Conformal field theories and tensor categories Beijing, June 2011

Tensor categories in Conformal Field Theory

Victor Ostrik
University of Oregon
vostrik@uoregon.edu

June 14

Correlation functions and conformal blocks

Conformal Field Theory is determined by correlation functions

Variables: complex numbers or (better) points on some complex curve

$$
\psi\left(z_{1}, \ldots, z_{n}\right)=\sum_{p} F_{p}\left(z_{1}, \ldots, z_{n}\right) \overline{G_{p}\left(z_{1}, \ldots, z_{n}\right)}
$$

where F_{p} and G_{p} are holomorphic multivaluable functions with poles at the diagonals $z_{i}=z_{j}$
more precisely: F_{p} and G_{p} are (flat) sections of bundles of conformal blocks

Monodromy is described by representations of various braid groups
Example: Pure braid group $P B_{n}=\pi_{1}\left(\mathbb{C}^{n} \backslash \cup_{i \neq j}\left\{z_{i}=z_{j}\right\}\right)$

Representations of vertex algebras

Fact: Conformal blocks are controlled by vertex algebras and their representations

Representations of a vertex algebra V

Notation: $\operatorname{Rep}(V)$ - representations of V
$\operatorname{Rep}(V)$ is a category: we have morphisms of representations with associative composition
$\operatorname{Rep}(V)$ is \mathbb{C}-linear category: $\operatorname{Hom}(M, N)$ is \mathbb{C}-vector space and composition is bilinear
$\operatorname{Rep}(V)$ is abelian category: we can talk about kernels and cokernels of morphisms

Rationality

Rational vertex algebra: any $M \in \operatorname{Rep}(V)$ is a direct sum of irreducibles; there are just finitely many of irreducibles

Tensor categories

Theorem (Huang)

Let V be a good rational vertex algebra. Then $\operatorname{Rep}(V)$ has a natural structure of a Modular Tensor Category (MTC).

Definition

Tensor category: sextuple $\left(\mathcal{C}, \otimes\right.$, a•••, 1, $\left.l_{\bullet}, r_{\bullet}\right)$
\mathcal{C} - category
$\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}-(b i) f u n c t o r$
$a_{X Y Z}:(X \otimes Y) \otimes Z \simeq X \otimes(Y \otimes Z)$ (functorial) associativity constraint
1 - unit object
$I_{X}: \mathbf{1} \otimes X \simeq X$
$r_{X}: X \otimes \mathbf{1} \simeq X$
subject to axioms

Axioms

Pentagon axiom:

and Triangle axiom

Rigidity

$X \in \mathcal{C}:$ right dual $X^{*} \in \mathcal{C}$ and left dual ${ }^{*} X \in \mathcal{C}$

$$
\begin{array}{lcc}
\mathbf{1} \rightarrow X \otimes X^{*} & \text { coevaluation } & \mathbf{1} \rightarrow^{*} X \otimes X \\
X^{*} \otimes X \rightarrow \mathbf{1} & \text { evaluation } & X \otimes^{*} X \rightarrow \mathbf{1}
\end{array}
$$

Axiom: the maps below are identities:

$$
\begin{gathered}
X=\mathbf{1} \otimes X \rightarrow X \otimes X^{*} \otimes X \rightarrow X \otimes \mathbf{1}=X \\
X^{*}=X^{*} \otimes \mathbf{1} \rightarrow X^{*} \otimes X \otimes X^{*} \rightarrow \mathbf{1} \otimes X^{*}=X^{*}
\end{gathered}
$$

Definition

A tensor category \mathcal{C} is rigid if any object has both left and right dual
We will consider only \mathbb{C}-linear abelian tensor categories (with bilinear tensor product)
Useful fact (Deligne, Milne): In a rigid abelian tensor category tensor product is exact

Finiteness conditions

Finite category: abelian category equivalent to $\operatorname{Rep}^{f d}(A)$ where A is a finite dimensional algebra.
Equivalently: f.d. Hom's, finitely many irreducible objects, any object has finite length, and enough projective objects.
Finite multi-tensor category: rigid tensor category which is finite.
Finite tensor category: finite multi-tensor category with $\operatorname{End}(\mathbf{1})=\mathbb{C}$.
Fusion category: finite tensor category which is semisimple (that is each object is a direct sum of irreducible ones).
Multi-fusion category: finite multi-tensor category which is semisimple.

