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Overview and resources

m Overview

= Web site and links: www.uoregon.edu/~stevensj/HILM

= Software:
o HLM

0 MLwinN

o Mplus

0 SAS

0 R and S-Plus

0 WinBugs




Workshop Overview

Preparing data

Two Level models

Testing nested hierarchies of models
Estimation

Interpreting results

Three level models

Longitudinal models

Power in multilevel models



Hierarchical Data Structures

Many social and natural phenomena have a nested or
clustered organization:

0 Children within classrooms within schools

0 Patients in a medical study grouped within doctors
within different clinics

0 Children within families within communities

0 Employees within departments within business
locations



Grouping and membership in particular
units and clusters are important

C Orhiginal Artist
Feprod uu:tinn;righta obtainable from
wiw Cartoonstock.com
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For goodness soke, this is a huge field!
Why do we need to huddle like this all the time?




Hierarchical Data Structures

More examples of nested or clustered organization:
0 Children within peer groups within neighborhoods
0 Respondents within interviewers or raters
0 Effect sizes within studies within methods (meta-
analysis)
0 Multistage sampling

0 Time of measurement within persons within
organizations



Simpson’s Paradox:

Clustering Is Important

Well known paradox in which performance of individual
groups is reversed when the groups are combined

Quiz1l Quiz 2 Quizl | Quiz2 Total

Gina | 60.0% 10.0% Gina | 60/100 | 1/10 | 61/110

Sam 90.0% 30.0% Sam 9/10 | 30/100 | 39/110




Simpson’s Paradox: Other Examples

2006 US School studv:

1975 Berkeley sex bias case:
* UCB sued for bias by women applying to grad school

1:1 1 4 1 1 )

“Whén thé Oakies left Oklahoma and moved to
California, it raised the IQQ of both states.”
— Will Rogers

* Men applied more to high admission rate departments




Hypothetical Data Example from Snijders &
Bosker (1999),n = 2,j=5,n =N =10

(Participant (i)\r Cluster (j) Y Outcome (Y)\ ( Predictor (X)\
1 1 5 1
2 1 7 3
3 2 4 1
4 2 6 4
5 3 3 3
6 3 5 5
7 4 2 4
8 4 4 6
9 5 1 5
10 5 3 7




All 10 cases analyzed without taking cluster membership into account:

Model Summary

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 .3334 111 .000 1.826

a. Predictors: (Constant), X

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 5.333 1.453 3.671 .006
X -.333 .333 -.333 -1.000 347

a. Dependent Variable: Y

Y = 5.333 -.333(X) + t

Interpretation: There’s a negative relationship
between the predictor X and the outcome Y, a
one unit increase in X results in .333 lower Y




Y = 5.333 -.333(X) + t

This is an example of a disaggregated analysis




Another alternative is to analyze
data at the aggregated group level

ran

Participant Cluster (j) Outcome Predictor Cluster (j) Outcome (Y) Predictor (X)
(1) (Y) (X)
1 1 5 1 ) P )
2 1
/ 3 2 5 3
3 2 4 2
3 4 4
4 2 6 4
4 3 5
5 3 3 3
5 2 6
6 3 5 5
7 4 2 4
8 4 4 6
9 5 1 5
10 5 3 7




The clusters are analyzed without taking individuals into account:

Model Summary

Adjusted Std. Error of
Model R R Square R Square the Estimate
1 1.0002 1.000 1.000 .000

a. Predictors: (Constant), MEANX

Coefficients?

Unstandardized Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 8.000 .000
MEANX -1.000 .000 -1.000

a. Dependent Variable: MEANY

Y = 8.000 -1.000(X) +

Interpretation: There’s a negative relationship
between the predictor X and the outcome Y, a
one unit increase in X results in 1.0 lower Y




This is an example of a disaggregated analysis

Y = 8.000 -1.000(X) + r

A

MEAN Y




A third possibility is to analyze each cluster separately,
looking at the regression relationship within each group

8
7
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Multilevel regression takes both levels into account:

Y = 8.000 -1.000(X) +

Y; =8.00-1.00(X ) +1.00(X;; - X ) +7,




Taking the multilevel structure of the data into account:

Within group '
Between Groups Regression

regressions

T

Total Regression

0 N
0 1 2 3 4 5 6 7 8



Why Is Multilevel Analysis Needed?

Nesting creates dependencies in the data

a0 Dependencies violate the assumptions of traditional
statistical models (“independence of error”, “homogeneity
of regression slopes™)

a0 Dependencies result in inaccurate statistical estimates

Important to understand variation at different
levels

18



Decisions About Multilevel Analysis

Properly modeling multilevel structure often
matters (and sometimes a lot)

Partitioning variance at different levels is usetul

0 tau and sigma (OQY: r + 07

0 policy & practice implications

r . cC— . 1 1_° 1 . 1 1

“Randomization by cluster accompanied by analysis
appropriate to randomization by individual is an exercise in

self-deception and should be discouraged” (Corntield, 1978,
pp.101-2)
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Preparing Data tor HLLM Analysis

Use of SPSS as a precursor to HLLM assumed

HILM requires a different data file for each level in the HLLM
analysis

Prepare data first in SPSS

0 Clean and screen data

0 Treat missing data

0 ID wvariables needed to link levels
0 Sort cases on 1D

Then import files into HLLM to create an “.mdm” file

20



‘ Creating an MDM file

= Example:

a0 Go to “Examples” folder and then “Appendix A” in the
HILM directory

a0 Open “HSB1l.sav” and “HSB2.sav”

