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An Introductory Problem or Two:

Which Study is Stronger?

Study A:    t (398) = 2.30, p = .022

Study B:   t (88) = 2.30, p = .024

Examples inspired by Rosenthal & Gaito (1963)

ω2 for Study A = .01

ω2 for Study B = .05

Answer:  Study B
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Study C Shows a Highly Significant Result

Study C:  F = 63.62, p < .0000001

Study D:  F = 5.40, p = .049

η2 for Study C = .01, N = 6,300

η2 for Study D = .40, N = 10

Correct interpretation of statistical results requires consider-
ation of statistical significance, effect size, and statistical power
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Three Fundamental Questions Asked in 
Science
Is there a relationship?

Answered by Null Hypothesis Significance Tests 
(NHST; e.g., t tests, F tests, χ2, p-values, etc.)

What kind of relationship?

How strong is the relationship?
Answered by effect size measures, not
NHST’s (e.g., R2, r2, η2, ω2, Cohen’s d)

Answered by testing if relationship 
is linear, curvilinear, etc.
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The Logic of Inferential Statistics
Three Distributions Used in Inferential Statistics:

Population: the entire universe of individuals we are 
interested in studying (µ, σ, ∞)

Sample: the selected subgroup that is actually 
observed and measured (   ,   , N)

Sampling Distribution of the Statistic: A theoretical 
distribution that describes how a statistic behaves 
across a large number of samples (     ,     , ∞)

X ŝ

Xµ Xŝ
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The Three Distributions Used in 
Inferential Statistics

III. Sampling Distribution of the 
Statistic

I. Population

II. Sample

Selection

Evaluation

Inference
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And, if H0 is really true, then β = 0

Statistical Power

(1 – β) = 

.95

.05

The value of α is set by convention which also determines 1 - α

But if H0 is false, what are the values 
of β and (1-β)?
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?
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What if H0 is False?
If the null hypothesis is false, the sampling distribution 
and model just considered is incorrect
In that case, a different sampling distribution describes 
the true state of affairs, the noncentral distribution

In fact there is a family of sampling distributions 
when the null is false that depend on just how large 
an effect is present
The size of the difference between the central and 
noncentral distributions is described by a 
noncentrality parameter
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Central and Noncentral Distributions

Noncentrality 
parameter

The noncentrality parameter represents the lack of overlap or 
displacement of the two distributions that results from a true 

difference between groups or nonzero relationship between variables

Assume an example using the t 
distribution with Cohen’s d = .4

Note the disparity between the central and 
noncentral sampling distributions
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Reject H0

β =.67

The portion of the noncentral distribution that is below the 
rejection point represents the probability of a Type II error (β)

Reject H0

β = .23

The portion of the noncentral distribution that is above 
the rejection point is statistical power (1 - β)

More overlap (smaller effect size) 
results in less statistical power Less overlap (larger effect size) 

results in greater statistical power

ESCI Software
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The Relationship Between Effect Size and 
Statistical Significance

It should be apparent that statistical significance 
depends on the size of the effect (e.g., the 
noncentrality parameter)
And, statistical significance also depends on the size 
of the study (N)
Statistical significance is the product of these two 
components
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Significance                                                    
Test Results    =    Effect Size    X    Size of Study
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Significance                                                    
Test Results     =    Effect Size    X     Size of Study
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Significance                                                    
Test Results     =    Effect Size   X     Size of Study

To make correct interpretations, additional 
information beyond statistical significance is needed

When results are statistically significant, it is very 
important to estimate effect size to determine the 
magnitude of results
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Two Kinds of Metric for Measuring the 
Magnitude of Effects

Standardized Difference Measures – Express the 
size of group difference in standard deviation units 
(e.g., Cohen’s d )

Strength of Association Measures – Express 
magnitude of effect as a proportion or percentage 
(e.g., r2, η2, ω2 )
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Strength of Association Measures

Pearson’s r
Multiple R 
Multivariate

Canonical r
Wilk’s Lambda (1 – Λ)

Effect size can be interpreted in units of r (see BESD 
below) or after squaring and multiplying by 100 as Percent 
Shared Variance (PSV)

PSV = r2 X 100
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Strength of Association Measures

Correlation ratio
Omega squared (ω2)

Eta squared (η2)

Partial eta squared (η2
p)
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Strength of Association Measures