Examples

- Vec - finite dimensional vector spaces over \mathbb{C}
- $\operatorname{Rep}(G)(G$ - finite group) - f.d. representations of G over \mathbb{C}
- $\operatorname{Rep}^{f d}(H)(H-$ f.d. (weak/quasi) Hopf algebra)

Pointed Example (Hoang Sinh)

Example

G is a (semi)group;
simple objects $g \in G ; g \otimes h=g h$;
$a_{g, n, k} \in \mathbb{C}^{\times}$;
pentagon axiom $\Leftrightarrow a_{g h, k, l} a_{g, h, k l}=a_{g, h, k} a_{g, h k, l} a_{h, k, l}$
$\Leftrightarrow \partial a=1$, that is a is a 3 -cocycle;
triangle axiom $\Leftrightarrow 3$-cocycle a is normalized;
rigidity $\Leftrightarrow G$ is a group
Fact: the category above depends only on the class $\omega=[a] \in H^{3}\left(G, \mathbb{C}^{\times}\right)$ Notation: $\mathrm{Vec}_{G}^{\omega}$

Ocneanu rigidity

For a finite group G the group $H^{3}\left(G, \mathbb{C}^{\times}\right)$is finite.
Generalization (Ocneanu; Etingof, Nikshych, O): there are just countably many fusion categories.

Pivotal and spherical structures

Pivotal structure: choice of an isomorphism of tensor functors Id $\rightarrow^{* *}$ (that is functorial isomorphism $X \simeq X^{* *}$ compatible with tensor product) Allows to define traces and dimensions

$$
\begin{gathered}
\operatorname{Tr}(f): \mathbf{1} \rightarrow X \otimes X^{*} \xrightarrow{f \otimes \mathrm{id}} X \otimes X^{*} \rightarrow X^{* *} \otimes X^{*} \rightarrow \mathbf{1} \\
\operatorname{dim}(X)=\operatorname{Tr}\left(\mathrm{id}_{X}\right)
\end{gathered}
$$

Spherical structure: pivotal structure with $\operatorname{dim}(X)=\operatorname{dim}\left(X^{*}\right)$ for all X
Question: Is it true that any fusion category has a spherical structure?

Theorem (Etingof, Nikshych, O)

For any fusion category there is a distinguished isomorphism of tensor functors Id $\rightarrow^{* * * *}$

Braided structure

Braiding: functorial isomorphism $c_{X Y}: X \otimes Y \simeq Y \otimes X$ satisfying hexagon axioms for c and $c_{X Y}^{\text {rev }}:=c_{Y X}^{-1}$

If \mathcal{C} is a braided tensor category then the pure braid group $P B_{n}$ acts on $X_{1} \otimes \ldots \otimes X_{n}$ and the braid group B_{n} acts on $X^{\otimes n}$.
Remark: c is a braiding $\Longleftrightarrow c^{r e v}$ is a braiding
Notation: $\mathcal{C}^{\text {rev }}=\mathcal{C}$ as a tensor category but c is replaced by $c^{\text {rev }}$

Pointed Example II

Example (Joyal-Street)

What are possible braided structures on $\operatorname{Vec}_{G}^{\omega}$?
$G=A$ should be abelian (since $a \otimes b=a b$ and $b \otimes a=b a$)
For any $a \in A$ the braiding $c_{a a}: a \otimes a \rightarrow a \otimes a$ is just a scalar $q(a) \in \mathbb{C}^{\times}$
Claim: $q: A \rightarrow \mathbb{C}^{\times}$is a quadratic form:
$B(a, b):=\frac{q(a b)}{q(a) q(b)}$ is bilinear and
$q\left(a^{-1}\right)=q(a)$
Fact: Braided tensor category above is uniquely determined by (A, q) In particular ω is determined by q. For example:
ω is trivial $\Leftrightarrow q(a)=\tilde{B}(a, a)$ for some bilinear (possibly non-symmetric) form $\tilde{B}: A \times A \rightarrow \mathbb{C}^{\times}$
Notation: $\mathcal{C}(A, q)$

Number of braidings on $\mathrm{Vec}_{G}^{\omega}$ is finite.
Generalization (Ocneanu): Number of braidings on a fusion category is finite.

Symmetric tensor categories

Definition

A braided tensor category is symmetric if $c_{Y X} \circ c_{X Y}=\mathrm{Id}$ (equivalently, $c^{r e v}=c$).

