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‘ An Introductory Problem or Two:

| Which Study is Stronger?| | A pcyer: Study B

Study A: #(398) = 230,p = .022 |

| o’forSmudyA=.01 |

Study B: 7(88) =230,p=.024 |

| o?forStudyB=.05 |

Examples inspired by Rosenthal & Gaito (1963)

‘Study C Shows a Highly Significant Result

'Study C: F = 63.62, p < .0000001 |

77 for Study C = .01, N = 6,300 |

Study D: F=540,p=.049

| 77 for Study D = .40, N =10 |

Correct interpretation of statistical results requires consider-
ation of statistical significance, effect size, and statistical power

‘ Three Fundamental Questions Asked in
Science

Is there a relationship? ‘

Answered by Null Hypothesis Significance Tests
(NHST; e.g., 7 tests, I tests, y2, p-values, etc.)

What kind of relationshin? ‘

Answered by testing if relationship
is linear, curvilinear, etc.

How strong is the relationship? ‘

Answered by effect size measures, not
NHST’s (e.g., R?, 7%, 77, ?, Cohen’s d)

"The Logic of Inferential Statistics

Three Distributions Used in Inferential Statistics:

0 Population: the entire universe of individuals we are
interested in studying (i, o, ©)

0 Sample: the selected subgroup that is actually
observed and measured (X, §, N)

0 Sampling Distribution of the Statistic: A theoretical
distribution that describes how a statistic behaves
across a large number of samples (u5, K

‘ The Three Distributions Used in
Inferential Statistics

I. Population 'w

III. Sampling Distribution of the

Statistic
1. Sample %

Selection




of B and (1-8)?

The NHST Decision Model (based on the
sampling distribution of the statistic) o
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Note: Sampling distributions are called Central Distributions when H, is true ‘
‘ What if H, is False?
True State o L
‘ The value of « is set by convention which also determines 1 - « = If the null hy’pothesl§ 18 fal%c,Athe sampling distribution
p ‘ ‘ H,, ITue ‘ T, FaIse and model just considered is incorrect
O | I 1 ; . C .
% And, if H is really trac, then § = 0 ‘ “Type II Exror = In that case, a different sampling distribution describes
: 0 - . . . .
o ; ’ . the true state of affairs, the noncentral distribution
O | Reject H, (1-u)=.95 B=7 . . . o
= 0 In fact there is a family of sampling distributions
- Type 1 Esror Statistical Power when the null is false that depend on just how large
2 .
‘g | Reject H, ffect i
b= 0 _ an effect is present
s «= .05 a-p= > p
9 Butif H, is false, what are the values

0 The size of the difference between the central and
noncentral distributions is described by a
noncentrality parameter
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Central and Noncentral Distributions
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The noncentrality parameter represents the lack of overlap or
displacement of the two distributions that results from a true

Cen difference between groups or nonzero relationship between variables
@
H, True

Assume an example using the t
distribution with Cohen’s d = .4

Note the disparity between the central and
noncentral sampling distributions
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The Relationship Between Effect Size and
Statistical Significance

= It should be apparent that statistical significance
depends on the size of the effect (e.g., the
noncentrality parameter)

= And, statistical significance also depends on the size
of the study (N)

= Statistical significance is the product of these two
components

Test Results
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Significance

Effect Size X Size of Study




Significance

Test Results = Effect Size X Size of Study
2
F = X df
1-r
2
eta d/;:’rror
F= 1- eta2 X d.fmeans

Significance
Test Results = Effect Size X  Size of Study

= To make cortect interpretations, additional
information beyond statistical significance is needed

= When results are statistically significant, it is very
important to estimate effect size to determine the
magnitude of results

Two Kinds of Metric for Measuring the
Magnitude of Effects

= Standardized Difference Measures — Express the

size of group difference in standard deviation units
(e.g., Cohen’s d)

