gamma\) [first analyses]
 \(WBF : H \rightarrow ZZ, WW, \gamma \gamma, \tau \tau\) [just starting]
 \(VH : H \rightarrow b\bar{b}\) [BDRS crucial]
 \(t\bar{t}H : H \rightarrow \gamma \gamma, WW, b\bar{b}...\) [useful but later]
- parameters: couplings \(W, Z, t, b, \tau, g, \gamma\) [plus Higgs mass]
- hope: cancel uncertainties
 \((WBF : H \rightarrow WW)/(WBF : H \rightarrow \tau \tau)\)
 \((WBF : H \rightarrow WW)/(GF : H \rightarrow WW)\)...
- all wrong because of exclusive \(H + n\) jets...
 [later]

SFitter ansatz [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- couplings measurement \(g_{HXX} = g_{HXX}^{SM} (1 + \Delta X)\)
 D5 couplings \(g_{ggH}, g_{\gamma \gamma H}\) free?
- experimental/theory errors on signal and backgrounds
 ATLAS and CMS both included
- exclusive likelihood map
 individual coupling measurements
- alternative parameters, e.g. coupling ratios?
Basic checks

Marginalization procedures

1– noisy environment preferring profile likelihoods [no effective couplings, 30 fb$^{-1}$]
Basic checks

Marginalization procedures

1— noisy environment preferring profile likelihoods [no effective couplings, 30 fb$^{-1}$]
2— higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb$^{-1}$]
Basic checks

Marginalization procedures

1—noisy environment preferring profile likelihoods [no effective couplings, 30 fb$^{-1}$]
2—higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb$^{-1}$]
3—but not saving Bayesian statistics [no effective couplings, 300 fb$^{-1}$]
Basic checks

Marginalization procedures

1—noisy environment preferring profile likelihoods [no effective couplings, 30 fb$^{-1}$]
2—higher luminosity quantitatively different [no effective couplings, 30 vs 300 fb$^{-1}$]
3—but not saving Bayesian statistics [no effective couplings, 300 fb$^{-1}$]
4—theory errors not dominant for 30 fb$^{-1}$ [with effective couplings, 30 fb$^{-1}$]

⇒ profile likelihood for now
Results after Moriond

ATLAS and CMS data well documented [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- **ATLAS**: $\gamma\gamma, Z\ell Z\ell, WW + 0/1$ jets
- **CMS**: $\gamma\gamma + 0/2$ jets, $Z\ell Z\ell, WW + 0/1/2$ jets
- **CMS**: $\tau\tau + 0/1/2$ jets, bb with $W\ell, Z\ell, Z\nu$
- central points on SM values
- everything preliminary
- (7 TeV, 2.1 – 4.9 fb$^{-1}$)
Results after Moriond

ATLAS and CMS data well documented [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- **ATLAS**: $\gamma\gamma$, $Z_\ell Z_\ell$, $WW + 0/1$ jets
- **CMS**: $\gamma\gamma + 0/2$ jets, $Z_\ell Z_\ell$, $WW + 0/1/2$ jets
 CMS: $\tau\tau + 0/1/2$ jets, bb with W_ℓ, Z_ℓ, Z_ν
- central points on SM values
 everything preliminary
- (7 TeV, 2.1 − 4.9 fb$^{-1}$)
 (7 TeV, 20 fb$^{-1}$)
Results after Moriond

ATLAS and CMS data well documented [Dührssen, Klute, Lafaye, TP, Rauch, Zerwas]

- **ATLAS:** $\gamma\gamma$, $Z\ell Z\ell$, $WW + 0/1$ jets
- **CMS:** $\gamma\gamma + 0/2$ jets, $Z\ell Z\ell$, $WW + 0/1/2$ jets
 - CMS: $\tau\tau + 0/1/2$ jets, bb with $W\ell$, $Z\ell$, $Z\nu$

- Central points on SM values
 - Everything preliminary
- (7 TeV, 2.1 – 4.9 fb$^{-1}$)
 - (7 TeV, 20 fb$^{-1}$)
- Different projections 2012-2014

Form factor already constrained
- Gauge boson couplings promising
- Fermion couplings a problem
- D5 operators wide open
- Ratios actually better

- Comments welcome!
- Technical screwups?
- Experimental misunderstandings?
- Proper operator basis?
 - ...
Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays \([\text{plus } H_2 \rightarrow H_1 H_1 \text{ cascade decays}] \)
 \[
 \Gamma_{1}^{\text{tot}} = \cos^2 \chi \Gamma_{\text{tot}, 1}^{\text{SM}} + \sin^2 \chi \Gamma_{1}^{\text{hid}}
 \]

- constraints on event rate
 \[
 \frac{\sigma[H_1 \rightarrow F]}{\sigma[H_1 \rightarrow F]^{\text{SM}}} = \frac{\cos^2 \chi \Gamma_{1}^{\text{hid}}}{1 + \tan^2 \chi \Gamma_{1}^{\text{hid}} \Gamma_{\text{tot}, 1}^{\text{SM}}} < \mathcal{R}
 \]