Examples

- Vec
- $\mathcal{C}(A, q)$ is symmetric $\Leftrightarrow B \equiv 1(q(a b)=q(a) q(b))$
- $\operatorname{Rep}(G)$ with $c_{X Y}(x \otimes y)=y \otimes x$
- Modify $\operatorname{Rep}(G)$: pick a central involution $z \in G$ and set

$$
\begin{aligned}
& c_{X Y}^{\prime}(x \otimes y)=(-1)^{m n} y \otimes x \\
& \text { if } z x=(-1)^{m} x, z y=(-1)^{n} y
\end{aligned}
$$

Notation: $\operatorname{Rep}(G, z)$

- Super vector spaces: $s V e c=\operatorname{Rep}(\mathbb{Z} / 2 \mathbb{Z}, z)(z$ nontrivial)

Classification of symmetric tensor categories

Theorem (Grothendieck, Saavedra Rivano, Doplicher, Roberts, Deligne)

A rigid symmetric tensor category satisfying some finiteness assumptions is of the form $\operatorname{Rep}(G, z)$ where G is a (super) group.

Remark

Any finite tensor category satisfies the assumptions of the Theorem. However there are reasonable examples for which Theorem fails.

Drinfeld center

This is a construction of braided tensor category $\mathcal{Z}(\mathcal{C})$ starting with any tensor category \mathcal{C}
Objects of $\mathcal{Z}(\mathcal{C}):\left(X, c_{0}\right)$ with $X \in \mathcal{C}, c_{Y}: X \otimes Y \simeq Y \otimes X$ satisfying one hexagon axiom
Tensor product: $\left(X, c_{\bullet}\right) \otimes\left(Y, d_{\bullet}\right)=\left(X \otimes Y, \widetilde{c d_{\bullet}}\right)$
Braiding: use c_{Y} to identify $X \otimes Y$ and $Y \otimes X$
Remark: there is no reason for the braiding to be symmetric

Remarks

- There is a forgetful functor $\mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{C},\left(X, c_{0}\right) \mapsto X$
- If \mathcal{C} is braided, then there are obvious tensor functors $\mathcal{C} \rightarrow \mathcal{Z}(\mathcal{C})$ and $\mathcal{C}^{r e v} \rightarrow \mathcal{Z}(\mathcal{C}) ;$ moreover we can combine them

$$
\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }} \rightarrow \mathcal{Z}(\mathcal{C})
$$

Drinfeld center II

Theorem (Müger; Etingof, Nikshych, O)

Assume \mathcal{C} is fusion category. Then $\mathcal{Z}(\mathcal{C})$ is also a fusion category.

Theorem (Etingof, O)

Assume \mathcal{C} is finite tensor category. Then $\mathcal{Z}(\mathcal{C})$ is also a finite tensor category.

Example

$\mathcal{Z}\left(\operatorname{Vec}_{G}^{\omega}\right)$ - twisted Drinfeld double of G
If $\omega=0$ then

$$
\operatorname{Irr}\left(\mathcal{Z}\left(\operatorname{Vec}_{G}^{\omega}\right)\right)=\left\{(x, \rho) \mid x \in G, \rho \in \operatorname{Irr}\left(C_{G}(x)\right)\right\} / G
$$

If $\omega \neq 0$ use projective representations of $C_{G}(x)$

Non-degeneracy

Non-degenerate braided tensor category: "opposite" of symmetric
3 equivalent definitions of non-degenerate braided fusion category

1) (Turaev) S-matrix is non-degenerate: $S_{i j}=\operatorname{Tr}\left(c_{X_{i} X_{j}} \circ c_{X_{j} X_{i}}\right)$
2) (Bruguières, Müger) No transparent objects: if $c_{X Y} \circ c_{Y X}=\mathrm{id}_{Y \otimes X}$ for all $Y \in \mathcal{C}$ then X is a multiple of $\mathbf{1}$
3) \mathcal{C} is factorizable: the functor $\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }} \rightarrow \mathcal{Z}(\mathcal{C})$ is an equivalence

Example

$\mathcal{C}(A, q)$ is non-degenerate $\Leftrightarrow B(a, b)=\frac{q(a b)}{q(a) q(b)}$ is non-degenerate

What about Logarithmic CFT?

Guess: factorizable categories

Modular Tensor Categories

Definition (Turaev)

MTC is a non-degenerate braided fusion category with a choice of spherical structure.

