Multi-fusion categories of Harish-Chandra bimodules

Victor Ostrik
University of Oregon
vostrik@uoregon.edu

August 19
Plan of the talk

1. Harish-Chandra (bi)modules.
2. Associated varieties and tensor product modulo “smaller size”.
3. Tensor categories and multi-fusion categories.
5. Sheaves.
Harish-Chandra modules

\(G_\mathbb{R} \) – real semi-simple Lie group, e.g. \(SL(n, \mathbb{R}) \)

Harish-Chandra (1953): many questions about continuous complex representations of \(G_\mathbb{R} \) can be reduced to pure algebra.

\(\mathfrak{g} = \text{Lie}(G_\mathbb{R}) \otimes_\mathbb{R} \mathbb{C} \), \(U(\mathfrak{g}) \) – universal enveloping algebra

\(K \subset G_\mathbb{R} \) – maximal compact subgroup, e.g. \(SO(n, \mathbb{R}) \subset SL(n, \mathbb{R}) \)

Definition

A \((\mathfrak{g}, K)\)–module (or Harish-Chandra module) is a space \(V \) with actions of \(\mathfrak{g} \) and \(K \) such that

1. \(V \) is **algebraic** \(K \)–module, i.e. \(V \) is a union of finite dimensional \(K \)–modules.
2. The actions are **compatible**: \(\mathfrak{g} \)–action is \(K \)–equivariant and the differential of \(K \)–action agrees with \(\text{Lie}(K) \subset \mathfrak{g} \)–action.
3. \(V \) is finitely generated \(U(\mathfrak{g}) \)–module.
Complex groups and bimodules

\(G_\mathbb{C} \) – complex simply connected semi-simple Lie group, e.g. \(SL(n, \mathbb{C}) \)
Let us consider \(G_\mathbb{C} \) as a real Lie group

\[g = \text{Lie}(G_\mathbb{C}); \text{Lie}(G_\mathbb{C}) \otimes_\mathbb{R} \mathbb{C} = g \oplus g \]

representation of \(\text{Lie}(G_\mathbb{C}) \otimes_\mathbb{R} \mathbb{C} \) ⇔ module over \(\mathcal{U}(g \oplus g) = \mathcal{U}(g) \otimes_\mathbb{C} \mathcal{U}(g) \)
\(x \mapsto -x \) induces \(\mathcal{U}(g) \cong \mathcal{U}(g)^{\text{op}} \), so \(\mathcal{U}(g) \otimes_\mathbb{C} \mathcal{U}(g) \cong \mathcal{U}(g) \otimes_\mathbb{C} \mathcal{U}(g)^{\text{op}} \)
Thus \(\text{Lie}(G_\mathbb{C}) \otimes_\mathbb{R} \mathbb{C} \)–representation is the same as \(\mathcal{U}(g) \)–bimodule

We can choose \(K \subset G_\mathbb{C} \) such that \(\text{Lie}(K) \otimes_\mathbb{R} \mathbb{C} \subset \text{Lie}(G_\mathbb{C}) \otimes_\mathbb{R} \mathbb{C} \) is the diagonal \(\Delta g \subset g \oplus g \), e.g. \(K = SU(n) \subset SL(n, \mathbb{C}) \)
\(M \) – \(\mathcal{U}(g) \)–bimodule; adjoint action: \(\text{ad}(x)m := xm - mx \)
\(\mathcal{U}(g) \)–bimodule is algebraic if it is a union of finite dimensional \(g \)-modules with respect to the adjoint action.

Example

\(\mathcal{U}(g) \) is algebraic (use PBW filtration) and \(\mathcal{U}(g) \otimes_\mathbb{C} \mathcal{U}(g) \) is not.
Harish-Chandra bimodules

Definition

A Harish-Chandra bimodule over \mathfrak{g} is a finitely generated $U(\mathfrak{g})$–bimodule which is algebraic.

Lemma

If M and N are Harish-Chandra bimodules then so is $M \otimes_{U(\mathfrak{g})} N$.

- The tensor product $\otimes_{U(\mathfrak{g})}$ is associative
- $U(\mathfrak{g})$ is the unit for this tensor product

Thus the category \mathcal{H} of Harish-Chandra bimodules is a tensor category.