- two scenarios: \(m_H = 125, \mathcal{R} \sim 1 \) and \(m_H = 155, \mathcal{R} \sim 0.4 \)

⇒ invisible Higgs needed for final answer
Specific Higgs hypotheses

Status of the Higgs portal

- visible and hidden decays [plus $H_2 \rightarrow H_1 H_1$ cascade decays]
 \[
 \Gamma_{tot,1}^1 = \cos^2 \chi \Gamma_{SM, tot,1}^1 + \sin^2 \chi \Gamma_{hid,1}^1
 \]
- constraints on event rate
 \[
 \frac{\sigma[H_1 \rightarrow F]}{\sigma[H_1 \rightarrow F]_{SM}} = \frac{\cos^2 \chi}{1 + \tan^2 \chi \frac{\Gamma_{hid,1}^1}{\Gamma_{SM, tot,1}^1}} < \mathcal{R}
 \]
 \[\Rightarrow\] invisible Higgs needed for final answer

Strongly interacting Higgs at LHC [Espinosa, Grojean, Mühlleitner; SFitter; Ellis & You]

- pretty much fundamental Higgs
- coupling analysis technically simple
1- all couplings scaled $g \rightarrow g \sqrt{1 - \xi}$
 - one-parameter fit in SFitter
 - (14 TeV, 30 fb$^{-1}$) and 120 GeV Higgs: $\Delta g/g \sim 10\%$
2- gauge couplings $g \rightarrow g \sqrt{1 - \xi}$
 Yukawas $g \rightarrow g(1 - 2\xi)/\sqrt{1 - \xi}$
 - sign change of Yukawas, $g_{\gamma\gamma H}$ correlated
To-do list

Problems in Higgs sector analyses

1– pile-up in Higgs analyses
 nothing I can do

2– channels for bbH and ttH couplings
 Higgs and top tagging: tools in good hands [thank you to Higgs workshop in 2009!]

3– N^∞LO cross section predictions
 maybe I am not German enough

4– analyses not organized by production channels
 count recoil jets instead, jet vetos
To-do list

Higgs searches vs number of recoil jets?? [for Dave and Steve]

– ‘soft’ gluon radiation infinitely likely [like soft photons]
– many analyses at odds with DGLAP [hard to predict at fixed order]

⇒ study exclusive n_{jets} distributions
To-do list

Higgs searches vs number of recoil jets?? [for Dave and Steve]

- ‘soft’ gluon radiation infinitely likely [like soft photons]
- many analyses at odds with DGLAP [hard to predict at fixed order]

⇒ study exclusive n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron

$$\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{excl} = \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

1– radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color]
2– phase space factor $1/n!$ [only combinatorics effect, matrix element ordered]
3– normalization factor $e^{-\bar{n}}$
To-do list

Higgs searches vs number of recoil jets?? [for Dave and Steve]

- ‘soft’ gluon radiation infinitely likely [like soft photons]
- many analyses at odds with DGLAP [hard to predict at fixed order]

⇒ study exclusive n_{jets} distributions

Poisson scaling [Peskin & Schroeder]

- example: photons off hard electron

$$\sigma_n = \frac{\bar{n}^n e^{-\bar{n}}}{n!} \iff R_{(n+1)/n}^{\text{excl}} \equiv \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}_{n+1}}{n+1}$$

1– radiation matrix element \bar{n}^n [abelian fine, non-abelian for leading log and color]
2– phase space factor $1/n!$ [only combinatorics effect, matrix element ordered]
3– normalization factor $e^{-\bar{n}}$

Staircase scaling [Ellis, Kleiss, Stirling]

- observed since UA2

- same for inclusive and exclusive rates

$$R_{(n+1)/n}^{\text{incl}} = \frac{\sum_{j=n+1}^{\infty} \sigma_j^{\text{excl}}}{\sigma_n^{\text{excl}}} + \sum_{j=n+1}^{\infty} \sigma_j^{\text{excl}} = R_{(n+1)/n}^{\text{excl}} = \text{const}$$
Jet veto

Example: WBF $H \rightarrow \tau\tau$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

\[\frac{n!}{(n+1)!} - 1 \]

\[n!/(n+1)! \]

\[R(n+1)/n \]
Jet veto

Example: WBF $H \rightarrow \tau \tau$ [Englert, Gerwick, TP, Schichtel, Schumann]

- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto

- count add’l jets to reduce backgrounds
 $p_T^{\text{veto}} > 20$ GeV $\quad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2}$
- Poisson for QCD processes ['radiation' pattern]
Jet veto

Example: WBF $H \rightarrow \tau\tau$ [Englert, Gerwick, TP, Schichtel, Schumann]
- staircase scaling before WBF cuts [QCD and e-w processes]
- e-w Zjj production with too many structures

Understanding a jet veto
- count add’l jets to reduce backgrounds
 \[p_T^{\text{veto}} > 20 \text{ GeV} \quad \min y_{1,2} < y^{\text{veto}} < \max y_{1,2} \]
- Poisson for QCD processes ['radiation' pattern]
- (fairly) staircase for e-w processes [cuts keeping signal]
- n_{jets} features understood, go from here...