Examples

- $\mathcal{Z}(\mathcal{A})$ where \mathcal{A} is a spherical fusion category (e.g. $\mathcal{A}=\operatorname{Vec}_{G}^{\omega}$) is MTC.
- Wess-Zumino-Witten model: let \mathfrak{g} be a simple finite dimensional Lie algebra and $k \in \mathbb{Z}_{>0}$. Then $\mathcal{C}(\mathfrak{g}, k)=$ integrable $\hat{\mathfrak{g}}$-modules of level k has a structure of MTC.
- Dijkgraaf-Witten: given a compact group G and $\omega \in H^{4}(B G, \mathbb{Z})$ (satisfying some non-degeneracy condition) we should have MTC
- G is simple and simply connected: $H^{4}(B G, \mathbb{Z})=\mathbb{Z}$: WZW model
- G is finite: $H^{4}(B G, \mathbb{Z})=H^{3}\left(G, \mathbb{C}^{\times}\right): \mathcal{Z}\left(\operatorname{Vec}_{G}^{\omega}\right)$
- G is torus: pointed category $\mathcal{C}(A, q)$
- general G : not known

Module categories

Definition

Let \mathcal{C} be a tensor category. Module category over \mathcal{C} is a quadruple $\left(\mathcal{M}, \otimes, a_{\bullet \bullet \bullet}, l_{\bullet}\right)$
\mathcal{M} is an abelian \mathbb{C}-linear category
$\otimes: \mathcal{C} \times \mathcal{M} \rightarrow \mathcal{M}$ is an exact bifunctor
$a_{X Y M}:(X \otimes Y) \otimes M \simeq X \otimes(Y \otimes M)$
$I_{M}: \mathbf{1} \otimes M \simeq M$
satisfying the pentagon and triangle axioms

Example

Let $\mathcal{C}=$ Vec. The module categories over \mathcal{C} are all abelian \mathbb{C}-linear categories. Thus it is a bad idea to study all module categories over given \mathcal{C}.

Reasonable class of module categories for a fusion category \mathcal{C} : finite semisimple ones

Module categories II

Examples

- $\mathcal{M}=\mathcal{C}$ is module category over \mathcal{C}
- If $F: \mathcal{C} \rightarrow \mathcal{D}$ is a tensor functor then \mathcal{D} is a module category over \mathcal{C}
- Let H be a Hopf algebra and let $\mathcal{C}=\operatorname{Rep}^{f d}(H)$. Then there is a forgetful tensor functor $\mathcal{C} \rightarrow V e c$. Thus Vec is a module category over Rep ${ }^{f d}(H)$
- In general: \mathcal{M} is module category over $\mathcal{C} \Leftrightarrow$ there is a tensor functor $\mathcal{C} \rightarrow \operatorname{Fun}(\mathcal{M}, \mathcal{M})$ (category of exact functors $\mathcal{M} \rightarrow \mathcal{M}$)

Direct sums

There is an easy operation of direct sum $\mathcal{M}_{1} \oplus \mathcal{M}_{2}$. Each module category as above is a direct sum of indecomposable ones in a unique way. Thus for a compete classification it is enough to describe indecomposable module categories.

Module categories and correlation functions

Theorem (Fjelstad, Fuchs, Runkel, Schweigert)

Let V be a rational vertex algebra and let \mathcal{M} be an indecomposable (finite semisimple) module category over $\operatorname{Rep}(V)$ satisfying some condition. Then there is a way to combine conformal blocks of V into a consistent system of correlation functions.

Full RCFT: good rational vertex algebra V and an indecomposable module category over $\operatorname{Rep}(V)$.
Physical interpretation of objects of \mathcal{M} : boundary conditions

Guess for LCFT: exact module categories

Let \mathcal{C} be a finite tensor category. A module category over \mathcal{C} is exact if $P \otimes M$ is projective whenever $P \in \mathcal{C}$ is (notice that $X \otimes M$ is automatically projective for a projective $M \in \mathcal{M}$).

Classifications of module categories

Theorem (Etingof, Nikshych, O)

For a given fusion category \mathcal{C} there are just finitely many indecomposable module categories.

Examples

- $\operatorname{Rep}(G): \operatorname{Rep}^{\psi}(H)$ - representations of twisted group algebra $\mathbb{C}[H]_{\psi}$ where $H \subset G, \psi \in H^{2}\left(H, \mathbb{C}^{\times}\right)$(Bezrukavnikov, O)
- $\operatorname{Vec}_{G}^{\omega}:(H, \psi)$ where $H \subset G, \partial \psi=\left.\omega\right|_{H}(\mathrm{O})$
- $\mathcal{Z}\left(\operatorname{Vec}_{G}^{\omega}\right):(H, \psi), H \subset G \times G, \partial \psi=\left.\tilde{\omega}\right|_{H}(0)$
- $\mathcal{C}\left(s l_{2}, k\right)$: ADE classification (Cappelli, Itzykson, Zuber et al)
- $\mathcal{C}\left(s l_{n}, k\right)$: classification is known for $n=3,4$ (Ocneanu)
- Haagerup subfactor (Grossman, Snyder)

Problem: Classify module categories over $\mathcal{C}(\mathfrak{g}, k)$.

