
Preprint typeset in MyNote style 28 May 2016

Deductor 2.0: How to use it

Zoltán Nagy

DESY
Notkestrasse 85
22607 Hamburg, Germany
E-mail: Zoltan.Nagy@desy.de

Davison E. Soper

Institute of Theoretical Science
University of Oregon
Eugene, OR 97403-5203, USA
E-mail: soper@uoregon.edu

Abstract: These notes explain how to use the parton shower event generator Deductor.

Keywords: perturbative QCD, parton shower.

Contents
1 Introduction 1

2 Quick start 1
2.1 Getting the code . 2
2.2 Compiling the main code . 2
2.3 Creating a user module . 3
2.4 Calculating and analyzing events . 4

3 Make your own user module 5
3.1 Main part of the Drell-Yan user module . 5
3.2 Analyzer part of the Drell-Yan user module . 7

4 Make another user module 11
4.1 Main part of the jets user module . 12
4.2 Analyzer part of the jets user module . 13

5 Basic elements of the C++ library 18
5.1 Namespace . 18
5.2 Collision types . 19
5.3 Three-vector and four-vector . 19

1 Introduction
Welcome to the Monte Carlo event generator Deductor 2.0. In these notes, you will learn how
to use the program. The program is organized as a main program, deductor, that calls certain
modules. There is a kernel module which defines some basics of your calculation like the c.m.
energy of a hadron-hadron collider and what parton distribution functions to use. Then there
are user modules that perform the analysis of generated events. The kernel module and the
user modules are created by users. We provide the main deductor code and, separately, a kernel
module and a selection of user modules to get you started.

These notes begin with section 2, which explains how to obtain the code and get it running.
Section 3 explains the structure of a simple user moduled for the Drell-Yan process. Section 4
explains the structure of a more complex user module for jet production. Section 5 provides
some information about the elements of the Deductor C++ library.

These usage notes are a work in progress. More will be available in the future.

2 Quick start
Here are some brief instructions to help you get Deductor running and to begin to understand
its organization.

– 1 –

2.1 Getting the code
The Deductor source code can be downloaded either from DESY

curl -O http://www.desy.de/~znagy/deductor/deductor-X.Y.Z.tar.gz

or from the University of Oregon

curl -O http://pages.uoregon.edu/soper/deductor/deductor-X.Y.Z.tar.gz

replacing X.Y.Z with the proper version number. The current version number is 2.0.1. After
download, the code has to be unpacked:

tar zxvf deductor-X.Y.Z.tar.gz

Deductor needs some user written or user modified code. On our website we provide
some simple examples for a quick start. So, as the next step download and unpack the package
deductor-user-X.Y.Z.tar.gz. Here the current version number is still 2.0.0. Execute

curl -O http://www.desy.de/~znagy/deductor/deductor-user-X.Y.Z.tar.gz

or

curl -O http://pages.uoregon.edu/soper/deductor/deductor-user-X.Y.Z.tar.gz

followed by

tar zxvf deductor-user-X.Y.Z.tar.gz

2.2 Compiling the main code
Now, we have to configure the source and create the makefiles. The program is written in C++14
and it requires a C++ compiler that supports this standard. It is important that the compiler
has to provide full support for C++14 features. Deductor was tested with g++ version 5.2.0,
5.3.0, 6.1.0 and with clang version 3.8.0 on a MacOSX 10.11 platform and on a Linux cluster.
Deductor doesn’t compile with older version of clang or with the Apple’s version of clang

that comes with Xcode. On MacOSX we used gcc from MacPorts. To configure and install,
you should execute

cd deductor-X.Y.Z

mkdir build

cd build

cmake .. -DCMAKE_C_COMPILER=gcc-mp-5 -DCMAKE_CXX_COMPILER=g++-mp-5

make install

After this, you could remove build. This will install the program to the default installation
directory, $HOME. This can be changed in the configuration step. For example, to install into
/usr/local, you could use

cmake .. -DCMAKE_INSTALL_PREFIX=/usr/local -DCMAKE_C_COMPILER=gcc-mp-5 -DCMAKE_CXX_COMPILER←↩
=g++-mp-5

make install

– 2 –

The executable files are in the $CMAKE_INSTALL_PREFIX/bin directory. Make sure that this di-
rectory is in your $PATH. The program libraries are in $CMAKE_INSTALL_PREFIX/lib. If everything
went well, then you have a working Deductor setup. You can check it by executing deductor

--help, which gives a message about usage.
To be able to do a real calculation, Deductor needs some auxillary data and a user module.

Deductor doesn’t use a custom config file or other script languages to provide input. We think
C++ is the best way to configure our calculations. In the user module one has to specify the
part of the calculation that generates the hard scattering process that initiates events. This has
to be a proper event generator based on simple partonic matrix elements. In the current version
we have only a few hard processes implemented, but hard processes generators can be provided
externally. The other important input is the analyzer routine. This is where the events are
analyzed and histograms are filled. We provide a powerful but still simple and flexible interface.

2.3 Creating a user module

We can now look at the user routines that analyze events. In the directory deductor-user-X.Y.Z,
there are subdirectories with several examples. Let us choose the Drell-Yan process,

cd Drell-Yan

ls

We see that included in this directory are three C++ files:

analyzer-ZpT.cc analyzer-ZpT.h mod-dy.cc

You can use these code files to create a user module, which you might want to call dy. Just
execute

deductor --new dy mod-dy.cc analyzer-ZpT.h analyzer-ZpT.cc

This command creates a directory dy.bundle in Drell-Yan and places some needed files there.1
Included in dy.bundle is a directory src that contains the code source files. Later, results files
will be included in dy.bundle. The idea is that both results and the source files that produced
the results are together, so that the source files document the results. Later, you may want
to archive the dy.bundle directory by simply giving it a different name, say dyJan2016.bundle.
Then you can modify the code files analyzer-ZpT.cc, analyzer-ZpT.h, and mod-dy.cc and produce
different results. The code that you used to produce the results in dyJan2016.bundle will be there
in dyJan2016.bundle/src.

