Generalized Critical Points Analysis of Acetylene Vibrational Dynamics

Ph. D. Oral Defense

Vivian Ding

Kellman Lab
Department of Chemistry
February 27, 2004
Molecular Spectra and Vibrations

Regular spectrum: motion can be decomposed into periodic oscillations (modes)

Irregular spectrum: motion is completely random
Modes of Vibration

Symmetric Stretch

Local Stretch 1

Local Stretch 2

Normal \rightarrow Local Transition (Bifurcation)
Our Research

A. **Vibrational modes** are important for characterizing the molecular dynamics.

B. **Bifurcations** of these modes reflect qualitative changes in both dynamics and spectral patterns.

C. We extract the modes and their bifurcations from the effective Hamiltonian \((\text{H}_{\text{eff}})\), obtained from fitting the spectra.
C$_2$H$_2$ Pure Bending Spectra

Normal mode zero-order states: $|n_4^{l4}, n_5^{l5}>$

$n4$: Trans bend

$n5$: Cis bend

Dispersed Fluorescence spectrum recorded by Field et al.
Resolved into “clumps” (polyads)
Quantum Effective Hamiltonian

Ground electronic state (S_0)
Vibrational part only:

$$H_{\text{bend}} = H_0 + V_{\text{DDI}} + V_l + V_{\text{DDII}}$$

$$H_0 = \sum_{4,5} \omega_i n_i + \sum_{4,5} x_{ij} n_i n_j + \sum_{4,5} y_{ijk} n_i n_j n_k + \sum_{4,5} g_{ij} l_i l_j$$

Polyad \{8, 0\}^g

$$[n_4^{l_4} n_5^{l_5}]$$

2 polyad numbers:
\{N_b, l\}^g/u = \{n_4 + n_5, l_4 + l_5\}^g/u

Only states with the same polyad numbers are coupled.
Classical Hamiltonian

- **Heisenberg’s Correspondence Principle:**
 \[a_i^+ \rightarrow I_i^{1/2} \exp[i\phi_i], \quad a_i \rightarrow I_i^{1/2} \exp[-i\phi_i] \]
 \[H_{\text{bend}} (I_i, \phi_i) \quad i=4d, 4g, 5d, 5g \]

- **New canonical variables**
 - **Trivial:** \((K_a, \theta_a, K_b, \theta_b)\)
 \[K_a = (N_b + 2)/2 \quad K_b = l/2 : \text{ constants of motion.} \quad \theta_a, \theta_b : \text{ cyclic angles} \]
 - **Nontrivial:** \((J_a, \psi_a, J_b, \psi_b)\)
 \[J_a = (n_4 - n_5)/2 \quad J_b = (l_4 - l_5)/2 \]

- **Simplified Classical Hamiltonian**
 \[H_{\text{bend}} (K_a, K_b, J_a, J_b, \psi_a, \psi_b) \]

- **Equations of motion in reduced phase space**
 \[\psi_i = \frac{d\psi_i}{dt} = \frac{\partial H_{\text{bend}}}{\partial J_i}, \quad J_i = \frac{dJ_i}{dt} = -\frac{\partial H_{\text{bend}}}{\partial \psi_i} \]
• Flow in the **reduced phase space** is organized by **critical points**.

\[
\dot{J}_i = \dot{\psi}_i = \frac{\partial H_{\text{bend}}}{\partial \psi_i} = \frac{\partial H_{\text{bend}}}{\partial J_i} = 0
\]

- Stable (Elliptic)
- Unstable (Hyperbolic)

• In the **full phase space**, the **critical points** move along the cyclic angle (s) \(\theta_i \).