Algebras

Definition

An associative algebra with unit $A \in \mathcal{C}$ is a triple (A, m, i) where $A \in \mathcal{C}$ is an object
$m: A \otimes A \rightarrow A$ multiplication morphism
$i: \mathbf{1} \rightarrow A$ unit morphism
Associativity axiom:

Algebras II

Unit axiom:
$A=\mathbf{1} \otimes A \rightarrow A \otimes A \rightarrow A{\text { is } \mathrm{id}_{A}}$
$A=A \otimes \mathbf{1} \rightarrow A \otimes A \rightarrow A$ is id_{A}

Examples

- If $X \in \mathcal{C}$ then $A=X \otimes X^{*}$ is an algebra:

$$
i: \mathbf{1} \xrightarrow{\text { coev }} X \otimes X^{*}, m: X \otimes X^{*} \otimes X \otimes X^{*} \xrightarrow{\text { id } \otimes e v \otimes i d} X \otimes X^{*}
$$

- For $H \subset G, \mathbb{C}[H]_{\psi}$ is an algebra in Vec_{G}
- For $H \subset G, \psi \in Z^{2}\left(H, \mathbb{C}^{\times}\right)$with $\partial \psi=\left.\omega\right|_{H}, \mathbb{C}[H]_{\psi}$ is an algebra in $V^{\prime} c_{G}^{\omega}$

Commutative algebras

If \mathcal{C} is braided we say that an algebra $A \in \mathcal{C}$ is commutative if $A \otimes A \xrightarrow{c_{A A}} A \otimes A \xrightarrow{m} A$ equals $m: A \otimes A \rightarrow A$

Modules

Definition

Let $A \in \mathcal{C}$ be an algebra. Right A-module is a pair $(M, \mu), M \in \mathcal{C}$, $\mu: M \otimes A \rightarrow M$ such that
$(M \otimes A) \otimes A \xrightarrow{\mu \otimes \mathrm{id}_{A}} M \otimes A \xrightarrow{\mu} M$ coincides with
$(M \otimes A) \otimes A \xrightarrow{\alpha_{M A A}} M \otimes(A \otimes A) \xrightarrow{\mathrm{id}_{M} \otimes m} M \otimes A \xrightarrow{\mu} M$ and $M=M \otimes \mathbf{1} \rightarrow M \otimes A \rightarrow M$ is id $_{M}$.

Category of A-modules

Right A-modules form an abelian category \mathcal{C}_{A} : morphism from (M, μ) to (N, ν) is $f: M \rightarrow N$ such that $M \otimes A \xrightarrow{f \otimes \text { id }} N \otimes A$ commutes.

Observation: \mathcal{C}_{A} has an obvious structure of module category over \mathcal{C} : $X \otimes M \in \mathcal{C}_{A}$ for $X \in \mathcal{C}, M \in \mathcal{C}_{A}$

Modules II

Definition

Assume \mathcal{C} is fusion category. $A \in \mathcal{C}$ is separable if \mathcal{C}_{A} is semisimple.

Theorem (O)

For a fusion category \mathcal{C} any (semisimple) module category over \mathcal{C} is of the form \mathcal{C}_{A} for some separable algebra A.

Morita equivalence

Algebra A in the Theorem above is not unique!
Module categories over $\mathcal{C} \leftrightarrow$ separable algebras in \mathcal{C} up to Morita equivalence

Example

Algebra $A=X \otimes X^{*}$ is Morita equivalent to algebra 1.

Bimodules and dual categories

For any algebra A we consider category ${ }_{A} \mathcal{C}_{A}$ of A-bimodules. ${ }_{A} \mathcal{C}_{A}$ is tensor category with tensor product \otimes_{A} and unit object A.

Theorem (Etingof, Nikshych, O)

\mathcal{C} is fusion category and $A \in \mathcal{C}$ is separable $\Rightarrow{ }_{A} \mathcal{C}_{A}$ is a fusion category.