While developing the code, you can, if you wish, modify the code in dy.bundle/src, leaving
the code files in DrellYan unchanged. Alternatively, you may find it convenient to modify the
main code files in DrellYan. In that case, you can copy the modified files to dy.bundle/src with
the command

deductor --new dy mod-dy.cc analyzer-ZpT.h analyzer-ZpT.cc --update

Once the code is copied to dy.bundle/src, you can compile it with

deductor --build dy

1MacOS treats xx.bundle directories specially. To look at them in a Finder window, use control-click.

– 3 –

This produces a shared object file module.so in dy.bundle. Now you are ready to calculate.

2.4 Calculating and analyzing events
Now we have everything to start a calculation. Let us fire it up by running

deductor --run dy

The program starts like this (with a little color added):

+---+

| Deductor release 2.0.0 |

| Z. Nagy and D.E. Soper |

| |

| A parton shower Monte Carlo event generator |

| not including an underlying event or hadronization |

| http://www.desy.de/~znagy/Site/deductor.html |

| http://pages.uoregon.edu/soper/deductor/ |

| |

| Please cite JHEP 1406 (2014) 097 [arXiv:1401.6364] if you use this |

| package for scientific work. |

| |

| Deductor is provided without warranty under the terms of the GNU GPLv3. |

| See COPYING file for details. |

+---+

User bundle : dy

Bundle path : dy.bundle

Name of the run : run1896-2016-Mar-26-172401@DESMacbook.home

Under the hood, Deductor builds some needed files and puts them into a directory models in
a directory .deductor in your home directory. This takes about ten minutes. In later runs, the
files will already be there, so the program will start producing results sooner.

Once Deductor starts producing results, it will store its results periodically in a direc-
tory dy.bundle/output. You can look at the results by opening a second terminal process and
executing

deductor --results dy

This produces a directory dy.bundle/result. Inside of result, you will find a file summary.tex.
This is a simple TEXfile with links to the files Deductor has produced that contain the results.
If you typeset summary.tex, you will see the results in graphical form.

Perhaps the graphs suggest that you don’t yet have enough events. In that case, you can
wait until you have more events. Then you can run deductor --results dy again to update the
results and typeset summary.tex again and see the improved results. When your results are good
enough, you can stop the program with command-period or control-c.

It is simple to run the example code, but users should be able to create their own analyzer
routines. In some applications they may want to change the underlying hard process. In the
following sections, we discuss all the user interfaces.

If you work on a cluster you might want to start several jobs simultaneously on several nodes.
Note that Deductor is multi-threaded and when your start it, it takes over all cores and threads
of you CPUs in the computer. Thus on a cluster you should start only one Deductor job on
every node. Deductor needs PDF tables and PDF evolution is calculated in the first run and

– 4 –

the tables are saved in ${HOME}/.deductor directory. When you work on a cluster, at the first
time just start only one job, wait until the PDF tables get generated and then you can start
more jobs on other nodes.

3 Make your own user module
The usual event generators (e.g. Pythia) provide a routine that can be called inside a loop
in user created code. Every time this function is invoked it returns with an event. It is the
user’s responsibility to manage the event loop. Deductor is organized in a event driven way.
A stream of events is generated and the analyzer routines can be attached to this stream. The
idea behind this concept is to make the user interface simple and flexible.

The user module consists of two parts, the main part and the analyzer part. In the main
part, we set up the kernel, start the processes and make the connection to the analyzers. In the
analyzer part we deal with the events. For example the event analyzer routines set up and fill
histograms representing data from the generated events.

3.1 Main part of the Drell-Yan user module

In the main part of the user module we have to set up the kernel, the hard process, and the
analyzers and then we have to start the shower process. Let us set up a Drell-Yan process as a
simple example. A compact version of the main part of the user module should look something
like this:

Listing 1: User module for Drell-Yan process Drell-Yan/mod-dy.cc

1 /* deductor headers */

2 #include <deductor.h>

3 #include <proc-dyjets.h>

4
5 /* local headers */

6 #include "analyzer-ZpT.h"

7
8
9 /* This function defines what Deductor should do. */

10 void my_dy_module(const deductor_input&)

11 {

12 /* deductor object */

13 deductor<hhc> kernel{qcd::ct14n};

14
15 /* Hard process */

16 auto hard = [=](const model_ref& mdl) -> dyjets

17 {

18 int proton = 2212, electron = 11;

19 double Ecm = 13.0_TeV, scalefac = 1.0, mL = 2.0_TeV, mH = 2.1_TeV;

20
21 return {mdl, Ecm, mL, mH, scalefac, proton, proton, {electron}};

22 };

23
24 /* Drell-Yan Z pT distribution */

25 kernel("Drell-Yan", hard, new UserZpT{"ZpT"});

26 }

27
28

– 5 –

29 /* Always export your module functions! */

30 export_my_module drell_yan_module = {

31 {"Drell-Yan processes at 13TeV", my_dy_module}

32 };

This needs discussion.

1. We start with header files to include in lines 2 and 3. We have to include the main
Deductor header. In line 3 we include the header file of the hard process, the Drell-Yan
process. In Deductor there are some hard process implemented and one could also use
a user supplied hard process. In line 6 we include the header of the analyzer routine. In
this example we have only one analyzer, which calculates the pT distribution Drell-Yan
lepton pair. The analyzers are user defined. We will discuss how to define them in the
next subsection.