= Strength of Association Measures — Express
magnitude of effect as a proportion or percentage

(e.g., 72> ’72a “)2)

‘ Strength of Association Measures

= Pearson’s r
= Multiple R
= Multivariate
o Canonical r
0 Wilk’s Lambda (1 — A)
u Effect size can be interpreted in units of r (see BESD

below) or after squaring and multiplying by 100 as Percent
Shared Variance (PSV)

PSV = 2 X 100

‘ Strength of Association Measures

Correlation ratio

0 Omega squared (?)
o Eta squared (19

0 Partial eta squared (n*)

‘ Strength of Association Measures

= Cohen also uses /7 as a metric of effect size

= This is easily expressed as R? ot 7 2

R? 7

TS =




Strength of Association Measures: o?

Omega Squared for an independent #test:
w? =(~A-1) /(A+N;+N,-1)

Example: Group 1 Group 2
Mean 65.50 69.00
Variance 20.69 28.96
N 30 30

£=655-69/129 = 271
W = @721 / [271)* +30 + 30 - 1]

= 0.096, about 10% shared variance

Strength of Association Measures: w?

Omega Squared for a one-factor ANOVA:
"")2 = [SSBetWeen - (3'_1)(MSResidua])]
(SSTotal + MSResidua])

Strength of Association Measures: 0?2

Omega Squared for a two-factor ANOVA:
w? = [SS, - (a-1)MSpegqua)] / (SStora T MSpesigun)

w?> = [SSp - (b-1)(MSResidual)] / (SSre + MSgesiaun)

w?* = [SSup - (a-1)(b-1) MSegigua)] / SSora + MSpesiduar)

Strength of Association Measures: 0?2
Example:

Source SS df MS & »
A 3.61 1 3.601 276 101
B 13.94 3 4.65 3.55 .019
AB 12.34 3 4.11 3.14  .030

Residual 94.30 72 1.31

Total 757.00 80

Strength of Association Measures: o?

w? = [SSy - (a-1) MSpegiquad] / SSrtota T MSgegiaua)

= [3.61 — (1)(1.31)] / (757 + 1.31) = .003

w? = [SSg - (O-1)(MSggaua)] / (SSoar + MSpeqiaua)

Total

=[13.94 — (3)(1.31)] / (757 + 1.31) =.013

W = [8Syp - (a-1)(b-1) MSpesgand] / (SSrom + MSpesun)

= [12.34 — 3)(1)(1.31)] / (757 + 1.31) = .011

Strength of Association Measures: 7

712 = SSEffect/SSTotal

An alternative measure is partial
eta squared:

lep = SSpftect / (SSkfrect TSSesidua)

Note. Partial eta may sum to more than 100% in i designs




‘ Strength of Association Measures: lep

‘ An alternative formula using only I and df: ‘

0 = [(F)(dfepreer)]
i [(F)(dfeect) + dfresiauar]

Example using the interaction effect from above: ‘

R (03 €720 I CR )€

P [(F ) dfaect) + dfpesiat]  [(3.14)(3) +72]

Comparing Strength of Association
Measures

Note the problems with partials:

2
= Different denominator for each effect | Tp

® Partials may sum to more than 100% in &5y

multifactor designs 129

AB n14 a1 14
4‘ lep - SSEffect / (SSEffect +SSResidual‘) ‘

0 e 2 )
‘ Note that: @0~ < n S”/]p ‘

| Group Difference Indices

= There are a variety of indices that measure the
extent of the difference between groups

Cohen’s dis the most widely used index (two
groups only)

Generalization of Cohen’s to multiple groups is
sometimes called 4, but there is great variation in
notation

= Hedges’ g (uses pooled sample standard deviations)
= For multivariate, Mahalanobis’ D?

