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Overview and resources
Overview
Listserv:  http://www2.gsu.edu/~mkteer/semnet.html

Web site and links: 
http://www.uoregon.edu/~stevensj/EDLD607/

Software:
AMOS    EQS     LISREL Mplus SAS     R WinBugs
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Workshop Overview
How statistical tools influence scientific behavior; SEM can 
facilitate better scientific practice
Path Analysis
Model Specification
Model Estimation
Testing and Evaluating Model Fit
Kinds of SEM models

Regression models
Measurement models, Confirmatory Factor Analysis (CFA)
Hybrid models or Full LISREL models

Invariance testing
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Rationale and Overview of SEM
Flexible, comprehensive statistical analysis system 
More confirmatory than exploratory (continuum)
Allows both manifest and latent variables
Subsumes many other statistical techniques
Analysis of variances and covariances rather than raw data
Usually a large sample technique (N>200)
Allows researcher to test entire models as well as individual 
parameters
Known by several names including analysis of covariance 
structures, LISREL, SEM, “causal” modeling
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SEM and Scientific Practice

Statistical Tools: Hammers and nails
Some Important Features of Scientific Method and 
Practice:

Explicit representation of theory and hypotheses
Testing GOF of theory to data
Testing competing models
Cross-validation and replication
Making data publicly available and testable

History and Background: Path Analysis

Path analysis: precursor of SEM
Specifies relations among observed or manifest 
variables 
Uses system of simultaneous equations to 
estimate unknown parameters based on observed 
correlations
Developed by biometrician Sewell Wright, 1918-
1922
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Path Analysis

Wright’s work on relative influence of heredity and 
environment in guinea pig coloration
Developed analytic system and first path diagrams
Path analysis characterized by three components: 

a path diagram, 
equations relating correlations to unknown parameters, 
the decomposition of effects
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Path Analysis

Little application or interest in path analysis 
following Wright until sociologists Hubert Blalock 
and O. D. Duncan in 1960’s
Major developments occurred in early 1970’s 
through simultaneous work of Jöreskog, Keesing, 
and Wiley (JKW model)
LISREL and expansion of path analysis

9

Path Diagramming
A pictorial representation of a system of simultaneous 
equations (n.b. importance of explicit model representation)
A box represents an observed or manifest variable
A circle or ellipse represents an unobserved or latent variable
A single headed straight arrow represents the influence 
(“cause”) of one variable on another
A double-headed curved arrow represents a covariance or 
correlation between two variables
In some diagrams, an arrow by itself represents a residual or 
disturbance term
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Definitions and Assumptions

The “causes” of exogenous variables are outside of 
the posited model
Any variable that has a straight arrow coming to it 
is an endogenous variable
All endogenous variables have a residual term 
(unless strong assumption made)
Total effects can be decomposed into direct and 
indirect effects
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Father's Occupational
SES

Education

1940 Occupational
SES

1950 Occupational
SES

r1

r2

r3

Duncan & Hodge (1963)
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AMOS Example
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First law of path analysis: Decomposition 
of correlations

ryz = Σ βyx rxz

where:

ryz =  observed correlation of Y and Z
βyx =  any path coefficient from X to Y
rxz =  any correlational path from X to Z

Note that Y must be endogenous, the correlations of exogenous variables 
are unanalyzable and cannot be decomposed.  X’s represent all 
“causes” of Y.
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Wright’s Tracing Rules (system for writing 
equations)
Any observed correlation can be represented as the 

sum of the product of all paths obtained from 
each of the possible tracings between the two 
correlated variables.

No loops (same variable not entered more than 
once)
No going forward, then backward (“causal” flow)
Maximum of one curved arrow per path
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Examples: No loops

X1 X2

X3

X4 X5

Path can’t go through 
same variable twice. 
Path 435 is OK for 
r45, but 431235 is not

18
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Examples: No forward then back

X1

X2 X3

X4

Once you’ve gone down-
stream on a path you can’t 
go upstream.

For r23, 213 is OK, 243 is 
not.

Events can be connected by 
common causes, but not by 
common consequences
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Examples: Only one curved arrow per path

X1 X2 X3

X4 X5 X6

For r46, 4136 is OK, 
41236 is not
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Example of tracing paths

1 2 3

4 5

6

r1
r2

r3

p41 p42 p53

p65

r13

r12

p54

r23
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Specification of the model

How many variables are exogenous, how many 
endogenous?
Each arrow is represented by a coefficient
The numerical value of a compound path is equal 
to the summed product of the values of the 
constituent tracings:
For example, r14 = p41 + (p42)(r12)
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Wright’s rules for calculating variance 
explained

Same tracing approach but traces from a variable 
back to the same variable, total variance of a 
variable accounted for by the path model (R2)
For example for variable 4:

R2 = (p41)2 + (p42)2 + 2[(p41)(r12)(p42)]  
Also means that the residual for each variable can 
be calculated as 1 - R2 
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Numerical example

1 2

3

r12

p32p31

r

1       2 3

1 1.00

2 0.50  1.00

3 0.40    .35   1.00

24
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Three simultaneous equations with two unknowns

r12 = r12 = .50

r13 = p31 + (r12)(p32)

r23 = p32 + (r12)(p31)

r13 = .40 = p31 + (.50)(p32)

r23 = .35 = p32 + (.50)(p31)

25

Doubling the second equation and subtracting from 
the first:

.70 = p31 + (2.0)(p32)

- .40 = p31 + (0.5)(p32)

.30 =          (1.5)(p32)

so p32 = .30 / 1.5 = .20,

and p31 = .30
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Numerical example

1 2

3
.20

r

1       2 3

1 1.00

2 0.50  1.00

3 0.40    .35   1.00

.50

.30
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Path coefficients are equivalent to standardized 
partial regression coefficients so the same solution 
can be obtained using regression formulas*:

β31.2 = r13 – (r23)(r12) / (1 – )

= (.40) – (.35)(.50) / (1- .25)

= .30

β32.1 = r23 – (r13)(r12) / (1 – )

= (.35) – (.40)(.50) / (1 - .25)

=  .20

*These formulas only appropriate with one endogenous variable 
in model

 r2
12

 r2
12
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R2 = β31.2 r13 + β32.1 r23

= (.30)(.40) + (.20)(.35)

= .19

Can also be computed using Wright’s rules for 
calculating a variance explained:

R2 = (p31)2 + (p32)2 + 2[(p31)(r12)(p32)]

= (.30)2 + (.20)2 + 2(.30)(.50)(.20)

= .19

So, 19% of  the variance of  variable 3 is accounted for 
by the path model, 81% is residual variance. 29

Second Numerical example

r12

p32 p41

r2

2       3 4

2 1.00

3 0.70  1.00

4 0.30    .48   1.00

Given that p31 = p41

2 1

3 4

p31

r1

30
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Three simultaneous equations with two unknowns

r12 = .50

r23 = p32 + (r12)(p31) = .70

r24 = (r12)(p41) = .30

r34 = (p31)(p41) + (p32)(r12)(p41) = .48

31

Given that p31 = p41 and subtracting the third 
equation from the second:

.70 = p32 + (r12)(p31) 

- .30 =          (r12)(p31) 

.40 = p32

so r23 = .40 + (r12)(p31) = .70

(r12)(p31) = .30 

32

(p31)2 + (p32)(r12)(p41) = .48 

(p31)2 + p32 + .30       = .48

(p31)2 + (.40)(.30)       = .48

(p31)2 + .12                = .48

(p31)2 = .36

p31                                        = .60

(r12)(p31) = .30

(r12)(.60) = .30

r12 = .50
33

2 1

3 4

.50

.40 .60
.60

r1 r2

34

Can compute variance of  variable 3 explained by the model 
using Wright’s rules:

R2 = (p31)2 + (p32)2 + 2[(p31)(r12)(p32)]

= (.40)2 + (.50)2 + 2(.40)(.50)(.50)

= .61

So, 61% of  the variance of  variable 3 is accounted for by the 
path model, 39% is residual variance.

Can compute variance of  variable 1 explained directly as r2 = 
.602 = .36 explained by the model

So, residual variance for variable 1 is 1 - .36 = .64
35

2 1

3 4

.50

.40 .60
.60

.39 .64

36
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Model Specification and Identification
Process of formally stating the variables of interest and 
the nature of relations among them
In GLM statistics, specification is often implicit (e.g., 
correlation vs. regression; independent residuals) or 
emergent (as in EFA) 
In SEM, model specification more explicit, especially 
through path diagramming and resultant specification of 
equations
In SEM, can specify Latent Variables (LV), manifest 
variables (MV), direct effects, indirect effects, and 
unanalyzed associations

37 38

Model Specification

In addition to specification of variables and their 
relations, parameters are specified as:

Fixed
Free
Constrained

Goodness Of Fit (GOF) tests examine the way in 
which the fixed portions of the model fit the 
observed data (observed v-c matrix)

39

Model Specification 

All models wrong to some degree vs. perfect 
models
Debate over close fit versus exact fit
Can only conclude a close-fitting model is plausible 
not  a correct model
There are always alternative models that will fit to a 
similar degree.  Distinctions in this case depend on 
substantive or theoretical considerations

40

41

“All models are wrong,

some are useful”

– George Box

Model Specification
In an SEM model, can have reflective or formative 
measurement

Reflective – constructs “cause” manifest variables
Formative – construct is formed by manifest variables 
(e.g., SES)

For reflective, desirable to have 3 or more manifest 
variables for each latent variable (but more may not 
always be better, c.f. Marsh, et al)
When there are not multiple indicators, a latent 
variable is omitted and represented by an error 
perturbed manifest variable

42
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Model Specification

Specification requires the researcher to describe the 
pattern of directional and nondirectional 
relationships among the variables

Directional effects are regression coefficients
Nondirectional effects are covariances
Along with variances these three types of coefficients 
represent the model parameters
For formative measurement, construct automatically 
becomes an endogenous latent variable with a residual

43

Model Specification: Parameters in SEM 
models

Every exogenous variable (MV, LV, residual) has a variance 
defined as a model parameter
Variances of endogenous variables are not parameters but are 
implied by influences on the variable; that is, their variance is 
an algebraic function of the “causes” of the variable hence 
not parameters to be estimated
All covariances are parameters
Nondirectional associations among endogenous variables are 
not allowed
All directional effects are parameters (LV on LV, LV on MV, 
residual on MV, etc.)

44

AMOS Example

45

Model Specification: Parameters in SEM 
models

Fixed parameters, often based on requirements to make 
model identifiable and testable
Two choices to establish a scale for each latent variable 
including residuals:

Can fix variance of latent variable
Can fix one regression coefficient for manifest indicator 
of latent (sets scale of latent to scale of manifest)

Free parameters—in essence an unspecified aspect of 
model, more exploratory than confirmatory and not 
represented in the GOF test

46

Model Specification: Parameters in SEM 
models

Free parameters are usually tested individually for 
statistical significance. Most commonly, test is 
whether parameter significantly differs from zero
Constrained parameters – parameters may also be 
constrained to a range of values in some software 
or constrained to be equal to another parameter
The number of estimated parameters is equal to the 
total number of parameters minus the number of 
fixed parameters