21



B HLM for Windows y
Basic Sethings  Other Settings  Ru Start HLM and ChOOSG Make IIGW

Create a new model using an existing M

> .
EditfRun old cormmandd. ki) mirm] File M ﬁle from menu, fOHOWGd

Manually edit command, hlmy) . mim) File

Save by “Stat package input”

Save bs

Anthony Bryk
Richard Congdon

Save model as .emf
Save mixed model as .emf

Make new MDM File B5CII inpuk
Make new MDM From old MDM templater . mdmt) File Skat package input
Display MOM skaks

Wiew Cukbput
iaraph Equations
iaraph Data

Preferences

Exit




Select MDM type

Hierarchical Linear Models
+ HLMZ " HLM3

Hierarchical iate Linear Models

" HWMLM

crossclassit  L'OT 2 two level HLM model stay
= HCM2 with the default “HILM2”

0K Cancel |




Make MDM - HLI2 Click “Browse”, identity the -

MO template file .
level 1 data file and open it

File Marme:

Cpen mdmt file Sawve mdmt file

Input File Type | SPESMYIndows

. . Open Data File
Mesting of input o P

x| e ® ok E-

¥ persons

Level-1 Specifica

.............................. M_ll'l H El:ent

Brovis e 1 Drocurments |

Missing Data*?

Deszktop
fo Mo 0o

My Documents

Level-2 Specifica

Browse | L4 Jﬂ J

£

by Computer
y .:g File narne: |HSB1 j Dpen
— My Metwork,  Files of bope: |5F'55.'"'v"-"'ir'ldl:ll.ﬂ-.'$ filera (. 5x] j Cancel
Places

[ Open as read-only Help




Check off the ID linking I ENEGEGEGG—

MOM File Mame (use mdm suffix)

variable and all variables to Tariables”
be included in the M file ST =l

Mesting of input data
Choose varios

(« persons within grou
0

Level-1 Specification MINCRIT 1D ¥ in MDM ~
Brovyse | Level-1 File M |FEMALE [ 1D v in WD r hoose Yariahles

SES [ 1D |v in MWDK [

MiSSif‘lg Cata?? Celety MATHACH [ D [w il‘lMDM | [~

o Mo Yes il = ror [ 1o

-
Level-2 Specification [T o™
| o | T o
Browyse Level-2 File M
[ roer —
[
[

Make MOM | I

joose Variables

|

~
IA I T I i I i I R A

Page 1 of 1 1 M Ok | Cancel |




Make MDM - HLM 2

MO template file

File Marme:

Cpen mdmt file | Save mdmtﬂle| Edit mdmt file |

MHesting of input data

f*» persons " measures within perso

Ps

ko

Level-1 Sp

~

A |

MOM File Mame (use mdm suffix)

| examplel.mdm|

Input F7% Type |5F‘551Windnws

[

),

Click on “Save mdmt file”” and

supply a name for the syntax
command file

Choose Variables

DM file
1X)

Browse Level-2 File Mame:

hake MO | Check Stats

CAProgram Files\HLMES\Examples\dppendzAHSE

Choose Variables

Done




m Results will briefly appear

File Mame:  CAProgram Files\HLMBS\Examples | examplet . rmdrm

ADM File Mame (use mdm suffix

DIZ'IF!I"I it file | Save I"I"Il"ll"l"lfﬁh:'l Frit ridm mene b Film Trovm e | O AR et |

eo C:\Program Files\HLM65\HLM2S. EXE

MHest
LEUEL-1 DESCRIPTIUE STATISTICS
UARIABLE HWAME H MEAM SDh MINIHUM MAXIHMUM
HIMORITY 7185 a.27 A.45 a.B8a 1.848
Leve FEMALE 7185 A.53 a.-Aa a.B8aa i.88
SES 7185 A.AA A.78 -3.76 2.69
Bt —2_83 24_99
hli<
N UARIABLE MINIHUM MAXIHUM
SIZE 1827 _83 iAA.08A 2713 .88
SECTOR a.44 a.B8a i.88
L PRACAD Aa.5di a.8a i.848
DISCLIHM i I i -2 .42 2.6

Bi 1 records have been processed
S -2 records have heen processed




Make MDM - HLM2

B HLM2MDM.STS - Motepad
File map Eile Edi

Format  Yiew Help

LEVEL-1 DESCRIPTIWE STATISTICS

VARIABLE MNAME M ME A1 5D MT MT MM
. MINORITY 7185 0.27 045 0. 00 1.0
Mesting FER Lo, 1.0
MATH Cth O . ¢ 9
The click “Done
Level-1
see, sa.,
VARIALH_I: TSI TE ™ FTE =09
SIZE 160 1097, 83

SECTOR 160 0.44
PRAZAD 160 0. 51
DIZCLIM

Make MOIM {Check Stats Daone




B WHLM: him2 MDM File: example1.mdm Mi=1E3
File ©
Outcome

>> Level-1 << this. You can now begin to
Level-2

INTRCPT1 specify your HLLM model

PIMNORITY
FEMALE
=ES
PATHACH

You should see a screen like




Two-Level HLM Models

30



The Single-1.evel, Fixed Effects Regression
Model

Y, = Bot B Xy + BoXy .+ BXy 1

The parameters §; are considered fixed

0 One for all and all for one

0 Same values for all 1 and j; the single level model
The r, ’s are random: r. ~ N(0, o) and
independent

31



The Multilevel Model

Takes groups into account and explicitly models
group effects

How to conceptualize and model group level
variation?