2. In line 10, we begin the definition of our module for Drell-Yan calculations, which is a
function that will tell Deductor what calculations to do. We call it my_dy_module. It has
one argument and its type has to be const deductor_input&. Since in this example we don’t
use this argument, so we don’t name it.

3. In line 13, we create an object called kernel of class deductor<hhc> where hhc specifies
“hadron-hadron collisions”. We specify that we want to use parton distributions based on
evolution from the starting functions used in the CT14 NLO distributions (which is built
into Deductor). This also fixes the strong coupling, αs.

4. In line 16 we create a function object that will create the hard process. It is created
as a C++14 lambda expression. The objects that we need is the return value of this
lambda expression and its type is dyjets. There is one parameter, a reference to the
model, the value of which is provided by the deductor<hhc> objects. In the body of the
lambda expression, we specify the parameters needed by the dyjets object.

5. In line 18, we define the PDG codes for the particles involved in the hard process. The
colliding hadrons are protons, and we want to generate final state electrons.

6. In line 19, we choose the c.m. energy of the hard process, 13 TeV. (double Ecm = 13.0_TeV;)

7. We choose the scale factor λ that defines the factorization scale µf (which is the scale for
the starting parton distribution factor and is the starting scale for the shower): µf = λQ,
where Q is the e+e− mass. (double scalefac = 1.0;)

8. We specify parameters for generating the hard process. We want to generate events in
the region where the invariant mass Q of the lepton pair is between 2.0 TeV and 2.1 TeV
(double mL = 2.0_TeV, mH = 2.1_TeV;).

9. In line 21, we return a dyjets process with the chosen parameters. For the final state
leptons, we have a list, which, in this case, contains just one element: electron. Alter-
natively, we could define muon and tau and then replace {electron} by {electron, muon,

tau}.

10. Line 25 does several things at once. In the file analyzer-ZpT.h that we included, we
declared a class UserZpT, which is a user defined analyzer for Drell-Yan events. Here, we
create a dynamically allocated (with new) instance of this class. (Deductor will take

– 6 –

care of deallocating this object.) Our UserZpT object is given a text name "ZpT". It is
important that the analyzers objects has to be created dynamically by the new operator.
The deductor<hhc> object captures and owns this pointer.

11. Continuing in line 25, recall that we created a deductor<hhc> object kernel. Now, we use
the operator() function of kernel to start the calculation. We supply to kernel a process
name, "Drell-Yan", the function hard that creates the hard process, and the analyzer.

12. Line 26 competes the definition of my_dy_module.

13. Finally, in line 30, we create an object (with a dummy name drell_yan_module) of type
export_my_module defined in Deductor. This object lets deductor know the class and
function names associated with our calculation. We supply a descriptive module name
"Drell-Yan-13TeV" and the function, my_dy_module, that we have just defined.

14. Notice that the user has supplied text names for the bundle created by the deductor --new

command, the module, the process, and the analyzer. These names are used, for instance,
in the organization of the results files. They should be plain text names with letters,
numbers, and hyphens so that they are suitable for use as directory names in your file
system and as text input to TEX.

3.2 Analyzer part of the Drell-Yan user module
In the code for the Drell-Yan module in Listing 1, we created an instance of the analyzer
class UserZpT. Now we need to declare and define this class. We derive UserZpT from the
class basic_user<hhc,...>, which is in turn derived from a lower level class user<hhc>. The class
basic_user<hhc,...> provides an interface to shower events and also provides powerful histogram-
ing functions. In order to derive the analyzer from class basic_user, the user has to specify only
two virtual functions.

Let us use the Drell-Yan example to see how this works. We want to analyze the transverse
momentum distribution of Z/γ-bosons. We call the analyzer UserZpT. The header file is

Listing 2: Definition of the class UserZpT Drell-Yan/analyzer-ZpT.h

1 #ifndef __analyser_ZpT_h__

2 #define __analyser_ZpT_h__

3
4 /* deductor headers */

5 #include <user.h>

6
7 /* It is not a library just a module. We can use using namespace... */

8 using namespace std;

9 using namespace duct;

10 using namespace duct::distpoint;

11
12 /* Narrowing the basic_user template */

13 using DistHist1D = distbook<double, hist1d>;

14
15 /* This is the declaration of the analyser class. */

16 class UserZpT : public basic_user<hhc, DistHist1D>

17 {

18 /* useful aliases */

19 using Hist1D = Phys<DistHist1D>;

– 7 –

20
21 public:

22 /* constructor */

23 UserZpT(const char *n, const duration_type& p = 2.0min) { this->param(n, p);}

24
25 /* User defined init function, called once at the beginning of the calculation. */

26 void initfunc();

27
28 /* The analyser routine. It analyses the events and fills the histograms. */

29 void userfunc(const shower_history<hhc>&);

30 };

31
32 #endif

This is a very simple analyzer class. It still needs some discussion.

1. This is a header file, thus we have to make sure it will be included only once. This is done
in lines 1,2 and 32 in the usual way.

2. In line 5, we include the deductor header user.h. It brings all the necessary declarations
and definitions that are needed for an analyzer based on the basic_user class.

3. In lines 8-10, we specify some namespaces that will be convenient.

4. In line 13, we give a convenient name to a histogramming class that we will use.

5. In line 16, we begin the declaration of our class UserZpT. It is derived from the class
basic_user<hhc, ...>. The template parameter hhc specifies that we want to calculate
something for processes in hadron-hadron collision. The remaining template parameter is
histogramming class that we will use.

6. In lines 19, we define an alias that will be convenient for the code in analyzer-ZpT.cc in
which we define what UserZpT does.

7. In lines 23, we define a constructor our class. (We used it in line 25 of mod-dy.cc.) It has
two arguments. The first is the name of the analyzer and the second is a duration type
variable that specifies the elapsed time between two backups of the result. This argument
could be omitted: it is default value is 2 minutes.