47

Model Identification

For each free parameter, it is necessary that at least 
one algebraic solution is possible expressing that 
parameter as a function of the observed variances 
and covariances
If at least one solution is available, the parameter is 
identified
If not, the parameter is unidentified
To correct this, the model must be changed or the 
parameter changed to a fixed value

48
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Model Identification
In addition to the identification of individual 
parameters (and the definition of latent variables 
through the fixing of a variance or a regression 
coefficient), model as a whole must be identified 
Model identification requires that the number of 
estimated parameters must be equal to or less than 
the number of observed variances and covariances 
for the model as a whole
Number of observed variances-covariances minus 
number of parameters estimated equals model 
degrees of freedom

49

Model Identification
Number of observed variances-covariances = 

[k(k + 1)] / 2, 
where k = the number of manifest variables in the 
model
If df are negative (more estimated parameters than 
observations), the model is underidentified and no 
solution is possible
If df = 0, the model is just identified, a unique 
solution to equations is possible, parameters can be 
estimated, but no testing of goodness of fit is 
possible
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Model Identification

If df > 0, the model is overidentified (more 
equations than unknown parameters) and there is 
no exact solution, more than one set of parameter 
estimates is possible
This is actually beneficial in that it is now possible 
to explore which parameter estimates provide the 
best fit to the data

51

Simple example
x + y = 5 (1)

2x + y = 8 (2)
x + 2y = 9 (3)

With only equation 1, there are an infinite number of 
solutions, x can be any value and y must be (5 – x).  
Therefore there is a linear dependency of y on x and there is 
underidentification
With two equations (1 and 2), a unique solution for x and y 
can be obtained and the system is just identified.
With all three equations there is overidentification and there 
is no exact solution, multiple values of x and y can be found 
that satisfy the equations; which values are “best”?

52

Model Identification

Disconfirmability – the more overidentified (the 
greater the degrees of freedom) the model, the 
more opportunity for a model to be inconsistent 
with the data
The fewer the degrees of freedom, the more 
“overparameterized” the model, the less 
parsimonious

53

Model Identification

Also important to recognize possibility of 
empirically equivalent models (see Lee & 
Hershberger, 1990)
Two models are equivalent if they fit any set of data 
equally well
Often possible to replace one path with another 
with no impact on empirical model fit (e.g.,  A    B 
versus A    B versus A    B)

54
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Model Identification

Researchers should construct and consider 
alternative equivalent models and consider the 
substantive meaning of each
Existence of multiple equivalent models is 
analogous to the presence of confounding variables 
in research design
Distinctions among equivalent models must be 
made on the basis of theoretical and conceptual 
grounds

55

Model Estimation

Unlike the least squares methods common to ANOVA 
and regression, SEM methods usually use iterative 
estimation methods 
Most common method is Maximum Likelihood 
Estimation (ML)
Iterative methods involve repeated attempts to obtain 
estimates of parameters that result in the “best fit” of the 
model to the data

56

Model Estimation
Fit of an SEM model to the data is evaluated by estimating 
all free parameters and then recomputing a variance-
covariance matrix of the observed variables that would 
occur given the specified model
This model implied v-c matrix,       , can be compared to 
the observed v-c matrix, S, to evaluate fit
The difference between each element of the implied and 
observed v-c matrix is a model residual
This approach leads to Goodness of Fit (GOF) testing in 
SEM (more on this later)

)ˆ(θΣ

57

Model Estimation
Iterative estimation methods usually begin with a set of start 
values
Start values are tentative values for the free parameters in a 
model
Although start values can be supplied by the user, in modern 
software a procedure like two-stage least squares (2SLS) is 
usually used to compute start values

2SLS is non-iterative and computationally efficient
Stage 1 creates a set of all possible predictors
Stage 2 applies ordinary multiple regression to predict each 
endogenous variable
Resulting coefficients are used as initial values for estimating the 
SEM model

58

Model Estimation
Start values are used to solve model equations on first 
iteration
This solution is used to compute the initial model implied 
variance-covariance matrix
The implied v-c matrix is compared to the observed v-c 
matrix; the criterion for the estimation step of the process is 
minimizing the model residuals 
A revised set of estimates is then created to produce a new 
model implied v-c matrix which is compared to the previous 
model implied v-c matrix (sigma-theta step 2 is compared to 
sigma theta step 1) to see if residuals have been reduced
This iterative process is continued until no set of new 
estimates can be found which improves on the previous set 
of estimates

59

Model Estimation

The definition of lack of improvement is called the 
convergence criterion
Fit landscapes
Problem of local minima

60
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Model Estimation

Lack of convergence can indicate either a problem 
in the data, a misspecified model or both
Heywood cases
Note that convergence and model fit are very 
different issues

61

Model Estimation: Kinds of errors in 
model fitting

Definitions:
= the population variance-covariance matrix

S   = the sample variance-covariance matrix
= the population, model implied v-c matrix
= the sample estimated, model implied v-c 

matrix

Overall error: 
Errors of Approximation: 
Errors of Estimation:

-

)ˆ(θΣ−Σ

Σ

)(θΣ
)ˆ(θΣ

)(θΣ−Σ

)ˆ()( θθ Σ−Σ
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Estimation Methods
Ordinary Least Squares (OLS) – assesses the sums 
of squares of the residuals, the extent of differences 
between the sample observed v-c matrix, S, and the 
model implied v-c matrix, 

OLS =

Note functional similarity of the matrix formulation for v-c matrices 
to the more familiar OLS expression for individual scores on a 
single variable:

)ˆ(θΣ
2)]ˆ([ θΣ−Strace

2)( XX −Σ
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Estimation Methods

Generalized Least Squares (GLS) – like the OLS 
method except residuals are multiplied by S-1, in 
essence scales the expression in terms of the 
observed moments