How do groups vary on the model parameters?

Fixed versus random effects

32



Fixed vs. Random Effects

Fixed Effects represent discrete, purposefully selected or
existing values of a variable or factor

0 Fixed effects exert constant impact on DV

0 Random variability only occurs as a within subjects effect (level 1)

0 Can only generalize to particular values used

Random Effects represent more continuous or randomly
sampled values of a variable or factor

0 Random effects exert variable impact on DV

0 Variability occurs at level 1 and level 2

0 Can study and model variability

0 Can generalize to population of values

33



Fixed vs. Random Effects?

Use fixed effects if

0 The groups are regarded as unique entities

0 If group values are determined by researcher through
design or manipulation

0 Small j (< 10); improves power

Use random effects if

0 Groups regarded as a sample from a larger population

0 Researcher wishes to test effects of group level variables
0 Researcher wishes to understand group level ditferences
0

Small j (< 10); improves estimation

34



Fixed Intercepts Model

The simplest HLM model is equivalent to a one-
way ANOVA with fixed effects:

Yij =Yoo T 1

This model simply estimates the grand mean (y,)
and deviations from the grand mean (rij)

Presented here simply to demonstrate control of
fixed and random effects on all parameters

35



& WHLM: him2 MDM File: hw1.mdm Command File: whimtemp. him Z E|f5__(|

File Basic Settings

Outcome

»» Level-1 <<

Level-2

INTRCFTT
=CORE
GEMDER
BILING
TITLE1
ELL

LEF
MODAD

Qther Settings  Run Analysis  Help
”
LEVEL 1 MODEL (hold: group-mean centering; bold talic: grand-mean centering) -

SCORE = p, +7

LEVEL 2 MODEL (bkold italic: grand-mean certering)

Fa = Yoo

Note the equation has no “u” residual
term; this creates a fixed effect model

Mixed | v+

36



Il Graph for model in C:\TEACH\HLM\hw1 . him
File Edit Graph Setkings

-
o
LU
O
1
LU
-
=
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ANOVA Model (random intercepts)

A simple HLM r
intercepts

Equivalent to a ¢

Note the addition of u; allows

different intercepts for each j unit, a
random effects model

effects:
Yii — @Oi + IV

38




B WHLM: him2 MDM File: hw1.mdm Command File: whimtemp.hlm
File Basic Settings ©ther Settings  Bun Analysis  Help
Outcome
>> Level-1 <<
Level-2

INTRCHTY LEVEL 2 MODEL (bald ttalic: grand-mean certering)
SCORE +

GEMDER Fo = Yoo
BILING
TITLE?
ELL
LEP
MODAD

LEVEL 1 MODEL cbald: group-mean centering; bald italic: grand-mean centering)
SCORE = p, +

i




Bl Graph for model in C:ATEACH\HLM\hw1. him
Eile Edit Graph Settings

|_
o
L
O
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L
|_
<
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ANOVA Model

In addition to providing parameter estimates, the
ANOVA model provides information about the
presence of level 2 variance (the ICC) and whether
there are significant differences between level 2
units

This model also called the Unconditional Model

(because it is not “conditioned” by any predictors)
and the “empty” model

Often used as a baseline model for comparison to
more complex models

41



Variables in HILM Models

Outcome variables
Predictors

0 Control variables

0 Explanatory variables
Variables at higher levels

0 Aggregated variables (Is n sufficient for
representation?)

0 Contextual variables

42



Conditional Models: ANCOVA

Adding a predictor to the ANOVA model results in an
ANCOVA model with random intercepts:

Y5 = B+ Bi(Xy 1
Boi = Yoo T Uy

51 = Y10

Note that the effect of X 1s constrained to be the same
fixed etfect for every j unit (homogeneity of regression

slopes)

43



B WHLM: him2 MDM File: hw1.mdm Command File: hw1.him
File Basic Settings ©Other Settings  Bun Analysis  Help
Outcome
> Level-1 <<
Level-2

INTRCPT1 LEVEL 2 MODEL ikold italic: grand-mean centering)
SCORE o

GENDER Fo = Yop * Y
BILING 6, = v
TITLET oo
ELL
LEP
MODAD

LEVEL 1 MODEL (hold: group-mean certering; hold talic: grand-mean centering)
SCORE = |3,5| + |3.1,|:LEF':| + F




I Graph for model in C:\TEACH\HLM\hw1. him
File Edit Graph Settings
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Conditional Models: Random Coefficients

An additional parameter results in random variation
of the slopes:

Y5 = B T Bi(Xy 1
Boi = Yoo T Uy

B = Yio T
Both intercepts and slopes now vary from group to

gr oup

46



B WHLM: him2 MDM File: hw1l.mdm Command File: hw1.hlm

File Basic Settings

Outcome

i3> Lewvel-1 <<

Level-2

INTRCPTT
SCORE
SEMNDER
BILIMNG
TITLE1
ELL

LEF
rODAD

Qther Settings  Run Analysis  Help

LEVEL 1 MODEL (bold: group-tnesn centering; bold talic: grand-mean centering)
SCORE = E'G + |3.,I,|iLEF':| +r

LEVEL 2 MODEL chald italic: arand-mean centering)

+ U

Fo = Yoo T4

Py = T T4y
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Il Graph for model in C:\TEACH\HLM\hw1 . him
File Edit Graph Settings
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Standardized coeftficients

Standardized coefficient at level 1:

E)Oj (SDy / SDy)

Standardized coefficient at level 2:

Yoo (SDx / SDy)

49



Modeling variation at Level 2:
Intercepts as Outcomes

Y :D+ 1% T 1
§ |

B3y = vio T uy;

= Predictors (W’s) at level 2 are used to model
variation 1n intercepts between the | units

50



Modeling Variation at Level 2: Slopes as

Outcomes
Yij — 501 +D<1ij T 1

B0 = Yoo T Yo W, + 1y

_ |

= Do slopes vary from one | unit to another?

