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Mechanisms for the evolution of reproductive isolation in natural populations
have been the subject of considerable controversy. The view that allopatric
speciation is essentially the only mechanism for gradual species formation (Mayr
1947, 1963) has been challenged in recent years by both theoreticians (Basykin
1865; Maynard Smith 1966; Dickinson and Antonovics 1973, Endler 1977; Caisse
and Antonovics 1978; Rosenzweig 1978; Gibbons 1979 and laboratory population
biologists (e.g., Thoday and Gibson 1962, 1970; Soans et al. 1974, Hurd and
Eisenberg 1975), as well as by examples of probable sympatric speciation events,
particularly among insects (Bush 1969, 1975; Knerer and Atwood 1973;
Richardson 1974; Phillips and Barnes 1975; Khasimuddin and DeBach 1976;
Tauber and Tauber 1977; Gibbons 1979).

Despite its importance, mathematical theory of the evolution of reproductive
isolation is still in the early stages of development. Maynard Smith (1966) used
models of papulations accupying two niches to demonstrate that multiple-niche
polymorphisms could result in reproductively isolated populations through dis-
ruptive selection. His results were extended by Dickinson and Antonovics (1973),
who used computer simulatian to show that the degree of reproductive isalation
depends on the intensity of disruptive selection and the amount of gene flow
between niches.

Further development and analysis of mathematical madels of the evolution of
reproductive isolation are difficult because of the inherent complexity of the
process. Most evolutionary models start out with a set of genotypic frequencies as
state variables of a dynamic system and an algorithm or a system of equations is
constructed which determines genotypic frequencies at some [ater time. The goal
of analysis of such a dynamic system is to predict the future behavior of the state
variables from a knowledge of the parameters or control variables. However,
because aof the large number of state variables and parameters involved in specia-
tion models, analysis is at best cumbersome and difficult and results are difficult to
interpret biologically.

In this paper, I report on the construction and analysis of models designed to
explore the theoretical potential for the evolution of reproductive isolation via
disruptive selection. As is often useful in analysis of models of complex systems,
emphasis has been placed on only a few variables and parameters which are of
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primary interest. Analysis has also been simplified by the use of indices, which are
functions of the state of the system or of the parameters, but which are more easily
interpreted and measured than the state variables and parameters. These indices
may be divided into two classes: stafe indices, which are defined solely in terms of
the state variables and which provide useful measures of certain aspects of the
state of the system: and parametric indices, which may be defined as functions of
both parameters and state variables and which provide useful measures of the
effects of certain processes on the dynamic behavior of the system. By analysis of
the models I then attempt to determine the effect of the parametric indices (e.g.,
inddex of disruptive selection) on the behavior of the state indices (e.g., index of
reproductive isolation).

In general, the models described helow will involve two interacting polymar-
phic loci in one large potentially panmictic population. One locus will be polymor-
phic with respect to some trait that is undergoing frequency-dependent selection.
IInder same circumstances, the heterozygote genotype will be less fit at a
polymorphic equilibrium even though the equilibrium is stable. I will call this the
disruptive selection locus or the DS locus. The second locus will be polymorphic
with respect to some character that is associated with the mating process in such a
way that assortative mating may occur. This locus will be referred to as the
assortative maring locus or the AM locus. The DS locus and AM locus may or
may not be linked. As with earlier models of the evalution of reproductive
tsolaiion, analysis of the models will attempt to define the nature of the conditions
which wiil lead to an epistatic association between the DS locus and the AM locus
and hence the establishment of partial premating reproductive isolating mecha-
nisms (RIMs) between populations of opposite homozygotes at the DS locus. The
multiple-niche models of Maynard Smith (1966) and Dickinson and Antonovics
(£973) may be viewed as special cases of this model. However, the populations
modeled in this paper are potentially panmictic; any restrictions on gene flow
resuli entirely from the intrinsic barriers established by interaction between the
S tocus and the AM locus.

I. FREQUENCY-DEPENDENT SELECTION

The first prerequisite for the evolution of reproductive isolation via disruptive
selection (s the establishment and maintenance of a stable disruptive selection
regime {e.g., heterozygote inferiority). It is well known that such polymorphic
regimes are unstable when fitness values are considered constants. However,
when fitness values depend on gene frequency (e.g., when rare genotypes have a
fitness advantage), a stable polymorphic equilibrium is passible (Lewontin 1958).
in this section the conditions for the tocal stability of a polymorphism at a single
locus in a randomly mating population will be determined for the frequency-
dependent case. The results can also be abtained using the results of Li’s (1955)
general analysis of the stability of polymorphisms and are similar to results
derived previously by Lewontin (1938).

The models of the evolution of reproductive isolation presented in section. III
are based on the general model of frequency-dependent selection described
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below, and are somewhat independent of the actual mechanism causing fitness
values to depend on gene frequency. A large number of potential mechanisms
have heen studied or proposed (Avala and Campbell 1974), including mating
behavior (e.g., Petit and Ehrman 1969; Ehrman and Spiess 1969), predator forag-
ing strategies (Clarke 1962, 1969; Udovic et al. 1976), mimicry (Fisher 1938;
(O'Donald and Pilecki 197Q), intergenotypic facilitation or interference (Weisbrot
1966), coevolutionary interactions between populations (Levin and Udovic 1977),
and niche heterogeneity (Levene 1953; Deakin 1968; Prout 1968; Avala and
Campbell 1974, p. 121). Models of niche heterogeneity (multiple-niche
polymorphisms} formed the basis for earlier models of the evolution of repro-
ductive isolation {Maynard Smith 1966; Dickinson and Antonovics 1973), The
qualitative results obtained in this paper will apply to most of the suggested
mechanisms for frequency dependence, including niche heterogeneity.

