Photon-Jets

Jets and Photons, arXiv:1210.1855
Phenomenology of Photon-Jets, arXiv:1210.3657

Jakub Scholtz

University of Washington, Seattle
Using Jet Substructure @ Terascale

April 23, 2013

Work done with
Stephen D. Ellis, Tuhin S. Roy
Photon-jet
- a collection of two or more collinear photons, that form a jet like deposition in the calorimeters
We will try to separate these three categories:

- Photon-Jet
- Photon
- QCD-Jet
Photon-jets have been suggested as the source of (now possibly gone) $h \rightarrow \gamma\gamma$ excess by various groups: Dobrescu, Landsberg and Matchev; Draper and McKeen as well as Toro and Yavin.
Photon-jets have been suggested as the source of (now possibly gone) $h \rightarrow \gamma\gamma$ excess by various groups: Dobrescu, Landsberg and Matchev; Draper and McKeen as well as Toro and Yavin.

Some photon-jets will always leak into the tagged photon sample. Depending on their production cross-section this needs to be treated.
Photon-jets have been suggested as the source of (now possibly gone) $h \rightarrow \gamma\gamma$ excess by various groups: Dobrescu, Landsberg and Matchev; Draper and McKeen as well as Toro and Yavin.

Some photon-jets will always leak into the tagged photon sample. Depending on their production cross-section this needs to be treated.

On the other hand, our current photon identification is so good, it may be throwing away photon-jets – we could be throwing away a possible signal of new physics.
Photon-jets have been suggested as the source of (now possibly gone) $h \rightarrow \gamma\gamma$ excess by various groups: Dobrescu, Landsberg and Matchev; Draper and McKeen as well as Toro and Yavin.

Some photon-jets will always leak into the tagged photon sample. Depending on their production cross-section this needs to be treated.

On the other hand, our current photon identification is so good, it may be throwing away photon-jets – we could be throwing away a possible signal of new physics.

Photon-jets are both photon-like and jet-like, therefore we need a new category.
If we want to compare QCD-jets, photon-jets and photons, we need a common basis.
If we want to compare QCD-jets, photon-jets and photons, we need a common basis.

Right now, we search for photons one way (use seeds, calorimeter towers, etc.), for QCD-jets another way (jet algorithms) and don’t look for photon-jets at all.
If we want to compare QCD-jets, photon-jets and photons, we need a common basis.

Right now, we search for photons one way (use seeds, calorimeter towers, etc.), for QCD-jets another way (jet algorithms) and don't look for photon-jets at all.

Instead, search for jets and then tag each of them as either a QCD-jet, a photon or a photon-jet, based on their properties.
If we want to compare QCD-jets, photon-jets and photons, we need a common basis.

Right now, we search for photons one way (use seeds, calorimeter towers, etc.), for QCD-jets another way (jet algorithms) and don’t look for photon-jets at all.

Instead, search for jets and then tag each of them as either a QCD-jet, a photon or a photon-jet, based on their properties.

\[
\text{Jets} = \left\{ \text{some jets}, \text{some other jets}, \ldots \right\}
\]
Outline

1 Model

2 Analysis

3 Discriminants

4 Results

5 Conclusion
EFT Model

- Take the Standard model

\[\mathcal{L} = \mathcal{L}_{SM} \]
EFT Model

- Take the Standard model
- Add two scalars in the Hidden Sector:

\[
\begin{array}{c|cc}
 n_1 & Q & SU(3)_C & SU(2)_W \\
 n_2 & 0 & 1 & 1 \\
\end{array}
\]

\[
\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Kin} + \frac{1}{2} m_1^2 n_1^2 + \frac{1}{2} m_2^2 n_2^2
\]
EFT Model

- Take the Standard model
- Add two scalars in the Hidden Sector:
 \[
 n_1 | Q \quad SU(3)_C \quad SU(2)_W \\
 0 \quad 1 \quad 1 \\
 n_2 \quad 0 \quad 1 \quad 1
 \]
- Allow decays within the Hidden sector.

\[
\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Kin} + \frac{1}{2} m_1^2 n_1^2 + \frac{1}{2} m_2^2 n_2^2 + \frac{1}{2} \mu n_1 n_2^2
\]
EFT Model

- Take the Standard model

- Add two scalars in the Hidden Sector:

 \[
 \begin{array}{c|ccc}
 & Q & SU(3)_C & SU(2)_W \\
 n_1 & 0 & 1 & 1 \\
 n_2 & 0 & 1 & 1 \\
 \end{array}
 \]

- Allow decays within the Hidden sector.

