Non standard objects
for/from Higgs

Tuhin S. Roy
University of Washington
Jet substructure techniques in Higgs physics can be really useful! (even for early LHC)

\[pp \rightarrow V \ h \]

\[\mathcal{L} = 30 \ \text{fb}^{-1} \]
Hidden agenda

Jet substructure techniques in Higgs physics can be really useful! (even for early LHC)

\[pp \rightarrow V h \]

\[\sqrt{s} = 14 \text{ TeV}, \mathcal{L} = 10 \text{ fb}^{-1} \]

\[M_T = 800 \text{ GeV} \]

Butterworth, Davison, Rubin, Salam

0802.2470

Kribs, Martin, TSR

1012.2866
Hidden agenda

Jet substructure techniques in Higgs physics can be really useful! (even for early LHC)

production is non standard

h \rightarrow bb
decay is standard
Jet substructure techniques in Higgs physics can be really useful!
(even for early LHC)

- production of Higgs is standard
- decay is non-standard
Non-standard objects from Higgs

\[m_h = 120 \text{ GeV} \quad \text{and} \quad m_A = 10 \text{ GeV}. \]

\[h \rightarrow a \ a \rightarrow (\tau \tau) (\tau \tau) \]
Non-standard objects from Higgs

\[m_h = 120 \text{ GeV} \quad \text{and} \quad m_A = 10 \text{ GeV}. \]
Non-standard objects from Higgs
Non-standard objects from Higgs

Photon jets

Yavin, Toro
arXiv:1202.6377
Non-standard objects from Higgs

di-tau jets
Englert, TSR, Spannowsky
arXiv:1106.4545

Photon jets
Scholtz, TSR
preliminary studies
this is how my detector looks like!
particles \rightarrow calorimeter cells \rightarrow 4vectors

find the total energy deposited by the particles with same (η, ϕ) cell
find the total energy deposited by the particles with same \((\eta, \varphi)\) cell

check if \(E_{\text{deposited}} > E_{\text{threshold}}\)
particles → calorimeter cells → 4vectors

check if $E_{\text{deposited}} > E_{\text{threshold}}$

find the total energy deposited by the particles with same (η, φ) cell

construct massless four-vectors with $(E_{\text{deposited}}, \eta, \varphi)$
4vectors -> objects

make anti-kT jets of size 0.4 with em cells

$p_T > p_T^{\text{min}} \& \text{hcal energy/em-jet energy} < 0.1$

charge track inside the em-jet

- yes
 - isolated electron
- No
 - isolated photon

add the constituents of em-jet to the list of hcal four vectors

- make anti-kT jets with $R = 0.7$
di-tau jets vs. qcd jets

- **di-tau jets**: jets from gg -> h -> a a -> (ττ) (ττ) events
- **qcd jets**: jets from dijet events

Jets were made with $p_T^{\text{min}} > 30, 50, 100$ GeV
di-tau jets vs. qcd jets

conventional calorimeter based tau-taggers are not that useful in tagging di-tau jets

\[
R_{\text{em}}^j = \frac{\sum_\alpha p_{T,\alpha} \Delta R(\alpha, j)}{\sum_\alpha p_{T,\alpha}}
\]

\[
E_{\text{iso}}^j = \frac{\sum_{r_1 \leq \Delta R(\alpha, j) \leq r_2} p_{T,\alpha}}{\sum_\alpha p_{T,\alpha}}
\]
di-tau jets vs. qcd jets

Information from tracker still helps

Note the 2 prong structure

Saturday, April 7, 2012
di-tau jets vs. qcd jets

NSubjettiness can be useful

\[\tau_N = \frac{\sum_k p_{T,k} \min (\Delta R(1,k), \ldots, \Delta R(N,k))}{\sum_j p_{T,j} R} \]

di-tau jets vs. qcd jets

NSubjettiness can be useful
di-tau jets vs. qcd jets

Simple cut helps a lot
Higgs with di-tau jets
Higgs with di-tau jets

- two leptons that reconstruct a Z
- two jets with at least one passing di-tau selection cut.
- missing energy
DITAU TAGGING