Assume that at a given locus there are two alleles, A, and A ;, with frequenciesp
and (1 — p), respectively. Let W, W,, and W, be the fitnesses of the three
genotypes, AgA,, AgA |, and A A, which occur with frequencies Y, ¥, and ¥,,
respectively. Assume that genotypic frequencies are measured after the formation
of zygotes, but before selection. Hence, if mating is random they will follow
Hardy-Weinberg expectations. The W,'s are assumed to be nonnegative, continu-
ous, and differentiable functions of p. Thus the mean fitness of the population at
any point in time will be

W =2 YWip). (n*

As in all models described in this paper, generations are discrete and the dynamics
are assumed to be deterministic. Following the notation of Lewontin (1938), [
define the following parametric indices: the indices of fitness differences,

a(p) = Wolp) — Wilp)
2
b(p) = Wyp) -~ W (),

and the ratio of the fitness differences

r(p) = b(p)la(p). (3)*

Note that because of relaxation of the assumption of random mating, the
equations derived below will not apply in later sections. However, the notation
defined above and any expressions followed by an asterisk will be preserved.

The following expression describes the change in p from one generation to the
next {values of variables in the next generations are denoted by primes):

pr = EU=Bhipa + b) ~ ) +p
4)

:——_——p(lw_p)a[p(l +ry—r]+p.
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This system will be at equilibrium whenever Ap = p' — p = 0, that is, whenever
p=0,p=1or

s__ b®) B )
a() +56) 1+ 1P

For any polymorphic equilibrium, 0 < § < 1, expression {3} indicates that 4 and
b must be the same sign and therefore that the heterozygote cannot be intermedi-
ate in fitness at the equilibrium. This is a well-known condition which requires no
further explanation.

The local stability characteristics of a polymorphic equilibrium (whether it
returns to equilibrium after small perturbations) depend on the rate of change of
Ap as a function of gene frequency (dAp/dp), which is a quantitative measure of
the direction and intensity of feedback loops. For local stability the following
conditions must be satisfied (Goldberg 1958):

-2« 22 < 0. (6)

The left candition occurs solely because changes in gene frequency occur in
discrete intervals rather than continuously, therefore allowing for the possibility
of avershoot. It is thearetically possible to have such strong negative feedback
loops caused by frequency-dependent selection that this condition is not satisfied.
However, it can be shown that the [eft condition will almost always be satisfied
when the parameters of the fitness functions are assigned values which are
biologically reasonable. Hence consideration will be restricted to the condition on
the right. This condition, which must be satisfied no matter what the time scale of
response of the system, is the necessary and sufficient condition for intrinsic
stability (Levin and Udovic 1977). By substitution and simplification, we can
obtain

dAp P v [nBa . o . 8b
ap |p=p _:‘v{/a + (1 -p) 973—5(!9} (1 p)g};(p) . 7
Further algebraic simplification yields the following condition for intrinsic stabil-
ity,
S +M<0, ()

where § and M are parametric indices of the feedback effects of heterozygote
superiority or inferiority and frequency dependent selection, respectively, at a
polymorphic equilibrium and are defined as follows

S =a®) +b@) = a@) [ + r()] 9)*
M = @gg@) . ﬁ)%f;(m (10)

Condition (8} depends only on the relationship between fitness values and not on
the values themselves. However, in order to standardize values for § and M, the
fitness values at equilibrium will always be defined relative to W, (§) = 1.
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Theoretically, values for § and M could be obtained for any value of p, but
interpretation of the meaning of the indices would change forp # p. Furthermore,
it is the polymorphic equilibrium values that are of interest. At equilibrium, § is
positive when the heterozygote is inferior, negative when the heterozygote is
superior, zero when all genotypes are of equal fitness, and reaches a maximum of
2 when heterozygote fitness is zero. The Af will be negative when frequency-
dependent selection is stabilizing (the rare genotypes have a fitness advantage),
positive when frequency-dependent selection is destabilizing (the common
genotypes have a fitness advantage), and zero when fitness values are independent
of gene frequency. Here § will be referred to as the index of disruptive selection,
and M will be referred to as the index of frequency-dependent selection.

Condition {8) shows the potential complementarity between the two feedback
processes defined by § and M. Stabilizing frequency-dependent selection can
override the destabilizing effect of heterozygote inferiority (disruptive selection)
and heterasis can override the effect of destabilizing frequency-dependent selec-
tion. Furthermore, the feedback effects are additive. In the case of heterozygote
inferiority, § > 0, and the feedback effects of frequency dependence must be
strong enough that — M = §,

II. ASSORTATIVE MATING MODELS

The second prerequisite for the evolution of reproductive isolation via disrup-
tive selection is the development of a genetic basis for increasing the probability of
intragenotypic crosses among the extreme types and reducing the probability of
crosses which would result in less-fit intermediates. Maynard Smith (1966) and
Dickinson and Antonovics (1973) discuss several possible genetic mechanisms for
this process. In this paper only one of these is considered: the potential epistatic
association of the DS locus discussed in the previous section with a second locus
which provides a genetic basis for mating assortatively by phenotype.

