PROJECT DESCRIPTION
Straub Hall
Deferred Maintenance & Seismic Upgrade

Campus Planning and Real Estate
University of Oregon
June 2011
Project User and Steering Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Bleekman</td>
<td>Construction Project Manager Capital Construction</td>
</tr>
<tr>
<td>Paul Dassonville</td>
<td>Associate Professor Psychology Department</td>
</tr>
<tr>
<td>Darin Dehle</td>
<td>Director Campus Construction Capital Construction</td>
</tr>
<tr>
<td>George Helbling</td>
<td>Coordinator of Business Operations Psychology</td>
</tr>
<tr>
<td>Dana Johnson</td>
<td>Associate Dean Natural Science College of Arts and Sciences</td>
</tr>
<tr>
<td>Brian Lowery</td>
<td>Associate Registrar for Operations Office of the Registrar</td>
</tr>
<tr>
<td>Jeff Madsen</td>
<td>Capital Construction Energy Systems Manager Capital Construction</td>
</tr>
<tr>
<td>Lou Moses</td>
<td>Professor, Department Head Psychology Department</td>
</tr>
<tr>
<td>Eric Pederson</td>
<td>Associate Professor, Department Head Linguistic Department</td>
</tr>
<tr>
<td>Rachele Raia</td>
<td>Assistant Dean College of Arts and Sciences</td>
</tr>
</tbody>
</table>

Project Staff

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene Mowery</td>
<td>Project Planner Campus Planning and Real Estate</td>
</tr>
<tr>
<td>Fred Tepfer</td>
<td>Project Planner Campus Planning & Real Estate</td>
</tr>
</tbody>
</table>
PROJECT DESCRIPTION
Straub Hall Deferred Maintenance & Seismic Upgrade Project

Contents
I. Introduction .. 3
II. Project Overview ... 3
 Building and Project Description 3
 Goals, Opportunities, Challenges and Project Principles .. 4
 Budget, Funding, Procurement and Cost 5
III. Energy Efficiency and Sustainable Design 6
IV. Campus Plan .. 7
 Process and Participation 8
 Historic Significance 9
 Patterns .. 10
 User Group Pattern Descriptions 17
V. Appendix ..
 Campus Map with project site 21
 Floor Plans of Straub Hall 22
I. Introduction

This document describes the Straub Hall Deferred Maintenance and Seismic Upgrade Project as the university best understands it at this time. It serves to inform the prospective architects about the Project as well as to start the relationship between the Project’s user group, the associated campus stakeholders, and the design team that is ultimately selected for the Project. The following statements should be a beginning rather than an end.

II. Project Overview

Building and Project Description

Straub Hall is configured in an E-shape and has approximately 83,000 gross square feet in four stories plus a partial basement. Designed in the Colonial Revival style as a men’s dormitory and constructed in 1928-29, it originally had six compartmentalized dormitory sections, i.e., sections shared common end walls, but no doorways passed from one to the other. The dining hall and kitchen areas were located on the ground floor in the center of the facility with a full basement located below this central area. In 1954-55 Earl Hall, another residence hall, was constructed. The location and design of Earl Hall resulted in it being attached to the east side center section of Straub Hall. Straub continued to serve as a dormitory until 1971 when it was converted into academic space to house the Psychology Department. As part of a 1975 remodel the corridor systems in each of the compartmentalized dormitories were connected, enabling a continuous pathway from one end of the building to the other. A remodel and addition to house a functional fMRI facility took place in the east end of the northernmost dormitory and the north courtyard in 2002.

The Oregon University System identified Straub Hall as a “Tier 1 Deferred Maintenance Project.” As such, the basic scope of the Project is to implement seismic upgrades; retrofit or replace existing heating, ventilation, electrical, plumbing, and lighting systems with more energy and water efficient systems; enhance the thermal performance of the building envelope; and improve accessibility. Currently no funds have been allocated specifically to address space layout improvements. However, significant demolition may be required to accomplish the deferred maintenance upgrades, and replacement of the interior spaces may present opportunities to improve the building’s interior layout. Even if this does not occur, the university may find additional funding for functional improvements.
II. Project Overview (continued)

Goals, Opportunities, Challenges and Project Principles

The university would like to take advantage of opportunities that will arise as a result of the deferred maintenance and seismic upgrade work to incorporate functional and programmatic improvements. There may be cases where functional and programmatic improvements will require additional funding beyond the scope of the project or available funds. The User Group will consider additional work with the design team to develop phasing strategies for implementing these improvements under the assumption that the necessary funding may be obtained over time.

