Exogenous testosterone enhances cortisol and affective responses to social-evaluative stress in dominant men

Erik L. Knight, Colton B. Christian, Pablo J. Morales, William T. Harbaugh, Ulrich Mayr, Pranjal H. Mehta

1 Department of Psychology, University of Oregon, United States
2 Department of Economics, University of Oregon, United States

ABSTRACT

Stress often precedes the onset of mental health disorders and is linked to negative impacts on physical health as well. Prior research indicates that testosterone levels are related to reduced stress reactivity in some cases but correlate with increased stress responses in other cases. To resolve these inconsistencies, we tested the causal influence of testosterone on stress reactivity to a social-evaluative stressor. Further, prior work has failed to consider status-relevant individual differences such as trait dominance that may modulate the influence of testosterone on responses to stressors. Participants (n = 120 males) were randomly assigned to receive exogenous testosterone or placebo (n = 60 testosterone treatment group) via topical gel prior to a well-validated social-evaluative stressor. Compared to placebo, testosterone significantly increased cortisol and negative affect in response to the stressor, especially for men high in trait dominance (95% confidence intervals did not contain zero). The findings suggest that the combination of high testosterone and exposure to status-relevant social stress may confer increased risk for stress-mediated disorders, particularly for individuals high in trait dominance.

1. Introduction

Stress is a leading contributor to poor health and mortality: Exposure to chronic or severe stress predicts increased risk for cardiovascular disease, psychiatric conditions such as depression and substance use disorders, and infectious disease (McEwen, 2004; Hammen, 2005; Stephens and Wand, 2012). Cortisol, a steroid hormone released as part of the hypothalamic-pituitary-adrenal (HPA) axis response to stress, mediates adaptive responses to stressors in the short term for example, by stimulating gluconeogenesis to provide energy to respond to and recover from a stressor (McEwen, 2004). But in the context of chronic or severe stressors, cortisol can negatively impact physical and mental health via dysregulation of immune system activity and neurotoxic effects within the central nervous system (McEwen, 2004; Cohen et al., 2012; Sapolsky, 2000). Stress also heightens negative affect, which is an independent pathway that predicts poor mental and physical health (Hammen, 2005; Kiecolt-Glaser et al., 2002).

Because of these potential consequences for physical and mental health, the systems that modulate responses to stressors are of great importance for understanding relationships between stress, health, and well being. Prevailing theories propose that the sex hormone testosterone should reduce stress responses, but the causal effect of testosterone on stress reactivity in humans remains unclear. In animal (e.g., rodent) models of stress, testosterone reduces cortisol reactivity to stress (Viau and Meaney, 2004) and reduces fear behavior (Aikey et al., 2002). Consistent with this stress-buffering account, in humans, testosterone suppresses cortisol responses to pharmacological stimulation of the HPA axis in men (Rubinow et al., 2005), and reduces unconscious attention to fearful faces in women (van Honk et al., 2005). Yet other studies indicate that testosterone correlates with increased cortisol and negative affect in response to situations that threaten social status, like losing a competition (Mehta et al., 2008; Zilioli and Watson, 2013) or being relegated to a low-ranking social position (Josephs et al., 2006). This correlational evidence is convergent with theorizing that testosterone directs the pursuit and maintenance of social status (Mazur and Booth, 1998) and suggests that testosterone may enhance acute stress responses when the stressor relates to social status, like during a social evaluation for a high-status job.
Despite this correlational evidence, the causal effects of testosterone on responses to status-relevant social stress have not been adequately tested in healthy young adults. Further, the few correlational studies that have examined testosterone and social stress have provided mixed evidence linking testosterone levels to both increased (Juster et al., 2016) and decreased (Stephens et al., 2016) cortisol output. In order to clarify this inconsistent correlational evidence, we provide a direct causal test of testosterone’s impact on cortisol and negative affect responses to stress using a status-relevant social stressor. We hypothesize that testosterone alters these stress responses, but because of the mixed correlational evidence, we are agnostic with regards to the direction of the effect. Moreover, given the increasing rate at which testosterone is prescribed (Baillargeon et al., 2013), administering testosterone prior to a social-evaluative stressor will provide much needed insight into testosterone’s potential impact on stress and health.