- Allow the lighter scalar to decay into photons.

\[
\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Kin} + \frac{1}{2} m_1^2 n_1^2 + \frac{1}{2} m_2^2 n_2^2 + \frac{1}{2} \mu n_1 n_2^2 + \frac{1}{4\Lambda} n_2 F^2
\]
EFT Model

- Take the Standard model

- Add two scalars in the Hidden Sector:

 | | \(Q \) | \(SU(3)_C \) | \(SU(2)_W \) |
 |-------|--------|-------------|
 | \(n_1 \) | 0 | 1 | 1 |
 | \(n_2 \) | 0 | 1 | 1 |

- Allow decays within the Hidden sector.
- Allow the lighter scalar to decay into photons.
- Mix the heavier scalar with the Higgs.

\[
\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{Kin} + \frac{1}{2} m_1^2 n_1^2 + \frac{1}{2} m_2^2 n_2^2 + \frac{1}{2} \mu n_1 n_2^2 + \frac{1}{4\Lambda} n_2 F^2 + \chi H^2 n_1^2
\]
Because there are many theories that would give us the same low energy behavior.
EFT Model: Why? An Example

- Because there are many theories that would give us the same low energy behavior.
- As an example take MSSM with a chargino χ^{\pm}.

$L = M_{\chi} + \chi^{-} + \lambda n_{\chi}^{2} + \chi^{+}$.
EFT Model: Why? An Example

- Because there are many theories that would give us the same low energy behavior.
- As an example take MSSM with a chargino χ^\pm.
- $\mathcal{L} = M\chi^+\chi^- + \lambda n_2 \chi^+\chi^-$.
Because there are many theories that would give us the same low energy behavior.

As an example take MSSM with a chargino χ^\pm.

\[\mathcal{L} = M\chi^+\chi^- + \lambda n_2 \chi^+\chi^- . \]

We can integrate out the χ^\pm, its loops give us the right photon vertex:

\[\frac{\lambda e^2}{16\pi^2 M} \rightarrow \frac{1}{4\Lambda} \]
Take the allowed interactions...
Take the allowed interactions...and let the Higgs decay.
What does it take to make a Photon-Jet?

- It takes the right set of masses for n_1 and n_2.
- We will use $(m_1, m_2) \in \{(5, 1), (10, 0.5)\}$ GeV. However, in the PRD paper we develop a larger benchmark set.
- All decays are prompt.
What does it take to make a Photon-Jet?

- It takes the right set of masses for n_1 and n_2.

![Diagram of Photon-Jet configurations]
What does it take to make a Photon-Jet?

- It takes the right set of masses for \(n_1 \) and \(n_2 \).
- We will use \((m_1, m_2) \in \{(5, 1), (10, 0.5)\}\) GeV. However, in the PRD paper we develop a larger benchmark set.
What does it take to make a Photon-Jet?

- It takes the right set of masses for n_1 and n_2.
- We will use $(m_1, m_2) \in \{(5, 1), (10, 0.5)\}$ GeV. However, in the PRD paper we develop a larger benchmark set.
- All decays are prompt.
Outline

1. Model

2. Analysis

3. Discriminants

4. Results

5. Conclusion
Our Calorimeters

\[\frac{\sigma}{E} = 10\% / \sqrt{E} + 1\% \]

\[\frac{\sigma}{E} = 50\% / \sqrt{E} + 3\% \]
1. Use Pythia 8 to generate both signal and background events (Turn on ISR, FSR and MI).

2. Deposit particle energy according to their type and momenta. (We simulate transverse showers for photons - the pattern on the right corresponds to Molière radius in Pb)

3. Recover massless four-vectors from \((\eta, \phi, E)\) of each cell in both calorimeters.

4. Find jets in the union of all four vectors with Anti-\(k_T\), \(\Delta R = 0.4\), \(p_T > 50\) GeV.
Outline

1 Model
2 Analysis
3 Discriminants
4 Results
5 Conclusion
These discriminants will be used in a multivariate analysis (TMVA) to separate all three populations:

- Conventional
 - Fraction of Hadronic Energy in the Jet
 - Number of Charged Tracks
Discriminants

These discriminants will be used in a multivariate analysis (TMVA) to separate all three populations:

- Conventional
 - Fraction of Hadronic Energy in the Jet
 - Number of Charged Tracks
- N-subjettiness
Discriminants

These discriminants will be used in a multivariate analysis (TMVA) to separate all three populations:

- Conventional
 - Fraction of Hadronic Energy in the Jet
 - Number of Charged Tracks

- N-subjettiness

- More Substructure
 - Energy-Energy Correlation
 - Subjet Spread
 - Subjet Fractional Area
 - Leading subjet p_T
Fraction of Hadronic Energy in the Jet

Measures the fraction of hadronic energy in a jet, \(\theta = \frac{E_{\text{had}}}{E_{\text{total}}} \)
Fraction of Hadronic Energy in the Jet

Measures the fraction of hadronic energy in a jet, $\theta = \frac{E_{\text{had}}}{E_{\text{total}}}$
Counts the number of charged tracks with $p_T > 2$ GeV associated with the jet.

We determine if a track is associated with a jet by including its softened four-vector with all the calorimeter four-vectors.
Counts the number of charged tracks with $p_T > 2$ GeV associated with the jet.

We determine if a track is associated with a jet by including its softened four-vector with all the calorimeter four-vectors.

![Histogram of Number of Charged Tracks]
N-subjettiness

- Take a jet. Find N subjets, through reverse clustering. This defines N axes.

- Form a sum:

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \{ \Delta R_{1,k}, \ldots, \Delta R_{N,k} \}$$

where k runs over all the constituents of a jet and $\Delta R_{i,k}$ is the angular distance between k-th constituent and the i-th subjet.
N-subjettiness

- Take a jet. Find N subjets, through reverse clustering. This defines N axes.
- Form a sum:

$$
\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min\{\Delta R_{1,k}, \ldots, \Delta R_{N,k}\}
$$

where k runs over all the constituents of a jet and $\Delta R_{i,k}$ is the angular distance between k-th constituent and the i-th subjet.
N-subjettiness

- Take a jet. Find N subjets, through reverse clustering. This defines N axes.
- Form a sum:

$$\tau_N = \frac{1}{d_0} \sum_k p_{T,k} \min \{ \Delta R_{1,k}, \ldots, \Delta R_{N,k} \}$$

where k runs over all the constituents of a jet and $\Delta R_{i,k}$ is the angular distance between k-th constituent and the i-th subjet.
More Substructure

- Take all the constituents of a jet.
More Substructure

- Take all the constituents of a jet.
- Find N subjets (by reverse clustering) with a particular jet algorithm (k_T, C/A).

Each variable therefore has the form $\text{var}(N, n, \text{algorithm}).$
More Substructure

- Take all the constituents of a jet.
- Find \(N \) subjets (by reverse clustering) with a particular jet algorithm \((k_T, C/A)\).
- If you are performing a sum, sum only over some number \(n \leq N \) of the highest \(p_T \) subjets (effectively filtering)

\((N, n) = (5, 3)\) works well for our photon-jets.

Each variable therefore has the form \(\text{var}(N, n, \text{algorithm}) \).
More Substructure

- Take all the constituents of a jet.
- Find N subjets (by reverse clustering) with a particular jet algorithm (k_T, C/A).
- If you are performing a sum, sum only over some number $n \leq N$ of the highest p_T subjets (effectively filtering)
- $(N, n) = (5, 3)$ works well for our photon-jets.
More Substructure

- Take all the constituents of a jet.
- Find N subjets (by reverse clustering) with a particular jet algorithm (k_T, C/A).
- If you are performing a sum, sum only over some number $n \leq N$ of the highest p_T subjets (effectively filtering).
- $(N, n) = (5, 3)$ works well for our photon-jets.
- Each variable therefore has the form $var(N, n, \text{algorithm})$.

![Diagram showing jet substructure]
Leading Subject Transverse Momentum

\[Lp_T = \frac{p_T \text{ of the hardest subjet}}{p_T \text{ of the entire jet}} \]

Since QCD is characterized by soft radiation we expect the leading subjet will contain most of the \(p_T \) of the jet.
Leading Subjet Transverse Momentum

\[Lp_T = \frac{p_T \text{ of the hardest subjet}}{p_T \text{ of the entire jet}} \]

Since QCD is characterized by soft radiation we expect the leading subjet will contain most of the \(p_T \) of the jet.

\[\text{Frequency dominated by one subjet} \]

\[\text{CA} \]

\[\text{Frequency dominated by one subjet} \]

\[\text{K} \]

\[\text{Frequency dominated by one subjet} \]

\[\text{K} \]

\[\text{Frequency dominated by one subjet} \]
Energy-Energy Correlation

\[\sum E^2 = \sum_{i<j} E_i E_j / E_{total}^2 \]