Fact: ${ }_{A} \mathcal{C}_{A}$ depends only on Morita equivalence class of A.
Notation: dual category $\mathcal{C}_{\mathcal{M}}^{*}:={ }_{A} \mathcal{C}_{A}$ where $\mathcal{M}=\mathcal{C}_{A}$.
Fact (Müger): $\mathcal{C} \sim \mathcal{C}_{\mathcal{M}}^{*}$ is an equivalence relation.
This is weak Morita equivalence, or 2-Morita equivalence.
Example: $\operatorname{Rep}^{f d}(H)$ is 2 -Morita equivalent to $\operatorname{Rep}^{f d}\left(H^{*}\right)$.
Theorem (Drinfeld; Kitaev; Etingof, Nikshych, O)
\mathcal{C} and \mathcal{D} are 2 -Morita equivalent $\Leftrightarrow \mathcal{Z}(\mathcal{C}) \simeq \mathcal{Z}(\mathcal{D})$
Physical interpretation of objects of $\mathcal{C}_{\mathcal{M}}^{*}$: labels for defect lines

Étale algebras

Observation

Assume that $A \in \mathcal{C}$ is commutative. Then \mathcal{C}_{A} is tensor category (with \otimes_{A} as a tensor product)

Definition

An étale algebra in a braided fusion category \mathcal{C} is algebra which is both commutative and separable.

An étale algebra $A \in \mathcal{C}$ is connected if $\operatorname{Hom}(1, A)=\mathbb{C}$
Any étale algebra decomposes uniquely into a direct sum of connected ones

Lemma

Assume that $A \in \mathcal{C}$ is connected étale. Then \mathcal{C}_{A} is a fusion category (usually not braided). Moreover, we have a surjective tensor functor $\mathcal{C} \rightarrow \mathcal{C}_{A}, X \mapsto X \otimes A$

Roles of étale algebras

(1) Extensions of vertex algebras
(2) Kernels of central functors
(3) Kernels of tensor functors
(9) Quantum Manin pairs
(5) Modular invariants
(0) Left/right centers

Extensions of vertex algebras

Let V be a vertex algebra.
Question: What are possible extensions $W \supset V$?

Theorem (Kirillov Jr., O; Huang,Kirillov Jr.,Lepowsky)

Assume that V is good rational, so $\operatorname{Rep}(V)$ is MTC.
Vertex algebra extensions \leftrightarrow (some) étale algebras in $\operatorname{Rep}(V)$.
This produces many interesting examples for categories $\mathcal{C}(\mathfrak{g}, k)$ via the theory of conformal embeddings

Dyslexia (Pareigis)

What is $\operatorname{Rep}(W)$ in the categorical terms?
Answer: dyslectic (or local) modules
$\mathcal{C}_{A}^{0}=\left\{M \in \mathcal{C}_{A} \mid \mu \circ \mathcal{C}_{A M} \circ C_{M A}=\mu\right\} \subset \mathcal{C}_{A}$

Kernels of central functors

Central functors

Let \mathcal{C} be a braided category and \mathcal{D} be a tensor category. A central functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is a tensor functor together with isomorphisms $F(X) \otimes Y \simeq Y \otimes F(X)$ satisfying some axioms. Equivalently, this is a factorization $\mathcal{C} \rightarrow \mathcal{Z}(\mathcal{D}) \rightarrow \mathcal{D}$ where functor $\mathcal{C} \rightarrow \mathcal{Z}(\mathcal{D})$ is braided.

Observation: The functor $\mathcal{C} \rightarrow \mathcal{C}_{A}$ has a natural structure of central functor.

Theorem (Davydov, Müger, Nikshych, O)

Conversely, let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a central functor between fusion categories. Let $I: \mathcal{D} \rightarrow \mathcal{C}$ be the right adjoint functor of F. Then $A=I(\mathbf{1}) \in \mathcal{C}$ has a natural structure of (connected) étale algebra; moreover the central functor $\mathcal{C} \rightarrow F(\mathcal{C}) \subset \mathcal{D}$ is isomorphic to $\mathcal{C} \rightarrow \mathcal{C}_{A}$

Kernels of tensor functors

Let \mathcal{C} be a tensor category and let $A \in \mathcal{Z}(\mathcal{C})$ be a commutative algebra. Observation (Schauenburg): \mathcal{C}_{A} is a tensor category and there is a tensor functor $\mathcal{C} \rightarrow \mathcal{C}_{A}, X \mapsto X \otimes A$.

