1. Regard \(\mathbb{R}^5 \) as a subspace of \(\mathbb{R}^6 \) in the usual way. Prove that there is no way to continuously assign, to every 1-dimensional subspace \(\ell \) in \(\mathbb{R}^6 \), a corresponding 1-dimensional subspace \(F(\ell) \) of \(\mathbb{R}^5 \) if we require the property that for \(\ell \subseteq \mathbb{R}^5 \) one has \(F(\ell) = \ell \).

2. Explain why the pair \((D^n, S^{n-1})\) has the homotopy extension property. If \(X \) is obtained from \(A \) by attaching an \(n \)-cell, explain why \((X, A)\) also has the homotopy extension property.

3. Let \(p: E \to B \) be a fiber bundle with fiber \(F \). Define the connecting homomorphism \(\partial: \pi_k(B) \to \pi_{k-1}(F) \) and prove that

\[\pi_k(E) \to \pi_k(B) \to \pi_{k-1}(F) \]

is exact in the middle spot.

4. Compute \(\pi_i(\mathbb{R}P^7 \vee S^4) \) for \(i \leq 4 \).

5. Let \(M \) be a compact, connected \(n \)-manifold, where \(n \geq 2 \). Assume there is a map \(f: S^n \to M \) \((n = \text{dim } M)\) that is injective on \(H_n(-) \). Prove that \(H_i(M; \mathbb{Q}) = 0 \) for \(0 < i < n \).

6. Let \(K \) be the Klein bottle, and recall that \(\pi_1(K) \cong \langle a, b \mid aba = b \rangle \).

 (a) How many 3-fold path-connected covering spaces of \(K \) are there, up to isomorphism? Explain.
 (b) Is the torus a 3-fold cover of the Klein bottle? Explain.
 (c) Is the Klein bottle a 3-fold cover of \(S^2? \) Explain.

7. Let \(a_1, \ldots, a_k \in \mathbb{C} \) and \(b_1, \ldots, b_r \in \mathbb{C} \) satisfy \(|a_i| < 1, |b_i| < 1 \) for all \(i \). Let

\[f(z) = (\text{Re}(z)^4 + 5) \cdot (z - a_1) \cdots (z - a_k) \cdot (\bar{z} - b_1) \cdots (\bar{z} - b_r) \]

Define \(F: S^1 \to S^1 \) by \(F(z) = f(z)/||f(z)||. \) Show that the degree of \(F \) is \(k - r \).

8. Consider the map \(f: S^1 \times S^1 \times S^1 \to S^1 \times S^1 \times S^1 \) given by \(f(x, y, z) = (xy, xz, z) \).

 (a) Calculate \(f_*: H_1(S^1 \times S^1 \times S^1) \to H_1(S^1 \times S^1 \times S^1) \) and \(f^*: H^1(S^1 \times S^1 \times S^1) \to H^1(S^1 \times S^1 \times S^1) \) as maps \(\mathbb{Z}^3 \to \mathbb{Z}^3 \).
 (b) Let \(X \) be the result of gluing two copies of \(D^2 \times S^1 \times S^1 \) along their boundaries, twisting via the map \(f \). That is,

\[X = [(D^2 \times S^1 \times S^1) \amalg (D^2 \times S^1 \times S^1)]/ \sim \]

where \(x \sim f(x) \) for \(x \in S^1 \times S^1 \times S^1 \). Compute \(H_i(X) \) for all \(i \). [Hint: It might be easier to compute \(H^2(X) \) before \(H_2(X) \).]

9. Let \(M \) be a compact, connected, orientable 6-manifold. Assume that \(H_3(M) = \mathbb{Z}^2 \oplus \mathbb{Z}/2, \chi(M) = 10, \) and that the universal cover of \(M \) is a 7-fold cover. Determine \(H_i(M) \) for all \(i \).

10. Let \(n \geq 1. \)

 (a) If \(M \) and \(N \) are \(n \)-manifolds, prove that \(\chi(M \# N) = \chi(M) + \chi(N) - (1 + (-1)^n). \)
 (b) Prove that no matter what \(n \) is, there is a compact, connected, orientable \(n \)-manifold with Euler characteristic zero.
 (c) Prove that every integer is equal to the Euler characteristic of some compact, connected, orientable 4-manifold.
1. Let X be the 2-manifold formed from two copies of \mathbb{RP}^2 according to the following picture:

Calculate $H_\ast(X)$ and determine the homeomorphism type of X in terms of the standard classification of surfaces.

2. Subdivide the following picture to give a Δ-complex structure to $X = \mathbb{RP}^2 \# T$:

Consider the basis $\{\alpha, \gamma, \delta\}$ for $H_1(X; \mathbb{Z}/2)$ and let $\{\hat{\alpha}, \hat{\gamma}, \hat{\delta}\}$ be the dual basis under the Kronecker pairing.

(a) Using your Δ-complex structure, give explicit 1-cochains that represent $\hat{\alpha}$ and $\hat{\gamma}$.

(b) Compute $\hat{\alpha} \cup \hat{\alpha}$ and $\hat{\alpha} \cup \hat{\gamma}$, and decide whether each of these is zero in cohomology.

(c) Determine the basis of $H_1(X; \mathbb{Z}/2)$ that is Poincaré Dual dual to the basis $\{\hat{\alpha}, \hat{\gamma}, \hat{\delta}\}$.