21]))ˆ(([()2/1( −Σ− SStrace θ

64

Estimation Methods

Maximum Likelihood – Based on the idea that if 
we know the true population v-c matrix,    , we can 
estimate the probability (log-likelihood) of 
obtaining any sample v-c matrix, S.

where k = the order of the v-c matrices or number of measured 
variables

Σ

]))ˆ(([)ln)ˆ((ln 1 kStraceS −Σ⋅+−Σ −θθ

65

Estimation Methods: Maximum Likelihood

In SEM, both S and are sample estimates of    , 
but the former is unrestricted and the latter is 
constrained by the specified SEM model
ML searches for the set of parameter estimates that 
maximizes the probability that S was drawn from

, assuming that         is the best estimate of 

Σ)ˆ(θΣ

)ˆ(θΣ)(θΣ
)(θΣ

66
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Estimation Methods: Maximum Likelihood

Note in equation that if S and         are identical, first term 
will reduce to zero
If S and         are identical,                 will be an identity 
matrix, the sum of its diagonal elements will therefore be 
equal to k and the second term will also be equal to zero

]))ˆ(([)ln)ˆ((ln 1 kStraceS −Σ⋅+−Σ −θθ

)ˆ(θΣ

)ˆ(θΣ 1)ˆ( −Σ⋅ θS
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Estimation Methods: Maximum Likelihood

ML is scale invariant and scale free (value of fit 
function the same for correlation or v-c matrices or 
any other change of scale; parameter estimates not 
usually affected by transformations of variables)
The ML fit function is distributed as χ2

ML depends on sufficient N, multivariate 
normality, and a correctly specified model

68

Other Estimation Methods

Asymptotically Distribution Free (ADF) 
Estimation

Adjusts for kurtosis; makes minimal distributional 
assumptions
Requires raw data and larger N
Computationally expensive
Outperforms GLS and ML when model is correct, N is 
large, and data are not multivariate normal (not clear how 
much ADF helps when non-normality small or moderate)

69

Other Estimation Methods
Unweighted Least Squares – Very similar to OLS, uses ½ the 
trace of the model residuals

ULS solutions may not be available for some parameters in complex 
models
ULS is not asymptotically efficient and is not scale invariant or scale 
free

Full Information Maximum Likelihood (FIML) – equivalent 
to ML for observed variable models

FIML is an asymptotically efficient estimator for simultaneous 
models with normally distributed errors
Only known efficient estimator for models that are nonlinear in their 
parameters
Allows greater flexibility in specifying models than ML (multilevel 
for example)

70

Estimation Methods
Computational costs (least to most): 
OLS/ULS, GLS, ML, ADF
When model is overidentified, value of fit function at 
convergence is approximated by a chi-square distribution: 
(N-1)(F) = χ2

Necessary sample size 100-200 minimum, more for more 
complex models
If multivariate normal, use ML
If robustness an issue, use GLS, ADF, or bootstrapping
ML most likely to give misleading values when model fit is 
poor (incorrect model or data problems)

71

Intermission

72
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Model Testing and Evaluation

After estimating an SEM model, overidentified 
models can be evaluated in terms of the degree of 
model fit to the data
Goodness of Fit (GOF) is an important feature of 
SEM modeling because it provides a mechanism 
for evaluating adequacy of models and for 
comparing the relative efficacy of competing 
models

73

Evaluating Model Fit
After estimation has resulted in convergence, it is 
possible to represent the degree of correspondence 
between the observed and model implied v-c 
matrices by a single number index
This index is usually referred to as F, the fitting 
function (really lack of fit function)
The closer to zero, the better the fit
The exact definition of the fit function varies 
depending on the estimation method used (GLS, 
ML, etc.)

74

Goodness of Fit
If               , then the estimated fit function (F) should 
approximate zero, and the quantity (N – 1)( F) approxi-mates 
the central chi-square distribution with 
df = (# sample moments – # estimated parameters)
GOF can be evaluated by determining whether the fit 
function differs statistically from zero
When              , then the noncentral chi-square distribution 
applies
Noncentral chi-square depends on a noncentrality parameter 
(λ) and df (if λ = 0 exactly, central χ2 applies)
Lambda is a measure of population “badness of fit” or errors 
of approximation

)θ̂(Σ=Σ

)θ̂(Σ≠Σ

75

Goodness of Fit
The χ2 test is interpreted as showing no significant departure of 
the model from the data when p ≥ .05
When p < .05, the interpretation is that there is a statistically 
significant departure of one or more elements from the observed 
data
As in other NHST applications, the use of the χ2 test in SEM 
provides only partial information and is subject to 
misinterpretations:

Given (N-1) in the formula, for any nonzero value of F, there is some 
sample size that will result in a significant χ2 test 
The χ2 test does not provide clear information about effect size or 
variance explained
It may be unrealistic to expect perfectly fitting models, especially when 
N is large
Type I and Type II errors have very different interpretations in SEM

76

Goodness of Fit
Recognition of problems in using the χ2 test, led to 
the use of the χ2/df ratio (values of about 2-3 or less 
were considered good).  
Further research on properties of fit indices led to 
development of many fit indices of different types
Many of the fit indices make comparisons between 
a model of interest or target model and other 
comparison models
Some incremental or comparative indices provide 
information about variance explained by a model in 
comparison to another model

77

Goodness of Fit
Two widely used comparison models are the saturated model
and the null or independence model
The saturated model estimates all variances and covariances 
of the variables as model parameters; there are always as 
many parameters as data points so this unrestricted model 
has 0 df
The independence model specifies no relations from one 
measured variable to another, independent variances of the 
measured variables are the only model parameters
The restricted, target model of the researcher lies somewhere 
in between these two extremes