Prior research also indicates that testosterone’s effects on status-relevant behavior depend on trait dominance, an individual difference factor relevant to concern for status attainment, but the interactive effects of testosterone and dominance on stress responses is unknown. High levels of trait dominance, marked by a propensity to use force, fear, or intimidation to gain high-ranking positions within social groups (Cheng et al., 2013), correlate with increased cardiovascular stress reactivity (Lee and Hughes, 2014) and accentuate the behavioral effects of testosterone in status-relevant situations. For example, exogenous testosterone increases men’s aggression after provocation (Carré et al., 2017) and increases women’s competitive behavior after winning a contest (Mehta et al., 2015), but only in individuals high in self-reported trait dominance. These behavioral results suggest that trait dominance may also exacerbate the influence of high testosterone levels on responses to status-relevant stressors.

2. Materials and methods

2.1. Participants

Male participants (n = 120) between the ages of 18–40 (Mean = 22.50 years; SE = 0.33) were recruited via emailing campus listservs and by placing flyers on and near campus. Interested parties were screened for medical conditions that would prevent participation in the study, including immune, endocrine, neurological, or mental health conditions, and alcohol or drug abuse (see Supplemental Materials). The University of Oregon’s Institutional Review Board approved all methods.

2.2. Protocol

2.2.1. Participants and recruitment

After passing screening, the participant chose a day (Monday–Saturday) to attend a six-hour laboratory session, which began between 9:00–11:00 AM. These times were chosen so that the stressor would occur between 1:00–3:00 PM to control for diurnal endocrine variation. Participants were asked to refrain from eating or drinking anything except water or brushing their teeth 1.5 h prior to the start of the session. Upon arrival at the session, experimenters obtained informed consent from the participant (see Fig. 1 for a study timeline of saliva sampling and self-report data collection). Participants were paid $60 for completing the laboratory session.

2.2.2. Gel application and blinding

This study was executed as a between-groups, placebo-controlled experimental design. Testosterone and placebo doses (n = 60 in each group) were randomly ordered prior to data collection by members of our laboratory who were unaffiliated with this research. Participants were given a sealed enveloped which either revealed that the gel was testosterone or placebo – a single-blind condition – or simply stated that he had an equal chance of receiving testosterone or placebo – a double-blind condition. These blinding conditions were implemented to control for the expectancy effects (i.e., ‘conventional wisdom’) of receiving testosterone (Eisenegger et al., 2010). A laboratory member uninvolved in data collection prepared the envelopes prior to the start of data collection, thus the experimenter in the laboratory session never knew whether the vial contained testosterone or placebo, or to which blinding condition the participant was assigned.

Under the supervision of the experimenter, the participant rubbed increments of the gel onto his own shoulders and upper arms. The participant was then given several minutes to read the contents of the envelope, during which the gel dried.

2.2.3. Pharmacological manipulation

The testosterone gel (AbbVie, Chicago, IL) consisted of a 150-mg dose of testosterone in addition to pharmacologically inactive ingredients (see Supplemental Materials). The placebo gel contained the same inactive ingredients as the testosterone gel; the lack of testosterone was the only difference between the gels. The testosterone dose and time course for this protocol was based on prior topical testosterone administration research that showed serum testosterone concentrations peaked 3 h after a 150-mg testosterone dose (Eisenegger et al., 2013). Prior research has also shown physiological and neural reactivity 3–6 h after testosterone administration (Tuiten et al., 2000; Radke et al., 2015). In order to execute our protocol during peak concentrations and within a 6-h time period, this project utilized a 150-mg dose of testosterone approximately four hours (Mean = 3.98 h, SE = 0.015 h) prior to the social-evaluative stressor.

2.2.4. Social-Evaluative stressor

The social-evaluative stressor (the Trier Social Stress Test, or TSST; Kirschbaum et al., 1993) consisted of a mock job interview for a high-status, managerial position followed by a verbal mental math task. The job was described in a printed document and was designed to be representative of an early-career position consisting of managing a small team (i.e., twelve student employees) in a campus business office. Two panels were trained to maintain neutral affect and behavior throughout the task. For a majority of participants (72.5%), the panel was mixed gender; the remaining panels were composed of two male or two female panelists (24.2% male panelists; 3.33% female panelists; see Supplemental Materials for evidence that panelist gender did not alter results).