= W’s can be used to predict variation in slopes as well

51



Variance Components Analysis

VCA allows estimation of the size of random
variance components

0 Important issue when unbalanced designs are
used

0 Iterative procedures must be used (usually ML
estimation)

Allows significance testing of whether there is
variation in the components across units

52



Estimating Variance Components:
Unconditional Model

Var(Y;) = Var(uy) + Var(r)

_ 2
—‘CO+G'

53



HLM Output

Final estimation of variance components:

Random Effect Standard Variance df Chi-square P-value
Deviation  Component

INTRCPT1, U0 14.38267 206.86106 14 457.32201 0.000
level-1, R 32.58453 1061.75172

Deviance = 21940.853702
Number of estimated parameters = 2

54



Variance explained

RZ atlevel 1 =

1 - <G cond cond> / (quncond T Tuncond>

R? at level 2 =

1 - [(Gzcond / nh) T Tcond] / [(quncond / nh) T

Where n, = the harmonic mean of n for the level 2 units

k/[1/n,+1/n,+...1/n,])

Tuncond]

55



Comparing models

Deviance tests

0 Under “Other Settings” on HLLM tool bar, choose
“hypothesis testing”

0 Enter deviance and number of parameters from baseline
model

Variance explained

0 Examine reduction in unconditional model variance as
predictors added, a simpler level 2 formula:

2 _
R o (T baseline -1 conditional) / T baseline

56



E WHLM: him2 MDM File: hw1l.mdm Command File: hw1.him

File Basic Settings

Outcome

»» Level-1 <<

Level-2

INTRCFT1
SCORE
SENDER
BILING
TITLET
ELL

LEP
rCDAD

== e A Run Analysis  Help

Ikeration Setkings
Eskimation Setkings
Hypothesis Tesking
Cutput Sektings

an centering, bold talic: grand-mean centering)

d-mean centering)

Exploratory fnalysis (level 23

M1 T Tag : _
Hypothesis Testing - HLM2

Multivanate Hypothesis Tests

1

Test against anather model
Deviance |2194EI.853?

Mumber of Farameters |2

| Test hamogeneity of level-1 variance
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Deviance Test Results

Statistics for current covariance components model

Deviance = 21615.283709
Number of estimated parameters = 2

Variance-Covariance components test

Chi-square statistic = 325.56999
Number of degrees of freedom = 0
P-value = >.500

58



Testing a Nested Sequence of HLLM
Models

Test unconditional model

Add level 1 predictors
= Determine if there is variation across groups
= If not, tix parameter
= Decide whether to drop nonsignificant predictors

= Test deviance, compute R? if so desired

Add level 2 predictors

= Hwvaluate for signiticance

= Test deviance, compute R? if so desired

59



Example

Use the HSB MDM ftile previously created to
practice running HLLM models:

0 Unconditional

0 Level 1 predictor fixed, then random

0 Level 2 predictor

60



Statistical Estimation in HLLM Models

Estimation Methods

o FML

o RML

0 Empirical Bayes estimation
Parameter estimation

0 Coefficients and standard errors
a0 Variance Components

Parameter reliability

Centering
Residual files

61



Estimation Methods: Maximum Likelihood
Estimation (MLLE) Methods

MLE estimates model parameters by estimating a
set of population parameters that maximize a
likelthood function

The likelihood function provides the probabilities
of observing the sample data given particular
parameter estimates

MLE methods produce parameters that maximize

the probability of finding the observed sample data

62



Estimation Methods

RML — Restricted Maximum Likelihood, only |

FML - Full Maximum Likelihood, both the regression
coefficients and the variance components are included in

the likelihood function

components components.

Goodness of fit statistics (deviance Goodness of fit statistics apply to the

tests) apply only to the random entire model

etfects
(both fixed and random effects)

RML only tests hypotheses about the
VCs (and the models being
compared must have identical fixed
effects)

Check on software default

63



Estimation Methods

RML expected to lead to better estimates especially when
] 1s small

FML has two advantages:
0 Computationally easier

a0 With FML, overall chi-square tests both regression
coetficients and variance components, with RML only
variance components are tested

0 Therefore 1f fixed portion of two models differ, must
use FML for nested deviance tests

64



Computational Algorithms

Several algorithms exist for existing HLLM models:
0 Expectation-Maximization (EM)

a Fisher scoring

0 Iterative Generalized Least Squares (IGLS)

0 Restricted IGLS (RIGLS)

All are iterative search and evaluation procedures

65



Model Estimation

Iterative estimation methods usually begin with a
set of start values

Start values are tentative values for the parameters
in the model

0 Program begins with starting values (usually
based on OLS regression at level 1)

0 Resulting parameter estimates are used as initial
values for estimating the HLLM model

66



Model Estimation

Start values are used to solve model equations on first
iteration

This solution 1s used to compute initial model fit
Next iteration involves search for better parameter values