78
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1

1

1

1

1

1

1

1

Saturated Model

79

1

1

1

1

1

1

1

1

Independence Model

80

Absolute Fit Indices

GFI =                  Where FT is the fit of the target model 
and FS is the fit of the saturated model 

AGFI = the GFI adjusted for df; AGFI penalizes for 
parameterization:

GFI and AGFI intended to range from 0 to 1 but can take 
on negative values

S

T

F
F

−1

)1(
)2(
)1(1 GFI

df
kk

−⋅
⋅
+

−
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Absolute Fit Indices

Akaike’s Information Criterion (AIC) – Intended to 
adjust for the number of parameters estimated

AIC = χ2 + 2t, where t = # parameters estimated

Corrected AIC – Intended to take N into account

CAIC = χ2 + (1+logN)t

82

Absolute Fit Indices

ECVI – rationale differs from AIC and CAIC; 
measure of discrepancy between fit of target model 
and fit expected in another sample of same size

ECVI = )1/((2)]1/([ 2 −+− Ntnχ

83

Absolute Fit Indices

For AIC, CAIC, and ECVI, smaller values denote 
better fit, but magnitude of the indices is not 
directly interpretable
For these indices, compute estimates for alternative 
SEM models, rank models in terms of AIC, CAIC, 
or ECVI and choose model with smallest value
These indices are useful for comparing non-nested 
models

84
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Absolute Fit Indices

RMR or RMSR – the Root Mean Square Residual is 
a fundamental measure of model misfit and is 
directly analogous to quantities used in the general 
linear model (except here the residual is between 
each element of the two v-c matrices):

RMR = )1(
)]ˆ([2

2

+
Σ−

ΣΣ
kk

S θ
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Absolute Fit Indices

SRMR – Standardized RMR
The RMR is expressed in the units of the raw residuals of 
the variance-covariance matrices
The SRMR is expressed in standardized units (i.e., 
correlation coefficients)
The SRMR therefore expresses the average difference 
between the observed and model implied correlations
SRMR is available in AMOS only through tools-macros

86

Absolute Fit Indices

RMSEA – Root Mean Square Error of 
Approximation

Designed to account for decrease in fit function due only to 
addition of parameters
Measures discrepancy or lack of fit “per df”

RMSEA = dfF /ˆ

87

Incremental Fit Indices
Normed Fit Index (NFI; Bentler & Bonett, 1980) –
represents total variance-covariance among observed 
variables explained by target model in comparison to the 
independence model as a baseline

NFI = 

Where B = baseline, independence model and T = target 
model of interest

Normed in that , hence 0 to 1 range

222 /)( BTB χχχ −

22
TB χχ ≥
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Incremental Fit Indices

Tucker-Lewis Index (TLI), also known as the Non-
Normed Fit Index (NNFI) since it can range 
beyond 0-1
Assumes multivariate normality and ML estimation

TLI = ]1)/[(
)]/()/[(

2

22

−
−

BB

TTBB

df
dfdf

χ
χχ
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Incremental Fit Indices
A third type of incremental fit indices depends on 
use of the noncentral χ2 distribution

If conceive of noncentrality parameters associated with a 
sequence of nested models, then:
So the noncentrality parameter and model misfit are 
greatest for the baseline model, less for a target model of 
interest, and least for the saturated model
Then:  
δ assesses the reduction in misfit due to model T
A statistically consistent estimator of delta is given by the 
BFI or the RNI (can range outside 0-1)
CFI constrains BFI/RNI to 0-1

STB λλλ ≥≥

BTB λλλδ /)( −=
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Incremental Fit Indices

BFI/RNI = 

CFI = 

)(
)]()[(

2
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Hoelter’s Critical N

Hoelter's "critical N" (Hoelter, 1983) reports the  
largest sample size for which one would fail to 
reject the null hypothesis there there is no model 
discrepancy 
Hoelter does not specify a significance level to be 
used in determining the critical N, software often 
provides values for significance levels of .05 and .01
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Which Indices to Use?

Use of multiple indices enhances evaluation of fit
Recognize that different indices focus on different 
aspects or conceptualizations of fit

Don’t use multiple indices of the same type (e.g., RNI, 
CFI)
Do make sure to use indices that represent alternative 
facets or conceptualizations of fit (e.g., SRMR, CFI)
Should always report χ2 , df, and at least two other indices
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Cutoff Criteria

Hu & Bentler
SRMR .06
RMSEA  .05 - .08
RNI, TLI, CFI  .95

Exact vs. close fit debate
Marsh, et al.
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Comparing Alternative Models
Some indices include inherent model comparisons

Comparisons are sometimes trivial
Stronger to compare target model to a plausible competing model that 
has theoretical or practical interest 

Nested models can be tested using subtracted difference 
between χ2 for each model (df is difference in df between the 
two models)
Can rank models using indices like AIC, BIC when not nested
Can compare variance explained by comparing TLI, CFI or 
other incremental fit results (.02 or more, Cheung & 
Rensvold)
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Evaluating Variance Explained

Inspect R2 for each endogenous variable; consider 
the size of the uniqueness as well, especially if 
specific and error variance can be partitioned
Incremental fit indices provide an indication of 
how well variance is explained by the model
Can be strengthened by using plausible comparison 
models

96
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Kinds of SEM Models

Regression models
Measurement Models
Structural Models
Hybrid or full models

97

SEM Models With Observed Variables 

Directly observed explanatory or predictor 
variables related to some number of directly 
observed dependent or outcome variables 
No latent variables 
These SEM models subsume GLM techniques like 
regression 
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Model Specification
The general SEM Model with observed variables only is: 

y = βy + Γx + ζ
where:
y   = a p X 1 column vector of endogenous observed 

variables (Y’s);
x   = a q X 1 column vector of exogenous observed 

variables (X’s);
β = an p X p coefficient matrix defining the relations 

among endogenous variables;
Γ = an p X q coefficient matrix defining the relations from 

exogenous to endogenous variables;
ζ  = an p X 1 vector of residuals in the equations.  
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Model Specification