The Standardized Mean Difference: Cohen’s d

d:()?:l_yz)

pooled —

The Standardized Mean Difference: Cohen’s d

Example: Group 1 Group 2
Mean 65.50 69.00
Variance 20.69 28.96
N 30 30

s st(n —1)+s2(m,—1) _ [20.69(29)+28.96(29) AGa
e AT =2 V 30+30-2 i

g= K= X) _(655-690) _ 0
3 498

pooled

Interpreting Effect Size Results (How big
is big?

m There is no simple answer to “How large should an
effect size be?”

= The question begs another: “For what purpose?”

= The answer does not depend directly on statistical
considerations but on the utility, impact, and costs
and benefits of the results




Interpreting Effect Size Results
Cohen’s “Rules-of-Thumb”

0 standardized mean difference effect size (Cohen’s )
small = 0.20

medium = 0.50

“If people interpreted effect sizes (using fixed benchmarks) with the
same rigidity that p = .05 has been used in statistical testing, we
would merely be being stupid in another metric”

(Thompson, 2001; pp. 82-83).

large = 0.50

The Binomial Effect Size Display (BESD) Corresponding to
Various Values of /% and

Interpreting Effect Size Results:
Rosenthal & Rubin’s BESD

i 00 i 04 i 48 i .52 i .04
I I I I I

‘ Are Small Effects Unimportant?

uT U
01 12 44 .56 12
03 16 42 58 .16
04 20 40 .60 20
06 24 38 62 24
09 30 35 .65 30
16 40 30 70 .40
25 50 25 75 .50
36 60 20 .80 .60
49 70 15 85 70
64 80 .10 .90 .80
81 90 .05 95 90

1.00 1.00 .00 1.00 1.00

“Small” effects may be associated with

important differences in outcomes

Success Rate Increase Associated with an 12 of .10
Condition Alive Dead Total
Treatment 66 34 100
Control 34 66 100
Total 100 100 200

Note. Both tables from Rosenthal, R. (1984). Meta-analytic procedures for social research.
Beverly Hills, CA: Sage.

Also see Rosenthal, R., & Rubin, D. B. (1982). A simple, general purpose display of
magnitude of experimental effect. Jounal of Educational Psychology, 74, 166-169.

Confidence Intervals for Effect Size

‘ X (original units)
68 70 72 74|

95% Confidence :‘4“_"“4““““4““““*
intetval for Cohen’s d

e a—1

—

negmean difs ~~g  pos mean difs

Cohen’s d = - .70 (same
example as slide 35)

ESCI Software 95% CI =-1.2to -0.2

Note. See Cumming & Finch (2001) or hitp://www.latrobe.eduau/psy/esci/

Intermission

Statistical Power

Statistical power, the probability of detecting a
result when it is present

Often the concern is “How many participants do I
need?”

While estimating N is important, a more productive
focus may be on effect size and design planning

How can I strengthen the research?




‘ Factors Affecting Statistical Power
= Sample Size
= Effect Size
= Alpha level
= Unexplained Variance

= Design Effects

Effect of Sample Size on Statistical Power

All things equal, sample size increases statistical power

at a geometric rate (in simple designs)

0 This is accomplished primarily through reduction of the
standard error of the sampling distribution

0 With large samples, inferential statistics are very powerful
at detecting very small relationships or very small
differences between groups (even trivial ones)

0 With small samples, larger relationships or differences are
needed to be detectable

Effect of Sample Size on Statistical Power

o K

o= =

N S =

As an example, if the estimated population
standard deviation was 10 and sample size was

A 10
4 then: Sf:ﬁ_

But if sample was 16 (4 times larger) then the
standard error is 2.5 (smaller by half):

0.4
~—Ho true, Central t

e o] Consider the following example with
N = 10, note that power = .21
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note that power = .56
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Impact of Sample Size on Statistical Power
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Impact of Effect Size on Statistical Power

Impact of Sample and Effect Size on
Statistical Power

as0om

~eiom

Effect of Alpha Level on Statistical Power

= One-tailed tests are more powerful than two-tailed tests
0 Requite clear a priori rationale
0 Requires willingness to ignore results in the wrong direction