New values evaluated for fit, then a new set of parameter
values tried

When additional changes produce no appreciable
improvement, iteration process terminates (convergence)

Note that convergence and model fit are very different issues

67
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Centering

No centering (common practice in single level
regression)

Centering around the group mean (X))

Centering around the grand mean (M)
A known population mean

A specific meaningtul time point

69



Centering: The Original Metric

Sensible when 0 is a meaningful point on the
original scale of the predictor

0 For example, amount of training ranging from 0
to 14 days

0 Dosage of a drug where 0 represents placebo or
no treatment

Not sensible or interpretable in many other
contexts, 1.e. SAT scores (which range from 200 to

300)

70
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Centering Around the Grand Mean

Predictors at level 1 (X’s) are expressed as deviations

from the grand mean (M): (X; — M)

Intercept now expresses the expected outcome value (Y)
for someone whose value on predictor X is the same as
the grand mean on that predictor

Centering 1s computationally more efficient
Intercept represents the group mean adjusted for the

ogrand mean Yj- M

Variance of §, = T, the variance among the level-2 unit
means adjusted for the grand mean
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‘ Centering Around the Grand Mean

_

ol
B
E

0O 10 20 30 40 50

,Boj' :E(Yij X =700)
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Centering Around the Group Mean

Individual scores are interpreted relative to their group mean (X; — X)
The individual deviation scores are orthogonal to the group means

Intercept represents the unadjusted mean achievement for the

group
Unbiased estimates of within-group effects

May be necessary in random coetficient models if level 1 predictor
affects the outcome at both level 1 and level 2

Can control for unmeasured between group differences

But can mask between group effects; interpretation is more
complex
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Centering Around the Group Mean

Level 1 results are relative to group membership
Intercept becomes the unadjusted mean for group |

Should include level 2 mean of level 1 variables to fully
disentangle individual and compositional effects

Variance §; 1s now the variance among the level 2 unit
means

75



‘ Centering Around the Group Mean

4

\ A\

-

0O 10 20 30 40 50
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Parameter estimation

Coetficients and standard errors estimated through
maximum likelthood procedures (usually)

0 The ratio of the parameter to its standard error produces a Wald test
evaluated through comparison to the normal distribution (z)

0 In HLM software, a more conservative approach is used:
t-tests are used for significance testing

t-tests more accurate for fixed effects, small n, and nonnormal
distributions)

Standard errors

Variance components
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Parameter reliability

Analogous to score reliability: ratio of true score variance to
total variance (true score + error)

In HLLM, ratio of true parameter variance to total variabili

[ e

For example ' pat Variance of error of
b

True variance of the the sample means

sample means (estimated) /

— N\ v
A =Var(fy ;)1 Var(Y;) =70 (750 + 07 In;)

L\

1S:

True variance of the
sample means (estimated)

Total variance of the
sample means (observed)
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Parameter reliability

_ n;pPr
I+(n; -Dp,
ICC (p;)
n; .05 10 20
5 21 .36 56
10 34 53 1
20 Sl .69 .83
30 61 17 .88
50 12 .85 .93
100 .84 92 96
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Parameter reliability

B n;pPr
;=
1+(nj Dp;
1.0
84
P
5
S 6
()
ha
(3
o
E 4
©
]
ol -
ICC=.05
24
ICC=.10
0.0 _ _ _ _ ICC=.20
5 10 20 30 50 100

n per cluster



Predicting Group Effects

It 1s often of interest to estimate the random group
eftects (Bp;, B1;)

This is accomplished using Empirical Bayes (EB)
estimation

The basic idea of EB estimation is to predict group
values using two kinds of information:

0 Group j data

0 Population data obtained from the estimation of the regression

model
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Empirical Bayes

If information from only group j is used to estimate then we
have the OLS estimate:

/BOj:Yj

If information from only the population is used to estimate
then the group 1s estimated from the grand mean:
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Empirical Bayes

The smaller the reliability, the greater
A third possibﬂity 1S tO C( the weight of the grand mean

pPop The larger the reliability, the greater
The  the weight of the group mean rage Weighted

the mehabﬂity:

ﬂ(ij =A;fo; +(=4;) 700

The results in the “posterior means” or EB
estimates
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Bayesian FEstimation

Use of prior and posterior information improves estimation
(depending on purpose)

Estimates “shrink” toward the grand mean as shown in
formula

Amount of shrinkage depends on the “badness™ of the unit
estimate

a0 Low reliability results in greater shrinkage (if A = 1, there is no
shrinkage; it A = 0, shrinkage is complete, y,)

0 Small n-size within a j unit results in greater shrinkage, “borrowing”
from larger units

,B(I)Ejg =A,0y; +(L=4,) 740
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Reliability=.073

0.3035

Rsq

ado|s g3

Reliability=.733

0.9730

Rsq

1daouaiu] g3

OLS Slope

OLS Intercept



Achievement
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HI.M Residual Files

Important outcome information from an HLM analysis can
be saved for each level of the analysis in a “residual file”

0 Residual files contain parameter estimates and other variables from
the analysis

0 Residual files can be save in statistical package format (SPSS, SAS,
etc.)

Residual files can be used for diagnostic evaluation of
statistical model assumptions

Residual files can be used to estimate and further describe or
analyze etfects among the units at each level
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resfill - SP55 Data Editor
File Edit Wew Data Transform  Analvze Graphs  Utlibies  5-PLUS  Window  Help