The two simple models of assortative mating which will be used in this paper
were chosen from a large number of possible alternatives {(Scudo and Karlin 1969;
Karlin and Scudo 1969) because they have two characteristics which help simplify
analysis. First, assortative mating does not result in changes in gene frequency
from generation to generation. Thus, in the absence of stochastic effects or
differences in the average fitness values of genotypes as a result of differences in
genetic background, gene frequency remains invariant. As Scudo and Karlin
(1969) point out, this is not characteristic of most assortative mating models. Most
often the mating process itself generates fitness variability because of genotypic
differences in the probability of finding a mate. However, selection at the AM
locus compounds difficulties in analysis and interpretation, and for the present it is
ignored. Since selection resulting from assortative mating tends to aperate against
the formation of stable polymorphisms at the AM locus {(Scudo and Karlin 1969), it
will be important to consider the sensitivity of the results of this paper to the
introduction of thig factor into the models. Second, the extent of assortative
mating at the AM locus is defined by a single invariant parameter, @, which
indicates the probability that an individual will mate assortatively (1 — & will then
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TABLE 1

FREQUENCIES OF INTRA- AND INTERGENOTYPIC CROSSES (£;) AND
RECURSIVE BQUATIONS DESCRIBING CHANGES IN GENOTYPIC
FrREQUENCIES FOR ASSORTATIVE MaTING MoDEL 1

FEMALES {f)
R,B, B,B, BB,
MaiLEs (i) {0y (1) (2)
Xi‘.

BB, (0) ... gy (- X “3?%%7. (1~ O)X X, (1 — WX,
BB () ... XX — X, — 2 - X2

081 (1) aXu+/;l'|+(I )X X, aXu+X1+(1 a) X1 (1 - X
BB, (D) ...... (L — a)X,X, (1 — &)X Xs Xy + (1 — o)¥3
X e L )Y (Lla)

YUX X

. eXy 201 — _
X = rers ol (1 = QL = ) oo e e e e (L1b)
Xy = a(X e A Q)T (11c)

! A, X)) B

be the probability that an individual will choose a mate “‘randomly’"). In more

realistic models, @ might have a different value for each genotype and each of

those values might be frequency-dependent.

Assume that there are two alleles at an assortative mating locus (B, and B)),
with gene frequencies ¢ and {1 — g) respectively. Let X, X, and X, be the
frequencies of the BB, B,B,, and BB, genotypes, respectively. We make the
following simplifying assumptions.

(1) The AM locus is autosomal,

(2) Given identical genetic backgrounds, each AM genotype has the same viabil-
ity and fertility.

(3} Individuals which mate assortatively always mate with an individual of the
same AM phenotype. In model 1, B, is dominant and hence the dominant
homozygote and the heterozygote have the same phenotype. In model 2, the
heterozygote is distinguishable from both homozygotes and hence there is a
one to one correspondence between genotype and phenotype.

(4) There is no loss in fertility associated with either mating assortatively or
randomly.

Model 1 is a special case of model [ of Scudo and Karlin (1969) and is the model

used by Maynard Smith (1966) and Dickinson and Antonovics (1973), Model 2 has

the advantage that it is ‘‘symmetrical’’, which simplifies analysis.

The frequencies of various intra- and intergenotypic crosses for models [ and 2
are presented in tables 1 and 2, together with recursive equations describing
changes in genotypic frequencies from one generation to the next. These tables
are based on the assumption that no selection is occurring at the AM locus. If
selection occurs before mating begins, the genotypic frequencies after selection
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TABLE 2

FREQUENCIES OF INTRA- AND INTERGENOTYPIC CROSSES {£;) AND
RECURSIVE EQUATIONS DESCRIBING CHANGES 1N (JENOTYPIC
FREQUENCIES FOR ASSORTATIVE MATING MoDgL 2

FEMALES {f}

8.8, BB, B.&
MALES (i) © i} )
BoBolO) .rinn ... aX, + (1 — a)X? (1 — @)X X, (0 — alXeX,
BB, (1) oouioi ... (1 — @)X X, aX, + (1 - k2 (1 — &)X X,
BB () ... (I — )Xo Xy - aX X, ak, + {1 — a3
Ko = (X + B (L — g {13al
Xl =daX, + X1 —algfl — g) . £t}
Xo = alX, £ 3K 0 + 00— @l — Q1 o e e e tFic)

could be substituted into the tables in the appropriate locations. Then the recu-
sive equations would simply define the genotypic frequencies before selection in
the next generation as a function of genotypic frequencies after selection in the
current generation.

The dynamics of assartative mating systems are often expressed in terms of the
heterozygote deficiency (F), a state index which measures the deviation e
heterozygote frequency from the expected Hardy-Weinberg equihibrium.

X Tyl
F=1-_—21 (13)
2g(1 ~ q}

The following recursive equations for F have been derived assuming no selection
pressures:

[ — I_CI(I_F} 4
model 1 F al-l—(l—q)(I—F} {14}

model 2 F' = %(1 + F). (15)

The equilibrium values for heterozygote deficiency can be expressed as 4
function of ¢ and a. For model 1, F is the unique root between ¢ and 1 of

ﬁﬂ—(_ilL_"*-;‘f—H)PJra:o. (16)

For model 2:

F=g2 (17

These equations are presented graphically in figure 1. Note that in model 2, £ is
independent of gene frequency.
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Fic. 1.—Graphical representation of the heterozygote depression at the AM locus at
equilibrium, F, as a function of the coefficient of assortative mating, ¢. a4, AM model 1. The
three curves represent different values of the gene frequency, 4. &, AM mode! 2. For this
mode!, F is independent of gene frequency.