Cohen also uses f 2 as a metric of effect size
This is easily expressed as R2 or η 2
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Strength of Association Measures: ω2

Omega Squared for an independent t-test:

ω2 = ( t2 - 1 ) / ( t2 + N1 + N2 - 1)

Example: Group 1 Group 2

Mean   65.50 69.00

Variance      20.69   28.96

N             30     30

t =  65.5 - 69 / 1.29  =  -2.71

ω2 = (2.71)2 - 1  / [(2.71)2 + 30 + 30 - 1]  

= 0.096, about 10% shared variance
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Strength of Association Measures: ω2

Omega Squared for a one-factor ANOVA:

ω2 =  [SSBetween - (a-1)(MSResidual)]

(SSTotal + MSResidual)
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Strength of Association Measures: ω2

Omega Squared for a two-factor ANOVA:

ω2 =  [SSA - (a-1)(MSResidual)] / (SSTotal + MSResidual)

ω2 =  [SSB - (b-1)(MSResidual)] / (SSTotal + MSResidual)

ω2 =  [SSAB - (a-1)(b-1)(MSResidual)] / (SSTotal + MSResidual)
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Strength of Association Measures: ω2

Example:

Source                 SS       df         MS        F p

A      3.61       1        3.61      2.76     .101

B                 13.94       3        4.65      3.55     .019

AB             12.34       3        4.11      3.14     .030

Residual      94.30     72        1.31

Total 757.00     80
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Strength of Association Measures: ω2

ω2 =  [SSA - (a-1)(MSResidual)] / (SSTotal + MSResidual)

= [3.61 – (1)(1.31)] / (757 + 1.31) = .003

ω2 =  [SSB - (b-1)(MSResidual)] / (SSTotal + MSResidual)

= [13.94 – (3)(1.31)] / (757 + 1.31) = .013

ω2 =  [SSAB - (a-1)(b-1)(MSResidual)] / (SSTotal + MSResidual)

= [12.34 – (3)(1)(1.31)] / (757 + 1.31) = .011
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Strength of Association Measures: η2

η2 =  SSEffect / SSTotal

An alternative measure is partial 
eta squared:

η2
p =  SSEffect / (SSEffect +SSResidual)

Note. Partial eta may sum to more than 100% in multifactor designs
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Strength of Association Measures: η2
p
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An alternative formula using only F and df:

Example using the interaction effect from above:
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Comparing Strength of Association 
Measures

Effect ω2 η2 η2
p

A .003 .005 .037

B .013 .018 .129

AB .011 .016 .116

Note that:  ω2 ≤ η2 ≤ η2
p

Note the problems with partials:

Different denominator for each effect

Partials may sum to more than 100% in 
multifactor designs

η2
p =  SSEffect / (SSEffect +SSResidual)
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Group Difference Indices

There are a variety of indices that measure the 
extent of the difference between groups
Cohen’s d is the most widely used index (two 
groups only)
Generalization of Cohen’s to multiple groups is 
sometimes called δ, but there is great variation in 
notation
Hedges’ g (uses pooled sample standard deviations)
For multivariate, Mahalanobis’ D2
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The Standardized Mean Difference: Cohen’s d
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The Standardized Mean Difference: Cohen’s d
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Example: Group 1 Group 2

Mean   65.50 69.00

Variance      20.69   28.96

N             30     30
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Interpreting Effect Size Results (How big 
is big?

There is no simple answer to “How large should an  
effect size be?”
The question begs another: “For what purpose?”
The answer does not depend directly on statistical 
considerations but on the utility, impact, and costs 
and benefits of the results
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Interpreting Effect Size Results
Cohen’s “Rules-of-Thumb”

standardized mean difference effect size (Cohen’s d)
small = 0.20
medium = 0.50
large = 0.80

correlation coefficient (Pearson’s r)
small = 0.10
medium = 0.30
large = 0.50

“If people interpreted effect sizes (using fixed benchmarks) with the 
same rigidity that p = .05 has been used in statistical testing, we 
would merely be being stupid in another metric”
(Thompson, 2001; pp. 82–83).