2.2.5. Other tasks

The study protocol contained three decision-making paradigms prior to the social-evaluative stressor in order to maximize data obtained from each participant undergoing exogenous testosterone administration; all data from these tasks will be analyzed and reported elsewhere. Participants could earn bonus money based on their performance in two of these tasks, though the exact amount earned was not revealed until the end of the laboratory session.

4 See Bird et al. (2016) and Carré et al. (2015) for work published after this data was collected that shows that peak testosterone concentrations occur earlier, approximately sixty minutes after topical gel administration.

5 This prior research was conducted on women using sublingual testosterone and so may have questionable value for experimental studies involving topical testosterone in men. As above, we recommend Bird et al. (2016) and Carré et al. (2015) for more up-to-date methods for topical testosterone administration.
2.3. Questionnaires

2.3.1. Dominance and prestige scale

Trait dominance was indexed from a scale that measures dominance aspects of status-seeking motivation, related to obtaining status via force, fear, or intimidation, and prestige motivations, which are related to obtaining status via competence, social skills, or respect (Cheng et al., 2013). The survey – which has been shown to be valid and reliable (Cheng et al., 2010) – consists of 17 items related to dominance (e.g., “I try to control others rather than permit them to control me.”) and prestige (e.g., “Members of my peer group respect and admire me.”) on a scale from 1 (not at all) to 7 (very much). Dominance (Cronbach’s $\alpha = 0.68$) and prestige items (Cronbach’s $\alpha = 0.83$) were averaged and normalized within each subscale.

2.3.2. Positive and negative affect

The PANAS-X general negative and general positive affect subscales were used to measure affect responses. Participants responded on a 1 (not at all or very little) to 4 (quite a bit) scale. Negative (average Cronbach’s $\alpha = 0.89$) and positive (average Cronbach’s $\alpha = 0.84$) items were averaged for each time point according to published guidelines (Watson and Clark, 1994). We also conducted exploratory analyses on the subscales that underlie general negative affect (fear, hostility, guilt, sadness) and general positive affect (joviality, self-assurance, attentiveness).

2.4. Saliva sampling and endocrine assays

The cortisol response to stress was determined from saliva samples collected immediately before (i.e., pre-TSST) and +0, +20, and +40 min after the stressor (see Supplementary Materials for analyses of samples that occurred prior to gel application (morning baseline) and three hours after gel application, Figs. S1-S3). For saliva collection, participants were instructed to drool 2 mL of saliva into polypropylene centrifuge tubes. Saliva samples were assayed in duplicate for cortisol and testosterone in our laboratory using commercially available enzyme immunoassay (EIA) kits (DRG International; see Supplementary Materials for details). The average intra-assay coefficients of variation (CVs) were 4.68% (cortisol) and 6.55% (testosterone); the inter-assay CVs were 14.8% (cortisol) and 16.1% (testosterone) averaged across low and high control samples.

Testosterone administration resulted in testosterone levels that exceeded the EIA kits’ maximum (5250 pg/mL) in 34.4% of samples within the testosterone group (17% of all samples; no samples in placebo condition were above threshold). As a conservative estimate of the testosterone concentrations, we replaced these unknown values with the EIA kit’s maximum value, 5250 pg/mL. If one of the duplicate samples was within the kit’s range, we averaged that known value with the maximum. All analyses were chosen a priori to focus on testosterone treatment as a categorical variable. This data replacement strategy therefore provides a low-end estimate of testosterone concentration in order to confirm that testosterone treatment sufficiently raised testosterone concentrations. Given this conservative estimate, any significant differences can be extrapolated to be true for a test if the actual concentrations were known (see Supplementary Materials for further justification of this approach).

2.5. Analytical plan

Multi-level models were constructed to examine Time x Testosterone vs. Placebo (T/P) and Time x T/P x Dominance effects on cortisol and negative affect responses to social-evaluative stress (see Supplementary Materials for full models). T/P condition was effects-coded (Testosterone = 1, Placebo = −1). All analyses controlled for participant blinding condition (see Supplementary Materials for analyses of blinding and treatment expectancy effects). Ninety-five percent confidence intervals (95% CIs) of the model estimates were used to determine the magnitude and direction of the effects. Relying on these model interpretations avoids some of the issues inherent to interpreting p-values as part of null hypothesis testing (Cummings, 2014).