Remark. If M is a Harish-Chandra bimodule over \mathfrak{g} and N is (\mathfrak{g}, K)–module then $M \otimes_{U(\mathfrak{g})} N$ is also (\mathfrak{g}, K)–module

Thus the category \mathcal{H} acts on the category of (\mathfrak{g}, K)–modules.
Central characters and simple Harish-Chandra bimodules

\(Z(\mathfrak{g}) \subset U(\mathfrak{g}) \) center of the universal enveloping algebra
\(Z(\mathfrak{g}) \) acts on an irreducible \(\mathfrak{g} \)-module via central character \(\chi : Z(\mathfrak{g}) \to \mathbb{C} \)
\(\chi_1 \mathcal{H} \chi_2 \subset \mathcal{H} \) – full subcategory where the left \(Z(\mathfrak{g}) \)-action factors through \(\chi_1 \) and the right \(Z(\mathfrak{g}) \)-action factors through \(\chi_2 \)
Any irreducible Harish-Chandra bimodule is contained in a unique \(\chi_1 \mathcal{H} \chi_2 \subset \mathcal{H} \)

\(\chi_1 \mathcal{H} \chi_2 \otimes U(\mathfrak{g}) \chi_3 \mathcal{H} \chi_4 \subset \chi_1 \mathcal{H} \chi_4 \) and \(\chi_1 \mathcal{H} \chi_2 \otimes U(\mathfrak{g}) \chi_3 \mathcal{H} \chi_4 = 0 \) unless \(\chi_2 = \chi_3 \)
\(\mathcal{H}(\chi) := \chi \mathcal{H} \chi \) is tensor subcategory of \(\mathcal{H} \)
unit object: \(U(\mathfrak{g})\chi := U(\mathfrak{g})/\text{Ker}(\chi)U(\mathfrak{g}) \)

Convention: \(\chi \) is integral regular, e.g. \(\chi = \chi_0 \) trivial central character

Theorem (Bernstein-S. Gelfand, Enright, Joseph)
Irreducible bimodules in \(\mathcal{H}(\chi) \leftrightarrow \) elements of the Weyl group \(W \).

Proof uses Bernstein-Gelfand-Gelfand category \(\mathcal{O} \).
Associated varieties

\(M \in \mathcal{H}, \ M_0 \subset M\) finite dimensional subspace which generates \(M\) and which is invariant under the adjoint action

\[U(\mathfrak{g})_0 \subset U(\mathfrak{g})_1 \subset \cdots \subset U(\mathfrak{g})\) PBW filtration

\(M_n = U(\mathfrak{g})_n M_0 \Rightarrow\) filtration \(M_0 \subset M_1 \subset \cdots \subset M\)

Associated graded

\(\text{gr}M\) is a finitely generated module over \(\text{gr}U(\mathfrak{g}) = S^\bullet(\mathfrak{g})\)

Moreover, this module is equivariant with respect to \(G_\mathbb{C}\)–action

Let us identify \(\mathfrak{g}^* = \text{Spec}(S^\bullet(\mathfrak{g}))\) with \(\mathfrak{g}\) via the Killing form

Definition

The associated variety \(V(M)\) is the support of \(\text{gr}M\) in \(\mathfrak{g}\).

- \(V(M) = V(L) \cup V(K)\) for a s.e.s. \(0 \rightarrow L \rightarrow M \rightarrow K \rightarrow 0\)
- \(V(M \otimes U(\mathfrak{g}) N) \subset V(M) \cap V(N)\)
Nilpotent orbits

$x \in g$ is **nilpotent** if $ad(x) : g \to g$ is nilpotent

Example. $x \in sl(n, \mathbb{C})$ is nilpotent $\iff x^n = 0$

$\mathcal{N} \subset g$ is the nilpotent cone, i.e. the set of all nilpotent elements

Dynkin + Kostant: \mathcal{N} consists of finitely many $G_{\mathbb{C}}$–orbits

Example. nilpotent orbits in $sl(n, \mathbb{C})$ \leftrightarrow partitions of n

For $\mathcal{O} \subset \mathcal{N}$, $\bar{\mathcal{O}}$ is its closure; partial order: $\mathcal{O}' \leq \mathcal{O} \iff \mathcal{O}' \subset \bar{\mathcal{O}}$

- for $M \in \chi_1 \mathcal{H} \chi_2$ we have $V(M) \subset \mathcal{N}$. Moreover,

Theorem (Borho-Brylinsky, Joseph)

For irreducible $M \in \mathcal{H}$, $V(M)$ is irreducible, i.e. $V(M) = \bar{\mathcal{O}}$.

