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Overview and resources
Overview
Web site and links: www.uoregon.edu/~stevensj/HLM
Software:

HLM
MLwinN
Mplus
SAS
R and S-Plus
WinBugs
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Workshop Overview

Preparing data
Two Level models
Testing nested hierarchies of models
Estimation
Interpreting results
Three level models
Longitudinal models
Power in multilevel models
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Hierarchical Data Structures

Many social and natural phenomena have a nested or 
clustered organization:

Children within classrooms within schools
Patients in a medical study grouped within doctors 
within different clinics 
Children within families within communities
Employees within departments within business 
locations



Grouping and membership in particular 
units and clusters are important

Grouping and membership in particular 
units and clusters are important
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Hierarchical Data Structures

More examples of nested or clustered organization:
Children within peer groups within neighborhoods
Respondents within interviewers or raters
Effect sizes within studies within methods (meta-
analysis)
Multistage sampling
Time of measurement within persons within 
organizations
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Simpson’s Paradox: 

Quiz 1 Quiz 2 Total

Gina 60.0% 10.0% 55.5%

Sam 90.0% 30.0% 35.5%

Clustering Is Important

Well known paradox in which performance of individual 
groups is reversed when the groups are combined

Quiz 1 Quiz 2 Total

Gina 60 / 100 1 / 10 61 / 110

Sam 9 / 10 30 / 100 39 / 110
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Simpson’s Paradox: Other Examples
2006 US School study:

• In past research, private schools achieve higher than public 
schools

• Study was expected to provide additional support to the idea that 
private and charter schools perform better

• USED study (using multilevel modeling):

• Unanalyzed math and reading higher for private schools

• After taking demographic grouping into account, there was little
difference between public and private and differences were 
almost equally split in favor of each school type

2006 US School study:

• In past research, private schools achieve higher than public 
schools

• Study was expected to provide additional support to the idea that 
private and charter schools perform better

• USED study (using multilevel modeling):

• Unanalyzed math and reading higher for private schools

• After taking demographic grouping into account, there was little
difference between public and private and differences were 
almost equally split in favor of each school type

1975 Berkeley sex bias case:

• UCB sued for bias by women applying to grad school

• Admissions figures showed men more likely to be admitted

• When analyzed by individual department, turned out that no 
individual department showed a bias; 
• Women applied to low admission rate departments

• Men applied more to high admission rate departments

1975 Berkeley sex bias case:

• UCB sued for bias by women applying to grad school

• Admissions figures showed men more likely to be admitted

• When analyzed by individual department, turned out that no 
individual department showed a bias; 
• Women applied to low admission rate departments

• Men applied more to high admission rate departments

“When the Oakies left Oklahoma and moved to 
California, it raised the IQ of both states.”

– Will Rogers

“When the Oakies left Oklahoma and moved to 
California, it raised the IQ of both states.”

– Will Rogers



Participant (i) Cluster (j) Outcome (Y) Predictor (X)

1 1 5 1

2 1 7 3

3 2 4 1

4 2 6 4

5 3 3 3

6 3 5 5

7 4 2 4

8 4 4 6

9 5 1 5

10 5 3 7

Hypothetical Data Example from Snijders & 
Bosker (1999), n = 2, j=5, nj = N = 10

Hypothetical Data Example from Snijders & 
Bosker (1999), n = 2, j=5, nj = N = 10



Model Summary

.333a .111 .000 1.826
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), Xa. 

Coefficientsa

5.333 1.453 3.671 .006
-.333 .333 -.333 -1.000 .347

(Constant)
X

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: Ya. 

Y = 5.333 -.333(X) + r

Interpretation:  There’s a negative relationship 
between the predictor X and the outcome Y, a 
one unit increase in X results in .333 lower Y

All 10 cases analyzed without taking cluster membership into account:All 10 cases analyzed without taking cluster membership into account:
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Y = 5.333 -.333(X) + rY = 5.333 -.333(X) + r

β0

β1

This is an example of a disaggregated analysis



Participant 
(i)

Cluster (j) Outcome 
(Y)

Predictor 
(X)

1 1 5 1

2 1 7 3

3 2 4 2

4 2 6 4

5 3 3 3

6 3 5 5

7 4 2 4

8 4 4 6

9 5 1 5

10 5 3 7

Cluster (j) Outcome (Y) Predictor (X)

1 6 2

2 5 3

3 4 4

4 3 5

5 2 6

Another alternative is to analyze 
data at the aggregated group level
Another alternative is to analyze 
data at the aggregated group level



Y = 8.000 -1.000(X) + r

Interpretation:  There’s a negative relationship 
between the predictor X and the outcome Y, a 
one unit increase in X results in 1.0 lower Y

The clusters are analyzed without taking individuals into account:The clusters are analyzed without taking individuals into account:

Coefficientsa

8.000 .000 . .
-1.000 .000 -1.000 . .