The following three paints deserve emphasis. First, for any value of « between 0
and 1, heterozygote deficiency will result. There is no threshold which must be
reached before F becomes positive. Second, F is a monotonically increasing
function of . Third, except for boundary values of a{e = O or & = 1), F is always
less than e.

III. MODELS OF REPRODUCTIVE [SOLATION

In this section the models of the two previous sections are combined to describe
the dynamics of a papulation in which disruptive selection is operating at one
locus (DS locus) and assortative mating at a second locus (AM locus). Each
generation in the models is divided into two phases: a selection phase in which
differential mortality occurs based on each individual’s allelic configuration at the
DS lacus without regard to its AM genotype; and a mating phase, in which
partners are chosen according ta their AM genotype without regard to their DS
genotype.

As in previous models the dynamics of the system may be described by a
system of recursive equations which express genotypic frequencies in one
generation as a function of genotypic frequencies in the previous generation. {n
the general case, there are 10 distinct genotypes (table 3), including two double
heterozygote genotypes: one with gametes in the coupling phase (A ,B,/A4 B,); the
other with gametes in the repulsion phase (A.B./A.B;). The frequency of
genotype if {the genotype with i A, alleles at the DS locus and j B, alleles at the
AM locus) is denoted by g;,. The frequencies of the coupling and repulsion double
heterozygotes are denoted by g, . and g, », respectively. Although the number of
variables in multiple-locus populatien genetics models which assume random
mating can be reduced significantly by considering gametic frequencies rather
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TABLE 3

GENOTYPIC FREQUENCIES {g,) FOR THE TEN POSSIBLE GENOTYPES
IN THE MODELS oF REPRODUCTIVE [SOLATION

AM Locus
DS Locus BB, BB, BB, z
AqAa .................. Fon Buat Buax ¥y
T £ 0" 2 Y,
AL - £ 2 |
Y X X, X, 1

NoTe —Nate that, in general, there are two distinct double-heterozygote genatypes, corresponding
to the coupling and repulsion phases.
“Eu = et Bl

than genotypic frequencies (Lewontin 1964}, genotypic frequencies in the models

considered here cannot be ascertained solely from a knowledge of gametic fre-

quencies. In general, nine independent recursive equations are required to de-
scribe the dynamics of these two-locus models.

The basic assumptions of previous models will also hold for this section (e.g.,
generations are discrete and processes are deterministic). In addition, the follow-
ing assumptions are made coacerning the interaction of the DS locus and AM
locus.

1) Both loci are autosomal. They may or may not be linked.

2) Fitness values at the DS locus are functions of allelic frequencies at that focus,
and are independent of allelic or genotypic frequencies at the AM locus.

i) The selection phase and the mating phase occur sequentially (i.e., zygote
formation — selection phase — mating phase — zygote formation}.

4} Fitness variability at the DS locus (s due solely to differential viahility. Each
genotype is assumed to have the same average fertility. This assumption 1s a
direct consequence of the previous one, since differential fertility rates would
imply that the selection and mating phase would be in reverse order, if not
simultaneous,

Since the fitness of each genotype depends only on its DS alleles, the following
set of equations expresses genotypic frequencies after the selection phase as a
function of preselection genotypic frequencies:

g5 =gy WJW, (18)*
where the mean fitness of the population is
2 z
W=> > g,W. (19)*
i=0 i=0
The W's are functions of p, the frequency of the A ; allele at the DS locus, but can

be expressed as functions of genotypic frequencies by determining the relation-
ship between the genotypic frequencies and p.
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Let
b= gu T t8u- (20)*
Then
2 2
p=>di= (gu+ g 21*
=1 i=1

The next objective is to obtain a set of equations for the mating phase which
express the genotypic frequencies after mating and zygote formation in terms of
their postselection, premating values. As shown in tables 1 and 2, there are nine
possible crosses at the AM locus. Given a particular cross (e.g., B,B, X ByB)),
since mating choice is not affected by the DS locus, zygote formation can be
viewed as the union of gametes chosen randomly from two gamete pools corre-
sponding to the two parental genotypes at the AM locus. Let (v}, represent the
frequency of gamete A B ; among individuals of genotype u at the AM locus (e = 6
for ByBy; u = 1 for ByB,;, i = 2 for B B)). Formulas for (y), are easily derived and
are presented in table 4. Note that for genotype BB, the gametic frequencies
depend on the frequency of recombination between the AM locus and the DS
locus, which is called R (0 = R = {), the recombination fraction. Let 7.0y}, v.3.)
represent the frequency of the union of gametes A, B, and A,.B, among matings
between males of genotype u at the AM locus and females of genotype v at the
AM locus, Then if gametes are selected at random,

T ("/iu %S;tn) = ('}’f:i).t-t ('yrs;m)u + (7:5;1“.)}1 (’)’EE)» (22)*
fork, I,m,n =0,1, u,v=0,1, 2.