The following lists include a mixture of building-user identified goals and opportunities, as well as challenges that accompany many of the goals and opportunities. Others may emerge during the design process.

Goals, Opportunities and Challenges:

- Provide building systems that satisfy current and projected needs (current building systems—power, data, HVAC, plumbing, etc.—are woefully outdated and inefficient).
- Make radical improvements in the energy performance of the building.
- Make substantial improvements to the overall sustainability of the building.
- Improve human comfort level throughout the building.
- Improve accessibility to conform to current federal, state, and university requirements.
- Provide better access to and improve the courtyards.
- Enclose dumpsters/service area.
- Create a greater variety of spaces—size/configuration—to allow for flexibility.
- Enhance the basement interiors to be inviting and attractive to all—occupants, clients, visitors.
- Create space for Psychology Department computer lab.
- Create a Psychology Department administrative office suite rather than offices along a corridor.
- Provide a cohesive “front door” for the Linguistics Department office.
- Improve the building way-finding.
- Expand classroom capacity.
- Create rational security zones and improve security systems.
- A number of the Psychology Department labs and associated offices will move to the new Lewis Integrated Sciences Building freeing up space in Straub. Reallocate or create space that (1) brings into the building two existing psychology labs that are currently located off-campus and (2) provides personnel and lab space for known and future new hires.
- Reconfigure stair system (code-driven study).
- Replace and potentially relocate toilet rooms.
- Reallocate space to better support research and learning.
- Reorganize departments into a more coherent arrangement.
- Evaluate and preserve the historic fabric of the building, where appropriate.
II. Project Overview (continued)

Project Principles:

- No one moves his or her lab and/or office space more than twice.
- Spaces should be torn up and remodeled only once.
- At the end of each phase all programs should be whole and effective.

Budget, Funding, Procurement and Cost

The 2009 Legislature authorized total funding of $13,190,000: $8,998,000 in SELP (State Energy Loans Program) and $4,321,000 in COP (Certificates of Participation). Allocations for an additional $9 million of funding requests are forthcoming, potentially bringing the project total to approximately $22 million. The funding will cover all direct construction and indirect Project costs.

Due to the uncertainty of securing additional funding allocations, as well as the challenges of relocating the building occupants, the Project is anticipated to be a multi-phase project. The design team’s initial task will be to create a master plan that achieves the desired ultimate Project outcome. The master plan will delineate a project Phase 1 for the development of an intelligent, strategic design that uses the confirmed $13M budget. Phase 1 must stand on its own as a complete and whole project, coordinated with a subsequent phase (or phases) to ensure the least amount of disruption possible to the completed work and to the building occupants.

The university will use the Construction Manager/General Contractor (CM/GC) project-delivery method for construction of this Project. It is anticipated that the CM/GC will be hired soon after the selection of the architect and will participate as a team member throughout the design process. The CM/GC will provide preconstruction services (cost estimating, analysis of proposed materials and systems, and constructability reviews), and obtain subcontractor bids through the CM/GC process.

The university plans to engage the design team and the CM/GC in a value-setting discussion during the master planning phase to confirm the process for cost/value decisions and set initial Project expectations and goals.

The university will hire an independent Energy Analyst with whom the architectural firm will coordinate the inclusion of a comprehensive State Energy Efficiency Design (“SEED”) analysis of the Project. The coordination of the SEED process will require specific members of the design team to attend all SEED meetings.
III. Energy Efficiency and Sustainable Design

In addition to the legal and policy mandates that apply to this Project, the university will, early in the design process, engage the design team and CM/GC in an integrated design process to describe specific areas of environmental concern; to identify strategies to address those concerns; to set environmental performance goals; to agree on areas needed for research and decision-making; and to establish methods and metrics to predict the building performance relative to those goals. As the Project develops, we will revisit the strategies and their predicted performance and possibly revise or choose among strategies based on performance data. The university expects to be an active participant in all phases of these discussions through policy and user-related decisions in the context of the User Group supplemented by staff support on technical details.