8. As we mentioned earlier, we have to overload two virtual functions of the class basic_user.
They are declared in lines 26 and 29. We will define them in the implementation file
(analyzer-ZpT.cc). The function initfunc() is called at the start of the calculation and
is used to set up the analysis. Then the function userfunc(const shower_history<hhc>&) is
called for each event. The event history is passed to it, ready for analysis.

Now we need to define the two functions for our analyzer. We use

Listing 3: The analyzer code of the class UserZpT Drell-Yan/analyzer-ZpT.cc

1 /* local headers */

2 #include "analyzer-ZpT.h"

3
4 void UserZpT::initfunc()

5 {

– 8 –

6 /* Creating a histogram to calculate the pT distribution */

7 unsigned nbins = 100;

8 double pTmin = 0.0_GeV, pTmax = 100.0_GeV;

9 auto bins = spacing<hist1d>::linear(nbins, pTmin, pTmax);

10 bool enable_norm = true;

11
12 Hist1D::phys(1, "$Z/\\gamma$ p_T distribution", bins, enable_norm);

13 }

14
15 void UserZpT::userfunc(const shower_history<hhc>& history)

16 {

17 /* Conversion factor from 1/GeV^2 to nb */

18 constexpr double tonb = 389379.338;

19
20 /* the shower stage after the shower evolution */

21 for(auto& stage : history)

22 {

23 /* momentum of the e+e- pair */

24 auto& p = stage.state;

25 auto pee = p[-2].momentum + p[-3].momentum;

26
27 /* Filling the histogram */

28 if(pee.perp() < 100.0) {

29 weight_type w = weight(stage, tonb);

30
31 Hist1D::normfill(1, w[0]);

32 Hist1D::physfill(1, w[0], dirac{}, pee.perp());

33 }

34 }

35 }

The function UserZpT::initfunc() is called at the beginning of the run. Let’s see what it does.

1. We are going to create a one dimensional histogram to accumulate the Z/γ transverse
momentum distribution. In lines 7-9, we define the bins. We choose 100 equally spaced
bins from pT = 0 GeV to pT = 100 GeV. There are more ways to create bins, but this
simple method suffices for now.

2. We will want a normalized distribution, so in line 10 we define a bool variable enable_norm

that we set to true. As we will see below, we use this mechanism to arrange that proba-
bilities are stored in the bins and these probabilities sum to 1.

3. In line 12, we define the histogram that we want by using the function phys(...) with
four arguments. The first is an integer, 1. This is the ID of the histogram, it can be any
integer number but unique for every histogram of this type. In the user function, we will
use this ID to refer to our histograms. The second is a name for our histogram, which
includes some special characters for LATEX. The third is the set of bins, just defined. The
fourth is an optional bool argument that defaults to false. In this case, we choose true,
indicating that we want a normalized histogram.

Next, we define the function UserZpT::userfunc(...), which is called for each event. Let’s
see what it does.

1. The argument of userfunc(...) is a constant reference to an object of type shower_history←↩
<hhc>, which contains the entire history of the event. We call the shower history history.
Deductor will supply history when it calls userfunc(...).

– 9 –

2. We will be interested in analyzing the partons in the final state of the shower. In contrast
to other parton shower programs, Deductor can generate more than one final state in the
same operation. For this reason, our shower_history<hhc> object can contain more than one
end stage of the shower. In this example, there will be only one final state, but in order
to match the most general structure of a shower_history<hhc> object, we need to iterate
over the shower end stages that we have generated. Thus in line 21, we loop over all the
possible showered stages and the loop variable is stage.

3. In line 24 we define the final state that we have found and call it p. The information about
the final state partons is contained in p.

4. In line 25, we define the momentum of the lepton pair. With the Deductor labelling con-
vention, this is pee = p[-2].momentum + p[-3].momentum. (The incoming partons carry labels
−1 and 0. Outgoing QCD partons carry labels 1, 2, 3, Outgoing non-QCD partons
carry labels −2,−3,)

5. Our histogram covers the range 0 < PT < 100 GeV, so we look only at events with PT in
this range. The if statement in line 28 takes care of this.

6. In Deductor, each event comes with a weight. In lines 29, we calculate the weight, w.
Every stage of the shower evolution comes with several weights. The object stage has a
member called weight and its type is weight_set<hhc>. Thus is a structure and it is defined
by

struct weight_set<hhc>

{

/* weight of the unitary part of the shower */

struct {

/* this is the weight of the unitarized part */

double main;

/* ratio of NLO an LO MSbar PDFs at the hard state */

double pdf_ratio;

} unitary;

/* threshold correction weights */

struct {

/* this is the main part of the threshold weight */

double main;

/* this is the delta part of the threshold weight */

double delta;

} threshold;

};

This way we have full access to the weight factors and we can use whichever combination
of factors we want. In this simple example we just simply use a predefined function instead
of assembling the weight factor.

7. In line 29, invoking of function weight(stage, tonb) returns a 4 element array of type
weight_type = std::array<double,4>. This function is defined in the Deductor as

weight_type weight(const shower_stage<hhc>& stage, double tonb = 1.0)

– 10 –

{

std::array<double,4> w;

w[3] = stage.weight.unitary.main*color_weight(stage)*tonb;

w[2] = w[3]*stage.weight.threshold.main;

w[1] = w[2]*stage.weight.threshold.delta;

w[0] = w[1]*stage.weight.unitary.pdf_ratio;

return w;

}

Here w[3] is the weight of unitary (standard) shower. The first factor that we is stage←↩
.weight.unitary.main. This is the weight factor for a unitary shower (not including the
color weight, which is included later). This factor is often just the weight from the hard
scattering that initiates the shower, but when we use the LC+ color treatment, it can be
different from that. Next, we multiply by the color weight of the final state, obtained from
the overlap of the bra and ket color states at the end of the shower. Finally, we multiply
by the conversion factor from 1/GeV2 to nb.