3. Let M be a 5-manifold with $H_1(M)$ finite of odd order. Prove that every map $M \to \mathbb{RP}^6$ is null homotopic. (You may assume that M is a CW-complex).

4. Let $p: E \to B$ be a fiber bundle, where B is path-connected, and let $G = \pi_1(B, b)$. Explain how to get a left action of G on $p^{-1}(b)$, together with a bijection $\pi_0(p^{-1}(b))/G \to \pi_0(E)$. (You do not need to prove that your action is indeed an action, but you should prove that your bijection is indeed a bijection).

5. Let X be a CW-complex, with X_n its n-skeleton. Prove that $\pi_i(X_n) \to \pi_i(X)$ is surjective for $i \leq n$ and injective for $i \leq n - 1$. Is this also true for $H_i(X_n) \to H_i(X)$? Explain.

6. (a) Calculate the degree of the map $\mathbb{CP}^1 \to \mathbb{CP}^1$ given by $[z_0 : z_1] \to [z_0^2 : z_1^2]$.

(b) Define $f: \mathbb{CP}^3 \to \mathbb{CP}^3$ by $[z_0 : z_1 : z_2 : z_3] \to [z_0^2 : z_1^2 : z_2^2 : z_3^2]$. Calculate the induced map $f_*: H^6(\mathbb{CP}^3) \to H^6(\mathbb{CP}^3)$.

7. Prove that there does not exist a continuous way to select a nonzero vector on every line in \mathbb{R}^3.

8. Fix a point $x \in S^3$ and let $\mu: S^3 \times S^3 \to S^3$ be a continuous multiplication on S^3 having x as a two-sided identity element. If $f, g: S^3 \to S^3$ then prove that the degree of the composite

$$S^3 \xrightarrow{\Delta} S^3 \times S^3 \xrightarrow{f \times g} S^3 \times S^3 \xrightarrow{\mu} S^3$$

is equal to $\deg(f) + \deg(g)$, where $\Delta(u) = (u, u)$. [Hint: Compute the induced map $H^3(S^3) \to H^3(S^3)$.]
9. Compute the cohomology groups (with \(\mathbb{Z} \) coefficients) of \((\mathbb{R}P^6/\mathbb{R}P^2) \times \mathbb{R}P^5\).

10. Let \(X \) and \(Y \) be two pointed spaces, and write \(\pi_1: X \vee Y \to X \) and \(\pi_2: X \vee Y \to Y \) for the two projections. If \(\alpha \in H^i(X) \) and \(\beta \in H^j(Y) \) for \(i > 0 \) and \(j > 0 \), prove that \((\pi_1)^*(\alpha) \cup (\pi_2)^*(\beta) = 0\).
LETOVERS

1. Prove that ΣT is homotopy equivalent to $S^2 \vee S^2 \vee S^3$ (hint: analyze the suspension of the attaching map of the 2-cell for T).

2. Let (X, B) be a relative CW-complex where all cells have dimension at least $n + 2$. Prove that any map $B \to K(A, n)$ extends to a map $X \to K(A, n)$.

3. (a) Prove that every map $f: \mathbb{C}P^2 \to \mathbb{C}P^2$ has a fixed point.
 (b) Prove that any covering space $p: \mathbb{C}P^2 \to X$ must be a homeomorphism.

4. Let X be a topological space with $H_0 = \mathbb{Z}$, $H_1(X) = \mathbb{Z}/12$, $H_2(X) = \mathbb{Z}$, $H_3(X) = 0$, $H_4(X) = \mathbb{Z}$, and $H_i(X) = 0$ for $i \geq 5$.
 (a) Prove that X is not homotopy equivalent to a compact, orientable manifold.
 (b) Could X be homotopy equivalent to a compact, non-orientable manifold? Explain.

5. Explain how to construct an Eilenberg-MacLane space of type $K(\mathbb{Z}/2, 5)$, and prove that your construction really is this type of space.

6. Let X be a space with finitely-generated homology groups. Suppose $f: X \to \mathbb{C}P^n$ induces a nonzero map $H_{2n}(X) \to H_{2n}(\mathbb{C}P^n)$. Prove that $H^2(X; \mathbb{Z})$ and $H_2(X; \mathbb{Z})$ are both nonzero.

7. Recall that the space U_n of complex, unitary matrices is a path-connected manifold.
 (a) For any $A \in U_n$, prove that $R_A: U_n \to U_n$ given by $B \mapsto B \cdot A$ is homotopic to the identity.
 (b) Show that $\chi(U_n) = 0$ (Hint: Lefschetz Fixed Point Theorem).

8. Let X be the 4-manifold $\mathbb{R}P^4 \# \mathbb{C}P^2$. Calculate $\pi_1(X)$ and the cohomology ring $H^*(X)$.

9. (Note: The π_1 calculation might be too hard.) Let $X = (S^2 \times S^1)/ \sim$ where $(x, y) \sim (-x, -y)$ for $x \in S^2$, $y \in S^1$.
 (a) Calculate $\pi_i(X)$ for $1 \leq i \leq 3$.
 (b) Show that $p: X \to \mathbb{R}P^2$ given by $p([(x, y)]) = [x]$ is a fiber bundle with fiber S^1.
 (c) Is X homeomorphic to $S^1 \times \mathbb{R}P^2$? Explain.