= S| 5] 2 =R aal Fles| BlER 99
] |

1:12d 1224
[Zid I1resid | fitwal | sigma | minarity | female mathach sectar war var war var
11224 -4 180 10.056 5.081 - 275 1.000 £ 876 - 438
2|1224 9652  10.056 5.081 | -275 | 1000  19.708] -438 |
3|1224 ' 8813 11536 5.081 275 000 20349 -433
41224 ' 2785 11536 5.051 -275 00| 8781 -433|
51224 ' 5362 11536 5.081 | -275 | o0oo|  17.898 - 438
Bl1224 . 6953 11.536| 5.081 | -275| .000| 4533 -438 |
7|1224 | 12888 10056 5.051 -275 1.000 2832 -433|
81224 L 113 11536 5.081 _275| 00| 523 -433
q|1224 . 8529 10.056| 5.081 | -275 | 1.000 | 1827 | - 438
10]1224 ' 9935 11536 5.081 | -275 | ooo| 21821 -438 |
11]1224 ' -531,  10.056 5.081 275 1.000 9.475 -433
12]1224 ' 6001,  10.086 5.081 -275 1000  16.057 | -433|
131224 ' 9642 11536 5.081 | -275 | ooo| 21178 - 438
141224 C 101220 10.056 | 5.081 | -275 | 1000 20178 -438 |
15]1224 ' 8813 11536 5.051 -275 000 20349 -433|
16]1224 . 10482 10086 5.051 -275| 1000 20508 -433|
171224 ' 7802 11536 5.081 | -275 | 00o| 19338 - 438
18]1224 R B6.017 | 5.081 | 725 .000| 4145 -438 |
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24]1224 ' 8382 115356 5.081 _275| 00| 3.154 -433
25[1224 ' 217 | 4 536 5.081 | 725 1.000 | 4753 - 438
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271224 ' -4.890| 10056 5.081 275 1.000 5166 | -433
28]1224 ' 3657 10056 5.081 -275 1.000 5.399 -433|
261224 . 323\ 10056 5.081 | -275 | 1.000 | 5.821 - 438
A1 7724 = nE 1M NEE = 1= _FE 1 10N [ Ry P g _ Aaa
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resfilZ - SP55 Data Editor
File Edit Wew Data Transform  Analvze Graphs  Utlibies  5-PLUS  Window  Help

=|H | S| 0 B] = e Flr=| BlEIE %@
] |

1:12d 1224
[Zid nj | chipct | rmdist | Intatvar | olsravar mdrsvar ehintrcp ebminari | ebfemale alintrop olminari
11224 47 4812 3672 2.027 1675 1.953 -2.058 -331 024 2 436 -4 BE1
2|1288 25| 2.051 923 | 1.949 1.960 | 1.882 856 | -.050| 052 | 457 | - 127 |
3|1295 ' 43 4.068 | 25969 1678 1678 2.410) - 124| 352 100 T415 11.082]
41308 ' 20| -1.0E+36 -10E+36 1811 -10E+36 1.913| 1.201 071 -252| -10E+36 -1.0E+36
51317 ' 43 -10E+36 -10E+36 1698 -1.0E+36 2300 B15| -.005 | 032 -1.0E+36 -1.0E+36
61388 ' 30 4974 3.671 1.771) 1513 1.384 | -941 | - 525 0820 1917 B892
7|1374 ' 28 3.095 2291 2123 2033 2170 -504 | -455 - 145 -121] -2.853|
81433 ' 35| -1.0E+36 -10E+36 1356 -1.0E+36| -1.0E+36 3.410 -090 -703| -1.0E+36 -1.0E+36
q|1436 ' 44 3.136 2293 | 15158 -1 0E+36 1176 2 G4 | -.287 | _G44| -1.0E+36 -1.0E+36
10] 1451 ' 33 10373 10322 1.939 1.800 | 1675 3.448 | 792 -440 885 -16.588 |
11]1462 ' 57| -1.0E+36 -10E+36 1842 -10E+36 2188 -1.945 | - 576 33 -10E+36 -1.0E+36/
12|1477 ' 52| 1.267 | 184 | 1.968 | 1.980 1.972| -G41 034 195 | -957 | - 266
13|1459 ' 53| 4379 3.141 | 1,848 | 1.806 | 21060 2284 17| 044 2188 1732
141637 ' 27| 2783 1917 | 1.962 | 1.897 | 229 -1619 -244 4000 289 1757
15]1906 ' 53 4445 3193 1.874 | 1839 1.929 | 960 | - 556 | 039 -025 -4 631 |
16]1909 ' 28 1.647 | GEB | 1.817| -1.0E+36/ 1.312| 1.108 -097 | -062| -1.0E+36 -1.0E+36
17]1242 ' 25 5613 5 460 | 1.700] 1724 1.401] 4440 | -101 ]| 514 7.404 9125 |
18]1946 ' 39 8.240 5.049 | 1.943 ] 1.868 | 1.910] 1.148 | £33 767 3.895 £.418 |
19|2030 ' 47| 1.161 | 186 | 1.839 | 1830 1634 - 334 042 -046 | - 147 303
20|2208 ' B0 1.991 | 07 | 1812 -1.0E+36/ 1.825 | FE5 | -107 | -417| -1.0E+36 -1.0E+36
21|2277 ' 51 -10E+36 -10E+36 1717 -1.0E+36 2231 24879 413 201 -1.0E+36 -1.0E+36
22|2305 ' 67 -1.0E+36 -10E+36 1612 -1.0E+36 2314 -BE7 | 228 072 -1.0E+36 -1.0E+36|
23|2336 ' 47| 4734 3546 1.766 | 1778 1.300 | 3.297 | - 177 -374 4535 3071
24|2458 ' 57| -1.0E+36 -10E+36 1766 -10E+36 2291 1.093 -008 | -057| -1.0E+36 -1.0E+36
25| 2467 ' 2| 3221 2369 | 19158 -10E+36 1767, 2812 278 B77| -1.0E+36 -1.0E+36
26|2526 ' 57 -10E+36 -10E+36 1664 -1.0E+36 1.922] 2.608 | 022 125 -1.0E+36 -1.0E+3%k
27| 2626 ' 38 2431 1.491 1832 -1.0E+36/ 1.426 | 7 -109 -452| -10E+36 -1.0E+36
28|2629 ' 57| -1.0E+36 -10E+36 1642 -10E+36 1,602 | ric) 1.069 | 128 -10E+36 -1.0E+36|
26| 2539 ' 42 1374 276 | 1767 | -10E+36 2384 3 - 178 _0B5| -1.0E+36 -1.0E+36
A IEEA g 2401 e 1 g 1 Qoo 1 FAM 21 M3 _ 0 _E" A EAN A FEE
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‘ FExample: Creating Residual Files




