Effect Size and Statistical Power: Practice Exercises

Joseph Stevens, Ph.D., University of Oregon (541) 346-2445, stevensj@uoregon.edu

Applications

- For the remainder of the workshop you may
 - complete the following exercises on effect size and power estimation
 - calculate effect size and power estimates for your own research
- All necessary formulas are in the presentation
- When you finish the exercises, you can obtain answers at:

http://www.uoregon.edu/~stevensj/workshop/answers.pdf

Example A

Luft & Vidoni (2002) examined preservice teachers' knowledge about school to career transitions before and after a teacher internship. Some of the obtained results were:

	Befo	re	After			
Knowledge about:	\overline{X}	sd	\overline{X} sd	t	Þ	r
Writing	2.92	1.44	3.92 .79	-2.25	.05	.59
Use of Hands-on activities	4.58	.67	4.75 .45	-1.00	.34	.71
Class assignments	3.67	.49	4.08 .79	-1.82	.10	.56

Twelve students participated in the study and completed the pre and post testing.

Example B

Boling & Robinson (1999) conducted a fixed-effects, omnibus ANOVA to study which activities best supported lecture based distance education. Data were:

Activity Group	\overline{X}	sd	n
Individual Learning	80.00	12.11	37
Cooperative Learning	86.56	8.83	39
Interactive Multimedia	81.23	13.18	39

Note. Pooled sd was 11.36

Example C

This is a hypothetical example examining relationships between four reading ability groups, two math ability groups and performance on a math problem solving test. The design has (4)(2) = 8 cells with 10 participants in each cell for a total N of 80. Results of the two factor ANOVA are:

Tests of Between-Subjects Effects

Dependent Variable: Problem Solving Score

	Type III Sum				
Source	of Squares	df	Mean Square	F	Sig.
MATH	49.613	1	49.613	51.103	.000
READ	60.238	3	20.079	20.682	.000
MATH * READ	50.137	3	16.713	17.215	.000
Residual	69.900	72	.971		
Total	229.888	79			

Computing Effect Size

1. Using data from Example B, compute Cohen's d for the comparison of cooperative learning to individual learning and for the comparison of individual learning to interactive multimedia

2. Using Example C, compute ω^2 , η^2 , η^2_p for the interaction effect

G*Power Exercises (assume $\alpha = .05$ for all exercises)

Using the data from example A, complete the following exercises:

3. Estimate the power of the repeated measures *t*-test for the knowledge of writing outcome given α, sample size, and effect size (you need to estimate with G*Power).

4. Determine the necessary sample size to achieve a power of .80 for the knowledge of writing outcome.

G*Power Exercises

- 5. Using the same information, determine the minimum detectable effect size if power is .80
- 6. Using the data in example C, estimate the required sample size for the interaction effect assuming partial eta = .30, power = .80
- 7. Using example C, compute the required effect size for the main effect of math assuming power = .70; n = 10 per cell and total N = 80.

Use OD to complete the following exercises

- 8. For a Group randomized CRT with n=10, $\delta = .6$, ICC = .12, how many clusters are needed to achieve a power of .80?
- 9. For a Group randomized CRT with n=30, ICC = .04, J = 8, what effect size is needed to achieve a power of .80?
- 10. For the same parameters as question 2, how does the answer change with a covariate that explains 64% of the variance?

Use OD to complete the following exercises

11. Estimate the optimal design for a Group Randomized CRT with a total budget of \$8000, a cluster cost of \$500, a member cost of \$15, ICC = .10, δ = .40, what are the optimal n, J, and resulting power? How could this study be improved without a substantial increase in budget?

12. For a multisite CRT with the following parameters: K = 12 districts, schools as the cluster variable J, n = 15, $\delta = .25$, $\rho = .12$, $\sigma_{\delta}^2 = .02$, and blocking accounts for 16% of the variance, what cluster size is needed to achieve power of .80?

Use OD to complete the following exercises

13. If a covariate is added that accounts for 49% of the variance, what cluster size is needed to achieve power of .80?

14. If a J of 10 was chosen for the study in question 7, and K was reduced to 8, what effect size would be needed to achieve a power of .80?

http://www.uoregon.edu/~stevensj/workshops/answers.pdf