The endogenous variables (Y’s) can be represented 
by a set of structural equations relating the y’s, x’s, 
and residuals through beta, gamma, and zeta 
matrices
These matrices specify the relations among the 
observed variables
The residuals are also assumed to be uncorrelated 
with the X’s 
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Model Specification

The two major types of structural equation models 
with observed variables are recursive and 
nonrecursive models

Recursive models have no reciprocal relations or feedback 
loops
When this is true, the Beta matrix is a lower triangular 
matrix 
Nonrecursive models allow feedback loops
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Observed Variable Example

An example of these models is presented by Bollen 
(1989). The union sentiment model is presented in 
the path diagram below
In this model, worker’s sentiment towards unions, 
Y3, is represented as a function of support for labor 
activism, Y2, deference towards managers, Y1, years 
in the textile mill, X1, and workers age, X2
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Years, X1

Age, X2

Sentiment, Y3

Activism, Y2

Deference, Y1

e1

e2

e3

1

1

1
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Specification of the Structural Equations

Given the model above, the following set of 
structural equations define the model:

Y1 = γ12 X2 + ζ1

Y2 = β21 Y1 +  γ22 X2 + ζ2

Y3 = β31 Y1 +  β32 Y2 + γ31 X1 + ζ3
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Equations in Matrix Form
Y matrix - a p X 1 column vector of endogenous observed 

variables
β matrix - a p X p coefficient matrix defining the relations 

among endogenous variables
Γ matrix - a p X q coefficient matrix defining the relations 

from exogenous to endogenous variables
X matrix - a q X 1 column vector of exogenous observed 

variables 
ζ matrix - a p X 1 vector of residuals in the equations
phi (Φ) matrix - a q X q variance-covariance matrix among 

the exogenous variables
psi (ψ) matrix - a p X p variance-covariance matrix among 

the residuals (zetas)
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Matrix Practice

Construct the weight matrices necessary to specify 
the union sentiment model (beta, gamma, and 
zeta)

Years, X1

Age, X2

Sentiment, Y3

Activism, Y2

Deference, Y1

e1

e2

e3

1

1

1
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Matrix Practice

Construct the variance-covariance matrices (phi and 
psi) necessary to specify the union sentiment model 

Years, X1

Age, X2

Sentiment, Y3

Activism, Y2

Deference, Y1

e1

e2

e3

1

1

1
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Equation in Matrix Form
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phi11

Years, X1

phi22

Age, X2

Sentiment, Y3

Activism, Y2

Deference, Y1

gamma 3,1

gamma 2,2

beta 3,2

beta 3,1beta 2,1

phi 2,1

psi22

Zeta 2

1

psi11
Zeta 1
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psi33
Zeta 3

1

gamma 1,2
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Bootstrapping
A statistical resampling/simulation technique that 
provides a means to estimate statistical parameters 
(most often a standard error)

Can estimate standard errors even when formulas are 
unknown (R2)
Obtain independent estimates when assumptions are 
violated (e.g., nonnormal data)
Can be also be used for comparison of:

Competing models (Bollen & Stine, 1992)
Different estimation techniques (i.e., ML, ADF, GLS)
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Bootstrapping
Two types of bootstrapping:

Nonparametric – sample treated as a pseudo-population; 
cases randomly selected with replacement
Parametric – Samples randomly drawn from a population 
distribution created based on parameters specified by 
researcher or by estimation from sample

Size of original sample and number of simulated 
samples both important
Representativeness of original sample linked to 
degree of bias in bootstrapped results
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AMOS Example
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Confirmatory Factor Analysis (CFA) 
Models

Exploratory Factor Analysis (EFA) models depend on an 
emergent, empirically determined specification of the relation 
between variables and factors
CFA models provide an a priori means of specifying and testing 
the measurement relations between a set of observed variables 
and the latent variables they are intended to measure
CFA models allow for the explicit representation of measurement 
models
CFA models are particularly useful in research on instrument 
validity
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Model Specification
The general CFA model in SEM notation is: 

Xi = ΛX ξk + θδ
where:

Xi =  a column vector of observed variables;

ξk =  ksi, a column vector of latent variables;

ΛX =  lambda, an i X k matrix of coefficients defining the 
relations between the manifest (X) and latent (ξ) 
variables;

θδ =  theta-delta, an i X i variance/covariance matrix of 
relations among the residual terms of X
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Confirmatory Factor Analysis (CFA) 
Models

This general equation indicates that each manifest 
variable can be represented by a structural equation 
relating lambda, ksi, and theta-delta
Conceptually this means that a set of manifest 
variables can be represented in terms of the 
constructs they are intended to measure (ksi’s), and 
variance specific to the variable that is unrelated to 
the construct (the residual)
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Ksi 1

X3

TD 3

Lambda 3,1

1

X2

TD 2

Lambda 2,1

1

X1

TD 1

1

1

Ksi 2

X6

TD 6

X5

TD 5

X4

TD 4

Lambda 6,2

1

Lambda 5,2

1

1

1

Phi 1,2
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Specification of the Structural Equations

Given the model above, the following set of 
structural equations define the model:

X1 = Λ11 ξ1 + θδ11

X2 = Λ21 ξ1 + θδ22

X3 = Λ31 ξ1 + θδ33

X4 = Λ42 ξ2 + θδ44

X5 = Λ52 ξ2 + θδ55

X6 = Λ62 ξ2 + θδ66
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Equations in Matrix Form
Of course these equations can also be represented in 
matrix form which we will do in class
An additional matrix is also necessary for model 
estimation, the phi (Φ) matrix, which is a k X k variance-
covariance matrix specifying the relationships among the 
latent (ξ) variables
The model implied v-c matrix for CFA is:

= ΛXΦΛX + θδ

118

)ˆ(θΣ

Model Identification
Since latent variables are inherently unobserved, they 
have no scale or units of measurement.  In order to 
represent the latent variable a scale must be defined. This 
is usually done arbitrarily by one of two methods:

Method 1: the coefficient (ΛX, "loading") for one of 
the manifest variable is not estimated, but is 
constrained to an arbitrary value (typically 1.0). This 
defines the units of measure for all remaining lambdas 
and for the variance of the relevant ksi
Method 2: the variances of the latent variables (ξkk) are 
set to 1.0
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Model Identification
Identification tested by examining whether the number of 
observed variances/covariances vs. the number of 
parameters to be estimated
Using the t-rule (see Bollen, p. 243), for the example above 
with 6 manifest variables there are (q)(q + 1)/2 elements in 
the variance/covariance matrix = (6 X 7)/2 = 21 elements
The number of freely estimated parameters in the model is t 
= 4 lambda estimates (remember the constraints placed by 
Method 1 above), 3 phi estimates, and 6 theta-delta estimates 
= 13 parameters.  So the t-rule is satisfied (and by the way 
the model therefore has 21 - 13 = 8 degrees of freedom)
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Model Estimation
As long as the SEM model is overidentified, iterative 
estimation procedures (most often Maximum 
Likelihood) are used to minimize the discrepancies 
between S (the sample variance-covariance matrix) and      

(the model implied estimate of the population 
variance-covariance matrix) 
Discrepancies are measured as F, the fitting function. 
The CFA model can be used to attempt to reproduce S 
through the following equation (note that now the phi 
matrix becomes part of the model):

= ΛXΦΛX + θδ
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)ˆ(θΣ

)ˆ(θΣ

Model Estimation
This equation indicates that a variance/covariance matrix 
is formed through manipulation of the structural 
matrices implied by the specified CFA model.  This, then 
provides a basis for evaluating goodness-of-fit (GOF) as 
in:

χ2 = (N - 1) F
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AMOS Example
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SEM Models With Observed and Latent 
Variables 

Klein refers to these models as “hybrid” models
Also known as the full LISREL model
Full Models include:

A combination of directly observed and unmeasured latent 
variables
Some number of explanatory or predictor variables with 
relations to some number of dependent or outcome 
variables 
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SEM Models With Observed and Latent 
Variables

Full Models include:
Measurement models

Specify relations from Latent Ksi’s to Measured X’s (exogenous)
Specify relations from Latent Eta’s to Measured Y’s 
(endogenous)

Structural, path, or “causal” models
Specify relations from Ksi’s to Eta’s 
Specify relations from one Eta to another Eta

Structural residuals for latent Etas (equation residuals)
Measurement residuals for X’s and Y’s
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Fundamental Equations for the Full Model

The structural equation model:
η = βη + Γξ + ζ

The measurement model for Y:
y = Λyη + ε

The measurement model for X:
x = Λxξ + δ

Eta, a latent, 
endogenous 

variable
Beta, a regression 

coefficient relating one eta 
to another

Ksi, a latent, exogenous 
variable

Gamma, a regression coefficient 
relating a Ksi to an Eta

Zeta, a regression coefficient 
relating equation residuals to etas

A manifest, 
endogenous variable Lambda Y, a matrix of  regression coefficients 

relating Eta’s to manifest Y variables

Epsilon, a regression coefficient relating a 
measurement residual to a manifest Y variableA manifest, exogenous 

variable Lambda X, a matrix of  regression coefficients 
relating Ksi’s to X variables

Delta, a regression coefficient relating a 
measurement residual to a manifest X variable
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Model Specification

The full SEM Model includes the following matrices:
y = a p X 1 vector of observed outcome measures
x = a q X 1 vector of observed predictor variables
η = an m X 1 vector of endogenous latent variables
ξ = an n X 1 vector of exogenous latent variables
ε = a p X 1 vector of measurement errors in y
δ = a q X 1 vector of measurement errors in x
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Model Specification
Full SEM Model matrices continued:
ΛY – a p X m weight matrix representing paths from endogenous

latent variables (η) to observed Y variables
ΛX – a q X n weight matrix representing paths from exogenous

latent variables (ξ) to observed X variables
Γ – an m X n coefficient matrix defining the relations from 

exogenous to endogenous variables
β – an m X m coefficient matrix defining the relations among

endogenous variables
ζ – an m X 1 vector of equation residuals in the structural 

relationships between η and ξ
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Model Specification

The full SEM Model also includes the following variance-
covariance matrices:
Φ – an n X n matrix of ξ
Ψ – an m X m matrix of ζ
Θδ – a q X q matrix of measurement residuals (δ)

Θε – a p X p matrix of measurement residuals (ε)
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X Y

Y

Ksi

Eta

Eta
Gamma

Gamma

Structural

Residual

Structural

Residual

Zeta

Zeta

Phi

Psi

Psi

Lambda 
X

Lambda Y

Lambda Y

Measuremen
t

Residual

Delta

Measurement

Residual

Epsilon

Measurement

Residual

Epsilon

Theta Delta

Theta Epsilon

Theta Epsilon

Ksi, a latent, exogenous variable

Eta, a latent, endogenous 
variable

Eta, a latent, 
endogenous variable

Gamma, a regression path 
from Ksi to Eta

Gamma, a regression path 
from Ksi to Eta

Beta, a regression path from 
Eta to Eta

Beta

Zeta, a residual in the 
structural equations

Zeta, a residual in the 
structural equations

These components of  the path diagram represent the structural or 
“causal” portion of  the SEM model