$\mathcal{H}(\chi)_{\leq \mathcal{O}}$ – full subcategory of $\mathcal{H}(\chi)$ consisting of M with $V(M) \subset \bar{\mathcal{O}}$

$\mathcal{H}(\chi)_{< \mathcal{O}}$ – full subcategory of $\mathcal{H}(\chi)_{\leq \mathcal{O}}$ consisting of M with $V(M) \neq \bar{\mathcal{O}}$

Both $\mathcal{H}(\chi)_{\leq \mathcal{O}}$ and $\mathcal{H}(\chi)_{< \mathcal{O}}$ are Serre subcategories

$\mathcal{H}(\chi)_{\leq \mathcal{O}}$ is closed under $\otimes_{U(g)}$; $\mathcal{H}(\chi)_{< \mathcal{O}}$ is “ideal” with respect to $\otimes_{U(g)}$
Cell categories

Serre quotients
We can form \(\tilde{\mathcal{H}}(\chi)_{\mathbb{O}} = \mathcal{H}(\chi)_{\leq \mathbb{O}} / \mathcal{H}(\chi)_{< \mathbb{O}} \).

Tensor products \(\otimes_{U(\mathfrak{g})} \) descends to \(\otimes : \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \times \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \rightarrow \tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \).

- it is not clear whether \(\tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \) has a unit object

\(\mathcal{H}(\chi)_{\mathbb{O}} \) – full subcategory of \(\tilde{\mathcal{H}}(\chi)_{\mathbb{O}} \) consisting of semisimple objects

Theorem (Joseph, Bezrukavnikov-Finkelberg-O, Losev)

\(\mathcal{H}(\chi)_{\mathbb{O}} \) is closed under \(\otimes \).

\(\mathcal{H}(\chi)_{\mathbb{O}} \) has a unit object: let \(Pr(\chi)_{\mathbb{O}} \) be the (finite) set of primitive ideals in \(U(\mathfrak{g})_\chi \) with \(V(U(\mathfrak{g})/I) = \bar{\mathcal{O}} \); then \(1 = \bigoplus_{I \in Pr(\chi)_{\mathbb{O}}} U(\mathfrak{g})/I \)

Theorem (Bezrukavnikov-Finkelberg-O, Losev-O)

\(\mathcal{H}(\chi)_{\mathbb{O}} \) is a multi-fusion category.

We will call \(\mathcal{H}(\chi)_{\mathbb{O}} \) cell category associated with \(\mathbb{O} \)
Tensor (=monoidal) categories

Definition (MacLane)

Tensor category: quadruple $(\mathcal{C}, \otimes, a, \mathbf{1})$ where \mathcal{C} is a category, $\otimes: \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is a bifunctor, $a_{X,Y,Z}: (X \otimes Y) \otimes Z \simeq X \otimes (Y \otimes Z)$ is an associativity constraint, $\mathbf{1}$ is the unit object.

1. Pentagon axiom: the following diagram commutes for all $W, X, Y, Z \in \mathcal{C}$:

\[
\begin{array}{c}
((W \otimes X) \otimes Y) \otimes Z \\
(W \otimes (X \otimes Y)) \otimes Z \\
W \otimes ((X \otimes Y) \otimes Z)
\end{array}
\begin{array}{c}
\rightarrow\\
\downarrow a_{W,X,Y,Z} \\
\rightarrow\\
\downarrow id_{W \otimes a_{X,Y,Z}} \\
\rightarrow
\end{array}
\begin{array}{c}
(W \otimes X) \otimes (Y \otimes Z) \\
W \otimes (X \otimes (Y \otimes Z))
\end{array}
\]

2. Unit axiom: both functors $\mathbf{1} \otimes ?$ and $? \otimes \mathbf{1}$ are isomorphic to the identity functor.
Rigidity

For \(X \in C \) its right dual is \(X^* \in C \) together with \(\text{ev}_X : X^* \otimes X \to 1 \) and \(\text{coev}_X : 1 \to X \otimes X^* \) such that the compositions equal the identities:

\[
X \overset{\text{coev}_X \otimes \text{id}_X}{\longrightarrow} (X \otimes X^*) \otimes X \overset{a_{X,X^*,X}}{\longrightarrow} X \otimes (X^* \otimes X) \overset{\text{id}_X \otimes \text{ev}_X}{\longrightarrow} X
\]

\[
X^* \overset{\text{id}_{X^*} \otimes \text{coev}_X}{\longrightarrow} X^* \otimes (X \otimes X^*) \overset{a_{X,X^*,X}^{-1}}{\longrightarrow} (X^* \otimes X) \otimes X^* \overset{\text{ev}_X \otimes \text{id}_{X^*}}{\longrightarrow} X^*
\]

Definition

\(C \) is rigid if any \(X \in C \) has right and left duals.