The value of w[2] is the shower weight with main contributions of the threshold logarithms,
stage.weight.threshold.main. The value of w[1] contains the contributions of ∆ak and ∆bk,
stage.weight.threshold.delta. Finally, we have weights.unitary.pdf_ratio, which multiplies
by the ratio of the NLO MS parton distribution at the hard interaction to the enhanced
LO MS parton distribution that is used within Deductor.

In this little example we want to put into the histogram only w[0], the full weight.

8. Our one dimensional histogram for the transverse momentum distribution is to be nor-
malized. That is, we divide the cross section in each bin by a normalization factor that we
supply. The normalization factor that we want is the sum of the cross sections in all of the
bins. In line 31, we accumulate this factor using the normfill function for this histogram.
We identify the histogram that we want by supplying its ID, namely 1.

9. In line 32, we enter the event into histogram 1. The argument dirac{} says that we want
the standard way of entering events into a histogram, in which each event goes into a
single bin according to the value of the independent variable, pee.perp(). Other choices
are possible, but we don’t discuss them here. Which bin the event goes into is defined by
the argument pee.perp(). The weight w[0] is entered into this bin.

When you run this with deductor --run dy and then produce results with deductor --result ←↩
dy, you will get a result directory in dy.bundle. There you will find a TEXfile summary.tex, which,
when you typeset it, will contain a graph of the Drell-Yan pT distribution. The data produced by
the one dimensional histograms that you declared is in the subdirectory Drell-Yan-13TeV/Drell-

Yan/ZpT in file result-1. The data for the particular plot is in the further subdirectory plot-1

in file table-1.dat.

4 Make another user module

Let’s try another user module. This one will be a little more complicated. We will make a user
module and an analyzer that can perform a calculation of the one jet inclusive cross section.

– 11 –

4.1 Main part of the jets user module

We need a user module for our jet calculation:

Listing 4: User module for jet studies Jets/mod-jets.cc

1 /* Deductor headers */

2 #include <deductor.h>

3 #include <proc-hhcjets.h>

4
5 /* Analyser headers */

6 #include "analyzer-jets.h"

7
8 auto my_jet_module(const deductor_input&)

9 {

10 /* Using a previously creating the kernel */

11 deductor<hhc> kernel{qcd::ct14n};

12
13 /* Hard process */

14 auto hard = [=](const model_ref& mdl) -> hhcjets

15 {

16 int proton = 2212;

17 double Ecm = 13.0_TeV, scalefac = 1.0;

18 auto pTlist = {

19 100.0, 300.0, 400.0, 600.0, 800.0, 1200.0, 1600.0,

20 2000.0, 2500.0, 3000.0, 3500.0, 4000.0, 4500.0, 5000.0

21 };

22
23 return {mdl, Ecm, pTlist, scalefac, proton, proton};

24 };

25
26 /* Jet cross section pT distribution */

27 kernel("Jet Calculations", hard, {

28 new UserJets{"Jets kT R = 0.2", fj::JetDefinition{fj::antikt_algorithm, 0.2}},

29 new UserJets{"Jets kT R = 0.4", fj::JetDefinition{fj::antikt_algorithm, 0.4}},

30 new UserJets{"Jets kT R = 0.7", fj::JetDefinition{fj::antikt_algorithm, 0.7}}

31 });

32 }

33
34 /* Always export your module functions! */

35 export_my_module jets_module = {

36 {"Jets at LHC 13TeV", my_jet_module}

37 };

This needs discussion.

1. We begin in lines 2 and 3 with Deductor headers. The proc-hhcjets.h header is for the
hard process generator for 2→ 2 QCD scattering in hadron-hadron collisions. s

2. In line 6, we include the header for our analyzer routine. (We can have more than one
analyzer. Then we need more #include statements.)

3. In line 8, we begin the definition of our function to tell Deductor what calculations to do
for the jet calculation that we want. Its single argument will be supplied by Deductor,
but in this example we don’t use it. We call this function my_jet_module.

– 12 –

4. In line 11, just as in as in Listing 1, we create an object called kernel of class deduc-

tor<hhc> where hhc specifies “hadron-hadron collisions.” We specify that we want to use
parton distributions based on evolution from the starting functions used in the CT14 NLO
distributions (which is built into Deductor).

5. In line 14 we create the function object (a C++14 lambda expression) that will create the
hard process. The value of the one parameter, mdl is provided by the class deductor<hhc>.
The function returns an object of type hhcjets. In the body of the lambda expression, we
specify the parameters needed by the hhcjets object.

6. In line 16, we specify the PDG code for our incoming hadrons, which are protons.

7. In line 17, we specify the c.m. energy that we want and a scale factor λ for the factorization
scale µf that we want. We set µf = λpT, where pT is the transverse momentum of the
outgoing partons at the hard interaction. The scale of the parton distributions at the hard
interaction is µf. The renormalization scale for the αs at the hard interaction is set to µf
and the starting scale of the shower is also set to µf.

8. In line 18, we provide a list of transverse momenta. These tell the generator to generate
hard scattering events with 150 GeV < pT < Ecm/2, with equal numbers of events with
pT between 100 GeV and 300 GeV, between 300 GeV and 400 GeV, …, and between 5000
GeV and Ecm/2. You can choose what you want, but if you just set auto pTlist = {100.0},
you will get very few events with pT > 300 GeV.