The remaining components represent the measurement models

Lambda X, a regression path 
from Ksi to XPhi, a variance-covariance 

matrix of  the Ksi’s

Psi, a variance-covariance matrix of  
the structural residuals

Psi, a variance-covariance matrix of  
the structural residuals

Lambda Y, a regression 
path from Eta to Y

Lambda Y, a regression 
path from Eta to Y

There are two sets of  
measurement residuals:

Deltas, with paths from X variables to 
measurement residuals

And Epsilons, with paths from Y 
variables to measurement residuals

And Epsilons, with paths from Y 
variables to measurement residuals

There are two variance-covariance 
matrices associated with the 

measurement residuals, Theta Delta 
for the X variables and Theta Epsilon 

for the Y variables

In combination, these matrices represent the full LISREL or 
hybrid SEM model
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X Y
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ξ η

η
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γ

ζ

γ
β

ψ

ψ

δ

ε

ε

λX λY

λY

Θδ
Θε

Θε
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Full Models

Some debate on how to properly evaluate fit for 
the full model

Conduct multiple steps, measurement models first, full 
models later
Analyze model all in one step
See special issue of journal SEM, volume 7(1), 2000
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Invariance Testing with SEM Models
A powerful approach to testing group differences

Groups can be levels of typical categorical variables (e.g., gender, 
ethnicity, treatment vs. control, etc.)
Groups can be different samples as in cross-validation

Unlike typical applications in GLM, invariance testing allows 
more varied hypotheses about the way in which groups 
differ.  One can test the statistical equivalence of:

Model structure
Regression coefficients
Correlations
Variances
Residuals
Means, Intercepts
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Invariance Testing with SEM Models

Invariance testing involves the specification of 
multiple hypotheses about how groups differ
Hypotheses are usually arranged from more global 
or general hypotheses to more specific

For example, it usually makes sense to first test a 
configural or structural hypothesis that the same SEM 
model fits well from group to group
This general hypothesis can then be followed by more 
specific tests of equality constraints in particular 
parameters
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Invariance Testing with SEM Models
Some analysts prefer to test a first hypothesis that examines the 
equality of variance-covariance matrices

If there are no significant differences, there is no reason to proceed
If significant differences are found then additional invariance tests are 
performed

Hypotheses should be ordered a priori
This creates a hierarchy of invariance hypotheses
The hierarchy is nested in that each step adds constraints to the prior 
step(s)

Chi square difference tests and differences in GOF indices are 
used to determine if a “lack of invariance” has occurred from 
one step to another
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Comparing Nested Models
Models are considered nested when:

Some function of the free parameters of one model equals another free 
parameter in a second model, or
Free parameter(s) in one model are expressed as fixed constants in a 
second model

Simplest example is when free parameters in one model are a 
subset of the free parameters in a second model
Examples:

Two models with and without correlated residuals
Two models one which has some λ’s to be equal
Two models one of which fixes a parameter to a constant value 

(e.g., Φ11 = 2.0)
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Invariance Testing with SEM Models

One common testing hierarchy:
Model form
Lambda matrices equal
Phi matrices equal
Theta Delta matrices equal

When invariance fails, post hoc testing can be done using 
“partial invariance” tests examining each individual element in 
the matrix
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Invariance Testing with SEM Models: 
Example of Results
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__________________________________________________________________________________

Comparison χ2 df       χ2
Δ dfΔ CFI  RMSEA   TLI   SRMR          

__________________________________________________________________________________

I. Calibration: Southwestern Sample 387     8         – – .983     .065       .974   .024

II. Cross-validation: Standardization Sample 
A. Freely Estimated 632    16        – – .985     .059       .978    .024
B.  Λ Fixed 739    20       107   4      .983     .057       .977   .029

C.  Λ, Φ Fixed 929    23       190   3      .978     .060       .974   .033
D. All Parameters Fixed 1444    29       516   6      .966     .067       .965   .037

__________________________________________________________________________________

Note.  Step II.A. represents testing of  both samples together, hence the df  are doubled 
and the chi-square is equivalent to the sum of  the chi-square for each separate group.
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Invariance Testing with SEM Models

Multiple groups can be compared at once 
In the same way as GLM techniques like ANOVA, 
significant omnibus tests are followed by more specific, 
focused tests to isolate differences

This is necessary when more than two groups are being 
compared
Also necessary given multiple parameters in a particular 
matrix
Post hoc testing to determine which individual elements of a 
matrix are significant is referred to as “partial” invariance 
tests
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Steps in Invariance Testing with AMOS

Define the groups or samples
Double click on the groups window to open the “manage 
Groups” dialog box
Create multiple groups and group names:
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Steps in Invariance Testing with AMOS

Associate the data with the group names
Method 1: use coded variable values in data set
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Steps in Invariance Testing with AMOS

Define code values for the grouping variable:
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Steps in Invariance Testing with AMOS

Associate the data with the group names
Method 2: use separate data files for each group or sample

144
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Steps in Invariance Testing with AMOS

Define one of the groups as the referent group
For this group, label all parameters to be tested

This can be done manually if you want to control 
parameter labels
Less laborious is using the AMOS macro:
tools macros name parameters

Use view         matrices to create constraints from 
one group to another by copying the labels from 
one group into the matrix for the other group (we 
will look at this in detail in class)
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Automatic Method of Invariance Testing 
with AMOS

After setting up data files and groups and 
specifying SEM model, click on the multiple groups 
icon:
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Automatic Method of Invariance Testing 
with AMOS

147 148

AMOS Example

149 150
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Other Models
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