In order to confirm interpretations of the multilevel models of the cortisol response, we conducted a GLM analysis on area-under-the-curve with respect to increase (AUCI), a measure of cortisol reactivity that takes into account all four samples (Pruessner et al., 2003). Simple slope analyses were used to decompose interactions (Preacher et al., 2006).

3. Results

3.1. Preliminary analyses

Four participants (n = 2 from testosterone treatment group) did not complete the social-evaluative stressor and were excluded from analyses. Two additional participants were missing a single sample – one participant left the laboratory prior to completing the TSST + 40 sample and one participant’s sample was improperly aliquoted during the assay process – but these participants were left in the analyses as multilevel models are generally able to account for singular missing data points. Outliers (> 3 SD) for negative affect were found at each time point (Baseline: n = 2; Pre-TSST: n = 3; Post-TSST: n = 1); these values were WinsORIZED to a score 3 SD above the mean for each time point. See Table S1 for descriptive statistics and correlations (Supplementary Materials).

As expected, the testosterone gel substantially increased testosterone concentrations (mean of post-gel testosterone concentrations, Testosterone group: $M = 2959.87$ pg/mL, 95%CI[2472.46, 3447.28]; Placebo group: $M = 164.00$ pg/mL, 95%CI[122.99, 205.01]; see Supplementary Materials, Fig. S3). No differences in pre-TSST cortisol or baseline affect were found between treatment groups or in exploration of interactions between treatment group and trait dominance (see Supplementary Materials).

3.2. Cortisol response to stress

Examining the impact of exogenous testosterone on cortisol concentrations across time revealed a Time x Testosterone/Placebo (T/P) condition interaction, such that exogenous testosterone increased cortisol responses to the social-evaluative stressor compared to placebo.
Time × T/P: \(B = 0.020, 95\% CI [0.001, 0.038] \); Time \(^2\) × T/P: \(B = -0.013, 95\% CI [-0.031, 0.005] \); Fig. 2A, Table S2, Supplementary Materials).

This Time × T/P interaction was moderated by trait dominance (Time × T/P × Dominance: \(B = 0.020, 95\% CI [0.002, 0.038] \); Time \(^2\) × T/P × Dominance: \(B = -0.021, 95\% CI [-0.039, -0.003] \); Fig. 2B). Decomposing these interaction terms with simple slope analyses revealed that high dominant men given testosterone showed a robust increase in cortisol due to the stressor (Time: \(B = 0.101, 95\% CI [0.064, 0.137] \); Time \(^2\): \(B = -0.132, 95\% CI [-0.169, -0.097] \)) compared to high dominant men given placebo, who displayed a relatively flat cortisol response (Time: \(B = 0.022, 95\% CI [-0.014, 0.058] \); Time \(^2\): \(B = -0.066, 95\% CI [-0.101, -0.030] \)). Low trait dominant men given testosterone (Time: \(B = 0.064, 95\% CI [0.028, 0.100] \); Time \(^2\): \(B = -0.084, 95\% CI [-0.120, -0.049] \)) or placebo (Time: \(B = 0.065, 95\% CI [0.028, 0.101] \); Time \(^2\): \(B = -0.100, 95\% CI [-0.137, -0.064] \)) were essentially equivalent in terms of their cortisol response to the stressor.

Follow-up analyses on cortisol AUC \(_i\) confirmed this overall pattern of results: Testosterone treatment predicted increased AUC \(_i\) (\(B = 0.073, 95\% CI [0.007, 0.358] \)), but this was moderated by trait dominance (\(B = 0.077, 95\% CI [0.013, 0.141] \); Table S3; see Supplementary Materials for simple slope analyses). For men high in trait dominance, testosterone increased cortisol AUC \(_i\) compared to placebo; no differences were evident for men low in trait dominance (Fig. 3; see Supplementary Materials for reactivity and recovery analyses, Fig. S4). Trait prestige levels did not interact with T/P to predict cortisol levels (Table S4).