9. In line 23, we return an hhcjets object with the parameters that we have set.

10. Recall that we created a deductor<hhc> object kernel. Now, in line 33, we use the operator←↩
() function of kernel to start the calculation. We supply to kernel a process name, "←↩
Jet Calculations", the function hard that creates the hard process, and the list of three
analyzers.

11. In the file analyzer-jets.h that we included, we declared a class UserJets, which is a
user defined analyzer for jet events. Here, we create a dynamically allocated (with new)
instances of this class. Our analyzer will use FastJet to find jets. In particular, we use
the fjcore version and have included fjcore.hh and fjcore.cc in the deductor-user files.
We specify the jet definition that we want FastJet to use, namely the anti-kT algorithm
with R = 0.2, 0.4, 0.7. (We define the namespace fj to be an abbreviation for fjcore in the
Deductor header file fastjet.h, which is included in analyzer-jets.h)

12. Line 32 competes the definition of my_jet_module.

13. Finally, in lines 36 and 37, we create an object jet_module of type export_my_module. This lets
deductor know the class and function names associated with our calculation. We supply
an indication of what type of module this is a plain text module name "Jets at LHC 13TeV"

and the name, my_jet_module, of the function that we have just created.

4.2 Analyzer part of the jets user module

In the code for the jets module in Listing 4, we created an instances of the analyzer class
UserJets. Lets now look at how we define UserJets . The header file of this is

– 13 –

Listing 5: Definition of the class UserJets Jets/analyzer-jets.h

1 #ifndef __analyser_jets_h__

2 #define __analyser_jets_h__

3
4 /* project headers */

5 #include <user.h>

6
7 /* other includes */

8 #include "fastjet.h"

9
10 /* It is not a library just a module. We can use using namespace... */

11 using namespace std;

12 using namespace duct;

13 using namespace duct::distpoint;

14
15 /* Narrowing the distbook template */

16 using DistPlain = distbook<std::array<double, 2u>, hist1d>;

17 using DistRatio = distbook<std::array<double, 3u>, hist1d, sample_ratio_traits<std::←↩
array<double, 3u>>>;

18
19 /* This is the declaration of the analyser class. */

20 class UserJets : public basic_user<hhc, DistPlain, DistRatio>

21 {

22 /* useful aliases */

23 using Plain = Phys<DistPlain>;

24 using Ratio = Phys<DistRatio>;

25
26 public:

27 /* constructors */

28 UserJets(const char *n, fj::JetDefinition&& jd, const duration_type& d = 2.0min)

29 : jetDef{std::move(jd)} { this->param(n, d);}

30
31 UserJets(const char *n, const fj::JetDefinition& jd, const duration_type& d = 2.0min)

32 : jetDef{jd} { this->param(n, d);}

33
34 /* User defined init function. It is called once at the beginning of the ←↩

calculation. */

35 void initfunc();

36
37 /* The analyser routine. It analyses the events and fill the histograms. */

38 void userfunc(const shower_history<hhc>&);

39
40 /* For fastjet analysis - select algorithm and parameters. */

41 fj::JetDefinition jetDef;

42
43 /* Predefined vectors of Pseudojets */

44 mutable std::vector<fj::PseudoJet> theparticles;

45 mutable std::vector<fj::PseudoJet> incJets;

46 };

47
48 #endif

We discuss what is in this header file:

1. In line 5, we include the Deductor user header.

2. We will use FastJet in the form of fjcore. In line 8, we include a header file "fastjet←↩
.h". This file includes "fjcore.hh" and it defines a translation make_pseudojets(...) that

– 14 –

translates from a Deductor shower state record to a vector of FastJet PseudoJets.
This file also defines fj to be short for fjcore.

3. In lines 11-13 we declare that we are using some convenient namespaces.

4. In lines 16-17, we define an alias for a basic_user class definition: DistPlain defines the
usual one-dimensional histograms with two doubles as sample type and DistRatio defines
also a one-dimension histograms with three dimensional array as sample type and it also
provides the ratios of first to third and second to third elements of the sample array.

5. In line 20 we define the class UserJets to be derived from the class basic_user. The template
parameter hhc specifies that we want to calculate something for processes in hadron-hadron
collision. The remaining template parameters are the histogramming classes that we use.

6. In lines 23-24, we define a useful alias for histogram classes.

7. In lines 28-32, we define a constructors for UserJets. The first parameter is just the text
name for the user class. The second is the jet definition for FastJet. The third (optional)
parameter is a time interval: Deductor should save its results every time this interval
elapses. We have two versions of this type of constructors, the first can move the fj::←↩
JetDefinition class the other copies it.

8. We need an init function, declared in line 35.

9. We need an analyzer function userfunc(...), which we declare in line 38.

10. In line 41, we declare an instance jetDef of the FastJet class JetDefinition. This was
initialized by the constructors.

11. In lines 44 and 45, we declare two data members of our class, both vectors of PseudoJet

objects. These help us to avoid even-by-event allocation and deallocation of vectors of
PseudoJet objects.

Now we need an implementation file for UserJets.

