Ling 621
Empirical Methods in
Linguistics
Fall 2010
MW 11-11:50, R 17-17:50
Straub 145
Course
goals:
This
course introduces students to experimental design and basic issues in
quantitative analysis of linguistic data.
Books:
Baayen, R. H.
2008. Analyzing linguistic data: A practical introduction to statistics
using R. Cambridge University Press. RECOMMENDED
Johnson, K. 2008. Quantitative methods in
linguistics. Blackwell. REQUIRED
Requirements:
10%
Pass CITI Human subjects training
10%
Discussion Questions
50%
Homeworks
30%
Final paper
Preliminary schedule:
1.1-1.2: Why care?
Gries, S. Th. 2009. Statistics for linguistics using R: A practical
introduction. Mouton de Gruyter. pp.1-7.
Berez, A. L., & S. Th. Gries. 2010. Correlates to middle marking in Denai’na iterative verbs. International Journal of American Linguistics, 76,
145-65.
Myers,
J. 2009. Syntactic
judgment experiments. Language
& Linguistics Compass, 3, 406-23.
Labov,
W. 1996. When intuitions fail. Chicago Linguistic Society, 32, 77-106.
1.3: Choosing and operationalizing
a dependent variable
Gries, S. Th. 2009. Statistics for linguistics using R: A practical
introduction. Mouton de Gruyter. pp.7-29.
2.1-2.2 Linking
hypotheses
Tanenhaus,
M. K., J. S. Magnuson, D. Dahan, & C. Chambers. 2000. Eye movements and lexical access in spoken-language
comprehension: Evaluating a linking hypothesis between fixations and linguistic
processing. Journal of
Psycholinguistic Research, 29, 557-80.
2.3 When linking hypotheses fail
to convince
Schütze,
C. T. 2005. Thinking about what we are asking speakers to do. In S. Kepser & M. Reis (eds.), Linguistic
evidence: Empirical, theoretical, and computational perspectives,
457–484. Mouton de Gruyter. (pp.457-469 only)
Kapatsinski,
V. 2010. Modularity in the channel: A response to Moreton (2008).
Research in
Spoken Language Processing Progress Report 29, 297-305. (and
reviews on Blackboard)
3.1: Choosing a dependent
variable: Sensitivity/power Project
proposals due
Gerrits, E., & M. E. H. Schouten. 2004. Categorical perception depends on the discrimination task. Perception & Psychophysics, 66, 363-76.
3.2-3.3: Intro to R Homework 1 assigned
Baayen, Chapter 1
4.1-4.2: Basic logic of hypothesis
testing
Johnson, Chapter 1, 2.1-2.3
Baayen, Chapter 4.6
4.3: Who is your population? Homework 1 due; Homework 2 assigned
Nisbett,
R. E., K. Peng, I. Choi, & A. Norenzayan. 2001. Culture and systems of thought: Holistic vs. analytic
cognition. Psychological Review, 108, 291-310.
5.1-5.2: Distributions: A
cautionary tale
Yang, C. 2010. Who is afraid of George Kingsley Zipf? Ms. U Penn.
McMurray,
B. 2007. Defusing the childhood vocabulary explosion. Science, 317, 631.
5.3:
hw 1 review
6.1: Some common statistical tests
and their nonparametric versions Homework 2
due; Homework 3 assigned
Baayen, Chapter 4.0-4.2, 4.5
6.2: Sensitivity and bias: Signal
Detection Theory
http://wise.cgu.edu/sdtmod/overview.asp
6.3: Experimental design
Gries, S.
Th. 2009. Statistics for linguistics using R: A practical introduction.
Mouton de Gruyter. pp.48-57.
http://www.experiment-resources.com/counterbalanced-measures-design.html
7.1: Methods of control
Chan, K.Y.,
& M. S. Vitevitch. (2010). Network structure influences speech
production. Cognitive Science, 34, 685-97.
Bien, H., W. J.
M. Levelt, & R. H. Baayen. 2005. Frequency effects in compound production. Proceedings of the National Academy of Sciences,
102, 17876-81.
7.2: Dichotomization and sensitivity
http://psych.colorado.edu/~mcclella/MedianSplit/
Baayen, R. H. 2010. A real experiment is a factorial experiment? The Mental Lexicon, 5, 149-57.
7.3: Correlation and regression
Johnson,
Chapters 2.4, 3.2
8.1-8.3: Multiple variables,
interactions; Regression and ANOVA Homework
3 due; Homework 4 assigned
Johnson,
Chapters 4.1-4.3
9.1-9.2
No
class. Work on your projects.
10.1: The evils of by-items tests
Johnson, Chapter 4.4
Raaijmakers, J.
G. W. 2003. A further look at the “language-as-a-fixed-effect” fallacy. Canadian Journal of Experimental Psychology, 57,
141-51.
10.2-10.3: Problems with standard hypothesis testing; The
Bayesian perspective Homework 4 due
Kruschke,
J. K. 2010. Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive Science,
1, 658-76.
Finals week: Project presentations
OPTIONAL readings:
Linking hypotheses:
Yurovsky, D., S. Hidaka, C. Yu,
& L. B. Smith. 2010. Linking learning to looking: Habituation and association
in infant statistical language learning. Proceedings of the
Annual Meeting of the Cognitive
Science Society, 1589-94.
Spivey, M. J., M. Grosjean,
& G. Knoblich. 2005. Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences,
102, 10393-8.
The
virtues of mixed effects
Johnson, Chapter 7
Bresnan, J., A. Cueni, T.
Nikitina, & R. H. Baayen. 2007. Predicting the dative alternation. In G. Bouma, I. Kraemer, & J. Zwarts, eds. Cognitive
foundations of interpretation, 69-94. Royal Netherlands Academy of Science.
Beyond
means: The whole distribution
Balota, D.A., M. J. Yap, M.J.
Cortese, & J.M. Watson. 2008. Beyond mean response latency: Response time distributional
analyses of semantic priming. Journal
of Memory & Language, 59, 495-523.
Ioannidis, J. P. A. 2005. Why most published research findings are false. PLoS Medicine,
2(8), e124.
Boucher,
L., & Z. Dienes. 2003. Two ways of learning associations. Cognitive Science,
27, 807-42.