0 Only possible with certain statistical tests (e.g., # but not F)

= Larger alpha values more powerful (e.g., p < .10)
0 May be difficult to convince reviewers
o Can be justified well in many program evaluation contexts (when
only one direction of outcome is relevant)
0 Justifiable with small sample size, small cluster size, or if, a priori,
effect size is known to be small

Effect of Unexplained Variance on
Statistical Power

= Terminology: “error” versus unexplained or residual
= Residual variance reduces power
0 Anything that decreases residual variance, increases
power (e.g., more homogeneous participants, additional
explanatory variables, etc.)
= Unreliability of measurement contributes to residual
variance

= Treatment infidelity contributes to residual variance




Effect of Design Features on Statistical
Power

= Stronger treatments!

Blocking and matching
= Repeated measures
Focused tests (df = 1)

Intraclass correlation

Statistical control, use of covariates
Restriction of range (IV and DV)
Measurement validity (IV and DV)

Effect of Design Features on Statistical
Power

= Multicollinearity (and restriction of range)

2
Syi2

s S
’ S (1-12)

yl2

= Statistical model misspecification
0 Linearity, curvilinearity,...
0 Omission of relevant variables

o Inclusion of irrelevant variables

Options for Estimating Statistical Power

» Cohen’s tables

Statistical Software like SAS and SPSS using syntax
files

= Web calculators

u Specialized software like G*Power, Optimal
Design, ESCI, nQuery

Estimating Statistical Power

= Base parameters on best information available

= Don’t overestimate effect size or underestimate
residual variance or ICC

» Consider alternative scenatios

0 What kind of parameter values might occur in the
research?

0 Estimate for a variety of selected parameter
combinations

o Consider worst cases (easier to plan than recover)

Recommendations for Study Planning

= Greater attention to study design features

= Explore the implications of research design features on
power

= Base power estimation on:
Prior research

Pilot studies

a
a

0 Plausible assumptions
0 Thought experiments
a

Cost/benefit analysis

Power in Multisite and Cluster
Randomized Studies

= More complex designs involving data that are arranged
in inherent hierarchies or levels

# Much educational and social science data is organized
in a multilevel or nested structute

0 Students within schools
0 Children within families
0 Patients within physicians
0 Treatments within sites

0 Measurement occasions within individuals

60
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Power in Multisite and Cluster
Randomized Studies

Factors affecting statistical power
a Intraclass Correlation (ICC)
0 Number of participants per cluster (N)
0 Number of clusters (J)
0 Between vs. within cluster variance
0 Treatment variability across clusters

0 Other factors as discussed above

61

‘ Intraclass Correlation Coefficient (p)

Total 02, = 72+ o7

population variance between units

1CC =

total variance
= 2/ (%4 ?)

As ICC approaches 0, multilevel modeling is not needed and
power is the same as a non-nested design, but even small values of
ICC can impact power

‘ Intraclass Correlation (p)

= The Intraclass Correlation Coefficient (ICC)
measures the correlation between a grouping factor
and an outcome measure

= In common notation there are 1 to | groups

u If participants do not differ from one group to
another, then the ICC =0

u As participants’ outcome scores differ due to
membership in a particular group, the ICC grows
large

63

‘ Intraclass Correlation (p)

u ICC becomes important in research design when:
0 Random assignment is accomplished at the group level
0 Multistage sampling designs are used

0 Group level predictors or covariates are used

If there is little difference from one group to
another (ICC nears zero), power is similar to the
total sample size ignoring the clustering of groups

The more groups differ (ICC is nonzero), effective
sample size for power approaches the number of
groups rather than the total number of participants

6

' Intraclass Correlation 7))