Example (s)

1. \(C = \text{Bimod}(R) \) bimodules over a ring \(R \): tensor product is \(\otimes_R \), \(1 = R \). \(M \in C \) has right dual \(\iff \) \(M \) is f.g. projective as left \(R \)-module.
2. \(C = \text{End}(\mathcal{A}) \) functors from a category \(\mathcal{A} \) to itself; tensor product is composition, \(1 = \text{Id} \). \(F \in C \) has a dual \(\iff \) adjoint of \(F \) exists.
3. \(C = \text{Mod}(R) \) modules over a commutative ring \(R \); e.g. vector spaces over a field. \(M \in C \) has right dual \(\iff \) \(M \) is f.g. projective \(\iff \) \(M \) has left dual.
4. (H. Sinh) Objects: elements of a group A; $\text{Hom}(g, h) = \emptyset$ if $g \neq h$, $\text{Hom}(g, g) = S$ where S is an abelian group. $g \otimes h = gh$, $\alpha \otimes \beta = \alpha\beta$ for $g, h \in A$, $\alpha, \beta \in S$. Associativity constraint: $\omega_{g,h,k} \in S$ for any $g, h, k \in A$. Pentagon axiom \Leftrightarrow $\partial \omega = 1$, i.e. ω is a 3-cocycle on A with values in S. Tensor structures are parameterized by $H^3(A, S)$.

5. R – algebra over k with trivial center. Consider the category of invertible bimodules over R (morphisms are isomorphisms of bimodules). This category is tensor equivalent to category from (4). $A = \text{Pic}(R)$ group of isomorphism classes of invertible bimodules (= non-commutattive Picard group of R); $S = k^{\times}$. Associator $\omega \in H^3(\text{Pic}(R), k^{\times})$.

5a. $\text{Pic}(R) \supset \text{Out}(R)$: $M_{\phi} = R$, $(a, b) \cdot c = ac\phi(b)$. Let $1 \neq \phi \in \mathbb{Z}/2\mathbb{Z} \subset \text{Out}(R)$, so $\phi^2 = \text{Ad}(g)$.

Exercise. (i) $\phi(g) = \pm g$; (ii) $\omega|_{\mathbb{Z}/2\mathbb{Z}} \neq 0 \Leftrightarrow \phi(g) = -g$; (iii) Let $\phi(g) = -g$. Then $M_{\phi} \not\cong M$ for any $M \in \text{Irr}(R)$.

$R = \mathbb{C}\langle g, x, y \rangle/(xy - yx - 1, g^2 - 1, gx + xg, gy + yg)$, $\phi(g) = -g, \phi(x) = -y, \phi(y) = x$.

Victor Ostrik (U of O)

Fusion of Harish-Chandra bimodules

August 19 12 / 26
Multi-fusion categories

Definition (Etingof, Nikshych, O)

Tensor category \mathcal{C} over k is multi-fusion if it is rigid and semi-simple with finitely many simple objects. \mathcal{C} is fusion if in addition 1 is simple.

Example (char$(k)=0$)

0. Vec – finite dimensional vector spaces.
1. $\text{Rep}(A)$ – f.d. representations of finite group A.
2. Vec_A – f.d. A–graded vector spaces. Thus simple objects are $k_a, a \in A$ and $k_a \otimes k_b = k_{ab}$. Generalization: Vec_A^ω – same as Vec_A but $\omega \in H^3(A, k^\times)$ is used as the associator.
3. $\text{Bimod}(R)$ where R is semisimple, e.g. $R = k \oplus k$. $1 = R$ is not simple.
4. Y is a finite set with A–action. $\text{Coh}_A(Y \times Y) – A$–equivariant vector bundles (or coherent sheaves) on $Y \times Y$. Convolution product: $F_1 \ast F_2 = p_{13*}(p_{12*}(F_1) \otimes p_{23*}(F_2))$ where $p_{ij} : Y \times Y \times Y \to Y \times Y$.

Exercise. What is the number of simple summands in $1 \in \text{Coh}_A(Y \times Y)$?
Module categories

The categories \(\text{Coh}_A(Y \times Y) \) are not closed under the operation of taking full tensor subcategory. For example \(\text{Vec}_B^\omega \) with \(\omega \neq 0 \) is usually not of the form \(\text{Coh}_A(Y \times Y) \) but it can be found as a subcategory in a suitable \(\text{Coh}_A(Y \times Y) \).

Definition

Let \(C \) be a tensor category and \(M \) be a category. We say that \(M \) is a module category over \(C \) (or that \(C \) acts on \(M \)) if we have a tensor functor \(C \to \text{End}(M) \). Equivalently, we have a bifunctor \(C \times M \to M \) with associativity constraint satisfying suitable axioms.