Three level models

Level-1 (p students)

1]

Y. = Tyl + 7[1jk(apijk)+ €
Level-2 (j classrooms)

Ty — BpOk t Bp1k<quk> 0k

Ty — Bplkj t Bp1kQ<qjk) L
Level-3 (k schools)

B pOk pqO qus<Wk>

p pik — Tpqt qus<Wk>



Partitioning variance in the three level
model

Proportion of variance within classrooms (individual
student differences) = o° / (6> + 1, + 14)

Proportion of variance between classrooms within
— 2
schools =1,/ (0*+ 1, +14)

Proportion of variance between

schools = 1, / (6°+ 1, + 15)
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Three level example

Example:

0 Go to “Examples” folder and then “Chapter 4 in the
HILM directory

a0 Open “EGl.sav”, “EG2.sav”’, and “EG3.sav”
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Longitudinal models

Level 1 defined as repeated measurement
occasions

Levels 2 and 3 detfined as higher levels in the
nested structure

For example, longitudinal analysis of student
achievement

L.evel 1 = achievement scores at times 1 — t

Level 2 = student characteristics

Level 3 = school characteristics
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Longitudinal models

Two important advantages of the MLLM
approach to repeated measures:

0 Times of measurement can vary from one
person to another

0 Data do not need to be complete on all
measurement occasions
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Longitudinal models

Level-1

Ytij = nOij + nlij(time)—l— Ci
Level-2

Ty — BOOj T ij(Xij) RS

Ty = Bio; an(Xij) T L
Level-3

Booi = Yooo 1 Yoor W) + Yoo;

Bigi = Y100 T Vit (W) + Uip;
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levelllong - SP55 Data Editor

File Edit “iew Dakta Transform  fGnalvze  Graphs  Uilities  S-PLUS Wi

A variable 1s also needed to
indicate the time of occurrence
of each measurement occasion

link the level 2 tile to level 3 ‘

The set of rows represent the
repeated measures for one
participant

= (@[] =) - |m| 5 =[] & Fe S
2]y | .
T 63 AN
| id (schnumh\ math (ye hhk
1 B3 1417 592
2l B3 1417 571 1
3 B3 1417 707 | 7|
4 17 1417 45 | 0|
5|l 171 1417 BE0 1
Bl 171 1417 529 | Ty
7 150 1417 52 0
sl 190 1417 574 1
all 190 1417 531 | 2|
O 236 THT7 544 I
1) 245 1417 50 | 1]
12|| 246 1417 a0 | 2]
13|| 267 1417 545 0
14| 267 1417 545 | 1]
18| 267 1417 551 | 2
16| 279 1417 G54 | 0
17|l 279 1417 BE1 | 1]
18| 279 1417 a0 2
19| 332 1417 539 | 0|
|| 332 1417 573 | 1]
1 332 1417 723 2
22| as1 1417 BET | 0
23| 451 || 1417 6as | | 1]




‘ Fitting a growth trajectory

Achievement

9 10 11
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Linear growth for individual students

760
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GRADE 6 GRADE 7 GRADE 8

grade level
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Average linear growth by school

730

O O = DN
o O o o
\ \ \ \

/
=
=

GRADESb GRADE7 GRADES

Mean Mathematics Achievement
(@) (@) (@) (@)>) (@) (@) ~l ~l -~
ol (@] ~d (@e]
(a») (a») (a») (a»)

=~
o
|

630

Grade Level
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‘ Curvilinear Longitudinal models

Level-1

Yy =y, + my(time)+ [
Level-2

Ty = BOOj t ij(Xij) Tty

Ty = Py + By Xy + 1y
Level-3

BOOj = Yo00 T Yoo (W1)) + ugy

ij =

Yigo T 7101(\571“) T u1o"
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‘ Curvilinear growth for individual students

500

Grade
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Testing a Nested Sequence of HLLM
Longitudinal Models

Test unconditional model
Test Level 1 growth model

After establishing the level 1 growth model, use it as the
baseline for succeeding model comparisons