ICC varies with outcome and with type of group and patticipants

Small groups that may be more homogenous (e.g., classrooms)
are likely to have larger ICCs than large groups with more
heterogeneity (e.g., schools or districts)
# What size of ICCs are common?
o Concentrated between 0.01 and 0.05 for much social science
research (Bloom, 2006)
0 Between 0.05 and 0.15 for school achievement (Spybrook et
al., 2006)
= The guideline of 0.05 to 0.15 is more consistent with the values
of covariate adjusted intraclass correlations; unconditional ICCs
may be larger (roughly 0.15 to 0.25; Hedges & Hedberg, in press)
= “It is unusual for a GRT to have adequate power with fewer
than 8 to 10 groups per condition” (Murray et al., 2004)

Relationship of ICC and power

66
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Relationship of ICC, Effect Size, Number of
Clusters and Power

Relationship of ICC, Effect Size, Number of
Clusters and Power When | is Small

Relationship of ICC, effect size, number of clusters
and power

-eso

Number of clusters

69

Effect of Cluster Size (7)

a=0050

~esov

T T T T T
» B » ®
Number of subjcts per cluster

Effect of Number of Clusters (])

~ezov
i

T T T T T
kS 2 o o ES
Number of clusters

‘ The number of cluster| Note the difference in power for nj =

power than the cluster| 500 arranged as 50 per 10 vs. nj =
500 arranged as 25 per 20 clusters
ber of clusters

12



Ignoring Hierarchical Structure vs.
Multilevel Modeling

‘ Variance of the treatment effect across clusters ‘

"
o
o 2, 2
N ol _(t°+o/n)
: o - nJ
w
.
o

b s ’ |:|

Effect of Effect Size Variability (o3)

The number of clusters has a stronger influence on
power than the cluster size as ICC departs from 0

» The standard error of the main effect of treatment is:

4p+(d-p)/n)

SE(?;Ol) = 7

= As p increases, the effect of # decreases

u If clusters are variable (p is large), more power is
gained by increasing the number of clusters sampled
than by incteasing #

‘ Effect of a Covariate on Power

wpzon0
5020p=010RZ = 05¢

~eszon
I

@ o
Number of clusters

The Group Effect Multiplier

Randomized group size (2

1CC (p) 10 20 50 100 200 500
0.00 1.00 1.00 1.00 1.00 1.00 1.00
0.01 1.04 1.09 1.22 1.41 1.73 248
0.02 1.09 1.17 1.41 1.73 2.23 3.31
0.03 1.13 1.25 1.57 1.99 2.64 4.00
0.04 117 1.33 1.72 223 2,99 4.58
0.05 1.20 1.40 1.86 2.44 331 5.09
0.06 1.24 1.46 1.98 2.63 3.60 5.56
0.07 1.28 1.53 2.10 2.82 3.86 5.99
0.08 1.31 1.59 222 299 411 6.40
0.09 1.35 1.65 233 3.15 4.35 6.78
0.10 1.38 1.70 243 3.30 4.57 713
0.20 1.67 219 3.29 4.56 6.39 10.04

Note: The group effect muliplier equals [ _1 ; table from Bloom (2006).

The Mini; D ble Effect Exp d as a Multiple of the Standard Error
Number of groups () Two-tailed test One-tailed test
4 5.36 3.98
6 3.72 3.07
8 3.35 2.85
10 3.20 275
12 311 2.69
14 3.05 2.66
16 3.01 2.63
18 2.99 2.61
20 2.96 2.60
30 290 2.56
40 287 254
60 2.85 252
120 2.83 2.50
infinite 2.80 249

Nt The group effect multipliers shown here are for the difference between the mean program group outcome and the mean control group
outcome, assuming equal variances for the groups, a significance level of 05, and a power level of 80; table from Bloom (2006),

1R



‘The Minimum Detectable Effect Size
Intraclass correlation (p;) = 0.01

Randomized group size (1)