The Binomial Effect Size Display (BESD) Corresponding to 
Various Values of r2 and r

Effect Sizes Success Rate Increase

r2 r From To Success Rate 
Difference

.00 .02 .49 .51 .02

.00 .04 .48 .52 .04

.00 .06 .47 .53 .06

.01 .08 .46 .54 .08

.01 .10 .45 .55 .10

.01 .12 .44 .56 .12

.03 .16 .42 .58 .16

.04 .20 .40 .60 .20

.06 .24 .38 .62 .24

.09 .30 .35 .65 .30

.16 .40 .30 .70 .40

.25 .50 .25 .75 .50

.36 .60 .20 .80 .60

.49 .70 .15 .85 .70

.64 .80 .10 .90 .80

.81 .90 .05 .95 .90

1.00 1.00 .00 1.00 1.00

Interpreting Effect Size Results: 
Rosenthal & Rubin’s BESD

Are Small Effects Unimportant?

Success Rate Increase Associated with an r2 of .10 

Condition Alive Dead Total

Treatment 66 34 100

Control 34 66 100

Total 100 100 200

Note.  Both tables from Rosenthal, R. (1984).  Meta-analytic procedures for social research.  
Beverly Hills, CA: Sage.
Also see Rosenthal, R., & Rubin, D. B. (1982).  A simple, general purpose display of 
magnitude of experimental effect.  Journal of Educational Psychology, 74, 166-169.

“Small” effects may be associated with 
important differences in outcomes
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Confidence Intervals for Effect Size

-1 0

neg mean diffs pos mean diffs0

60 62 64 66 68 70 72 74
X (original units)

Cohen’s d = - .70 (same 
example as slide 35)

95% Confidence 
interval for Cohen’s d

Note.  See Cumming & Finch (2001) or http://www.latrobe.edu.au/psy/esci/

95% CI = -1.2 to -0.2ESCI Software

Intermission
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Statistical Power

Statistical power, the probability of detecting a 
result when it is present
Often the concern is “How many participants do I 
need?”
While estimating N is important, a more productive 
focus may be on effect size and design planning 
How can I strengthen the research?
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Factors Affecting Statistical Power
Sample Size

Effect Size

Alpha level

Unexplained Variance

Design Effects
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Effect of Sample Size on Statistical Power

All things equal, sample size increases statistical power 
at a geometric rate (in simple designs)

This is accomplished primarily through reduction of the 
standard error of the sampling distribution
With large samples, inferential statistics are very powerful 
at detecting very small relationships or very small 
differences between groups (even trivial ones)
With small samples, larger relationships or differences are 
needed to be detectable
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Effect of Sample Size on Statistical Power
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But if sample was 16 (4 times larger) then the 
standard error is 2.5 (smaller by half):

As an example, if the estimated population 
standard deviation was 10 and sample size was 
4 then:
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Versus a second example with N = 30, 
note that power = .56

ESCI Software
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Impact of Sample Size on Statistical Power
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Impact of Effect Size on Statistical Power

50

Impact of Sample and Effect Size on 
Statistical Power
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Effect of Alpha Level on Statistical Power

One-tailed tests are more powerful than two-tailed tests
Require clear a priori rationale
Requires willingness to ignore results in the wrong direction
Only possible with certain statistical tests (e.g., t but not F)

Larger alpha values more powerful (e.g., p < .10)
May be difficult to convince reviewers
Can be justified well in many program evaluation contexts (when 
only one direction of outcome is relevant)
Justifiable with small sample size, small cluster size, or if, a priori, 
effect size is known to be small

α = .05 α = .01

Power = .59

Power = .34

α = .05 α = .10

Power = .59 Power = .70
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Effect of Unexplained Variance on 
Statistical Power

Terminology: “error” versus unexplained or residual
Residual variance reduces power

Anything that decreases residual variance, increases 
power (e.g., more homogeneous participants, additional 
explanatory variables, etc.)