These efforts will be occurring in parallel with the completion and adoption of the university’s next generation of sustainable design policies, the Oregon Model for Sustainable Development. It has not been determined whether the Project plans to seek LEED EBOM certification in addition to the mandated State of Oregon DAS-LEED process. The university is comfortable with using LEED as a rating system or not, but prefers to make each green building decision (in conjunction with the design team and CM/GC) on its own merits relative to the university’s environmental ethics and goals. As discussed above, these decisions are most effectively made early in the design process, allowing for the early integration of solutions rather than applying them after the fact. The design team must possess the skills to function as an equal partner in this process and to understand fundamental green building issues—not simply current industry-standard approaches to sustainability.
IV. The Campus Plan

The Campus Plan contains a policy framework to guide the development of the University of Oregon. Given that the exact nature and magnitude of future changes cannot be predicted with any degree of certainty, the Campus Plan is a process for making development decisions on an on-going basis rather than a static fixed-image master plan.

Policies within the Campus Plan apply to all projects within the Campus Plan’s jurisdiction. They describe the university’s requirements with respect to physical development and the application of the Plan to projects.

Campus Plan Policies:

1. Process and Participation
2. Open-space Framework
3. Densities
4. Space Use and Organization
5. Replacement of Displaced Uses
6. Maintenance and Building Service
7. Architectural Style and Historic Preservation
8. Universal Access
9. Transportation
10. Sustainable Development
11. Patterns
12. Design Area Special Conditions

Due to the deferred maintenance nature of an existing building, the Straub Hall Project is not subject to all of the Campus Plan policies. The following policies DO have application for the Straub Hall Project and require consideration:

Process and Participation
Space Use and Organization
Maintenance and Building Service
Architectural Style and Historic Preservation
Universal Access
Sustainable Development
Patterns

Please refer to the Campus Plan for the full text of each policy.

Campus Plan Vision:

The University of Oregon’s campus will be responsive to the needs of its occupants, adaptable to emerging opportunities, and beautiful to behold.
IV. The Campus Plan (continued)

Process and Participation

As described in the Campus Plan, the User Group is the primary representative of the university in the design process, serving as client to as well as collaborator with the design team. Unlike user committees at many other institutions, the User Group will be actively involved as a partner in the design process, including developing organizational approaches, refining programmatic needs, generating design concepts, prioritizing needs, comparing building systems, and discussing cost and budget trade-offs.

Since the members of the User Group are all active full-time members of the university community as students, teachers, staff, and administrators, it is essential to use their time in ways that are both efficient and meaningful. It is equally important to establish effective communications and a collaborative atmosphere among the User Group and the design team. Several measures will support those goals:

- Planning staff’s role as meeting facilitators and visual note takers will continue through the schematic design phase.
- A normal meeting cycle will begin with agenda-setting and materials (agendas, design information, draft images and other materials) distributed in advance.
- Meetings will start and end on time unless specifically extended by the User Group.
- There will be a review of relevant patterns before each design discussion.
- The design team and User Group will develop concepts in interactive workshop settings.
- Decisions will be made by specific, deliberate actions of the User Group.
- The last five minutes of each meeting will be devoted to a recap of the meeting’s decisions and the directions the Project will take before next meeting.
- The design team will make available to the User Group copies of electronic files and paper presentations.
- Minutes will be distributed within one week in summary form.

The user involvement process also will include working with specific subject area users as well as meetings for broader audiences to communicate with various campus constituencies.

Staff support will be provided by Campus Planning & Real Estate in combination with Facilities Services Capital Construction throughout the design and construction process.
IV. The Campus Plan (continued)

Historic Significance (Architectural Style and Historic Preservation)

An additional issue woven into the Straub Hall design process is consideration of the building’s historic significance. Straub Hall is listed as a historic “secondary resource” in the university’s Historic Resource Survey and of medium historic significance in an assessment for National Register Eligibility for its good integrity and fair condition. Although not listed in the National Register, it could be eligible for its architecture and design by celebrated architect Ellis Lawrence. As such, and in accordance with Policy 7 in the Campus Plan, preservation of historic attributes such as the original wood paneling, lunette paintings, lobby ceramic floor tile, and the building windows must be considered in design solutions.

A preliminary historic assessment of the Straub Hall interior has been completed and can be found at: http://pages.uoregon.edu/uplan/projects/Project%20Sums%20for%20Web/StraubHall/StraubDefdMaint_proj.htm
IV. The Campus Plan (continued)

Patterns

Patterns are one of the twelve policies of the Campus Plan. They are statements that describe and analyze design issues and suggest ways in which those issues might be resolved. Patterns articulate long-lasting, shared traditions and understandings, yet adapt to changing needs.