Theorem (Schauenburg)

$$
\mathcal{Z}\left(\mathcal{C}_{A}\right)=\mathcal{Z}(\mathcal{C})_{A}^{0}
$$

Theorem (Kitaev; Bruguières, Natale; Davydov, Müger, Nikshych, O)

Let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a tensor functor between (multi-)fusion categories. Let $I: \mathcal{D} \rightarrow \mathcal{C}$ be the right adjoint functor of F. Then $A=I(\mathbf{1}) \in \mathcal{C}$ has a natural lift to $\mathcal{Z}(\mathcal{C})$; in addition $I(\mathbf{1}) \in \mathcal{Z}(\mathcal{C})$ has a natural structure of étale algebra. Moreover the tensor functor $\mathcal{C} \rightarrow F(\mathcal{C}) \subset \mathcal{D}$ is isomorphic to $\mathcal{C} \rightarrow \mathcal{C}_{A}$

Quantum Manin pairs

Let \mathcal{A} be a fusion category. The forgetful functor $\mathcal{Z}(\mathcal{A}) \rightarrow \mathcal{A}$ is central and surjective. Let $A=I(\mathbf{1}) \in \mathcal{Z}(\mathcal{A})$. Then $\mathcal{A}=\mathcal{Z}(\mathcal{A})_{A}$.

Theorem (Kitaev; Davydov, Müger, Nikshych, O)

Let \mathcal{C} be a non-degenerate braided fusion category and $A \in \mathcal{C}$ be an étale algebra. The functor $\mathcal{C} \rightarrow \mathcal{C}_{A}$ is isomorphic to the forgetful functor $\mathcal{Z}(\mathcal{A}) \rightarrow \mathcal{A}$ if and only if $\mathcal{C}_{A}^{0}=$ Vec.

Definition

Lagrangian algebra: connected étale algebra A in a non-degenerate braided fusion category \mathcal{C} such that $\mathcal{C}_{A}^{0}=$ Vec.
Quantum Manin pair: (\mathcal{C}, A) where $A \in \mathcal{C}$ is Lagrangian.

Example (non-degenerate pointed category $\mathcal{C}(A, q)$)

étale algebras in $\mathcal{C}(A, q) \leftrightarrow$ isotropic subgroups $\left(H \subset A,\left.q\right|_{H}=1\right)$
Lagrangian algebras in $\mathcal{C}(A, q) \leftrightarrow$ Lagrangian subgroups $\left(H=H^{\perp}\right)$

Quantum Manin pairs II

Example

There is a conformal embedding so $(5)_{12} \subset\left(E_{8}\right)_{1}$. Since $\mathcal{C}\left(E_{8}, 1\right)=V e c$ we see that $\mathcal{C}(s o(5), 12)=\mathcal{Z}(\mathcal{A})$ for some \mathcal{A}.

Module category and Lagrangian algebras

Assume that \mathcal{M} is a module category over \mathcal{A}. Then there is a functor $\mathcal{A} \rightarrow F u n(\mathcal{M}, \mathcal{M})$ described by a connected étale algebra $B \in \mathcal{Z}(\mathcal{A})$.

> Theorem (Kong, Runkel; Etingof, Nikshych, O; Davydov, Müger, Nikshych, O)

Algebra $B \in \mathcal{Z}(\mathcal{A})$ is Lagrangian. Moreove, the assignment $\mathcal{M} \mapsto B$ is a bijection: indecomposable module categories over $\mathcal{A} \leftrightarrow$ Lagrangian algebras $B \in \mathcal{Z}(\mathcal{A})$

Aside: lattice of subcategories of \mathcal{A} is anti-isomorphic to lattice of étale subalgebras of $I(\mathbf{1}) \in \mathcal{Z}(\mathcal{A})$

Modular invariants (after Rehren)

Reminder: full RCFT \Leftrightarrow vertex algebra V and module category \mathcal{M} over $\mathcal{C}=\operatorname{Rep}(V) \Leftrightarrow$ vertex algebra V and Lagrangian algebra $\mathcal{L} \in \mathcal{Z}(\mathcal{C})$. \mathcal{C} is MTC, so $\mathcal{Z}(\mathcal{C})=\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }} ; \mathcal{L} \in \mathcal{C} \boxtimes \mathcal{C}^{\text {rev }}$ is bulk algebra The class $[\mathcal{L}] \in K(\mathcal{Z}(\mathcal{C}))$ can be written as $\sum_{i, j} Z_{i j}\left[X_{i} \boxtimes X_{j}\right]$ where $Z_{i j} \in \mathbb{Z}_{\geq 0}, Z_{00}=1$ (since \mathcal{L} is connected).

Theorem (Böckenhauer, Evans, Kawahigashi; Fuchs, Runkel, Schweigert)

Assume that $Z_{i j}$ commutes with T-matrix. Then $Z_{i j}$ commutes with S-matrix; that is $Z_{i j}$ is a modular invariant.

Remark. If $\operatorname{dim}\left(X_{i}\right)>0$ then $[Z, T]=0$ automatically.