• Near a stable critical point, trajectories can be decomposed into periodic oscillations \(\rightarrow \) vibrational modes.
Critical Points in \(\{N_b, 0\} \) Polyads

Solving 4 simultaneous equations for continuously varying \(K_a \) (\(N_b \)) values:

\[
\begin{align*}
\frac{\partial H_{\text{bend}}}{\partial J_a} &= \frac{\partial H_{\text{bend}}}{\partial J_b} = \frac{\partial H_{\text{bend}}}{\partial \psi_a} = \frac{\partial H_{\text{bend}}}{\partial \psi_b} = 0 \\
(1) & \quad (2) & \quad (3) & \quad (4)
\end{align*}
\]

From (3), (4): \((\psi_a, \psi_b) = (0, 0), (0, \pi/2), (\pi/2, 0), (\pi/2, \pi/2)\)

From (2): \(J_b = 0\)

From (1): \(J_a (K_a, \psi_a, \psi_b)\)

These critical points are periodic orbits in the full phase space since

\[
\dot{\theta}_a \neq 0 \quad \dot{\theta}_b = 0
\]
Results for \(\{N_b, 0\} \) Polyads

(Click on each picture to see the animation.)
Long-living vinylidene observed in acetylene-vinylidene system

= “local mode” inferred from acetylene H_{eff}?

(Click on the picture to see the animation.)

From Carter et al. @ UCLA
Quantum Survival Probability

\[P(t) = |\langle \Psi(t) | \Psi(0) \rangle|^2 \]
C$_2$H$_2$ Stretch-Bend System

1. C-H symmetric stretch
2. C-C stretch
3. C-H antisymmetric stretch
4. Trans bend
5. Cis bend

Vibrational angular momenta l_4, l_5

The polyad numbers are:

$\omega_1 : \omega_2 : \omega_3 : \omega_4 : \omega_5 = 3372:1975:3289:608:729 \sim 5:3:5:1:1$

3 polyad numbers:

$N_{tot} = 5n_1 + 3n_2 + 5n_3 + n_4 + n_5$

$N_s = n_1 + n_2 + n_3$

$l = l_4 + l_5$
Fate of 5 Normal Modes

1. C-H symmetric stretch
 $|n_1, 0, 0, 0^0, 0^0\rangle$
 ____________ perturbed but remains stable ____________

2. C-C stretch
 $|0, n_2, 0, 0^0, 0^0\rangle$
 ____________ isolated subsystem ____________

3. C-H antisymmetric stretch
 $|0, 0, n_3, 0^0, 0^0\rangle$
 0
 local stretch

4. Trans bend
 $|0, 0, 0, n_4, 0^0\rangle$
 8
 local bend
 10
 orth bend
 15
 pre bend

5. Cis bend
 $|0, 0, 0, 0^0, n_5^0\rangle$
 10
 CR bend

new stretch-bend modes
Generalized Critical Points Analysis

- Spectra
 - Effective Hamiltonian
 - Classical Hamiltonian
 - Heisenberg’s Corresp.
 - Reduced Phase Space
 - Critical Points
 - Dynamics
 - Trajectories, $P(t)$, etc.

Resolved & Fitted

N coupled modes

M pairs of (polyad #, cyclic angle)

2N Dim phase space

2(N-M) Dim reduced phase space
Advantages of Our Method

A. H_{eff} vs molecular potential energy surface (PES)

 Current limitations in \textit{ab initio} calculation
 Polyad numbers

B. Analytic detection of critical points

 Solvable regardless of stability
 Scales linearly with dimensionality
 Does not rely exclusively on visualization
 Considers multiple interacting resonances

C. Efficiency of the method

 Simple & gives an overview of the features
 Starting point for further exploration of the dynamics
Future Work

A. Full analysis of the stretch-bend dynamics of C₂H₂

Overtones \rightarrow All combinational states

B. Other systems: C₂H₂ isotopomers, CH₄, CH₂O ...

Effective Hamiltonians with multiple polyad numbers

C. Effect of polyad breaking terms

Important at high energy, esp. near a reaction barrier
Acknowledgements

- Prof. Mike Kellman
- Profs. Jeff Cina, David Herrick
- Travis Humble, Mary Rohrdanz
- Erich Wolf

- Financial Support: Department of Energy