Number of groups (J) 10 20 50 100 200 500
4 1.77 1.31 0.93 0.76 0.66 0.59
6 1.00 0.74 0.52 0.43 0.37 0.33
8 0.78 0.58 0.41 0.33 0.29 0.26
10 0.67 0.49 0.35 0.29 0.25 0.22
20 0.44 0.32 0.23 0.19 0.16 0.15
30 0.35 0.26 0.18 0.15 0.13 0.12
40 0.30 0.22 0.16 0.13 0.11 0.10
60 0.24 0.18 0.13 0.10 0.09 0.08
120 0.17 0.13 0.09 0.07 0.06 0.06

Note: The minimum detectable effect sizes shown here are for a two-tailed hypothesis
level of .05, a power level of 80, and randomization of half the groups to the progras

uming a significance
tom Bloom (2006).

The Minimum Detectable Effect Size
Intraclass correlation (p;) = 0.05

Randomized group size (1)

Number of groups (]) 10 20 50 100 200 500
4 2.04 1.67 1.41 1.31 1.26 1.22
6 1.16 0.95 0.80 0.74 0.71 0.69
8 0.90 0.74 0.62 0.58 0.55 0.54
10 0.77 0.63 0.53 0.49 0.47 0.46
20 0.50 0.41 0.35 0.32 0.31 0.30
30 0.40 0.33 0.28 0.26 0.25 0.24
40 0.35 0.28 0.24 0.22 0.21 0.21
60 0.28 0.23 0.19 0.18 0.17 0.17
120 0.20 0.16 0.14 0.13 0.12 0.12

Note: The minimun detcetable effect sizes shown here are for a two-tailed hypothesis test, assuming a significance
level of .05, a power level of .80, and randomization of half the groups to the program; table from Bloom (2006).

The Minimum Detectable Effect Size
Intraclass correlation (p)) = 0.10

Randomized group size (1)

Number of groups (]) 10 20 50 100 200 500
4 2.34 2.04 1.84 1.77 173 1.71
6 132 1.16 1.04 1.00 0.98 0.97
8 1.03 0.90 0.81 0.78 0.77 0.76
10 0.88 0.77 0.69 0.67 0.65 0.64
20 0.58 0.50 0.46 0.44 0.43 0.42
30 0.46 0.40 0.36 0.35 0.34 0.34
40 0.40 0.35 0.31 0.30 0.29 0.29
60 0.32 0.28 0.25 0.24 0.24 0.23
120 0.22 0.20 0.18 0.17 017 0.16

Note: The minimum detectable effect sizes shown here are for a two-tailed hypothesis test, assuming a significance
level of 05, a power level of 80, and randomization of half the groups to the program; table from Bloom (2006).

| Using G*Power

= Free software for power estimation available at:

http://www.psycho.uni-duesseldorf.de /abteilungen/aap /gpower3/download-and-register

= Estimates power for a variety of situations including
#tests, F-tests, and

» G*Power

8
1 * Example 1. Using G*Power, estimate the power of the repeated
‘ Examples using G*Power rampie sl THne ‘ ot ‘
measures /-test for knowledge of hands-on activities. Use the
supplied information in the table.
. : : : > Ch t-tests .
Luft & Vidoni (2002) examined preservice teachers’ knowledge about school 005€ Frests Choose matched pairs
to career transitions before and after a teacher internship. Some of the
obtained results were:
Before After A i 3
Knowledge about: X X ’ r
Writing 292 144 392 .79 -225 .05 59
J -on activitics 58 .67 7545 100 . 7 SR
Use of Hands-on activities 4.58 6 475 45 1.00 .34 71 [ Choose post hoc: Compute :
Class assij 3.67 49 4.08 .79 -1.82 .10 .56 i <]
achieved power Fome (18 o1 e
Twelve students participated in the study and completed the pre and
post testing.
8 8

14



Next calculate an effect size based on the supplied

table information:

‘Add required information

i

Toatsh | Fus ® et b b 12900
Wecemar] 0 Cominy 2300905
e s o '