Unreliability of measurement contributes to residual 
variance
Treatment infidelity contributes to residual variance



10

55

Effect of Design Features on Statistical 
Power

Stronger treatments!
Blocking and matching
Repeated measures
Focused tests (df = 1)
Intraclass correlation
Statistical control, use of covariates
Restriction of range (IV and DV)
Measurement validity (IV and DV)
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Effect of Design Features on Statistical 
Power

Multicollinearity (and restriction of range)

Statistical model misspecification
Linearity, curvilinearity,…
Omission of relevant variables
Inclusion of irrelevant variables
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Options for Estimating Statistical Power

Cohen’s tables
Statistical Software like SAS and SPSS using syntax 
files
Web calculators
Specialized software like G*Power, Optimal 
Design, ESCI, nQuery
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Estimating Statistical Power

Base parameters on best information available
Don’t overestimate effect size or underestimate 
residual variance or ICC
Consider alternative scenarios

What kind of parameter values might occur in the 
research?
Estimate for a variety of selected parameter 
combinations
Consider worst cases (easier to plan than recover)
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Recommendations for Study Planning

Greater attention to study design features
Explore the implications of research design features on 
power

Base power estimation on:
Prior research
Pilot studies
Plausible assumptions
Thought experiments
Cost/benefit analysis
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Power in Multisite and Cluster 
Randomized Studies

More complex designs involving data that are arranged 
in inherent hierarchies or levels
Much educational and social science data is organized 
in a multilevel or nested structure

Students within schools
Children within families
Patients within physicians
Treatments within sites
Measurement occasions within individuals
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Power in Multisite and Cluster 
Randomized Studies

Factors affecting statistical power
Intraclass Correlation (ICC)
Number of participants per cluster (N)
Number of clusters (J)
Between vs. within cluster variance
Treatment variability across clusters
Other factors as discussed above
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Intraclass Correlation Coefficient (ρ)

Total σ 2
Y = τ 2 + σ 2  

population variance between units
total variance

=     τ 2 / (τ 2 + σ 2 )

As ICC approaches 0, multilevel modeling is not needed and 
power is the same as a non-nested design, but even small values of 
ICC can impact power

ICC =

63

Intraclass Correlation (ρ)

The Intraclass Correlation Coefficient (ICC) 
measures the correlation between a grouping factor 
and an outcome measure
In common notation there are 1 to J groups
If participants do not differ from one group to 
another, then the ICC = 0
As participants’ outcome scores differ due to 
membership in a particular group, the ICC grows 
large
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Intraclass Correlation (ρ)
ICC becomes important in research design when:

Random assignment is accomplished at the group level
Multistage sampling designs are used
Group level predictors or covariates are used

If there is little difference from one group to 
another (ICC nears zero), power is similar to the 
total sample size ignoring the clustering of groups
The more groups differ (ICC is nonzero), effective 
sample size for power approaches the number of 
groups rather than the total number of participants
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Intraclass Correlation (ρI)
ICC varies with outcome and with type of group and participants
Small groups that may be more homogenous (e.g., classrooms) 
are likely to have larger ICCs than large groups with more 
heterogeneity (e.g., schools or districts)
What size of ICCs are common?

Concentrated between 0.01 and 0.05 for much social science 
research (Bloom, 2006)
Between 0.05 and 0.15 for school achievement (Spybrook et 
al., 2006) 

The guideline of 0.05 to 0.15 is more consistent with the values
of covariate adjusted intraclass correlations; unconditional ICCs 
may be larger (roughly 0.15 to 0.25; Hedges & Hedberg, in press)
“It is unusual for a GRT to have adequate power with fewer 
than 8 to 10 groups per condition” (Murray et al., 2004)
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Relationship of ICC and power
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Relationship of ICC, Effect Size, Number of 
Clusters and Power

Relationship of ICC, Effect Size, Number of 
Clusters and Power When J is Small
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Number of clusters
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Relationship of ICC, effect size, number of clusters 
and power
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Effect of Cluster Size (n)

Number of subjects per cluster
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Effect of Number of Clusters (J)

Number of clusters
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The number of clusters has a stronger influence on 
power than the cluster size as ICC departs from 0

Difference due to 
number of clusters

Difference due to 
cluster size

Note the difference in power for nj = 
500 arranged as 50 per 10 vs. nj = 
500 arranged as 25 per 20 clusters
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Ignoring Hierarchical Structure vs. 
Multilevel Modeling

Variance of the treatment effect across clusters

nJ
n)/22 +(

=
στγ

Effect of Effect Size Variability (    )2
δσ
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The number of clusters has a stronger influence on 
power than the cluster size as ICC departs from 0

J
nSE )/)1((4)ˆ( 01

ρργ −+
=

The standard error of the main effect of treatment is:

As ρ increases, the effect of n decreases
If clusters are variable (ρ is large), more power is 
gained by increasing the number of clusters sampled 
than by increasing n
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Effect of a Covariate on Power

Number of clusters
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The Group Effect Multiplier

Randomized group size (n) 

ICC (ρ)   10 20 50 100 200 500

0.00 1.00 1.00 1.00 1.00 1.00 1.00

0.01 1.04 1.09 1.22 1.41 1.73 2.48

0.02 1.09 1.17 1.41 1.73 2.23 3.31

0.03 1.13 1.25 1.57 1.99 2.64 4.00

0.04 1.17 1.33 1.72 2.23 2.99 4.58

0.05 1.20 1.40 1.86 2.44 3.31 5.09

0.06 1.24 1.46 1.98 2.63 3.60 5.56

0.07 1.28 1.53 2.10 2.82 3.86 5.99

0.08 1.31 1.59 2.22 2.99 4.11 6.40

0.09 1.35 1.65 2.33 3.15 4.35 6.78

0.10 1.38 1.70 2.43 3.30 4.57 7.13

0.20 1.67 2.19 3.29 4.56 6.39 10.04
Note: The group effect multiplier equals  ; table from Bloom (2006).ρ)1(1 −+ n

The Minimum Detectable Effect Expressed as a Multiple of the Standard Error

Number of groups (J)        Two-tailed test One-tailed test 

4 5.36 3.98

6 3.72 3.07

8 3.35 2.85

10 3.20 2.75

12 3.11 2.69

14 3.05 2.66

16 3.01 2.63

18 2.99 2.61

20 2.96 2.60

30 2.90 2.56

40 2.87 2.54

60 2.85 2.52

120 2.83 2.50

infinite 2.80 2.49
Note: The group effect multipliers shown here are for the difference between the mean program group outcome and the mean control group 
outcome, assuming equal variances for the groups, a significance level of .05, and a power level of .80; table from Bloom (2006).
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The Minimum Detectable Effect Size

Intraclass correlation (ρI) = 0.01

Randomized group size (n)

Number of groups (J) 10 20 50 100 200 500

4 1.77 1.31 0.93 0.76 0.66 0.59

6 1.00 0.74 0.52 0.43 0.37 0.33

8 0.78 0.58 0.41 0.33 0.29 0.26

10 0.67 0.49 0.35 0.29 0.25 0.22

20 0.44 0.32 0.23 0.19 0.16 0.15

30 0.35 0.26 0.18 0.15 0.13 0.12

40 0.30 0.22 0.16 0.13 0.11 0.10

60 0.24 0.18 0.13 0.10 0.09 0.08

120 0.17 0.13 0.09 0.07 0.06 0.06

Note: The minimum detectable effect sizes shown here are for a two-tailed hypothesis test, assuming a significance 
level of .05, a power level of .80, and randomization of half the groups to the program; table from Bloom (2006).

The Minimum Detectable Effect Size

Intraclass correlation (ρI) = 0.05

Randomized group size (n)

Number of groups (J) 10 20 50 100 200 500

4 2.04 1.67 1.41 1.31 1.26 1.22

6 1.16 0.95 0.80 0.74 0.71 0.69

8 0.90 0.74 0.62 0.58 0.55 0.54

10 0.77 0.63 0.53 0.49 0.47 0.46

20 0.50 0.41 0.35 0.32 0.31 0.30

30 0.40 0.33 0.28 0.26 0.25 0.24

40 0.35 0.28 0.24 0.22 0.21 0.21

60 0.28 0.23 0.19 0.18 0.17 0.17

120 0.20 0.16 0.14 0.13 0.12 0.12

Note: The minimum detectable effect sizes shown here are for a two-tailed hypothesis test, assuming a significance 
level of .05, a power level of .80, and randomization of half the groups to the program; table from Bloom (2006).