Listing 6: The analyzer code of the class UserJets Jets/analyzer-jets.cc

1 /* local headers */

2 #include "analyzer-jets.h"

3
4 void UserJets::initfunc()

5 {

6 /* Createing histograms to calculate the one jet cross sections */

7 unsigned int nbins = 48;

8 double pTmin = 250.0_GeV, pTmax = 5050.0_GeV;

9 auto bins = spacing<hist1d>::linear(nbins, pTmin, pTmax);

10
11 /* cross sections at the hard level */

12 Plain::phys(1, "One jet inclusive cross section at the hard interaction", bins);

13
14 /* cross sections after shower */

15 Ratio::phys(1, "One jet inclusive cross section LO pdf", bins);

16 Ratio::phys(2, "One jet inclusive cross section NLO pdf", bins);

17 }

18

– 15 –

19 void UserJets::userfunc(const shower_history<hhc>& history)

20 {

21 constexpr double tonb = 389379.338;

22
23 /* the shower stage after the shower evolution */

24 for(auto it = history.cbegin(); it != history.cend(); ++it)

25 {

26 /* showered and hard stages */

27 auto& showered = *it;

28 auto& hard = it.hard();

29
30 /* showered and hard events */

31 auto& p = it->state;

32 auto& q = hard.state;

33
34
35 // One jet inclusive cross section after showering

36 // ---

37 std::array<double, 3u> w1, w2;

38
39 w1[2] = showered.weights.unitary.main*color_weight(showered)*tonb;

40 w1[1] = w1[2]*showered.weights.threshold.main;

41 w1[0] = w1[1]*showered.weights.threshold.delta;

42
43 w2[2] = w1[2]*showered.weights.unitary.pdf_ratio;

44 w2[1] = w1[1]*showered.weights.unitary.pdf_ratio;

45 w2[0] = w1[0]*showered.weights.unitary.pdf_ratio;

46
47
48 /* Converting deductor event to FastJet format */

49 make_pseudojets(theparticles, p);

50
51 /* Run fastjet algorithm */

52 fj::ClusterSequence clustSeq(theparticles, jetDef);

53
54 /* Extract inclusive jets sorted by pT (above pTjetmin) */

55 double pTjetmin = 200.0_GeV;

56 incJets = clustSeq.inclusive_jets(pTjetmin);

57
58 /* Fill histogram, only count jets that have |y| < 2.0 */

59 for(unsigned j = 0; j < incJets.size(); j++)

60 if(abs(incJets[j].pseudorapidity()) < 2.0) {

61 Ratio::physfill(1, w1, dirac{}, incJets[j].perp());

62 Ratio::physfill(2, w2, dirac{}, incJets[j].perp());

63 }

64
65
66 // One jet inclusive cross section before showering

67 // --

68 std::array<double, 2u> wh;

69
70 wh[1] = hard.weights.unitary.main*color_weight(hard)*tonb;

71 wh[0] = wh[1]*hard.weights.unitary.pdf_ratio;

72
73
74 /* Fill histogram, only count jets that have |y| < 2.0

75 * The two jets are back-to-back, since we have only two

76 * partons in the final state.

77 */

78 if(abs(q[1].momentum.prapidity()) < 2.0)

– 16 –

79 Plain::physfill(1, wh, dirac{}, q[1].momentum.perp());

80
81 if(abs(q[2].momentum.prapidity()) < 2.0)

82 Plain::physfill(1, wh, dirac{}, q[2].momentum.perp());

83 }

84 }

The initialization function for UserJets, beginning in line 4, is pretty simple.

1. We will create one-dimensional histograms for dσ/dpT at the hard interaction level and
after showering. We define the binning for these in lines 7-9.

2. In lines 12-16, we create the one dimensional histogram objects that we will need, with
label 1 for dσ/dpT at the hard interaction and the this is a Plain histogram. With labels
1-2 for dσ/dpT after showering with various level of threshold effects included. These
histograms has the type of Ratio. Histogram 1 is with LO PDFS at the hard interaction
while 2 is with NLO PDF at the hard level.

The event analysis function for UserJets, beginning in line 24 is also pretty simple.

1. In line 19, we define history as the shower history argument of userfunc(...).

2. In line 21, we define the conversion factor that we will need to convert GeV−2 to nb.

3. We want to analyze the partons in the final state of the shower. Our shower_history<hhc>

object can, in general, contain more than one end stage. Thus, we need to iterate over the
end stages that we have generated. In line 24, we define an iterator it and loop over its
values.

4. In line 27, we define a reference to the shower stage that corresponds to the stage after
the shower evolution. The corresponding event is defined in line 31 and and call it p.

5. We are also interested in information about the shower stage at the start of the shower.
This information is contained in the object hard = it.hard() defined in line 28. In line 32,
we define the partonic state at the start of the shower, hard.state, and call it q.

6. We need the weights associated with the state at the end of the shower. We need them
with LO PDFs (w1) and with NLO PDFs (w2) ath the hard interaction. These variables
are declared in line 37 and they are three element standard arrays.

7. In lines 39-41 we assemble the w1 weight array. Its third component (w[2]) is the weight
of the standard shower. The second component (w[1]) is the shower weight with the main
threshold contributions. The first component (w[0]) is full shower weight with all the
threshold contributions.

8. In lines 43-45 the weight w2 is just like w1 but we use the NLO PDFs at hard level. Thus
we have to multiply w1 by showered.weights.unitary.pdf_ratio.

9. Starting in line 49, we want to calculate dσ/dpT for jets after showering. First, we use
make_pseudojets(theparticles, p) to convert the Deductor description of the partons at
the end of the shower, contained in p, to a vector of FastJet PseudoJets, theparticles.
The function to do this is defined in "fastjet.h"

– 17 –

10. In line 52, we apply the FastJet analysis based on jetDef to the starting PseudoJets in
theparticles. This gives a FastJet ClusterSequence object that we call clustSeq.

11. In lines 55 and 56, we define incJets to be the FastJet jets with transverse momentum
above 200 GeV.

12. In lines 59-63, we loop over all the jets with absolute value of rapidity less than 2 and then
fill our three histograms, using the three weights that we have calculated together with
the PT of the jet, inclJets[j].perp().

13. Starting from line 66 we focus on the hard part of the event. In line 68 we declare a two
element standard array to be the weight, wh. Its second component (wh[1]) defines the
weight for the hard cross section with LO PDFs, while the first component (wh[0]) is the
same weight but with NLO PDFs.