3.3. Positive and negative affect responses

Testosterone increased negative affect in anticipation of the stressor compared to placebo (Time × T/P: \(B = 0.050, 95\% CI [-0.010, 0.111] \); Time \(^2\) × T/P: \(B = -0.044, 95\% CI [-0.088, -0.001] \); Fig. 4A). Testosterone’s causal increase of negative affect across time was also moderated by trait dominance (Time × T/P × Dominance: \(B = 0.080, 95\% CI [0.021, 0.139] \); Time × T/P × Dominance: \(B = -0.036, 95\% CI [-0.079, 0.007] \); Fig. 4B, Table S5, Supplementary Materials). Simple slope analyses revealed that for men high in trait dominance, testosterone (Time: \(B = 0.324, 95\% CI [0.206, 0.443] \); Time \(^2\): \(B = -0.229, 95\% CI [-0.315, -0.143] \)) increased negative affect in response to the stressor compared to placebo (Time: \(B = 0.066, 95\% CI [-0.051, 0.183] \); Time \(^2\): \(B = -0.068, 95\% CI [-0.153, 0.017] \)). Low trait dominant men given testosterone (Time: \(B = 0.148, 95\% CI [0.029, 0.267] \); Time \(^2\): \(B = -0.160, 95\% CI [-0.246, -0.073] \)) or placebo (Time: \(B = 0.209, 95\% CI [0.090, 0.329] \); Time \(^2\): \(B = -0.144, 95\% CI [-0.231, -0.058] \)) showed increased negative affect in response to the stressor, but were essentially equivalent in terms of their negative affect in response to the stressor. Thus, testosterone enhances negative affect in response to a forthcoming social stressor and sustains this negative response to the stressor for individuals high in trait dominance.

Follow-up analyses revealed that the effects of testosterone among high dominant men were also seen on two specific subscales of negative affect, fear and hostility (Table S6, Fig. S5). Trait prestige levels were not found to moderate the effect of testosterone on negative affect in response to the stressor (Table S7).

Positive affect decreased in response to the social-evaluative stressor...
with reduced connectivity within frontal-limbic neural circuitry, a
response to the stressor.

regulation of these neural threat responses as part of an exacerbated
evaluation may therefore experience increased activation and reduced
activation stress. Future work that investigates the e
responses as well (Dedovic et al., 2009). Testosterone is also associated
et al., 2005), with limited work suggesting it may in
creases cortisol concentrations and negative affect in response to a
social-evaluative stressor, especially for individuals with high trait
dominance. For an individual high in trait dominance — who is already
predisposed to being concerned with status and accustomed to wielding
social or even physical force to obtain it — exogenous testosterone
administration motivates strong concern for his status, making him
vigilant for cues to potential threats. Indeed, testosterone increases
nearl reactivity and behavioral responses to threatening interpersonal
cues that may signal an impending social challenge, like angry faces
(Goetz et al., 2014; Hermans et al., 2008; Terburg et al., 2012). This
increased concern for status during a social evaluation may be driving
the dominant individual with high testosterone levels to feel more
negative affect and elicit a stronger physiological response to the stressor.
The present work therefore advances theory on testosterone and social
status (Mazur and Booth, 1998) and challenges medical assumptions of
testosterone’s stress-suppressant effects by showing that testosterone’s
influence on susceptibility to status threat extends to acute social-evalua-
tive stress. Future work that investigates the effects of testosterone
on stress responses must (i) consider the social context in which the
stressor exists and (ii) account for individual differences in relevant
psychosocial constructs like trait dominance.

In addition to these psychosocial explanations, careful consideration
must be given to the potential biological mechanisms by which testo-
sterone increases stress responses. Testosterone has been linked to
increased activity in brain areas sensitive to threatening stimuli, such as
the amygdala (Goetz et al., 2014). In animal research the amygdala is a
key neural component that promotes HPA responses to stress (Herman
et al., 2005), with limited work suggesting it may influence human
responses as well (Dedovic et al., 2009). Testosterone is also associated
with reduced connectivity within frontal-limbic neural circuitry, a
pattern thought to indicate decreased neural regulation of affect and
behavioral responses to threat (Volman et al., 2011; Van Wingen et al.,
2010). Although currently untested, an individual with high testos-
terone levels who is high in trait dominance in the midst of a social
evaluation may therefore experience increased activation and reduced
regulation of these neural threat responses as part of an exacerbated
response to the stressor.