Cuts and efficiencies

<table>
<thead>
<tr>
<th>Condition</th>
<th>ditaus</th>
<th>ZZj</th>
<th>WZj</th>
<th>WWj</th>
<th>t\bar{t}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_\ell = 2), (Z) mass reconstruction with (e^+e^-) or (\mu^+\mu^-)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>(\max(p_T^\ell, p_T^{\ell'}) \geq 80 \text{ GeV}, p_T^Z \geq 150 \text{ GeV})</td>
<td>0.416</td>
<td>0.217</td>
<td>0.130</td>
<td>0.011</td>
<td>0.026</td>
</tr>
<tr>
<td>(n_j \geq 2) with (p_T^j \geq 30 \text{ GeV}, \Delta R(j_{50}, Z) \leq 1.5)</td>
<td>0.216</td>
<td>0.048</td>
<td>0.035</td>
<td>0.00019</td>
<td>3.9 \times 10^{-4}</td>
</tr>
<tr>
<td>(p_T \geq 50 \text{ GeV},</td>
<td>\Delta\phi(p, Z)</td>
<td>\geq 2)</td>
<td>0.199</td>
<td>0.0402</td>
<td>0.029</td>
</tr>
<tr>
<td>(\tau_3/\tau_1</td>
<td>_{\text{ecal}} \leq 0.5) (leading jet)</td>
<td>0.172</td>
<td>0.033</td>
<td>0.021</td>
<td>0.00015</td>
</tr>
<tr>
<td>(p_T^j/m_j \geq 7) (leading jet)</td>
<td>0.125</td>
<td>0.011</td>
<td>0.0084</td>
<td>5.4 \times 10^{-5}</td>
<td>2.1 \times 10^{-5}</td>
</tr>
<tr>
<td>cross section [fb]</td>
<td>0.083</td>
<td>0.0018</td>
<td>0.0020</td>
<td>3.0 \times 10^{-6}</td>
<td>7.2 \times 10^{-6}</td>
</tr>
<tr>
<td></td>
<td>1.32</td>
<td>0.45</td>
<td>1.83</td>
<td>0.18</td>
<td>0.29</td>
</tr>
</tbody>
</table>
Higgs with di-tau jets

\[m_T^{\text{cluster}}(j_1j_2) < 160 \text{ GeV} \]

\[\sigma(\text{signal}) = 0.50 \text{ fb} \]

\[\sigma(\text{background}) = 0.12 \text{ fb} \]

\[S/\sqrt{B} \gtrsim 5 \]

\[\mathcal{L} = 12 \text{ fb}^{-1} \]

\[[m_T^{\text{cluster}}(j_1j_2)]^2 = \left(\sqrt{m^2(j_1j_2) + p_T^2(j_1j_2) + |\slashed{p}_T|} \right)^2 \]

\[- \left(p_T(j_1j_2) + \slashed{p}_T \right)^2. \]
combine observables to a likelihood

\[L = f(\tau_3/\tau_1|_{\text{ecal}}) \times f(p_T^j/m_j) \times f(\text{charged tracks}) \]

d > 0.7 gives tagging efficiency of 66\%(58\%) for mistagging probability of 7\%(6\%)
photon jet tagger
photon jet tagger

but before anything else - one slide about how Jakub destroyed my detector
photon jet tagger

my nice em-cal

Jakub’s crazy em-cal
photon jet tagger

the usual suspects
Photon jet tagger

NSubjettiness

![NSubjettiness distribution for photon jets and QCD jets](image-url)
photon jet tagger

Analysis with 3/5 exclusive subjets
photon jet tagger

TMVA response for classifier: Fisher

BDTD response
photon jet tagger
photon jet tagger
Higgs as a di-diphoton-jet resonance