Relates to the variance of energy distribution amongst the subjets.
Energy-Energy Correlation

\[\sum E^2 = \sum_{i < j} E_i E_j / E_{\text{total}}^2 \]

Relates to the variance of energy distribution amongst the subjets.
Subjet Spread

\[\sum R_{ij} = \sum_{i<j} \sqrt{\Delta \phi_{i,j}^2 + \Delta \eta_{i,j}^2} \]

Measures the spread of subjets within the jet.
Subject Spread

\[\sum R_{ij} = \sum_{i<j} \sqrt{\Delta \phi_{i,j}^2 + \Delta \eta_{i,j}^2} \]

Measures the spread of subjets within the jet.
Fractional Area

Fractional Area is defined as the sum of active areas of the n hardest subjets divided by the total (active) area of the jet. (We use the FastJet implementation, only C/A)
Fractional Area

Fractional Area is defined as the sum of active areas of the n hardest subjets divided by the total (active) area of the jet. (We use the FastJet implementation, only C/A)

$$\delta_J = \frac{\sum_i A_i}{A_J}$$

(1)
Outline

1. Model
2. Analysis
3. Discriminants
4. Results
5. Conclusion
We train a BDT to separate photon-jets from QCD-jets.
We train a BDT to separate photon-jets from QCD-jets.
We train another BDT to separate Photon-Jets from Photons.

Photon vs Photon Jet

- **Frequency** vs **BDT response**

Acceptance vs **Fake Rate**

- **Photon vs Photon Jet**
- **Conventional**
- **Conventional + Substructure**

J. Scholtz (UW)

Separating Photon-Jets and Photons
We train another BDT to separate Photon-Jets from Photons.
We can also look at the QCD-jets faking photons:

![Graph showing the correlation between acceptance and fake rate.](image)
We use two BDTs to extract as much information as possible.

Split QCD-jets away with *only Conventional* variables.

Split Photons from photon-jets with *just Substructure*.

QCD-jets photons photon-jets.
We use two BDTs to extract as much information as possible.

Split QCD-jets away with *only Conventional* variables.

Split Photons from photon-jets with *just Substructure*.

QCD-jets photons photon-jets.
We though we might be mis-identifying or missing photon-jets. Now, we have the tools to separate all three populations.
Conclusion

- We though we might be mis-identifying or missing photon-jets. Now, we have the tools to separate all three populations.
- This includes potential new approach to separate photons and QCD-jets.
We though we might be mis-identifying or missing photon-jets. Now, we have the tools to separate all three populations.

This includes potential new approach to separate photons and QCD-jets.

A significant amount of separation comes from substructure of these jets.
We though we might be mis-identifying or missing photon-jets. Now, we have the tools to separate all three populations.

This includes potential new approach to separate photons and QCD-jets.

A significant amount of separation comes from substructure of these jets.

This analysis is possible because we treat all objects on equal footing.
BACKUP SLIDES
More study points

Photon-jet vs QCD, (Our example is PJSP6)

Photon-jet vs Photon
Charged Tracks vs θ

![Graph showing charged tracks vs θ](image)

- J_{QCD}
- γ
- $j_{\gamma} (5,1)$
- $j_{\gamma} (10,0.5)$

Number of Charged Tracks

Frequency

0 1 2 3 4 5 6 7 8 9 10

0.0 0.2 0.4 0.6 0.8

Number of Charged Tracks ($\theta<0.025$)

Frequency

0 1 2 3 4 5 6 7 8 9 10

0.0 0.2 0.4 0.6 0.8 1.0
Substructure for different masses

![Graphs showing substructure for different masses](image)
Substructure for different masses II

- $\log_{10}(1-Lp_T(CA))$
- $\log_{10}(1-Lp_T(kT))$
- $E^2(CA)$
- $E^2(kT)$

Legend:
- (10,1)
- (10,0.5)
- (5,1)
- (5,0.5)
- (2,0.5)
- QCD
Substructure for different masses III

![Graphs showing distributions of substructures for different masses](image-url)
Conversions

Opacity of the Pixel section of the ATLAS tracker

Data Points
Interpolation

\(\frac{x}{\lambda_0} \)

\(\eta \)

 Radiation length \((X_0) \)

- Services
- TRT
- SCT
- Pixel
- Beam-pipe
$$ct \sim c m_h \pi \left(\frac{8}{\mu^2} + \frac{\Lambda^2}{m_2^4} \right)$$