(Constant)
MEANX

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardized
Coefficients

t Sig.

Dependent Variable: MEANYa. 

Model Summary

1.000a 1.000 1.000 .000
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), MEANXa. 



This is an example of a disaggregated analysis

Y = 8.000 -1.000(X) + r
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A third possibility is to analyze each cluster separately, 
looking at the regression relationship within each group

ijr+−+= )XX(00.1YY jijjij



Y = 8.000 -1.000(X) + r

Multilevel regression takes both levels into account:Multilevel regression takes both levels into account:

ijr+−+−= )XX(00.1)X(00.100.8Y jijjij

ijr+−+= )XX(00.1YY jijjij
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Taking the multilevel structure of the data into account: Taking the multilevel structure of the data into account: 

Within group 
regressions Between Groups Regression

Total Regression
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Why Is Multilevel Analysis Needed?

Nesting creates dependencies in the data
Dependencies violate the assumptions of traditional 
statistical models (“independence of error”, “homogeneity 
of regression slopes”)
Dependencies result in inaccurate statistical estimates

Important to understand variation at different 
levels
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Decisions About Multilevel Analysis

Properly modeling multilevel structure often 
matters (and sometimes a lot)
Partitioning variance at different levels is useful

tau and sigma (σ 2
Y = τ + σ 2)

policy & practice implications

Correct coefficients and unbiased standard errors
Cross-level interaction
Understanding and modeling site or cluster 
variability

“Randomization by cluster accompanied by analysis 
appropriate to randomization by individual is an exercise in 
self-deception and should be discouraged” (Cornfield, 1978, 
pp.101-2)
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Preparing Data for HLM Analysis

Use of SPSS as a precursor to HLM assumed
HLM requires a different data file for each level in the HLM 
analysis
Prepare data first in SPSS

Clean and screen data
Treat missing data
ID variables needed to link levels
Sort cases on ID

Then import files into HLM to create an “.mdm” file
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Creating an MDM file

Example:
Go to “Examples” folder and then “Appendix A” in the 
HLM directory
Open “HSB1.sav” and “HSB2.sav”



Start HLM and choose “Make new 
MDM file” from menu; followed 

by “Stat package input”



For a two level HLM model stay 
with the default “HLM2”



Click “Browse”, identify the 
level 1 data file and open it



Click on “Choose Variables”

Check off the ID linking 
variable and all variables to 

be included in the MDM file



Provide a name for the MDM file 
(use .mdm as the suffix)Click on “Save mdmt file” and 

supply a name for the syntax 
command file



Click on “Make MDM”

Results will briefly appear



Click on “Check Stats” to 
see, save, or print results

The click “Done”



You should see a screen like 
this.  You can now begin to 
specify your HLM model
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Two-Level HLM Models
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The Single-Level, Fixed Effects Regression 
Model

Yi = β0+ β1X1i + β2X2i +…+ βkXki + ri

The parameters βkj are considered fixed 
One for all and all for one
Same values for all i and j; the single level model

The ri ’s are random: ri ~ N(0, σ) and 
independent
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The Multilevel Model

Takes groups into account and explicitly models 
group effects
How to conceptualize and model group level 
variation?
How do groups vary on the model parameters?
Fixed versus random effects
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Fixed vs. Random Effects

Fixed Effects represent discrete, purposefully selected or 
existing values of a variable or factor

Fixed effects exert constant impact on DV
Random variability only occurs as a within subjects effect (level 1)
Can only generalize to particular values used

Random Effects represent more continuous or randomly 
sampled values of a variable or factor

Random effects exert variable impact on DV
Variability occurs at level 1 and level 2
Can study and model variability
Can generalize to population of values
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Fixed vs. Random Effects?