4. Discussion

This study provides causal evidence that exogenous testosterone
increases cortisol concentrations and negative affect in response to a
social-evaluative stressor, especially for individuals with high trait
dominance. For an individual high in trait dominance — who is already
predisposed to being concerned with status and accustomed to wielding
social or even physical force to obtain it — exogenous testosterone
administration motivates strong concern for his status, making him
vigilant for cues to potential threats. Indeed, testosterone increases
nearl reactivity and behavioral responses to threatening interpersonal
cues that may signal an impending social challenge, like angry faces
(Goetz et al., 2014; Hermans et al., 2008; Terburg et al., 2012). This
increased concern for status during a social evaluation may be driving
the dominant individual with high testosterone levels to feel more
negative affect and elicit a stronger physiological response to the stressor.
The present work therefore advances theory on testosterone and social
status (Mazur and Booth, 1998) and challenges medical assumptions of
testosterone’s stress-suppressant effects by showing that testosterone’s
influence on susceptibility to status threat extends to acute social-evalua-
tive stress. Future work that investigates the effects of testosterone
on stress responses must (i) consider the social context in which the
stressor exists and (ii) account for individual differences in relevant
psychosocial constructs like trait dominance.

In addition to these psychosocial explanations, careful consideration
must be given to the potential biological mechanisms by which testo-
sterone increases stress responses. Testosterone has been linked to
increased activity in brain areas sensitive to threatening stimuli, such as
the amygdala (Goetz et al., 2014). In animal research the amygdala is a
key neural component that promotes HPA responses to stress (Herman
et al., 2005), with limited work suggesting it may influence human
responses as well (Dedovic et al., 2009). Testosterone is also associated
with reduced connectivity within frontal-limbic neural circuitry, a
pattern thought to indicate decreased neural regulation of affect and
behavioral responses to threat (Volman et al., 2011; Van Wingen et al.,
2010). Although currently untested, an individual with high testos-
terone levels who is high in trait dominance in the midst of a social
evaluation may therefore experience increased activation and reduced
regulation of these neural threat responses as part of an exacerbated
response to the stressor.

4.1. Future directions

The present study provides clear evidence of testosterone’s direct
effects on stress responses and the moderating influence of trait dom-
inance, but several facets must be explored in future work. First, this
study used a prescription-strength dose of testosterone in order to su-
perse naturally occurring testosterone levels in eugonadal men. Future
work must ensure testosterone’s causal effects are robust at
naturally occurring concentrations, which could be accomplished by
blocking gonadal endocrine functioning prior to administering testos-
terone to normal physiological ranges (Goetz et al., 2014).

Second, although we provide evidence of testosterone’s direct ef-
effects on stress responses, the broader gonadal endocrine system should
continue to be explored with regards to stress responses. For example,
some of testosterone’s effects within the central nervous system depend
on local conversion to estrogen metabolites such as estradiol (Naftolin,
1994). Further, estradiol administered to men has been shown to in-
crease HPA-axis responses to stress (Kirschbaum et al., 1996). Thus the
effects reported here may depend on estradiol conversion, but future
research must rigorously test this dependency in humans by blocking
testosterone conversion to estradiol or antagonizing estrogen receptors.

Third, based on the extant literature (Carré et al., 2017; Mehta et al.,
2015; Slatcher et al., 2011), we focused on trait dominance but future
work should examine other possible moderators relevant to stress,
testosterone, and social-status motivations. These putative moderators
may include Type A/B personality, which may relate to trait dominance
and correlates with stress-linked health outcomes (Pittner et al., 1983),
as well as other factors that have been previously shown to moderate
testosterone’s behavioral effects, like trait impulsivity (Carré et al.,
2017) or 2D:4D ratio, a presumptive index of prenatal androgen ex-
posure (Van Honk et al., 2011).

Finally, the present study was limited to men due to constraints on
the use of prescription-strength testosterone, but future research must
consider the effects of testosterone and dominance on women’s stress
responses. Prior work has shown that neural responses to threat are
similar for men and women given exogenous testosterone (Hermans
et al., 2008; Goetz et al., 2014) and, more broadly, that the interactive
effects of exogenous testosterone and trait dominance alter women’s
status-relevant behavior (Mehta et al., 2015). But women’s status-
seeking motivations may be more dependent on other sex hormones,
such as estradiol (Stanton and Schultheiss, 2007), suggesting that a
broader examination of gonadal hormones is warranted for men and
women.