From the values for 7,.,, the frequencies of cach of the [0 genotypes among
offspring of each of the nine crosses can be ¢asily determined. Let T,,(i,j)
represent the proportion of offspring from matings between males of genotype . at
the AM locus and females of genotype v at the AM locus which are of genotype .
Then

Tu () = le Tep ('}’?Eh '}’:Srlm) fori,j = 0,1,2 (232)*
Kulatian=1
v = 0,12
TE, (L,1)= i Tup (v, V50 for p, v =0,1,2 (23b)*
Kl nlu=0
m={_{#k=mn
T¢ (1,1)= i T (¥, Vo) forw, v =0,1,2 (23¢)*
e d. =0
k=!#m=n

where TE, (1,1) and T§, (1,1) represents the frequencies of the repulsion and
coupling-phase double heterozygotes, respectively, among offspring of a . X v
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TABLE 4

GamETIC FREQUENCIES AFTER SELECTION (v}, FOR EacH GENOTYPE AT THE AM-Locus

GAMETE FREQUENCIES

AM GENOTYPE Yo = {(AaB0) v = (A.B)) Yo = (4,84) i = (A8
BBg(n=00 ...... HSIXS 0 [ - % 0
BBy (= ¥ ...... relX, e - %: - ;_*-:
BB, (w=2 ...... 0 #3173 o . r%;!

* where he = ¥g§ + pat)

Ay = Mgl + (I - plgly

_ (0~ Righe + Redia
gfue + 2iir

1

and R (0 = R = 0.5) is the fraction of recombinant gametes.

cross. Finally, the frequency of each genotype in the next generation (g;)) can be
obtained by multiplying the proportion of offspring of each cross which result in
that genotype [Ty, (i,/)] by the frequency of that cross (£,,) and summing over all
nine crosses:

2 2
gh = > > £uTuy)  forij =0,1,2 (242)*
=0 v=1
2 2
Bla = 2, O £ B(LD) (24b)*
a=0 p=1
* 2
grll,C = Z z gMuTﬁv(lrl}‘ (24':)*

1:
|
-
A~
i
(=3

Note that only the frequencies of each cross (£.,) depend on the particular
assortative mating scheme. For AM models 1 and 2, formulas for £ have already
been derived (tables [ and 2). However, the AM genotypic frequencies (X ;) in the
tables must be replaced by the AM genotypic frequencies after selection (X {) for
use in expression (24).

IV, ANALYSIS

The goal of analysis of these models is to determine when epistatic interactions
between the AM locus and the DS locus will result in a stable association between
the two, and hence in partial reproductive isolation. There are several possible
state indices which could be used te measure the degree of association between
the AM locus and the DS locus or the resulting degree of isalation. The gametic-
phase disequilibrium coefficient (D) measures the degree to which alleles at the
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two loci covary in their distribution among gametes,

D = yuY — YarYio- (25

Values of ) vary from —0.25 to +0.25, with a value of zero indicating no
association. The degree of reproductive isolation at the DS locus can be measured
either by the degree of heterozygote deficiency at the DS locus or by measuring
the degree of nonrandomness in matings or inseminations among the DS
genatypes. Measures based on the latter are commonly used in laboratory ex-
periments on reproductive isolation. For example, Stalker's (1942) isclation
index, developed by Donald Charles, has been used by a number of investigators
(e.g., Dobzhansky and Mayr 1944; Hurd and Eisenberg 1975):

No. of homogamic matings — No. of heterogamic matings
Total no. of matings ’

Levene’s (1949) coefficient of isolation, a refinement of Stalker's index, is also
used in laboratory studies (e.g., Khasimuddin and DeBach 1976},

Here, the degree of heterozygote deficiency at the DS locus (F) will be used as a
state index of reproductive isolation:

— Yl
2p (1 — p)’

Values of 7 vary from —1 to 1. If the AM locus and DS locus are not associated,
mating will be random at the DS locus and, if fertility rates are equal, I will be
zera. An excess of heterozygotes vields a negative value for 7, while a deficit
yieids a positive value. Reproductive isolation is complete if 7 = 1.

Indices such as Stalker’s or Levene’s which are based on the frequencies of
various matings are direct measures of the degree of premating isolation.
Heterozygote deficiency, on the other hand, may result from differential fertility
of the various genotypic crosses as well as from nonrandom mating, and hence
may include postmating as well as premating isolation. However for the models
analyzed in this paper, heterozygote deficiency measures only the degree of
premating isolation because fertility rates are assumed to be equal for all crosses.
Furthermore, the specific measures introduced by Stalker and Levene are de-
signed for controlled laboratory experiments and lack the generality necessary to
be useful in the context of these models. More general indices based on mating
frequencies have yet to be developed.

The basic analytical problems are: (1) 1o determine what conditions on the
parameters and parametric indices (@, S, M, and R) must be satisfied for a
polymorphic equilibrium with { = 0, & # 0 to be stable, and (2) to express the
equilibrium values of the state indices (f and 1) as functions of the parameters and
parametric indices. For analysis of the models of reproductive isolation described
in this paper, a combination of numerical and algebraic approaches has been used.
Although a general algebraic solution for f or D has not been found, solutions have
been obtained for special cases where one or two ancillary parameters or paramet-
ric indices (R or #) are restricted to specific values (see Appendix). These results
have led to inferences about the relationships between parameters and parametric

=1 (26
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indices and the equilibrium values of the state indices for the general case. Finally,
the inferences have been tesied by obtaining numerical solutions using the com-
puter. Except in very limited circumstances, algebraic approaches to stability
analysis (e.g., the Routh-Hurwitz criteria; Arnold 1973) are toa unwieldy. Fartu-
nately, straightforward inferences about the stability conditions for these maodels
can be made from numerical solutions.