The term “pattern language” is best known from the book A Pattern Language. Its principal author, Christopher Alexander, helped the University of Oregon develop its planning process in the early 1970s, a process later described in Alexander’s The Oregon Experiment (Oxford University Press, 1975). In that book, Alexander defines a pattern as “any general planning principle, which states a clear problem that may occur repeatedly in the environment, states the range of contexts in which this problem will occur, and gives the general features required by all buildings or plans which will solve this problem” (p. 101).

The Campus Plan identifies a list of campus patterns to be considered as projects are designed, to which the Straub Hall Project has added user-generated patterns. The list may continue to grow during Project design as the result of new or newly added patterns. A pattern is intended to help identify the essence of an issue that needs to be considered and to suggest ways in which the issue might be resolved, so patterns should not be interpreted literally without discussion. In some cases, although the problem is properly identified the pattern’s suggested solution may not be appropriate, and the users, assisted by the design team, will find an alternate means of resolving the issue.

The university’s use of patterns ensures that the design team establishes an effective means of communicating with the User Group (both talking and listening). This non-technical vocabulary of design principles allows users to communicate effectively with planners and designers.
IV. The Campus Plan (continued)

Straub Hall Patterns List

The Campus Plan’s campus-wide pattern list is not copied here in its entirety. The following extracted patterns are pertinent to the Straub Hall Project. Obviously the existing building configuration has established dimensional parameters and exterior openings that may support or challenge the patterns list. Our objective will be to minimally maintain but ideally enhance patterns that are inherent in the building and implement those that are lacking.

Building Hearth
When a building is just a collection of rooms without a focus, there is little chance for a sense of community to develop, and the possibility of an open exchange of ideas diminishes.

THEREFORE: Create a social hearth for every building or for every major work group within large buildings. Place the hearth at the building’s perceived center of gravity and beside a path that everyone uses. Within the hearth provide space for a lounge, mail, coffee, supplies, student information, etc. Additional hearths for departments may be appropriate as well once the building hearth is accommodated.

Additional User Group comment in regard to “Additional hearths for departments ...”: The Psychology Department itself is so diverse that we can think of Psychology Department units as separate “departments”.

Enough Storage
Lack of storage space can turn staff work spaces into storage areas and cause staff to waste valuable time locating and retrieving stored items.

THEREFORE: Provide space in each program for storage of equipment and materials, and provide central storage for shared items. Centralized storage, as well as storage for separate programs, may be provided either as shared or as discrete spaces depending on specific program needs.
Straub Hall Patterns List (continued)

Fabric of Departments
Overemphasis on the individuality of departments helps to fragment knowledge by keeping it in watertight compartments. Yet each department requires its own identity.

THEREFORE: Give each department a clearly identified home base, but spread the parts of the department within a radius of about 500 feet so they interlock with parts of other departments. No one of these parts should contain less than five faculty offices. In the case of very large departments such as Psychology, consider its individual sub-units as departments.

Additional User Group comment in regard to “department”: As noted in the Building Hearth pattern above, the Psychology Department itself is so diverse that we can think of Psychology Department units as separate “departments”.

Faculty-Student Mix
Students and faculty can benefit most from each other if they are able to develop mutual respect and common interests within small groups. Learning and research cannot flourish without the sustained, informal contacts that occur within such groups.

THEREFORE: Cluster student workplaces around research labs and data analysis areas. Give each cluster a common entrance and a common area which contains seats, books, journals, microwave, seminar table, and the like. Link multiple clusters internally where possible or advantageous.

Additional User Group comment: The labs, rather than the offices, tend to be the place where co-mingling takes place between faculty and staff.

Materials and Operations
Poorly selected materials, inappropriate energy strategies, and complex facilities designs all can contribute to high operating costs. Maintenance not only is a major component of the operating budget but also is a health issue.

THEREFORE: Designers should select materials that are easy to maintain and healthy, creating buildings that are energy efficient and easy to add on to or modify later.
No Signs Needed
Some buildings seem to have been planned to need signs so that people can find their way. Alternatively, a building can be designed to be self guiding, making it as easy as possible to negotiate through.

THEREFORE: Plan buildings to be as self guiding as possible so the signs are used to supplement good planning rather than to overcome bad planning.

Office Connections
If two parts of an institute, center, department, or administrative unit are too far apart, people will not move between them as often as they need to; if the parts are more than one floor apart, there will be almost no communication between them.