Use fixed effects if
The groups are regarded as unique entities
If group values are determined by researcher through 
design or manipulation
Small j (< 10); improves power

Use random effects if
Groups regarded as a sample from a larger population
Researcher wishes to test effects of group level variables
Researcher wishes to understand group level differences
Small j (< 10); improves estimation
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Fixed Intercepts Model

The simplest HLM model is equivalent to a one-
way ANOVA with fixed effects:

Yij = γ00 + rij

This model simply estimates the grand mean (γ00) 
and deviations from the grand mean (rij)
Presented here simply to demonstrate control of 
fixed and random effects on all parameters
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Note the equation has no “u” residual 
term; this creates a fixed effect model
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ANOVA Model (random intercepts)

A simple HLM model with randomly varying 
intercepts
Equivalent to a one-way ANOVA with random 
effects:

Yij = β0j + rij
β0j = γ00 + u0j

Yij = γ00 + u0j + rij

Note the addition of u0j allows 
different intercepts for each j unit, a 
random effects model 
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ANOVA Model
In addition to providing parameter estimates, the 
ANOVA model provides information about the 
presence of level 2 variance (the ICC) and whether 
there are significant differences between level 2 
units
This model also called the Unconditional Model 
(because it is not “conditioned” by any predictors) 
and the “empty” model
Often used as a baseline model for comparison to 
more complex models
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Variables in HLM Models

Outcome variables 
Predictors

Control variables
Explanatory variables

Variables at higher levels
Aggregated variables (Is n sufficient for 
representation?)
Contextual variables
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Conditional Models: ANCOVA

Adding a predictor to the ANOVA model results in an 
ANCOVA model with random intercepts:

Note that the effect of X is constrained to be the same 
fixed effect for every j unit (homogeneity of regression 
slopes)

Yij = β0j + β1(X1) + rij

β0j = γ00 + u0j

β1 = γ10
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Conditional Models: Random Coefficients

An additional parameter results in random variation 
of the slopes:

Both intercepts and slopes now vary from group to 
group

Yij = β0j + β1(X1) + rij

β0j = γ00 + u0j

β1j = γ10 + u1j
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Standardized coefficients

Standardized coefficient at level 1:
β0j (SDX / SDY)

Standardized coefficient at level 2:
γ00 (SDX / SDY)
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Modeling variation at Level 2:
Intercepts as Outcomes

Yij = β0j + β1jX1ij + rij

β0j = γ00 + γ0jWj + u0j

β1j = γ10 + u1j

Predictors (W’s) at level 2 are used to model 
variation in intercepts between the j units
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Modeling Variation at Level 2:  Slopes as 
Outcomes

Yij = β0j + β1jX1ij + rij

β0j = γ00 + γ0jWj + u0j

β1j = γ10 + γ1jWj + u1j

Do slopes vary from one j unit to another?
W’s can be used to predict variation in slopes as well
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Variance Components Analysis

VCA allows estimation of the size of random 
variance components

Important issue when unbalanced designs are 
used
Iterative procedures must be used (usually ML 
estimation)

Allows significance testing of whether there is 
variation in the components across units
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Estimating Variance Components: 
Unconditional Model

= τ0 + σ2

Var(Yij) = Var(u0j) + Var(rij)
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Final estimation of variance components:
---------------------------------------------------------------------------------------------------
Random Effect           Standard       Variance        df    Chi-square  P-value

Deviation     Component
---------------------------------------------------------------------------------------------------
INTRCPT1,       U0       14.38267     206.86106    14     457.32201    0.000
level-1,       R        32.58453    1061.75172
---------------------------------------------------------------------------------------------------

Statistics for current covariance components model
--------------------------------------------------
Deviance                       =   21940.853702
Number of estimated parameters =   2

HLM Output



55

Variance explained

R2 at level 1 = 
1 – (σ2

cond + τcond) / (σ2
uncond + τuncond) 

R2 at level 2 = 
1 – [(σ2

cond / nh) + τcond] / [(σ2
uncond / nh) + τuncond] 

Where nh = the harmonic mean of n for the level 2 units 
(k / [1/n1 + 1/n2 +…1/nk])