Y. RESULTS

For every polymorphic equilibrium which exists at the DS locus when mating is
random (f = 0), there may exist two other equilibria which are due to epistatic
assaciation with the AM locus. Interpretation of the results of algebraic analysis
and numerical salutions for both AM models (Appendix, figs. 2, 3, and 4) leads to
the following conclusions about the existence, magnitude, and stability charac-
teristics of these alternative equilibria.

1. In general, the dynamic behavior of I is coupled to the dynamic behavior of
D. Figure 2 shows the qualitative relationship between I and D for AM model
2 with # = . In this case, for every nonzero equilibrium value for 7, two nonzero
equilibria exist for [}, one positive and one negative. Depending on the initial
conditions, reproductive isolation can arise either through the assoc¢iation of allele
Ag with allele B, and allele A, with allele B, (D > 0), or through the reciprocal
association of A, with B, and B, with A, (D < 0). In general, the values of [
associated with the positive equilibrium for D(I,) and negative equilibrium for
D(1_) are not equal, although J, = 1_ for all parameter sets for AM model 2
and for # = [ for AM model 1. Furthermore, for any given set of parameters, f,
and f_ have the same stability characteristics.

2. For any nonzero values of the recombination fraction, R, and the assortative
mating coefficient, «, there are two threshold values of the index of disruptive
selection, 0 < §, < 5, < 2. If § = §,, there are no nonzero equilibria for /
associated with the polymorphic equilibrium in question (fig. 2, region A). If §, <
S < 8., nonzero equilibrium values for I exist which are negative (fig. 2, region B).
The §; is called a bifurcation thresheld or bifurcation point (Keller and Antman
1969, Stakgold 1971) because as the parametric index, §, increases in value past S,
each solution of the models of repoductive isolation defined by recursive
equations (24) splits into three solutions. Positive equilibrium values for I will
exist if and only if § > 5. (fig. 2, regions C and D). Hence, § > 5, is a necessary
(but not sufficient) condition for the evolution of reproductive isolation.

3. Both §,and S, are functions of the assortative mating coefficient, «, and the
recombination fraction, R, but are independent of the index of frequency depend-
ence, M. As illustrated in figures 3 and 4, the smaller the AM coefficient and the
more recombination between the AM locus and the DS locus, the greater the value
of the § required both for bifurcation of the solutions and for partial reproductive
isolation. This result has been derived analytically for AM model 2 where 7 = 1 (5
= (.5), and numerically for other cases.

4. Asillustrated in figures 2, 3, and 4, the values for the nonzero equilibria of the
index of reproductive isolation, I, are: (1) increasing functions of the index of
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Index of Reproduclive lselolion

Gamelic Phose Diseguilibrium

-025 ; ,
I M 2

Index of Disruplive Selection

Fig. 2.—Stability characteristics of polymorphic equilibia as a function of the index of
disruptive selection, §. Curves are drawn for AM model 2, using representative values of the
assortative matjng coefficient (a = 0.7) and the recombination fraction (R = 0.5). Solid lines
represent stable equilibria, dashed lines represent unstable equilibria, and dotted lines repre-
sent equilibria whose stability characteristics are undetermined. Sufficient conditions for the
evolution of partial premating reproductive isolation will be satisfied if § falls within region C.
Note that if —M = §,, region C will not exist.

disruptive selection, §, and the assortative mating coefficient, «; (2) decreasing
functions of the recombination fraction, R; and (3) independent of the index of
frequency dependence, M. For any value of R and e, the maximum value for f (/
= @) is attained when § = 2 (heterozygote viability = 0).

5. For any polymorphic equilibrium which exists at the DS [ocus when mating
is random and § > 0, condition (8) (the stability condition derived for the models
of frequency-dependent selection in section I) is a sufficient, but not necessary,
condition to insure the local asymptotic stability of either the above equilibrium
(with I = 0} or of the alternative epistatic equilibria (/, and I_). Assuming that
condition (8) is satisfied, if § < S, the epistatic equilibria will be unstable, and the
DS locus and AM locus will not become associated (fig. 2, region B). If § = 5, the
epistatic equilibria will be stable, the random mating equilibrium will be unstable,
and partial reproductive isolation will result (fig. 2, region C). Hence the following
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Fig. 3.-~The index of repraductive iselation at equilibrium, £, as a function of the index of
disruptive selection, §, the coefficient of assortative mating, «, and the recombination
fraction, R, for AM model 1. Each curve shows the relationship between [ and § for fixed
values of o and R. The effects of & onf can be assessed by comparing curves within each box.
The effect of R an f can be assessed by comparing the families of curves in each of three
boxes. Solid lines represent stable equilibria. Dotted lines represent unstable equilibria whose
existence is inferred from comparison with AM model 2 (see fig. 4).
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Fi5. 4.—The index of repraductive isolation at equilibrium, f, as a function of the index of
disruptive selection, §, the coefficient of assortative mating, ¢, and the recomhbination
fraction, R, for AM model 2. Each curve shows the relationship between f and § for fixed
values of & and R. The effects of o on f can be assessed by comparing curves within each box.
The effect of R on [ can be assessed by comparing the families of curves in each of three
hoxes. Solid lines represent stabie equilibria and dashed lines represent unstable equilibria.
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is a sufficient condition for the evolution of partial reproductive isclation via
disruptive selection,

0<S§, <8< M. (27)

This result has not been derived analytically, but it is a straightforward inference
from a large number of numerical solutions.

