GEOMETRIC CONSTRUCTION OF THE CANONICAL COORDINATES

VADIM VOLOGODSKY

Abstract.

1. Introduction

Let R be a commutative ring flat over \mathbb{Z} and \mathcal{X} a strictly proper semi-stable scheme over $\mathcal{Y} = \text{spec } R[[t]]$. Assume that $X = \mathcal{X} \times_{\mathcal{Y}} Y$ is Calabi-Yau scheme over $Y = \text{spec } R((t))$ of dimension $d > 1$. I also assume that $t = 0$ is the maximal degeneracy point. By definition, this means that

$$H^d_{\text{Zar}}(X_0, \mathbb{Q}) = \mathbb{Q},$$

where $X_0 := \mathcal{X} \times_{\mathcal{Y}} \text{spec } R$ is the special fiber.

(Note that for any smooth D, $H^i_{\text{Zar}}(D, \mathbb{Z}) = 0$, unless $i = 0$. It follows $H^i_{\text{Zar}}(X_0, \mathbb{Z})$ is cohomology of the dual polytope of X_0: the simplicial set whose vertexes are irreducible components of X_0, edges are components of pairwise intersections and so on. For any semistable \mathcal{X} over $\mathbb{C}[[t]]$, $H^i_{\text{Zar}}(X_0, \mathbb{Q})$ is isomorphic to the W_0 term of the limiting Hodge structure. It follows that our definition of maximal degeneration agrees with the usual over \mathbb{C}.)

Define a sheaf of groups on X_0 to be

$$M^{gr} = \lim_n j_\ast \mathcal{O}_X^\ast / \mathcal{O}_{\mathcal{X},n}^\ast,$$

where j stands for the embedding $X \hookrightarrow \mathcal{X}$ and $\mathcal{O}_{\mathcal{X},n}^\ast$ for the subsheaf of \mathcal{O}_X^\ast consisting of functions which are equal to 1 modulo t^{n+1}. The function t determines a morphism of sheaves $\mathbb{Z} \hookrightarrow M^{gr}$; I will denote by M^{gr}_{red} the cokernel of this morphism.

We have exact sequences of sheaves on X_0

$$0 \to \mathcal{O}_X^\ast \to M^{gr} \to L \to 0$$

$$0 \to \mathcal{O}_X^\ast \to M^{gr}_{red} \to L_{red} \to 0$$

$$0 \to \mathbb{Z} \to L \to L_{red} \to 0$$

where \mathcal{O}_X^\ast the sheaf of invertible functions on the formal completion \hat{X} of \mathcal{X} along X_0 and \hat{L} is the direct sum $\bigoplus D_j$ of constant sheaves supported on the irreducible components of X_0. Since $H^i_{\text{Zar}}(X_0, L) = 0$ for $i > 0$ we have from the third sequence that

$$H^{d-1}_{\text{Zar}}(X_0, L_{red}) \sim H^{d}_{\text{Zar}}(X_0, \mathbb{Z}),$$

and thus, by our maximal degeneracy assumption

$$H^{d-1}_{\text{Zar}}(X_0, L_{red}) \otimes \mathbb{Q} \sim \mathbb{Q}.$$
Now look on cohomology sequence associated with the second exact sequence
\[H^{d-1}_{Zar}(X_0, L_{red}) \to H^d_{Zar}(X_0, O^*_X) \to H^d_{Zar}(X_0, M_{red}^{gr}). \]
We also consider the morphism
\[\gamma : H^d_{Zar}(X_0, \mathbb{Z}) \otimes (R[[t]])^* \to H^d_{Zar}(X_0, O^*_X) \]
induced by the cup product.

Lemma 1.1. \(\gamma \otimes Q \) is injective and \(\text{Im} (\alpha \otimes Q) \subset \text{Im} (\gamma \otimes Q) \).

We get from the lemma a canonical morphism
\[Q = H^{d-1}_{Zar}(X_0, L_{red}) \otimes Q \to H^d_{Zar}(X_0, Q) \otimes (R[[t]])^* = (R[[t]])^* \otimes Q. \]
The series
\[c(1) \in (R[[t]])^* \otimes Q \]
viewed as an element \(O^*_Y \otimes Q \) does depend on the choice of the coordinate \(t \) on \(Y \), however
\[tc(1) \in O^*_Y \otimes Q \]
is well defined. This is the canonical coordinate.