Example

Consider \(C = \text{Vec}_A^\omega \). Let \(B \subset A \) and \(\psi \in Z^2(B, k^\times) \) be such that \(\partial \psi = \omega|_B \). Then \(R_B = \bigoplus_{b \in B} k_b \) acquires a structure of associative algebra in \(C \). Then \(\mathcal{M}(B, \psi) = \{ \text{right } R_B \text{-modules in } C \} \) is naturally a module category over \(C \). Simple objects of \(\mathcal{M}(B, \psi) \leftrightarrow A/B \).
Dual categories

Convention: If C is a multi-fusion category then any module category is assumed to be semisimple with finitely many simple objects.

Definition

Let \mathcal{M} be a module category over C. Then $C_{\mathcal{M}}^* := \text{End}_C(\mathcal{M})$ is called dual category of C with respect to \mathcal{M}.

Properties (Müger+Etingof, Nikshych, O)

- $C_{\mathcal{M}}^*$ is multi-fusion category
- $C_{\mathcal{M}}^*$ is fusion $\Leftrightarrow \mathcal{M}$ is indecomposable module category over C
- $(C_{\mathcal{M}}^*)_{\mathcal{M}} \simeq C$
- $C \sim C_{\mathcal{M}}^*$ is an equivalence relation (2-Morita equivalence)
- $C \xrightarrow{F} \mathcal{D}$ tensor functor and \mathcal{M} is module category over \mathcal{D}. Then we have $\mathcal{D}_{\mathcal{M}}^* \xrightarrow{F^*} C_{\mathcal{M}}^*$
- let us say that F is injective if it is fully faithful and surjective if any object of \mathcal{D} is a subquotient of $F(X)$. F injective $\Leftrightarrow F^*$ surjective
Convolution with twists

Example

\[\mathcal{C} = \text{Vec}_A \text{ and } \mathcal{M} = \bigoplus_i \mathcal{M}(B_i, 1). \]
Then \[\mathcal{C}^\ast_{\mathcal{M}} = \text{Coh}_A(Y \times Y) \text{ where } Y = \bigsqcup_i A/B_i \text{ (so } \mathcal{M} = \text{Coh}(Y)). \]

Generalization

Let \[\mathcal{C} = \text{Vec}_A^\omega \text{ and } \mathcal{M} = \bigoplus_i \mathcal{M}(B_i, \psi_i). \] We consider \[\mathcal{C}^\ast_{\mathcal{M}} \] as cohomologically twisted version of \[\text{Coh}_A(Y \times Y). \]

Notation: \[\mathcal{C}^\ast_{\mathcal{M}} = \text{Coh}_{A,\omega}(Y \times Y). \] Note that the information about \(\psi_i \)'s is implicitly contained in \(Y \); \(Y \) is cohomologically twisted \(A \)–set.

Lemma

Let \(\mathcal{C} \subset \text{Coh}_A(Y \times Y) \) be a full multi-fusion subcategory such that \(\mathcal{M} = \text{Coh}(Y) \) is indecomposable over \(\mathcal{C} \). Then there exists a surjective functor \(F : \text{Vec}_A \rightarrow \text{Vec}_A^\omega \) such that the action of \(\text{Vec}_A \) on \(\mathcal{M} \) factors through \(F \) and such that \[\mathcal{C} = \text{Coh}_{A,\omega}(Y \times Y) = (\text{Vec}_A^\omega)^\ast_{\mathcal{M}} \subset (\text{Vec}_A)^\ast_{\mathcal{M}}. \]
Whittaker modules

Let $e \in \mathfrak{g}$ be a nilpotent element.

Jacobson-Morozov: $\exists h, f \in \mathfrak{g}$ s.t. $[h, e] = 2e, [h, f] = -2f, [e, f] = h$.

$\mathfrak{g} = \bigoplus_{n \in \mathbb{Z}} \mathfrak{g}(n), \quad \mathfrak{g}(n) = \{x \in \mathfrak{g} | [h, x] = nx\}$.

E.g. $e \in \mathfrak{g}(2)$ and $f \in \mathfrak{g}(-2)$.

$x, y \mapsto (e, [x, y])$ non-degenerate skew-symmetric bilinear form on $\mathfrak{g}(-1)$.

Pick a lagrangian subspace $\ell \subset \mathfrak{g}(-1)$ and set $m = m_\ell = \ell \oplus \bigoplus_{i \leq -2} \mathfrak{g}(i)$.

Then $\xi(x) = (x, e)$ is a Lie algebra homomorphism $m \to \mathbb{C}$.