In summary, future work must investigate the extent to which stress
responses are causally enhanced by physiologically normal ranges of
testosterone and other gonadal hormones like estradiol, while exploring
an array of status-relevant moderators of stress responses in men and

Panel A. Time x T/P on negative affect. Panel B. Time x T/P effect on negative affect graphed at ± 1 SD trait dominance.

Fig. 4. Negative affect response to social-evaluative stress. All values are estimated marginal means from relevant models and all error bars are 95% confidence intervals. In each graph, “Pre-TSST” was measured after giving instructions for the social-evaluative stress task but before beginning the task and is therefore a measure of anticipatory negative affect. (Time: $B = -0.437$, 95%CI $[-0.503, -0.371]$), but neither testos-
terone nor the interaction of testosterone and trait dominance moder-
ated this effect (all 95%CIs contain zero; Table S8).

(155)
women.

5. Conclusions

These results have important implications for understanding testosterone’s role in stress and health and may provide mechanistic insights for the clinical science of stress-linked disorders. Stress often precedes the onset of psychiatric conditions, like depression and substance use disorders (Hammen, 2005; Stephens and Wand, 2012). Individuals high in trait dominance with high testosterone levels may therefore be susceptible to stress-linked disorders like mood or substance abuse disorders due to increased reactivity to social stress. In support of this inference, dominance motivations have been theorized to share common etiology for externalizing psychopathologies with known links to stress exposure, such as drug and alcohol abuse (Johnson et al., 2012). In comparison to dominance, evidence of testosterone’s relationship with mental health is mixed: One large study found that above-average testosterone levels correlated with depressive symptoms, though controlling for protective psychosocial factors like marriage or employment attenuates this relationship (Booth et al., 1999a). But this same work and other research shows that lower testosterone levels (i.e., hypogonadism) are also associated with depressive symptomology (Booth et al., 1999a; Ford et al., 2016; Giltay et al., 2017), which testosterone treatment may improve (Snyder et al., 2016). Given this evidence of increased symptomatology at high and low testosterone levels, the present results may be one end of a U-shaped relationship between testosterone and stress. Future work must therefore clarify the clinical significance of testosterone by continuing to examine the causal and moderating pathways by which these biological and psychosocial factors affect the onset and course of mental health disorders via alterations in stress responses.

In terms of physical health, exogenous testosterone is increasingly prescribed to treat hypogonadism (Baillargeon et al., 2013) and is associated with improved cardiovascular health (Alexander et al., 2017). Some limited evidence indicates that endogenous testosterone may relate to physical health in an inverted U-shape, with increased health complaints at high and low concentrations (Booth et al., 1999b), while other evidence suggests exogenous testosterone may actually boost the risk of non-fatal heart attacks (Finkle et al., 2014; cf. Corona et al., 2014 for alternative explanations of these findings). To date, none of this work has considered the potential ramifications testosterone may have for stress-related health conditions when considered within a psychosocial context. Our findings show that in response to a social stressor, testosterone increases cortisol levels and negative affect, which are both theorized pathways for downstream negative consequences of stress such as poor cardiovascular health (McEwen, 2004; Cohen et al., 2012; Sapolsky, 2000; Kiecolt-Glaser et al., 2002) and increased risk for acute cardiac events such as a heart attack (Steptoe and Kivimäki, 2013). It should be noted that an acute stress response in itself is not unhealthy. For example, cortisol and negative affect could provide metabolic energy and motivation to gain a high status position within a stressful social setting. But in the long term, over repeated stressors, testosterone’s causal increase of these stress responses may represent a liability to health and well-being, particularly for dominant individuals (McEwen, 2004). These results advocate strongly for the inclusion of psychosocial variables like trait dominance in future biomedical and clinical studies on the effects of testosterone on stress and stress-linked health outcomes.

Conflict of interest and financial disclosures

The authors report no financial interests or potential conflicts of interest. This research was supported by National Science Foundation grants awarded to PHM (#1451848) and to WTH and UM (#1063561). ELK was partially supported by National Institute on Aging Grant T32 AG049676 to The Pennsylvania State University.

Acknowledgments

We thank Smriti Prasad, Cassandra Brandes, Stephanie Kramer, Bethany Lassetter, Jason Isbell and Jeffrey D. Whitaker for their help with data collection and Dr. Craig Davidson for his advice throughout the study’s preparation and execution.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.psyneuen.2017.08.014.

References