Add level 2 predictors

Determine if there is variation across groups

If not, tix parameter

Decide whether to drop nonsignificant predictors
Test deviance, compute R? if so desired

Add level 3 predictors

Evaluate for significance
Test deviance, compute R? if so desired
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Regression Discontinuity and Interrupted
Time Series Designs: Change 1n Intercept

Yy =my; +mydime; + E%TJrec\ztmentU. +&;;
When Treatment = 0: Treatment is
coded 0 or 1

Y, =my + 7 Time; + &

When Treatment = 1;

Y, = (ﬂol--) + 7 lime; + &
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Regression Discontinuity and Interrupted
Time Series Designs

Achievement

16 -

14 -

10 -

= ba - [~ =
|

]

e

%

9

10

Time

11

Treatment effect on
level: (7, +7,;)

110



Regression Discontinuity and Interrupted
Time Sertes Designs: Change in Slope
When Treatment = 1:

Y, = my; + m; Time;; + 73, TreatmentTime; + &,

When Treatmept —0- .
Treatment time expressed as 0’s

Yi' — ;7 before treatment and time intervals
post-treatment (i.e., 0, 0,0, 1, 2, 3
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Regression Discontinuity and Interrupted

Time Series Designs

Achievement

16 -

Vs

14

10

(— N - - - T -

10 11

Time

Treatment effect
on slope: (+73;)
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Change 1n Intercept and Slope

Y, =7y, + mylime; + 7wy 1reatment + 7ty Ireatmentlime; + &

| 4. 4

Effect of treatment
_ Effect of treatment
on intercept
on slope

When Treatment = 0

Y.

i =70 + ﬂliszel.j +&;;
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Regression Discontinuity and Interrupted
Time Series Designs

Effect of treatment |
on intercept

16 - Effect of treatment
14 - } on slope

]
{

AV

Ach

9 10 11
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Analyzing Randomized Trials (RCT) with
HIL.M

When random assignment is accomplished at the participant
level, treatment group 1s dummy coded and included in the
participant level data file

When random assignment is accomplished at the cluster

level, treatment group 1s dummy coded and included in the
cluster level data file

0 Treatment can be used to predict intercepts or slopes as
outcomes

0 Another strength of this approach 1s the ability to

empirically model treatment variation across clusters (1.e.,
replication)
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‘ Power in HILM Models




Using the Optimal Design Software

The Optimal Design Software can also be used to
estimate power 1n a variety of situations

The particular strength of this software is its
application to multilevel situations involving cluster
randomization or multisite designs

Available at:

http://sitemaker.umich.edu/group-based/optimal design software

Optimal Design
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Factors Atfecting Power in CRCT

Sample Size

0 Number of participants per cluster (N)
0 Number of clusters (])

Eftect Size

Alpha level

Unexplained/residual variance

Design Effects

0 Intraclass correlation (ICC)

0 Between vs. within cluster variance
0 Treatment variability across clusters
a0 Repeated measures

0 Blocking and matching

Statistical control
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Ettect ot Unexplained Variance on Power

Terminology: “error” versus unexplained or
residual

Residual variance reduces power

0 Anything that decreases residual variance, increases power
(e.g., more homogeneous participants, additional
explanatory variables, etc.)

Unreliability of measurement contributes to
residual variance

Treatment infidelity contributes to residual variance

Consider factors that may contribute to residual
between cluster variance
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Eftect of Design Features on Statistical
Power

= Multicollinearity (and restriction of range)

2
Sy12

Sby1.2 —

» Statistical model misspecification
0 Linearity, curvilinearity,. ..
0 Omission of relevant variables

0 Inclusion of irrelevant variables
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The number of clusters has a stronger influence
on power than the cluster size as ICC departs
from 0

m The standard error of the main effect of treatment is:

SEG) = \/4<p+<1 p)/n)

= As p increases, the effect of 7 decreases

= If clusters are variable (p 1s large), more power is gained by
increasing the number of clusters sampled than by
increasing 7
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Power in Studies with a2 Small Number of
Clusters
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Fixed vs. Random Effects

Fixed Effects Model

10 — o= 0.050
M= 32 G D.SD,G§= 0.00
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FEttect of Ettect Size Variability (o})
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Randomization as a Control Tactic

What does randomization accomplish?
0 Controls bias in assignment of treatment (works OK with small J)

0 Turns confounding factors into randomly related effects
(equivalence vs. randomness; does not work well with small J)

Applying an underpowered, small CRCT may not be
sutficient to achieve rigor

0 Consider other design approaches (e.g., interrupted time series,
regression discontinuity designs)

0 Aggressively apply other tactics for experimental or statistical control
Not all designs are created equal

No one design 1s best (e.g., randomized trials)
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Improving Power Through Planned Design

Evaluate the validity of inferences for the planned design
Design to address most important potential study weaknesses

Realistic appraisal of study purpose, context, and odds of
success

Importance of fostering better understanding of the factors
intluencing power

Planning that tailors design to study context and setting
0 Strategies for cluster recruitment
0 Prevention of missing data

0 Planning for use of realistic designs and use of other strategies
like blocking, matching, and use of covariates

126



Design For Statistical Power

Stronger treatments!

Treatment fidelity

Blocking and matching

Repeated measures

Focused tests (df = 1)

Intraclass correlation

Statistical control, use of covariates

Restriction of range (IV and DV)

Measurement reliability and validity (IV and DV)
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