$m_\xi :=$ Lie subalgebra of $U(\mathfrak{g})$ spanned by $x - \xi(x), x \in m$.

Definition (Moeglin)

We say that \mathfrak{g}–module is **Whittaker** if the action of m_ξ on it is locally nilpotent. Wh – full subcategory of Whittaker \mathfrak{g}–modules.

$\tilde{\text{Skr}} : \text{Wh} \to \text{Vect}, \quad M \mapsto \{v \in M | m_\xi v = 0\}$.

$U(\mathfrak{g}, e) = \text{End}(\tilde{\text{Skr}})$ – Premet’s finite W–algebra.

Remark: $U(\mathfrak{g}, e)$ does not depend on choice of $\ell \subset \mathfrak{g}(-1)$.

Victor Ostrik (U of O)

Fusion of Harish-Chandra bimodules

August 19 17 / 26
Lemma

For $M \in \mathcal{H}$ and $N \in \text{Wh}$, $M \otimes_{U(\mathfrak{g})} N \in \text{Wh}$. Thus \mathcal{H} acts on Wh.

• Let χWh be the full subcategory of $M \in \text{Wh}$ such that $Z(\mathfrak{g})$—action factors through a central character χ. Then $\mathcal{H}(\chi)$ acts on χWh.

χWh^f — full subcategory of χWh consisting of semisimple M such that $\text{Skr}(M)$ is finite dimensional (\simeq semisimple f.d. $U(\mathfrak{g}, e)$—modules).

Theorem (Losev)

Let $\mathbb{O} = G_{C} e$. For $M \in \mathcal{H}(\chi)_{\leq \mathbb{O}}$ and $N \in \chi\text{Wh}^f$, $M \otimes_{U(\mathfrak{g})} N \in \chi\text{Wh}^f$.

For $M \in \mathcal{H}(\chi)_{< \mathbb{O}}$ and $N \in \chi\text{Wh}^f$, $M \otimes_{U(\mathfrak{g})} N = 0$. Thus the cell category $\mathcal{H}(\chi)_{\mathbb{O}}$ acts on χWh^f.

Let $Q = Z_{G_{C}}(e, f, h)$. Then Q acts on $U(\mathfrak{g}, e)$ and on χWh^f.

Q—action on χWh^f commutes with $\mathcal{H}(\chi)_{\mathbb{O}}$—action.

$Q^0 \subset Q$ the unit component. The action of Q^0 on χWh^f is trivial.

Warning: this does not imply that $C(e) := Q/Q^0$ acts on χWh^f.
Irreducible finite dimensional $U(\mathfrak{g}, e)$-modules

Let us choose a finite subgroup $A \subset Q$ which surjects to Q/Q^0. Then χWh^f is a module category over Vec_A.

Theorem (Losev, O)

The functor $\mathcal{H}(\chi)_\emptyset \to (\text{Vec}_A)^*_{\chi \text{Wh}^f} = \text{End}_{\text{Vec}_A}(\chi \text{Wh}^f)$ is fully faithful.

χWh^f as module category over Vec_A

Y – set of isomorphism classes of irreducible f.d. $U(\mathfrak{g}, e)$-modules. A acts on Y; moreover we have data of cohomologically twisted A-set.

Thus $(\text{Vec}_A)^*_{\chi \text{Wh}^f} = \text{Coh}_A(Y \times Y)$ and $\mathcal{H}(\chi)_\emptyset \subset \text{Coh}_A(Y \times Y)$.

Corollary

There is a quotient \bar{A} of A and $\omega \in H^3(\bar{A}, \mathbb{C}^\times)$ such that the action of Vec_A on χWh^f factors through tensor functor $\text{Vec}_A \to \text{Vec}_{\bar{A}}^\omega$ and the action on χWh^f induces tensor equivalence $\mathcal{H}(\chi)_\emptyset \simeq \text{Coh}_{\bar{A}, \omega}(Y \times Y)$.
Complements