THEREFORE: To establish distances between offices within the same organization, calculate the number of trips per day made between each of the two offices and ensure that those with frequent contact are located on the same floor within a reasonable walking distance of each other.

Operable Windows
People who work for several hours each day in confined spaces such as offices benefit from access to fresh outside air. Current research indicates that such access also improves educational achievement. Additionally, energy savings accrue when users are able to adjust their own environments by opening windows and letting in outside air.

THEREFORE: In the absence of compelling reasons to the contrary, all exterior windows of university buildings must be able to be opened wholly or in part.

Organizational Clarity
Buildings whose organization is difficult to understand are difficult to use. First-time visitors are easily confused, and long-time users get frustrated.

THEREFORE: Create a clear organization and circulation scheme for the building. Ideally each floor would broadly resemble the others. Provide cues through visible landmarks, interior day lighting, and interior vistas that clearly convey how the building’s parts relate and join one another.
Places to Wait
Students often have to wait outside an office for an appointment or outside a classroom when the preceding class gets out late. Also, after class students and teachers often wish to continue conversations begun in class, but they have no place to do so.

THEREFORE: Provide generous circulation space near classroom entrances and offices, with benches or other seating, but not so much as to attract large groups that might make excessive noise.

Pools of Light
Uniform illumination—the conventional lighting solution—serves no useful purpose whatsoever. In fact, it destroys the social nature of space and makes people feel disoriented and unbounded.

THEREFORE: Place lights to form individual pools of light, which encompass chairs and tables like bubbles, to reinforce the social character of the spaces they form. Remember that you can’t have pools of light without the darker places in between.

Positive Outdoor Space
In general, outdoor spaces that are merely “left over” between buildings will not be used.

THEREFORE: Always place buildings so that they embrace the outdoor spaces they form. Design the landscape so that some sides of the outdoor space are defined by buildings and some sides by arcades, trees, or low walls. Be sure to leave entrances to the outdoor “room” at several points so people can pass freely through the space and travel to other connecting outdoor spaces.

Additional User Group comment: Although we are not adding new building area to form new outdoor space, there are two existing building courtyards. Building occupants state that they do not get much use at least in part due to lack of easy access. This Project is an opportunity to improve access and enhance the existing courtyards.
Straub Hall Patterns List (continued)

Public Gradient
Unless the spaces in a building are arranged in a sequence that corresponds to their degree of privateness, the visits made by strangers or guests may be a little awkward.

THEREFORE: Lay out the spaces in a building to create a sequence that begins with the most public parts of the building near the entrance, then leads into the slightly more private areas, and finally leads to the most private domains.

Quality of Light
Daylight, the use of which results in energy savings, is an important aspect to wellness and psychological comfort for building users; it is also beneficial to many of the tasks performed by building occupants. However, glare from daylighting may cause eye strain for employees who use computer monitors.

THEREFORE: Provide ample opportunities for daylight throughout the building in both private and public areas. When possible and appropriate, opportunities to bring natural light into areas further from the perimeter of the building such as clerestory windows, interior windows, or windowed doors should be considered. Provide appropriate shading and defusing devices and furniture arrangement to eliminate glare on computer screens.

Research Ties
Collaboration and communication are the lifeblood of scientific research. Without the proper physical relationships among the spaces used for research, these connections will remain fragile and tenuous.

THEREFORE: Place research domains to foster genuinely productive interaction. Consider the role of stairs and corridors as the initial site for casual interaction, and plan for convenience, comfortable places for conversations to continue. Place simple supports such as white boards, benches, and windows at logical locations to enhance these interactions. Use interior windows generously as a way to provide more visual connections among lab groups and visual contact among researchers.

Additional User Group comment: See also User Group-generated patterns Research Domains and Research Clusters.
Sustainable Development
[See “Policy 10: Sustainable Development” on Campus Plan page 49 and “Section III: Energy Efficiency and Sustainable Design” of this Project Description for requirements] Today’s development, repair, maintenance, and operations of the University of Oregon have an impact on the local environment and the ability of future generations to thrive. The physical environment of the university—its landscape and buildings—must also support and enhance the excellence of our academic programs.

THEREFORE: Develop, redevelop, and remodel in ways that incorporate sustainable design principles.

Universal Access
[See “Policy 8: Universal Access” on Campus Plan page 45 for requirements] In addition to complying with applicable federal and state requirements, the university is committed to making all new facilities welcoming and accessible for all users without discriminating on the basis of ability. This inclusive environment enables all users to participate equally in the university’s programs, activities, and services.