14. In lines 78-82 we fill a histogram with the transverse momentum distribution of the par-
tons produced at the hard interaction. There are two such partons, q[1] and q[2] in the
Deductor labelling scheme in which outgoing QCD particles are labelled 1,2, …. For each
of these partons, we check if its rapidity is in the allowed range and then fill histogram 1
using the hard scattering weight wh.

When compile this and run it and then produce results with deductor --result jets, you will
get a result directory in jets.bundle. There you will find a TEX file summary.tex, which, when
you typeset it, will contain graphs of the jet cross sections that you asked for. You can edit
the TEX input file. You will be happier with the output if you replace axis in this file by
semilogyaxis everywhere.

5 Basic elements of the C++ library

In this document we don’t do a full documentation of the Deductor library we just show the
most important features those are important for the users.

5.1 Namespace

To avoid collision with other C++ libraries all the exported symbols are contained in a common
namespace

namespace duct {}

There is another publicly available subnamespace that is used in the histogramming routines:

namespace duct {

namespace distpoint {}

}

In the user code one might not want to use the duct:: and duct::distpoint:: prefixes. This can
be avoided by the using namespace duct; and using namespace duct::distpoint; statements.

– 18 –

5.2 Collision types

Deductor is a general purpose parton shower algorithm. It can calculate cross sections for
processes in e+e− annihilation, DIS and hadron-hadron collisions. It can also calculate heavy
particle decays. The shower algorithms for different process types are built on the same prin-
ciples, but they have some structural differences and their implementations can also differ. In
Deductor, the process type is selected at compiler time, not at run time. This means that
the definition of the C++ classes, functions and objects depend on the process type. Most of
the classes has a template variable that refers to the process type. For this we have introduced
simple tags as

struct epa {}; // for e+e−

struct dis {}; // for DIS

struct hhc {}; // for hadron-hadron collisions

struct decay {}; // for decay processes

With these, the type of the event record in hadron-hadron collision is event<hhc>.

5.3 Three-vector and four-vector

The most basic data types in the Deductor for three-vectors and four-vectors. Unfortunately
these are not part of the standard C++ library, so every code has its own implementation.

Listing 7: Template class threevector bits/hep-threevector.h

1 template<typename _Tp>

2 class threevector

3 {

4 public:

5 // types

6 typedef _Tp value_type;

7
8 // default constructor creates a null vector

9 threevector();

10
11 // constructor

12 threevector(const value_type& x, const value_type& y, const value_type& z);

13
14 // elements access (with obvious meaning)

15 const value_type& X() const;

16 const value_type& Y() const;

17 const value_type& Z() const;

18
19 value_type& X();

20 value_type& Y();

21 value_type& Z();

22
23 // magnitude and the transverse momentum

24 value_type mag () const; // returns the magnitude

25 value_type perp() const; // returns the transverse momentum

26 value_type mag2() const; // returns the square x2 + y2 + z2

27 value_type perp2() const; // returns the transverse momentum square x2 + y2

28
29 // azimuth and polar angles

30 value_type phi() const; // return the azimuthal angle

– 19 –

31 value_type theta() const; // return the polar angle

32 };

33

34 // return the dot product of two vector, same as a*b = a⃗ · b⃗
35 template<typename _Tp>

36 _Tp dot(const threevector<_Tp>& a, const threevector<_Tp>& b);

37

38 // return the cross product of two vectors, a⃗× b⃗
39 template<typename _Tp> threevector<_Tp>

40 cross(const threevector<_Tp>& a, const threevector<_Tp>& b);

All the possible arithmetic operators (=,+,-,*,+=,-=,*=) with all the possible arguments are
defined. We provide six specialization of class threevector<_Tp>. The type _Tp can be float,
double, long double, std::complex<float>, std::complex<double>, and std::complex<long double>.

The four-vectors are represent by template<typename _Tp> class lorentzvector. This is publicly
inherited from class threevector.

Listing 8: Template class lorentzvector bits/hep-lorentzvector.h

1 template<typename _Tp>

2 class lorentzvector : public threevector<_Tp>

3 {

4 public:

5 // types

6 typedef _Tp value_type;

7 typedef threevector<_Tp> threevector_type;

8
9 // constructors

10 lorentzvector(); // constructs null vector

11 lorentzvector(const _Tp& x, const _Tp& y, const _Tp& z, const _Tp& t);

12 lorentzvector(const threevector_type& v, const value_type& t);

13
14 // elements access, gives the reference to the timelike component

15 const value_type& T() const;

16 value_type& T();

17
18 // member functions

19 value_type plus () const; // returns t+ z
20 value_type minus() const; // returns t− z
21 value_type rapidity() const; // returns rapidity

22 value_type prapidity() const; // returns pseudo-rapidity

23 value_type mag2() const; // returns m2 = t2 − x2 − y2 − z2

24 value_type mag() const; // returns invariant mass, −
√
|m2| if m2 < 0

25
26 // returns the transverse component that is perpendicular to both a and b

27 lorentzvector transverse(const lorentzvector& a, const lorentzvector& b) const;

28 };

All the possible arithmetic operators (=,+,-,*,+=,-=,*=) with all the possible arguments are
defined and all the comparison operators (==,!=). We provide six specialization of class ←↩
lorentzvector<_Tp>. The type _Tp can be float, double, long double, std::complex<float>, std::←↩
complex<double>, and std::complex<long double>.

– 20 –

	Introduction
	Quick start
	Getting the code
	Compiling the main code
	Creating a user module
	Calculating and analyzing events

	Make your own user module
	Main part of the Drell-Yan user module
	Analyzer part of the Drell-Yan user module

	Make another user module
	Main part of the jets user module
	Analyzer part of the jets user module

	Basic elements of the C++ library
	Namespace
	Collision types
	Three-vector and four-vector