• \(\mathcal{H}(\chi)_{\mathbb{O}} \neq 0 \iff \) the nilpotent orbit \(\mathbb{O} \) is special in the sense of Lusztig.
• The quotient map \(A \to \tilde{A} \) factorizes through \(A \subset Q \to Q/Q^0 = C(e). \) \(\tilde{A} \) is Lusztig’s quotient of \(C(e) \) (defined for any special nilpotent orbit).
• Irr. summands of \(1 \in \mathcal{H}(\chi)_{\mathbb{O}} \leftrightarrow \) primitive ideals \(I \) with \(V(U(\mathfrak{g})/I) = \bar{\mathbb{O}}. \) Irr. summands of \(1 \in \text{Coh}_{\bar{A},\omega}(Y \times Y) \leftrightarrow \tilde{A} \)–orbits (\(= Q \)–orbits) in \(Y. \) Hence irreducible f.d. \(U(\mathfrak{g}, e)_{\chi} \)–modules which give rise to the same primitive ideal are \(Q \)–conjugated (Losev).
• Recall that irreducible objects of \(\mathcal{H}(\chi) \leftrightarrow W. \) It follows from Joseph’s irreducibility theorem that \(\text{Irr}(\mathcal{H}(\chi)) = \bigsqcup_{\mathbb{O}} \text{Irr}(\mathcal{H}(\chi)_{\mathbb{O}}). \) Hence we have a partition of \(W \) indexed by special nilpotent orbits. This is known to coincide with partition into Kazhdan-Lusztig two sided cells. Each two sided cell is in turn partitioned into left cells and into right cells. This corresponds to partitions \(\text{Irr}(C) = \bigsqcup_i 1_i \otimes \text{Irr}(C) = \bigsqcup_i \text{Irr}(C) \otimes 1_i \) where \(1 = \bigoplus_i 1_i \) which holds for any multi-fusion category \(C. \)
• \(Y = \bigsqcup_i \tilde{A}/B_i \) where \(B_i \subset \tilde{A} \) is well-defined up to conjugacy. These are Lusztig’s subgroups attached to any left cell.
\[\oplus_\Phi K(H(\chi)_\Phi) =: J \text{ is known to be asymptotic Hecke algebra (Lusztig).} \]

Lusztig’s isomorphism: \[J \otimes_\mathbb{Z} \mathbb{Q} \simeq \mathbb{Q}[W] \]. Thus any \(\mathbb{Q} \)-module over \(K(H(\chi)_\Phi) \) gives rise to a \(W \)-module. For example \(K(H(\chi)_\Phi \otimes \mathbb{1}_I) \otimes \mathbb{Q} \) is constructible representation attached to a left cell.

Also \(K(\text{Coh}(Y)) \) is a module over \(K(\text{Coh}_{\bar{A},\omega}(Y \times Y)) \).

Dodd: there is \(W \times C(e) \)-equivariant embedding of \(K(\text{Coh}(Y)) \otimes \mathbb{Q} \) into Springer representation \(H^{top}(B_e) \).

- The 3-cocycle \(\omega \in H^3(\bar{A}, \mathbb{C}^\times) \) is almost always zero. \(\omega \neq 0 \) iff the corresponding two sided cell is exceptional. This happens only in types \(E_7 \) and \(E_8 \); in this case \(\bar{A} = \mathbb{Z}/2\mathbb{Z} \). Proof requires theory of character sheaves.

- Assume that \(\omega = 0 \). Then \(\chi \text{Wh}^f = \bigoplus_i \mathcal{M}(B_i, \psi_i) \). It can be shown that the cocycles \(\psi_i \) are all trivial.

- There is a conjectural description (Losev,O) of what happens in the case of \(\chi \) which is no longer integral. The calculations suggest that in this case nontrivial 2-cocycles show up often.

- Further results: Losev gave formulas for dimensions of irreducible modules in \(\chi \text{Wh}^f \) and proved that they coincide with Goldie ranks of quotients by primitive ideas.
Derived convolution

\(F \) – algebraically closed field (possibly of positive characteristic)
\(X \) – algebraic variety over \(F \)
Sheaves on \(X \) form a category over field \(k \):
(a) \(D \)-modules: \(\text{char}(F)=0, \ k=F \)
(b) perverse constructible sheaves in classical topology: \(F=\mathbb{C}, \ \text{any} \ k \)
(c) perverse constructible \(\ell \)-adic sheaves: \(\ell \neq 0 \) in \(F, \ k=\overline{\mathbb{Q}}_{\ell} \)

\(G \) – semisimple group over \(F \) of the same Dynkin type as \(\mathfrak{g} \)
\(B \) – flag variety of \(G \) (\(B = G/B \) where \(B \) is a Borel subgroup)
Simple \(G \)-equivariant sheaves on \(B \times B \leftrightarrow G \)-orbits on \(B \times B \leftrightarrow \text{Bruhat} W; \ w \leftrightarrow I_w \)
Convolution \(\ast \): \(F_1 \ast F_2 = p_{13 \ast}(p_{12}^*(F_1) \otimes p_{23}^*(F_2)) \) (use derived categories!)
\textbf{Decomposition Theorem} \hspace{1em} ({\text{Beilinson, Bernstein, Deligne and Gabber}}) \Rightarrow
\(I_u \ast I_v \simeq \bigoplus_{w,i} I_w[i]^{n_{u,v}(i)} \)
\(C_u C_v = \sum_{w,i} n_{u,v}^{w}(i)t^i C_w \) – Hecke algebra (over \(\mathbb{Z}[t, t^{-1}] \)) with Kazhdan-Lusztig basis
Asymptotic Hecke algebra and truncated convolution