6. Given a stable disruptive selection regime, the mean population fitness (W) is
an increasing function of f, and is maximized when I = 1. Hence for these models
of reproductive isolation W is in general not maximized at stable equilibria.
However, stable polymorphic equilibria always have higher values for W than
associated unstable equilibria. There are two constraints preventing fitness
maximization. First, unless & = 1, even complete association of the DS locus with
the AM locus cannot lead to complete repraductive isolation because a proportion
(I ~ a) of the individuals at the AM locus are mating randomly. Second, inertia
due to recombination (Fisher 1958; Lewontin 1971) acts as a force opposing the
assoclation of the AM locus and the DS locus. If § < 5, small changes in &« and R
will not result in any change in the stable values for f f = 0). However, once
partial reproductive isolation has evolved ($ > S§.), small increases in a or
decreases in R will cause an increase in f and W. Hence genetically based mech-
apisms for increasing o« and restricting recombination should be selected for,
leading ultimately to complete reproductive isolation. For example, modifier
genes which tend to cause a higher proportion of individuals to mate assortatively
on the basis of their AM phenotype should be favared by natural selection.
Likewise chromosomal rearrangements which result in tighter linkage or which
mechanically restrict recombination between the AM locus and the DS locus
should be favored by selection. To the extent that the parameters « and R are
under genetic control, they should evolve in the direction of increased reprodue-
tive isolation.

VI. piscussion

Although models of the evolution of premating reproductive isolating mecha-
nisms (RIMs) via disruptive selection are usually viewed as models of sympatric
speciation, their application is actually more general (Maypard Smith 1966).
Essentially, postmating RIMs (e.g., hybrid inviability) may be viewed as a form of
disruptive selection, and hence disruptive selection is an equally crucial element
in the origin of premating RIMs in zones of secondary contact after allopatric
speciation has occurred. Furthermore, frequency-dependent processes such as
differential resource utilization may be required for coexistence of the new species
in zones of contact. The difference between allopatric and sympatric modes of
speciation lies primarily in the mechanism for origin of postmating RIMs. In the
former, postmating RIMs are the fortuitous result of genetic changes occurring
during geographic isolation, while in the latter, postmating RIMs (selection against
intermediates) are the result of selection pressures arising from a population's
ecological milieu (Bush 1975). While the results presented in this paper corrobo-
rate the results of earlier theoretical work (Mather 1935; Maynard Smith 1966
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Dickinson and Antonovics 1973; Rosenzweig 1978) that sympatric origin of post-
mating RIMs is feasible, the models are also applicable to the formation of
premating RIMs after allopatric formation of postmating RIMs {the Wallace ef-
fect, Mayr 1963, Grant 1971).

The generality of the results presented here is limited by the simplifying as-
sumptions of the models. Hence determining the robustness of the models is of
considerable importance. For example, gene flow has not been considered as a
parameter in the above models. Work is now in progress, based on extensions of
these maodels, which explores the significance of extrinsic barriers to gene flow.
Analyses of extensions of the madels can also be performed to determine whether
the results can be generalized to other mechanisms of assortative mating or
nonrandom mating, including selfing and inbreeding, and to stochastic models,
Sensitivity to other critical assumptions, such as the assumptions that disruptive
selection and assortative mating are each occurring at single loci, and that
dynamics at these loci are independent of the rest of the genome, is more difficult
to determine by mathematical models. However, it is at least theoretically feasible
to test sensitivity to these assumptions by experiments on laboratory population
systems. Duplication of the qualitative results using laboratory populations would
strongly suggest that the models are robust.

The results presented here demonstrate that frequency-dependent selection
may contribute to the maintenance of disruptive selection regimes, which may in
turn result in the evolution of reproductive isolation, even in the total absence of
physical barriers to gene flow. Hence, in theory, frequency-dependent processes
may play an important role in the evolution of new species. How commonly are
fitness values frequency dependent in natural situations? Although more con-
vincing field data would certainly be useful in answering this question, ubiquity of
the process would not be a surprising result, given the wide variety of proposed
mechanisms {Petit and Ehrman 1969; Ayala and Campbell 1974; Levin and Udovic
1977}. More importantly, how strong are the feedback loops generated by
frequency-dependent selection? One averall implication of the results is that
selection against intermediate types must be relatively intense if reproductive
isolation is to be expected. However, the stability conditions imply that such
disruptive selection regimes will not be maintained without equally intense
stabilizing feedback due to frequency-dependent fitnesses. Finding answers to the
above questions is imperative if a thorough understanding of the role of disruptive
selection in the evolution of reproductive isolation is to be obtained.