The Minimum Detectable Effect Size

Intraclass correlation (ρI) = 0.10

Randomized group size (n)

Number of groups (J) 10 20 50 100 200 500

4 2.34 2.04 1.84 1.77 1.73 1.71

6 1.32 1.16 1.04 1.00 0.98 0.97

8 1.03 0.90 0.81 0.78 0.77 0.76

10 0.88 0.77 0.69 0.67 0.65 0.64

20 0.58 0.50 0.46 0.44 0.43 0.42

30 0.46 0.40 0.36 0.35 0.34 0.34

40 0.40 0.35 0.31 0.30 0.29 0.29

60 0.32 0.28 0.25 0.24 0.24 0.23

120 0.22 0.20 0.18 0.17 0.17 0.16

Note: The minimum detectable effect sizes shown here are for a two-tailed hypothesis test, assuming a significance 
level of .05, a power level of .80, and randomization of half the groups to the program; table from Bloom (2006).
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Using G*Power

Free software for power estimation available at:
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/download-and-register

Estimates power for a variety of situations including 
t-tests, F-tests, and χ2

G*Power
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Examples using G*Power

Luft & Vidoni (2002) examined preservice teachers’ knowledge about school 
to career transitions before and after a teacher internship. Some of the 
obtained results were:

Before After
Knowledge about: sd sd                 t p r

Writing 2.92    1.44 3.92     .79            -2.25    .05        .59
Use of Hands-on activities 4.58      .67 4.75     .45            -1.00    .34        .71
Class assignments 3.67      .49 4.08     .79 -1.82    .10        .56

XX

Twelve students participated in the study and completed the pre and 
post testing.
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Example 1. Using G*Power, estimate the power of the repeated 
measures t-test for knowledge of hands-on activities.  Use the 
supplied information in the table.

Choose t-tests Choose matched pairs

Choose post hoc: Compute 
achieved power
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Next calculate an effect size based on the supplied 
table information:

Click Determine

Add required information

Click Calculate and transfer
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Click calculate
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Example 2. Using the same information as example 1, determine 
the necessary sample size to achieve a power of .80

Graphing in G*Power
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Example 3. Continue with the same information and determine the 
minimum detectable effect size if power is .80
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Using the Optimal Design Software

The Optimal Design Software can also be used to 
estimate power in a variety of situations
The particular strength of this software is its 
application to multilevel situations involving cluster 
randomization or multisite designs
Available at:

http://sitemaker.umich.edu/group-based/optimal_design_software

Optimal Design
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Using Optimal Design (OD), estimate the power for a group 
randomized study under several conditions.  Start by choosing 
“File/Mode” on the toolbar and then “Optimal Design for Group 
Randomized Trials”

Next choose Power vs. 
number of clusters
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Now enter values to produce power estimates. 
Use α = .05, n = 10, δ = .5, and ρ = .05

Note that if you mouse over the power 
curve, exact values are displayed

Range and legend for axes can 
also be modified

Range and legend for axes can 
also be modified

Now explore the use of OD for examining 
power as a function of n, ρ, δ, and R2
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The OD software can also be used to determine the best 
combination of design features under cost constraints

Choose Optimal sample allocation

Enter values of $10,000 Total budget, 
$400 per cluster, $20 per member, ρ = 

.03, and δ = .4; then compute
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Optimal Design

For the given budget, n is 21, J is 
12 and power is .62

Note the increase in both n and power

What if the ICC was lower, .01?

What if the ICC was higher, .08?

What if the budget was increased?

Note the ratio of n to J given 
the higher ICC

Note the loss of power with higher ICC
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One Last Example: Multisite CRT

The primary rationale in this approach is to extend the idea 
of blocking to the multilevel situation
Clusters are assigned to blocks with other similar clusters 
and then randomly assigned to treatment 
Blocking creates greater homogeneity and less residual 
variance, thereby increasing power
For example, schools are collected into blocks based on 
whether school composition is low, medium, or high SES
Schools are within each block are randomly assigned to 
treatment
Between school SES variability is controlled by the blocking
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Multisite CRT

Two additional parameters are used in estimation:
Number of sites or blocks, K
The effect size variability,  

represents the variability of effect size from 
one cluster to another within a site
This variability represents within site replications 
of the study

2
δσ

2
δσ
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Multisite CRT

Example:
5 cities, 12 schools per city, d = .4, ICC =.12,       = .01, 
blocking accounts for 50% of the variation in the outcome 

2
δσ
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Applications
For the remainder of the workshop you may

complete exercises on power estimation
calculate power estimates for your own research

Exercises can be downloaded from:
http://www.uoregon.edu/~stevensj/workshops/exercises.pdf

When you finish the exercises, you can obtain 
answers at:
http://www.uoregon.edu/~stevensj/workshops/answers.pdf

Discussion as time permits
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