Torul vamgis sizn 1] P {1 w11 gkl o2marse

Click Determine

T e T |
Calculate and transfer

Toatsh | Fus w et b b 12e000
Wecmar 0¥ Comin 23009
s o o "

Tomul vargie sizn 12 P {18 err gk o30eres

¥ piotton arengn ot | | €

Click calculate

Example 2. Using the same information as example 1, determine
the necessary sample size to achieve a power of .80

e 3 o £
Bt (14 419 gkt [ Tornt vumgs s ”
Acteaipem Baeiean

Graphing in G*Power % it o arange ot wwens | [

Example 3. Continue with the same information and determine the
minimum detectable effect size if power is .80

| Using the Optimal Design Software

u The Optimal Design Software can also be used to
estimate power in a variety of situations

u The particular strength of this software is its
application to multilevel situations involving cluster
randomization or multisite designs

= Available at:

http://sitemaker.umich.edu/group-based/optimal design software

= Optimal Design

Using Optimal Design (OD), estimate the power for a group
randomized study under several conditions. Start by choosing
“File/Mode” on the toolbar and then “Optimal Design for Group

Randomized Trials”

Next choose Power vs.
number of clusters

ot gl o, e Batgetar crstrants

15



[P T Puk-ste CRT wie 3 TR oo

a|n]5|p Rl Lo|relm] @lsalX

Now enter values to produce power estimates.
Use o« =.05,n=10,8 =.5,and p = .05

Range and legend for axes can
also be modified

Note that if you mouse over the power
curve, exact values are displayed

T AT

| Now explore the use of OD for examining
power as a function of n, p, 8, and R?

‘ The OD software can also be used to determine the best
combination of design features under cost constraints

Choose Optimal sample allocation

I T BTSN crérain o s e s |

Enter values of $10,000 Total budget,
$400 per cluster, $20 per member, p =
.03, and 8 = .4; then compute

‘ Optimal Design

‘What if the ICC was lower, .01?

L

‘What if the ICC was higher, .08?

For the given budget, n is 21, ] is
12 and power is .62

Comparstf Tosiucion it [

Note the loss of power with higher ICC

Note the increase in both n and power

What if the budget was i
[E

Note the ratio of n to | given
the higher ICC

‘ One Last Example: Multisite CRT

The primary rationale in this approach is to extend the idea
of blocking to the multilevel situation

Clusters are assigned to blocks with other similar clusters
and then randomly assigned to treatment

Blocking creates greater homogeneity and less residual
variance, thereby increasing power

For example, schools are collected into blocks based on

whether school composition is low, medium, or high SES

u Schools are within each block are randomly assigned to
treatment

u Between school SES variability is controlled by the blocking
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Multisite CRT

Two additional parameters are used in estimation:
0 Number of sites or blocks, K
a The effect size variability, o}
0 g2 represents the variability of effect size from
one cluster to another within a site
0 This variability represents within site replications
of the study

Multisite CRT

Example:
u 5 cities, 12 schools per city, d = .4, ICC =.12, 0'§ =.01,
blocking accounts for 50% of the variation in the outcome

Diejocs  Chster Barchomond Trisl Muki-sts CRT Thims Lived Mocel st Trsatmant 8 Lol 3 CRT Repmatet Hessaes. o

E:l"l-"lr -._m--- el ol

|| 1|5 et p|Blad ol ho|na|m| @ a3

”
| Applications
- u For the remainder of the workshop you may
; 0 complete exercises on power estimation
: - 0 calculate power estimates for your own research
P e = Exercises can be downloaded from:
? ‘_ http://www.uoregon.edu/~stevensj/workshops/exercises.pdf
’ = When you finish the exercises, you can obtain
., answers at:
T http://www.uoregon.edu/~stevensj/workshops/answers.pdf
) - = Discussion as time permits
99 100
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