VII[. SuUMMARY

Mathematical models have been developed and apalyzed to determine the
conditions required for the evolution of premating reproductive isolation via
disruptive selection in a potentially panmictic population. The models describe
changes in genotypic frequencies through time for a population which is polymor-
phic at two loci. Disruptive selection due to reduced viability of the heterozygote
at a polymorphic equilibrium is assumed to operate at the first locus. Mating is
assumed to be occurring assortatively within the population, based an phenotypic
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characters determined by the second locus. Reproductive isolation results from
epistatic interaction of these two loci which reduces the number of intergenotypic
crosses at the disruptive selection locus. Analysis of the models involves search-
ing for conditions which vield stable polymorphic equilibria with the two laci
epistatically associated, and determining the relationship between the degree of
association at equilibrium {and hence the degree of reproductive isolation) and the
conditions of the models.

Results indicate that the equilibrium degree of reproductive isolation depends
on the following factors: (1) the intensity of disruptive selection; (2) the proportion
of individuals in the population which mate assortatively (i.e., the penetrance of
the genes for assortative mating behavior); (3} the amount of recombination
between the disruptive selection locus and the assortative mating locus; and (4)
the extent to which fitness values of genotypes at the disruptive selection locus
depend on gene frequency. Premating reproductive (solation will not evolve at all
unless the following two criteria are satisfied: (1) As a result of recombinational
inertia, the intensity of disruptive selection must be greater than a threshold value
which is an increasing function of the amount of recombination between the two
loci and a decreasing function of the degree of assortative mating, and (2) the
destabilizing effect of disruptive selection on polymorphic equilibria must be
compensated for by the stabilizing effect of frequency-dependent selection. As-
suming these criteria are satisfied, the degree of reproductive isolation at equilib-
rium is an increasing function of the intensity of disruptive selection, an increasing
function of the degree of assortative mating, a decreasing function of the amount
of recombination, and independent of the degree of frequency-dependent selec-
tion. Once partial premating isolation has been achieved, it may be enhanced by
evolution of some of the parameters of the model. For example, natural selection
should favor genetically based mechanisms for increasing the penetrance of the
assortative mating genes and for decreasing the amount of recombination between
the disruptive selection locus and the assortative mating locus.

To the extent that these results can be generalized, they suggest that
frequency-dependent processes (resulting from niche heterogeneity or from a
number of other potential mechanisms) can play an important role in the evolution
of reproductive isolation. Hence obtaining an understanding of the causes and
relative significance of frequency-dependent processes in natural systems is an
important task for the development of evolutionary theory.

ACKNOWLEDGMENTS

I wish to thank Stan Cook, Alan Gross, Peter Frank, and two anonymous
reviewers for their comments and criticism. Financial support was provided in
part by a summer research stipend from the Office of Scientific and Scholarly
Research at the University of Oregon and in part by a grant from the National
Science Foundation (DEB 77-11145).

APPENDIX

The following algebraic expressions have been ohtained for nonzero equilibrium values
of the index of reproductive isolation when there is no recombination between the AM
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locus and the DS locus. For AM model 1 (with dominance):
PI2S — (1 + PP + 1S{ef] = #) = 22 + (1 + FNH(L + F) + (1 — )} )
+alS(I-A—-(+#]=0 for R = Q.

(A1)

For AM mode] 2:
QRS + 102 — (L £ 7 ~ Sy —a#S1F + a[S0 —F) — (1 + P =0
for R = 0.

When R = 0 the models essentially reduce to one-lacus models where disruptive selection
and assortative mating occur at the same locus. Hence, f = F, and equations (16) and (17}
can be viewed as special cases of (A1) and (A2), rcspcctwely, where § = 0.

An expression for f for AM model 2 has also been obtained for the special case, 7 = | (p
= (.5), where the recombination fraction, R, is allowed to vary:

(A2)

ES) 2+ (2 - 45 —a + 2R(1 — S0

2= SVe ie o]
- [a _ 2R( - )(2 1§ 24)] 0 (A3a)
0=R <13
i= w R =1 (A3b)

Over the range for which parameters and parametric indices are defined, these expressions
yield at most ane value for f between — 1 and 1. For all parameter values, except when R =
0, another equilibrium exists at f = 0. These expressions are depicted graphically in figures
la, 4a, 4b, and 4¢, for representative parameter values. The stability characteristics of
these equilibria, as elicited by numerical solutions, are shown in figure 2. Solid lines
indicate regions of stability while dashed lines indicate regions of instability.

Algebraic expressions equivalent to expressions (A3a) and (A3b) have not been derived
for AM model | because of complications in the equations introduced by dominance at the
AM locus. However, numerical solutions have been abtained for a large number of
parameter values for the case, f = 1,4 = 0.5. Figures 2B and 2C show how the equilibrium
values of | obtained by numerical solution vary as a function of the parameters and
parametric indices.

The special case, 7 = 1, § = 0.5, was chosen because ii is the only ¢ase in which the
parametric indices, S dnd M whlch depend an 4, have been parameterized (i.e., deter-
mined a priori solcly from a knowledge of the fitness parameters). In the general case, j
depends on £,

5 = #, {A4)

+ 81 - D

and hence a priori knowledge of g implies a priori knowledge of f. However, if parameters
of the fitness functions are chosen which yield § = 0.5 as an equilibrium value when mating
is random at the DS locus (i.e., #(0.5) = 5{0.5)/a(0.5) = 1), then the equilibrium value for p
will not be altered by changes in I. Because of difficulties in parameterizing S and M,
parameter space has not been explored systematically when # # 1. However, numerical
solutions for a variety of sets of parameters indicate that the qualitative relationships
between I and §, M, o and R remain the same for other values of 7.
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