MATH 444/544, PROBLEMS FOR THE SECOND MIDTERM.

Problem 1. Recall that the alternating group \(A_n \) is the kernel of the homomorphism \(\text{sign} : S_n \rightarrow \{1, -1\} \).

a) Find the number of permutations in \(A_4 \) of order 2.
b) Prove that \(A_4 \) has a normal subgroup \(H \) of order 4.
c) For the subgroup \(H \subset A_4 \) from part b) compute the order of \(A_4/H \). Is the factor group \(A_4/H \) abelian?

Problem 2. Recall that, for a group \(G \), the commutator subgroup \([G, G]\) is the subgroup generated by all elements of the form \(xyx^{-1}y^{-1} \), with \(x, y \in G \).

Find the order of the factor group \(D_4/[D_4, D_4] \). Is the group \(D_4/[D_4, D_4] \) abelian? Cyclic?

Problem 3 Find all the homomorphisms from the group \(S_n \) to \(\mathbb{Z}_3 \).

Problem 4. Recall that a permutation \(f \in S_n \) is called even if \(\text{sign}(f) = 1 \). Prove that every permutation \(\sigma \in S_n \) of an odd order is even.

Problem 5. Let \(p \) be a prime number. Find the number of subgroups of the group \(S_p \) of order \(p \).