Physical modular invariants

Physical modular invariant $=$ modular invariant of the form $[\mathcal{L}]$
Modular invariant can be physical in more than one way.

Modular invariants II

Construction of étale algebras in $\mathcal{C} \boxtimes \mathcal{D}$

Pick étale algebras $A \in \mathcal{C}, B \in \mathcal{D}$, tensor subcategories $\mathcal{C}_{1} \subset \mathcal{C}_{A}^{0}$ and $\mathcal{D}_{1} \subset \mathcal{D}_{B}^{0}$ and a braided equivalence $\phi: \mathcal{C}_{1} \simeq \mathcal{D}_{1}^{\text {rev }}$. Then $\oplus_{M \in \operatorname{lrr}\left(\mathcal{C}_{1}\right)} M \boxtimes \phi(M)^{*}$ has a natural structure of étale algebra.

Theorem (Müger; Davydov, Nikshych, O)

Any connected étale algebra in $\mathcal{C} \boxtimes \mathcal{D}$ is isomorphic to one constructed above.

This applies to $\mathcal{Z}(\mathcal{C})=\mathcal{C} \boxtimes \mathcal{C}^{\text {rev }}$ where \mathcal{C} is non-degenerate (e.g. MTC). Algebra above is Lagrangian $\Leftrightarrow \mathcal{C}_{1}=\mathcal{C}_{A}^{0}, \mathcal{D}_{1}=\left(\mathcal{C}^{\text {rev }}\right)_{B}^{0}$.

Corollary (Böckenhauer, Evans; Fuchs, Runkel, Schweigert)

Indecomposable module categories over a non-degenerate braided fusion category \mathcal{C} are labeled by triples (A, B, ϕ) where $A, B \in \mathcal{C}$ are connected étale algebras and $\phi: \mathcal{C}_{A}^{0} \rightarrow \mathcal{C}_{B}^{0}$ is a braided equivalence.

Modular invariants III

Corollary (Etingof, Nikshych, O)

For a non-degenerate $\mathcal{C}, \operatorname{Aut}^{\text {br }}(\mathcal{C}) \leftrightarrow$ invertible module categories $\operatorname{Pic}(\mathcal{C})$

Physical interpretation ~ 1989 (Moore, Seiberg; Dijkgraaf, Verlinde)

Algebra $\mathcal{L} \in \mathcal{C} \boxtimes \mathcal{C}^{r e v}$ considered as a vector space $\bigoplus_{i, j}\left(X_{i} \otimes X_{j}\right)^{Z_{i j}}$ Hilbert space of states
$[\mathcal{L}]$ considered as a linear combination of characters $\sum_{i, j} Z_{i j} \chi_{i} \overline{\chi_{j}}-$ partition function of the theory
type I theory $-A=B$ and $\phi=\mathrm{id}$
type II theory $-A=B$ and $\phi \neq \mathrm{id}$
heterotic theory $-A \neq B$

Example

Example: $\mathcal{C}\left(G_{2}, 3\right)$-modular invariant $\left|\chi_{00}+\chi_{11}\right|^{2}+2\left|\chi_{02}\right|^{2}$ has 2 distinct physical realizations.

Left/right centers

Two centers

Let $E \in \mathcal{C}$ be an algebra in a braided category \mathcal{C}.
Left center: biggest $C_{l}(E) \subset E \quad$ Right center. biggest $C_{r}(E) \subset E$ such that $C_{l}(E) \otimes E \xrightarrow{m} E$ equals such that $E \otimes C_{r}(E) \xrightarrow{m} E$ equals $C_{l}(E) \otimes E \xrightarrow{C_{l}(E) E} E \otimes C_{l}(E) \xrightarrow{m} E . \quad E \otimes C_{r}(E) \xrightarrow{C_{E C_{r}(E)}} C_{r}(E) \otimes E \xrightarrow{m} E$.

Theorem (Fuchs, Schweigert, Runkel)
Let E be a separable algebra in a (non-degenerate) braided fusion category \mathcal{C}. Then $C_{l}(E)$ and $C_{r}(E)$ are étale. Moreover, there is a braided equivalence $\mathcal{C}_{C_{l}(E)}^{0} \simeq \mathcal{C}_{C_{r}(E)}^{0}$.

Proof.

Let $\mathcal{L}=\mathcal{L}(A, B, \phi)$ be Lagrangian algebra associated with $\mathcal{M}=\mathcal{C}_{E}$. Then $C_{l}(E)=A$ and $C_{r}(E)=B$.

Thanks for listening!