56

Comparing models

Deviance tests
Under “Other Settings” on HLM tool bar, choose 
“hypothesis testing”
Enter deviance and number of parameters from baseline 
model

Variance explained
Examine reduction in unconditional model variance as 
predictors added, a simpler level 2 formula:

R2 = (τ baseline – τ conditional) / τ baseline
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Deviance Test Results

Statistics for current covariance components model
------------------------------------------------------------
Deviance                       =   21615.283709
Number of estimated parameters =   2

Variance-Covariance components test
------------------------------------------------------------
Chi-square statistic         =    325.56999
Number of degrees of freedom =    0
P-value                      =   >.500
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Testing a Nested Sequence of HLM 
Models
1. Test unconditional model
2. Add level 1 predictors

Determine if there is variation across groups 
If not, fix parameter
Decide whether to drop nonsignificant predictors
Test deviance, compute R2 if so desired

3. Add level 2 predictors
Evaluate for significance
Test deviance, compute R2 if so desired
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Example

Use the HSB MDM file previously created to 
practice running HLM models:

Unconditional
Level 1 predictor fixed, then random
Level 2 predictor
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Statistical Estimation in HLM Models

Estimation Methods
FML
RML
Empirical Bayes estimation

Parameter estimation 
Coefficients and standard errors
Variance Components

Parameter reliability
Centering
Residual files
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Estimation Methods: Maximum Likelihood 
Estimation (MLE) Methods

MLE estimates model parameters by estimating a 
set of population parameters that maximize a 
likelihood function
The likelihood function provides the probabilities 
of observing the sample data given particular 
parameter estimates
MLE methods produce parameters that maximize 
the probability of finding the observed sample data
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Estimation Methods

Full: Simultaneously estimate the 
fixed effects and the variance 
components.

Goodness of fit statistics apply to the 
entire model

(both fixed and random effects)

Check on software default

Full: Simultaneously estimate the 
fixed effects and the variance 
components.

Goodness of fit statistics apply to the 
entire model

(both fixed and random effects)

Check on software default

Restricted: Sequentially estimates the 
fixed effects and then the variance 
components 

Goodness of fit statistics (deviance 
tests) apply only to the random 
effects

RML only tests hypotheses about the 
VCs (and the models being 
compared must have identical fixed 
effects)

Restricted: Sequentially estimates the 
fixed effects and then the variance 
components 

Goodness of fit statistics (deviance 
tests) apply only to the random 
effects

RML only tests hypotheses about the 
VCs (and the models being 
compared must have identical fixed 
effects)

RML – Restricted Maximum Likelihood, only 
the variance components are included in the 
likelihood function

RML – Restricted Maximum Likelihood, only 
the variance components are included in the 
likelihood function
FML – Full Maximum Likelihood, both the regression 
coefficients and the variance components are included in 
the likelihood function

FML – Full Maximum Likelihood, both the regression 
coefficients and the variance components are included in 
the likelihood function
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Estimation Methods

RML expected to lead to better estimates especially when 
j is small
FML has two advantages:

Computationally easier
With FML, overall chi-square tests both regression 
coefficients and variance components, with RML only 
variance components are tested
Therefore if fixed portion of two models differ, must 
use FML for nested deviance tests
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Computational Algorithms

Several algorithms exist for existing HLM models:
Expectation-Maximization (EM)
Fisher scoring
Iterative Generalized Least Squares (IGLS)
Restricted IGLS (RIGLS)

All are iterative search and evaluation procedures
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Model Estimation

Iterative estimation methods usually begin with a 
set of start values
Start values are tentative values for the parameters 
in the model

Program begins with starting values (usually 
based on OLS regression at level 1)
Resulting parameter estimates are used as initial 
values for estimating the HLM model
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Model Estimation
Start values are used to solve model equations on first 
iteration
This solution is used to compute initial model fit
Next iteration involves search for better parameter values
New values evaluated for fit, then a new set of parameter 
values tried
When additional changes produce no appreciable 
improvement, iteration process terminates (convergence)
Note that convergence and model fit are very different issues



IntermissionIntermission



69

Centering

No centering (common practice in single level 
regression)
Centering around the group mean (     )
Centering around the grand mean (M )
A known population mean
A specific meaningful time point

jX
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Centering: The Original Metric