![Graph showing Higgs gluon fusion and Z QCD with jet veto](image)
Outlook

Confirming Higgs@LHC

- hope there were enough details, you can wake up now
- coupling analysis the main LHC goal
- many technical issues
- Higgs tagger vital
- SFitter paper imminent

⇒ case for a 250 GeV linear collider

much of this work was funded by the BMBF Theorie-Verbund which is ideal for hard and relevant LHC work
Pretty colorful pictures

Two-dimensional correlations and effective couplings

1— including effective g_{Hgg}
 sign of g_{Htt} fixed by $g_{HWW} > 0$
 correlation of g_{Hbb} and g_{HWW} [loops and width]
 g_{Hgg} accessible
Pretty colorful pictures

Two-dimensional correlations and effective couplings

1– including effective g_{Hgg}
 sign of g_{Htt} fixed by $g_{HW\gamma} > 0$
 correlation of g_{Hbb} and $g_{HW\gamma}$ [loops and width]
 g_{Hgg} accessible

2– only effective $g_{H\gamma\gamma}$
 correlated g_{Htt} and $g_{HW\gamma}$ on both branches
 $g_{H\gamma\gamma}$ structure more complex
Pretty colorful pictures

Two-dimensional correlations and effective couplings

1— including effective g_{Hgg}
 sign of g_{Htt} fixed by $g_{HWW} > 0$
 correlation of g_{Hbb} and g_{HWW} [loops and width]
 g_{Hgg} accessible

2— only effective $g_{H\gamma\gamma}$
 correlated g_{Htt} and g_{HWW} on both branches
 $g_{H\gamma\gamma}$ structure more complex

3— both effective couplings
 discrete structures getting out of hand
Weak boson fusion and supersymmetry

Higgs analysis beyond the Standard Model

- extension of Higgs analysis to BSM scenarios
- comparison SM-MSSM
 - no-lose: TP, Rainwater, Zeppenfeld
- define hypothesis
 - known particles: known corrections
 - new particles: theory error
- general: heavy additional states at one loop
 - example: MSSM sectors Higgs–weak–strong

Technical questions

- vertex corrections dominant? [Djouadi & Spira]
- which one larger: QCD vs EW? [similar for Standard Model: Ciccolini, Denner, Dittmaier]
- corrections from Higgs sector? [renormalization scheme/higher orders]
- general phase space generator?
- Germans: we can do 52504 diagrams [Hadcalc: automized IR-finite one-loop $2 \rightarrow 3$]

⇒ input for MSSM-Higgs analysis
Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses → Feynman diagrams \[\text{[FeynHiggs]}\]
- consistent self couplings → effective potential \[\text{[SubH]}\]
- check identical limit: effective angle α_{eff}
Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses \rightarrow Feynman diagrams $^{[\text{FeynHiggs}]}$
- consistent self couplings \rightarrow effective potential $^{[\text{SubH}]}$
- check identical limit: effective angle α_{eff}

SUSY corrections

- QCD corrections suppressed:
 - color flow and forward jets $^{[\text{no interference, like SM}]}$
 - mass suppression of one-loop $q_L q_L W$ vertex $^{[1/m_g]}$
 - up-down cancellation in one-loop $d u W h$ vertex $^{[T_3 - Q_s^2 w = -1/3, +5/16]}$
- electroweak corrections as expected

<table>
<thead>
<tr>
<th>diagram</th>
<th>$\Delta \sigma / \sigma$ [%]</th>
<th>$\Delta \sigma \sim \mathcal{O}(\alpha)$</th>
<th>diagram</th>
<th>$\Delta \sigma / \sigma$ [%]</th>
<th>$\Delta \sigma \sim \mathcal{O}(\alpha_s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>self energies</td>
<td>0.199</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$qqW + qqZ$</td>
<td>-0.392</td>
<td></td>
<td>$qqW + qqZ$</td>
<td>-0.0148</td>
<td></td>
</tr>
<tr>
<td>qqh</td>
<td>-0.0260</td>
<td></td>
<td>qqh</td>
<td>0.00545</td>
<td></td>
</tr>
<tr>
<td>$WWh + ZZh$</td>
<td>-0.329</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>box</td>
<td>0.0785</td>
<td></td>
<td>box</td>
<td>-0.00518</td>
<td></td>
</tr>
<tr>
<td>pentagon</td>
<td>0.000522</td>
<td></td>
<td>pentagon</td>
<td>-0.000308</td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow electroweak corrections dominant
Weak boson fusion and supersymmetry

Higgs sector corrections

- finite momentum, different masses → Feynman diagrams [FeynHiggs]
 consistent self couplings → effective potential [SubH]
- check identical limit: effective angle α_{eff}

SUSY corrections

- SPS1b with variable mass scale $m_{1/2}$
- perfect decoupling at one loop
- typical corrections around 1%
 maximum corrections below 4%
Higgs Couplings
Tilman Plehn

Where we stand
Where we are going
Markov chains
Errors
SFitter
After Moriond
Hypotheses
To do