\[a(w) = \max\{i \mid n_{u,v}^w(i) \neq 0 \text{ for some } u, v\} - \text{Lusztig's } a-\text{function} \]

\[t_u t_v = \sum_w n_{u,v}^w(a(w))t_w - \text{Lusztig's asymptotic Hecke algebra } J \text{ (over } \mathbb{Z}) \]

Lusztig: \(J \) is associative with unit; \(J \otimes \mathbb{Q} \cong \mathbb{Q}[W] \)

\[J = \bigoplus_C J_C - \text{sum over two sided cells in } W; \ a|_C = \text{const } =: a(C) \]

Multi-fusion category \(J_C \): simple objects \(I_w, w \in C \)

truncated convolution: \(I_u \bullet I_v := \bigoplus_{w \in C} I_w^{n_{u,v}^w(a(C))} \)

Beilinson-Bernstein: \(D-\)modules on \(B \cong g-\)modules with central character \(\chi_0 \).

Corollary: \(G-\)equivariant \(D-\)modules on \(B \times B \cong H(\chi_0) \).

Beilinson-Ginzburg: we can change equivalence above and make it tensor

Corollary (Bezrukavnikov, Finkelberg, O): \(D-\)module version of \(J_C \cong H_\emptyset \).

Theorem (Bezrukavnikov, Finkelberg, O): \(J_C \cong \text{Coh}_{\overline{A},\omega}(Y \times Y) \) for any \(F \).
Character sheaves and Drinfeld center

G–equivariant sheaves on $B \times B = B \times B$–equivariant sheaves on G

Such sheaves are $\Delta(B)$–equivariant $= \text{Ad}(B)$–equivariant

$\Gamma^G_B : \text{Ad}(B)$–equivariant sheaves $\rightarrow \text{Ad}(G)$–equivariant sheaves

Simple constituents of $\Gamma^G_B(I_w) =: \text{(unipotent) character sheaves}$ (Lusztig)

\mathcal{C} – tensor category \Rightarrow Drinfeld center $\mathcal{Z}(\mathcal{C})$:

Objects of $\mathcal{Z}(\mathcal{C}) = \text{pairs } (X, \phi) \text{ where } \phi : X \otimes ? \simeq ? \otimes X$

Müger, O: $\mathcal{Z}(\mathcal{C}^*_M) \simeq \mathcal{Z}(\mathcal{C})$ for a multi-fusion category \mathcal{C}

Example: $\mathcal{Z}(\text{Coh}_{\tilde{A}, \omega}(Y \times Y)) \simeq \mathcal{Z}(\text{Vec}_{\tilde{A}}^\omega)$ – (twisted) Drinfeld double

Observation: the functor Γ^G_B is formally similar to functor $I : \mathcal{C} \rightarrow \mathcal{Z}(\mathcal{C})$

Bezrukavnikov, Finkelberg, O: using D–modules (so $\text{char}(F) = 0$)

Ben-Zvi, Nadler: in the setting of infinity categories

Lusztig: using mixed sheaves (for any F)

Corollary: unipotent character sheaves $\leftrightarrow \bigsqcup_{\text{Irr}} \text{Irr}(\mathcal{Z}(\text{Vec}_{\tilde{A}}))$.
Coxeter groups

W – finite crystallographic Coxeter group
What about more general Coxeter groups?

W – affine Weyl group
Lusztig: two sided cells in $W \leftrightarrow$ nilpotent orbit in \mathfrak{g}
Bezrukavnikov, O: $\mathcal{J}_C \cong \text{Coh}_Q(Y \times Y)$ (recall $Q = Z_{G_C}(e, f, h)$)
Bezrukavnikov, Mirković: interpretation of the set Y in terms of
unrestricted representations of \mathfrak{g} in positive characteristic

W – infinite crystallographic group
Lusztig: category \mathcal{J}_C makes sense; however
 • infinite number of simple objects
 • 1 might be “infinite direct sum”

Soergel+Elis, Williamson+Lusztig: \mathcal{J}_C makes sense for any W!
 • rigidity is not known; usually \mathcal{J}_C is not a convolution category
Thanks for listening!