Sensible when 0 is a meaningful point on the 
original scale of the predictor

For example, amount of training ranging from 0 
to 14 days
Dosage of a drug where 0 represents placebo or 
no treatment

Not sensible or interpretable in many other 
contexts, i.e. SAT scores (which range from 200 to 
800)
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Centering Around the Grand Mean

Predictors at level 1 (X’s) are expressed as deviations 
from the grand mean (M):  (Xij – M)
Intercept now expresses the expected outcome value (Y) 
for someone whose value on predictor X is the same as 
the grand mean on that predictor
Centering is computationally more efficient
Intercept represents the group mean adjusted for the 
grand mean      - M

Variance of β0j = τ00, the variance among the level-2 unit 
means adjusted for the grand mean

jX
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) ( 000 γβ == ijijj XYE

Centering Around the Grand Mean

β01

β02

β03
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Centering Around the Group Mean

Individual scores are interpreted relative to their group mean  
The individual deviation scores are orthogonal to the group means
Intercept represents the unadjusted mean achievement for the 
group
Unbiased estimates of within-group effects 
May be necessary in random coefficient models if level 1 predictor 
affects the outcome at both level 1 and level 2
Can control for unmeasured between group differences
But can mask between group effects; interpretation is more 
complex

)( XXij −
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Centering Around the Group Mean

Level 1 results are relative to group membership

Intercept becomes the unadjusted mean for group j

Should include level 2 mean of level 1 variables to fully 
disentangle individual and compositional effects

Variance β0j is now the variance among the level 2 unit 
means



76

0      10      20      30     40     50             

)25 ( then 25,  X If 11011 === ii XYEβ

Centering Around the Group Mean

)20 ( then 20,  X If 22022 === ii XYEβ
)18 ( then 18,  X If 33033 === ii XYEβ
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Parameter estimation

Coefficients and standard errors estimated through 
maximum likelihood procedures (usually)

The ratio of the parameter to its standard error produces a Wald test 
evaluated through comparison to the normal distribution (z)
In HLM software, a more conservative approach is used:

t-tests are used for significance testing 
t-tests more accurate for fixed effects, small n, and nonnormal 
distributions)

Standard errors
Variance components
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Parameter reliability

Analogous to score reliability: ratio of true score variance to 
total variance (true score + error)
In HLM, ratio of true parameter variance to total variability
For example, in terms of intercepts, parameter reliability, λ, 
is:

)//()(/)( 22
00

2
000 jjjj nYVarVar σττβλ +==

Total variance of the 
sample means (observed)

True variance of the 
sample means (estimated)

Variance of error of 
the sample meansTrue variance of the 

sample means (estimated)
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ICC ( ρI )

nj .05 .10 .20

5 .21 .36 .56

10 .34 .53 .71

20 .51 .69 .83

30 .61 .77 .88
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ρ
λ

−+
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Parameter reliability
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Parameter reliability
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Predicting Group Effects

It is often of interest to estimate the random group 
effects (β0j, β1j)
This is accomplished using Empirical Bayes (EB) 
estimation
The basic idea of EB estimation is to predict group 
values using two kinds of information:

Group j data
Population data obtained from the estimation of the regression 
model
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Empirical Bayes

If information from only group j is used to estimate then we 
have the OLS estimate:

If information from only the population is used to estimate 
then the group is estimated from the grand mean:

j

N

j

j Y
N
n

Y    
1

..00 ∑
=

==γ

jj Y=0β
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Empirical Bayes

A third possibility is to combine group level and 
population information
The optimal combination is an average weighted 
the parameter reliability:

The results in the “posterior means” or EB 
estimates

0000  )1( γλβλβ jjjj
EB −+=

The larger the reliability, the greater 
the weight of the group mean

The smaller the reliability, the greater 
the weight of the grand mean
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Bayesian Estimation
Use of prior and posterior information improves estimation 
(depending on purpose)
Estimates “shrink” toward the grand mean as shown in 
formula
Amount of shrinkage depends on the “badness” of the unit 
estimate

Low reliability results in greater shrinkage (if λ = 1, there is no 
shrinkage; if λ = 0, shrinkage is complete, γ00)
Small n-size within a j unit results in greater shrinkage, “borrowing”
from larger units

0000  )1( γλβλβ jjjj
EB −+=
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HLM Residual Files
Important outcome information from an HLM analysis can 
be saved for each level of the analysis in a “residual file”

Residual files contain parameter estimates and other variables from 
the analysis
Residual files can be save in statistical package format (SPSS, SAS, 
etc.)