THEREFORE: Design improvements to the campus in ways which ensure welcoming, graceful access for all members of its community.

Wholeness of Project
Funding limitations often lead user groups or designers to create phased projects (in the hope of obtaining more funding for later phases) or to use the funds to create more new space without solving the existing facility’s problems. These approaches can result in a complicated facility with functional problems, an awkward feel, and a lack of wholeness and integrity.

THEREFORE: Approach the project as a single-phased whole, creating a usable facility with options for future development. Address existing building problems directly, for example through renovations, rather than assuming they will be solved simply by adding new space. This approach may result in compromises, but it gives project users confidence that the built project will suit their needs.
Wings of Light
Buildings are often shaped without concern for natural light and depend almost entirely on artificial light. Buildings that do not allow natural light as a source of illumination are not comfortable places to spend the entire day.

THEREFORE: Shape buildings in ways that allow natural light to penetrate far into their centers. Use ideas like light shelves to bounce daylight even further into the building’s spaces. Usually this will mean buildings that have wings less than about 50 feet in width.

Straub Hall User Group Patterns List

Rooms Sized for Research
Repurposed buildings such as Straub Hall (former dormitory, now primarily a research building that also houses classrooms, faculty offices, and administrative offices) inherit space arrangements that may not be appropriate. Research spaces often need large spaces to house data acquisition devices or to provide supportive group work environments.

THEREFORE: When the space plan for research areas can be reconsidered or has to be revised for other reasons, program the space needs of the users with careful consideration of the range of room geometries that will be needed for the foreseeable future. In the case of Straub Hall, strive to develop larger rooms appropriate for the research needs of Psychology and Linguistics. Arrange these so that they can be combined to create effective research suites (see Research Clusters and Research Domain)

Research Domain
Each faculty member creates a community of researchers comprised of graduate students, post-doctoral fellows, undergraduate students, technicians, and others. They need space that supports their creative endeavors and the kinds of interaction that first-rate research depends on: informal meeting space, shared work environments for general work, quiet work space for creating documents, technical space for data acquisition, and so forth.

THEREFORE: Create individual domains for each research group. Include informal meeting space, generous white boards, plentiful support systems (power, data), and transparency (where appropriate) to create linkages and interactions. Separate data acquisition space from data analysis space if needed or appropriate. Consider blending the boundaries of these domains with adjacent research domains and assemble them into a larger whole (see Research Clusters).
Research Clusters (using Straub rooms 154-156B as one example)
Some of the best research is sparked by the interactions among different faculty research groups, the highly-interactive groups of students, faculty, and technical staff that each faculty member organizes (see “Research Domain”). The relationship of individual research domains is an essential part of creating a supportive environment for research activities.

THEREFORE: Create clusters of research domains to house faculty research groups working in related fields. Link these domains with internal connections, if possible, and create generous areas for interaction: whiteboards, informal meeting spaces, internal visibility, opportunities to display (posters, electronic displays), and other measures to support the research endeavors.

Office with a Couch or a Table
We sometimes think of university faculty offices as functional spaces not unlike an office cubicle. But for many faculty, that concept misses the key functions of meeting with research collaborators, students, and others, activities that need a very different approach.

THEREFORE: Design faculty offices to be efficient work environments, but include enough space for comfortable, informal conversations: a couch, or a small table and a couple of chairs.
V. Appendix

A. Campus map

B. Book plans

VI. Additional Reference Material

1. Straub Hall Interiors Preliminary Historic Assessment

2. Space Allocation Information – March 2011

Above reference material available at: http://pages.uoregon.edu/uplan/projects/Project%20Sums%20for%20Web/StraubHall/StraubDefdMaint_proj.htm
Appendix A

University of Oregon
Straub Hall Deferred Maintenance & Seismic Upgrade Project
Campus Map

Project Site

Campus Planning & Real Estate, March 2011

University of Oregon
Straub Hall Deferred Maintenance & Seismic Upgrade Project
University of Oregon
Page 21
Appendix B

BASEMENT FLOOR PLAN

FEET 16 32 SHEET 1 OF 7 DRAWN 1929 REVISED 12/10

Straub Hall
1451 Onyx Street

UNIVERSITY OF OREGON

BUILDING 72

Straub Hall Deferred Maintenance & Seismic Upgrade
University of Oregon
Page 22