CALCULATING STRENGTH OF ASSOCIATION

There are two main strength of association measures used in ANOVA contexts, omega squared (ω^2), and eta squared (η^2). Omega squared is generally a more accurate estimate of the true population value of strength of association. Eta squared, however, is simpler to compute. In either case, a strength of association measure provides an estimate of the amount of variance in the dependent measure that can be explained or accounted for by the independent measure.

Omega Squared for an independent t-test:

$$\omega^2 = \frac{(t^2 - 1)}{(t^2 + N_1 + N_2 - 1)}$$

Example:

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>65.5</td>
<td>69.0</td>
</tr>
<tr>
<td>Variance</td>
<td>20.69</td>
<td>28.96</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

$$t = \frac{65.5 - 69}{1.29} = -2.71$$

$$\omega^2 = \frac{(2.71)^2 - 1}{[(2.71)^2 + 30 + 30 - 1]} = 0.096$$

Strength of association measures can be multiplied by 100 and interpreted as the percent of variation explained (PVE). In this example, one could conclude that approximately 10% of the variation in the DV can be attributed to the difference between groups.

Omega Squared for a one-factor ANOVA:

$$\omega^2 = \frac{SS_{Between} - (a-1)(MS_{Within})}{SS_{Total} + MS_{Within}}$$

Omega Squared for a two-factor ANOVA:

$$\omega^2 = \frac{SS_A - (a-1)(MS_{S(AB)})}{SS_{Total} + MS_{S(AB)}}$$

$$\omega^2 = \frac{SS_B - (b-1)(MS_{S(AB)})}{SS_{Total} + MS_{S(AB)}}$$

$$\omega^2 = \frac{SS_{AB} - (a-1)(b-1)(MS_{S(AB)})}{SS_{Total} + MS_{S(AB)}}$$
Example:

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.78</td>
<td>2</td>
<td>0.39</td>
<td>0.05</td>
<td>NS</td>
</tr>
<tr>
<td>B</td>
<td>1.39</td>
<td>1</td>
<td>1.39</td>
<td>0.19</td>
<td>NS</td>
</tr>
<tr>
<td>AB</td>
<td>53.44</td>
<td>2</td>
<td>26.72</td>
<td>3.62</td>
<td>NS</td>
</tr>
<tr>
<td>S(AB)</td>
<td>88.67</td>
<td>12</td>
<td>7.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>144.28</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For Factor A:

\[\omega^2 = SS_A - (a-1)(MS_{S(AB)}) / SS_{Total} + MS_{S(AB)} \]
\[= 0.78 - (2)(7.39) / 144.28 + 7.39 = -0.10 = 0 \]

For Factor B:

\[\omega^2 = SS_B - (b-1)(MS_{S(AB)}) / SS_{Total} + MS_{S(AB)} \]
\[= 1.39 - (1)(7.39) / 144.28 + 7.39 = -0.04 = 0 \]

For the AB interaction:

\[\omega^2 = SS_{AB} - (a-1)(b-1)(MS_{S(AB)}) / SS_{Total} + MS_{S(AB)} \]
\[= 53.44 - (2)(7.39) / 144.28 + 7.39 = 0.25 \]

Note that it is possible to get an estimate for omega which is negative. Since a negative variance has no meaning, negative values are always set to zero. We conclude that the main effects of A and B are not associated with the DV. The AB interaction, however, accounts for approximately 25% of the variation in the DV.

Eta Squared, an alternative to Omega:

\[\eta^2 = SS_{Effect} / SS_{Total} \]

Using the example above:

For Factor A: \[\eta^2 = 0.78 / 144.28 = 0.005 \]

For Factor B: \[\eta^2 = 1.39 / 144.28 = 0.010 \]

For the AB interaction: \[\eta^2 = 53.44 / 144.28 = 0.370 \]

© Stevens, 1999