Residual files can be used for diagnostic evaluation of 
statistical model assumptions
Residual files can be used to estimate and further describe or 
analyze effects among the units at each level 



88



89



90



91



92



93



94



95

Example: Creating Residual Files
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Three level models
Level-1  (p students)

Yijk = π0jk + π1jk(apijk)+ eijk
Level-2 (j classrooms)

π0jk = βp0k + βp1k(Xqjk) + rp0k

π1jk = βp1kj + βp1k(Xqjk) + rp1k
Level-3 (k schools)

βp0k = γpq0 + γpqs(Wsk) + upqk

βp1k = γpq1 + γpqs(Wsk) + upqk
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Partitioning variance in the three level 
model
Proportion of variance within classrooms (individual 

student differences) = σ2 / (σ2 + τπ + τβ )

Proportion of variance between classrooms within 
schools = τπ / (σ2 + τπ + τβ )

Proportion of variance between 
schools = τβ / (σ2 + τπ + τβ )



98

Three level example

Example:
Go to “Examples” folder and then “Chapter 4” in the 
HLM directory
Open “EG1.sav”, “EG2.sav”, and “EG3.sav”
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Longitudinal models
Level 1 defined as repeated measurement 
occasions
Levels 2 and 3 defined as higher levels in the 
nested structure
For example, longitudinal analysis of student 
achievement

Level 1 = achievement scores at times 1 – t
Level 2 = student characteristics
Level 3 = school characteristics
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Longitudinal models

Two important advantages of the MLM 
approach to repeated measures:

Times of measurement can vary from one 
person to another
Data do not need to be complete on all 
measurement occasions
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Longitudinal models

Level-1
Ytij = π0ij + π1ij(time)+ etij

Level-2
π0ij = β00j + β01j(Xij) + r0ij

π1ij = β10j + β11j(Xij) + r1ij
Level-3

β00j = γ000 + γ001(W1j) + u00j

β10j = γ100 + γ101(W1j) + u10j



An id variable is needed to 
link the level 1 file to level 2

An id variable is also needed to 
link the level 2 file to level 3

A variable is also needed to 
indicate the time of occurrence 
of each measurement occasion

Each row represents a 
measurement occasion

The set of rows represent the 
repeated measures for one 

participant
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Fitting a growth trajectory
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Curvilinear Longitudinal models
Level-1

Ytij = π0ij + π1ij(time)+ π2ij(time2)+ etij
Level-2

π0ij = β00j + β01j(Xij) + r0ij
π1ij = β10j + β11j(Xij) + r1ij
π2ij = β20j + β21j(Xij) + r2ij

Level-3
β00j = γ000 + γ001(W1j) + u00j

β10j = γ100 + γ101(W1j) + u10j
β20j = γ200 + γ201(W2j) + u20j
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Testing a Nested Sequence of HLM 
Longitudinal Models
1. Test unconditional model
2. Test Level 1 growth model
3. After establishing the level 1 growth model, use it as the 

baseline for succeeding model comparisons 
4. Add level 2 predictors

Determine if there is variation across groups 
If not, fix parameter
Decide whether to drop nonsignificant predictors
Test deviance, compute R2 if so desired

5. Add level 3 predictors
Evaluate for significance
Test deviance, compute R2 if so desired
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Regression Discontinuity and Interrupted 
Time Series Designs: Change in Intercept

ijijiijiiij TreatmentTimeY επππ +++= 210

ijijiiij TimeY εππ ++= 10

ijijiiiij TimeY επππ +++= 120 )(
When Treatment = 1:

When Treatment = 0: Treatment is 
coded 0 or 1
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Regression Discontinuity and Interrupted 
Time Series Designs

Treatment effect on 
level: )( 20 ii ππ +
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Regression Discontinuity and Interrupted 
Time Series Designs: Change in Slope

ijijiijiiij imeTreatmentTTimeY επππ +++= 310

ijijiiij TimeY εππ ++= 10

When Treatment = 1:

When Treatment = 0:
Treatment time expressed as 0’s 

before treatment and time intervals 
post-treatment (i.e., 0, 0, 0, 1, 2, 3
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Regression Discontinuity and Interrupted 
Time Series Designs

Treatment effect 
on slope: )( 3iπ+
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Change in Intercept and Slope

ijijiiijiiij imeTreatmentTTreatmentTimeY εππππ ++++= 3210

ijijiiij TimeY εππ ++= 10

When Treatment = 0:

Effect of treatment 
on intercept

Effect of treatment 
on slope
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Regression Discontinuity and Interrupted 
Time Series Designs

Effect of treatment 
on intercept

Effect of treatment 
on slope
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Analyzing Randomized Trials (RCT) with 
HLM

When random assignment is accomplished at the participant 
level, treatment group is dummy coded and included in the 
participant level data file
When random assignment is accomplished at the cluster 
level, treatment group is dummy coded and included in the 
cluster level data file

Treatment can be used to predict intercepts or slopes as 
outcomes
Another strength of this approach is the ability to 
empirically model treatment variation across clusters (i.e., 
replication)
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Power in HLM Models
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Using the Optimal Design Software

The Optimal Design Software can also be used to 
estimate power in a variety of situations
The particular strength of this software is its 
application to multilevel situations involving cluster 
randomization or multisite designs
Available at:

http://sitemaker.umich.edu/group-based/optimal_design_software

Optimal Design
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Factors Affecting Power in CRCT
Sample Size

Number of participants per cluster (N)
Number of clusters (J)

Effect Size
Alpha level
Unexplained/residual variance
Design Effects

Intraclass correlation (ICC)
Between vs. within cluster variance
Treatment variability across clusters
Repeated measures
Blocking and matching

Statistical control
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Effect of Unexplained Variance on Power

Terminology: “error” versus unexplained or 
residual
Residual variance reduces power

Anything that decreases residual variance, increases power 
(e.g., more homogeneous participants, additional 
explanatory variables, etc.)

Unreliability of measurement contributes to 
residual variance
Treatment infidelity contributes to residual variance
Consider factors that may contribute to residual 
between cluster variance
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Effect of Design Features on Statistical 
Power

Multicollinearity (and restriction of range)

Statistical model misspecification
Linearity, curvilinearity,…
Omission of relevant variables
Inclusion of irrelevant variables

)1( 2
12

2
1

2
12y

b 2.1y rx
s

s
−Σ

=
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The number of clusters has a stronger influence 
on power than the cluster size as ICC departs 
from 0

J
nSE )/)1((4)ˆ( 01

ρργ −+
=

The standard error of the main effect of treatment is:

As ρ increases, the effect of n decreases
If clusters are variable (ρ is large), more power is gained by 
increasing the number of clusters sampled than by 
increasing n
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Power in Studies with a Small Number of 
Clusters
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Fixed vs. Random Effects
Fixed Effects Model
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Effect of Effect Size Variability (    )

2
δσ

nJ
n)/22 +(

=
στγ

Variance of the treatment effect across clusters

2
δσ
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Randomization as a Control Tactic
What does randomization accomplish? 

Controls bias in assignment of treatment (works OK with small J)
Turns confounding factors into randomly related effects 
(equivalence vs. randomness; does not work well with small J)

Applying an underpowered, small CRCT may not be 
sufficient to achieve rigor

Consider other design approaches (e.g., interrupted time series,
regression discontinuity designs)
Aggressively apply other tactics for experimental or statistical control

Not all designs are created equal
No one design is best (e.g., randomized trials)
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Improving Power Through Planned Design

Evaluate the validity of inferences for the planned design
Design to address most important potential study weaknesses
Realistic appraisal of study purpose, context, and odds of 
success
Importance of fostering better understanding of the factors 
influencing power
Planning that tailors design to study context and setting

Strategies for cluster recruitment
Prevention of missing data
Planning for use of realistic designs and use of other strategies 
like blocking, matching, and use of covariates
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Design For Statistical Power

Stronger treatments!
Treatment fidelity
Blocking and matching
Repeated measures
Focused tests (df = 1)
Intraclass correlation
Statistical control, use of covariates
Restriction of range (IV and DV)
Measurement reliability and validity (IV and DV)
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