SM HIGGS BRANCHING RATIO MEASUREMENTS AT A LINEAR COLLIDER

$$
\left(e^{+} e^{-} \rightarrow Z H \rightarrow b \bar{b}, \sqrt{s}=500 \mathrm{GeV}\right)
$$

Snowmass 2001
Session P1 Working Group 2
J. Brau, C. Potter, and M. Iwasaki University of Oregon

PARAMETERS

We assume for this study:

- $\sqrt{s}=500 \mathrm{GeV}$ Linear Collider
- Luminosity $\int d t L=500 \mathrm{fb}^{-1}$
- $250 \mathrm{fb}^{-1}$ running with 80% right polarized electrons
- $250 \mathrm{fb}^{-1}$ running with 80% left polarized electrons
- 115, 120, 140 and 160 GeV Standard Model Higgs boson masses

DATA SIMULATION

Pandora v2.1 Monte Carlo (M. Peskin) includes:

- Polarized beams
- Beamstrahlung
- Initial state radiation

Interface to Tauola and Pythia (M. Iwasaki):

- τ decay
- Parton shower
- Hadronization

DETECTOR SIMULATION

NLD Large Detector Configuration:

- Vertex Detector: $5 \mu \mathrm{~m}$ res., $r_{i n}=1.2 \mathrm{~cm}$
- Central Tracker: 25-200 cm
- Electromagnetic Calorimeter: 200-250 cm
- Hadronic Calorimeter: $250-374 \mathrm{~cm}$
- 3 T Magnetic Coil
- Muon Detector: $450-650 \mathrm{~cm}$

NLD detector simulation implemented on Root C++ libraries (M. Iwasaki)

EVENT SELECTION

We select for $e^{+} e^{-} \rightarrow H Z \rightarrow l^{+} l^{-}(l=e, \mu)$

- Reconstruct all lepton pair masses in an event
- Select pair with mass closest to m_{Z}
- Calculate recoil mass
- Apply cuts on masses:

$$
\begin{gathered}
\left|m_{Z}-m_{l^{+} l^{-}}\right|<10 \mathrm{GeV} \\
m_{H}-10 \mathrm{GeV}<m_{r e c o i l}<m_{H}+20 \mathrm{GeV}
\end{gathered}
$$

- Include hadronic Z decays by scaling signal up by a factor of 4 (D. Strom, LEP II experience)

Signal event reconstructed Z and recoil mass distributions.

SIGNAL

Cross sections for $e^{+} e^{-} \rightarrow Z H$ with $Z \rightarrow l^{+} l^{-}(l=e, \mu)$ are in fb with 80% left polarized electrons.

\bullet - Mode	115	120	140	160
$-H \rightarrow b \bar{b}$	5.9	3.5	1.5	0.24

- $H \rightarrow W W^{\star}$
0.68
0.74
2.4
5.8
- $H \rightarrow c \bar{c}$
0.24
0.14
0.064
0.0099
- $H \rightarrow \tau^{+} \tau^{-}$
0.62
0.38
0.17
0.027
- $H \rightarrow g g$
0.41
0.27
0.16
0.033
- $H \rightarrow Z Z^{\star}$
0.050
0.08
0.34
0.19

BACKGROUND

Approximately 29\%/31\%/36\%/39\% (115/120/140/160) of signal events pass the mass selection cuts and are then subjected to decay mode cuts.

A small fraction of backgrounds also pass the cuts. Primary backgrounds, with cross sections for left,right polarizations are:

- $e^{+} e^{-} \rightarrow W^{+} W^{-}$
($\sigma \approx 14300,1700 \mathrm{fb}$)
- $e^{+} e^{-} \rightarrow q \bar{q}$
$(\sigma \approx 16000,11000 \mathrm{fb})$
- $e^{+} e^{-} \rightarrow Z Z$
($\sigma \approx 560,340 \mathrm{fb}$)
- $e^{+} e^{-} \rightarrow t \bar{t}$
($\sigma \approx 740,400 \mathrm{fb}$)

The most pernicious of these is $e^{+} e^{-} \rightarrow Z Z$, especially for the lighter Higgs cases.

Therefore the Higgs mass is reconstructed using tracks and unassociated clusters and cuts are made at the Higgs decay mode level.

CUT-BASED DECAY MODE TAGS

For $H \rightarrow \tau^{+} \tau^{-}$:

- reconstructed Higgs mass inconsistent with Z mass
- Iow track multiplicity (≤ 6)

For $H \rightarrow W W^{\star} \rightarrow 2$ jets :

- high momentum lepton in event ($>10 \mathrm{GeV}$)
- high momentum lepton is isolated ($E_{\text {cone }}<10 \mathrm{GeV}$)

For $H \rightarrow W W^{\star} \rightarrow 4$ jets :

- force event to 4 jets
- best jet pair must satisfy $\left|m_{W}-m_{j j}\right|<10 \mathrm{GeV}$
- jet algorithm $y_{\text {cut }}$ value $y_{32}>0.04$
- thrust in Higgs frame <0.88

CUT-BASED TAGS (CONT.)

For $H \rightarrow b \bar{b}:$

- force event to 2 jets
- calculate $m_{p_{t}}$ with ZVTop (D. Jackson, impl. T. Abe)
- require $m_{p_{t}}>2 \mathrm{GeV}$ for at least one jet

For $H \rightarrow c \bar{c}:$

- force event to 2 jets
- tag jet charm if $m_{p_{t}}<2 \mathrm{GeV}, N_{s i g}>10, p_{j e t} / p_{k i n}>0.45$
- require no jet tagged as beauty, at least one jet tagged as charm, and neither jet contains tertiary vertices

For $H \rightarrow g g$:

- require no tags from preceding modes
- neither jet has secondary vertices
- no high momentum leptons ($<1 \mathrm{GeV}$)

NEURAL NETWORK STRUCTURE AND TRAINING

In order to optimize these results, the parameters and their cut values were used as inputs to a neural network.

- The neural network has 14 input units (one for each parameter), 15 hidden units, and 6 outputs (one for each decay mode).
- It is fully connected and uses standard back propagation as its learning algorithm.
- To speed and perhaps improve the training, the parameters were mapped to the interval $[0,1]$ by the map $p \mapsto 1-\exp \left[-\left(p / p_{c u t}\right)^{2} \ln 2\right]$.
- For each set parameters in an event $H \rightarrow X$, training asked the network to ouput a 1 for the $H \rightarrow X$ output unit and a 0 for the other output units.

NEURAL NETWORK TOPOLOGY

State of the neural network for an event $H \rightarrow c \bar{c}$.

NEURAL NETWORK OPTIMIZATION

- The space C of all possible neural network output cut values is the unit cube in R^{6}.
- Each point in C maps to signal S and background B for a given mode $H \rightarrow X$ and thence to fractional branching ratio $\delta_{B R} / B R=\sqrt{S+B} / S$, purity $p=S /(S+B)$, and efficiency $\epsilon=S /\left(\sigma \int d t L\right)$.
- Minimizing $\sqrt{S+B} / S$ for a particular mode mode $H \rightarrow X$ is equivalent to finding the optimal set of neural network output cut values for $H \rightarrow X$.
- For a given mode $H \rightarrow X$, the boundary of the image of C under the (p, ϵ) map is the optimal purity/efficiency curve.
- We sampled S and B for each mode in the cube on a lattice with 10^{6} points.

MISTAGS AND SIGNAL FOR 120 GEV CASE

The analyzed $500 \mathrm{fb}^{-1}$ data sample is listed vertically. The number of signal event tags is listed horizontally.

Sample	$W W^{\star}$	$b \bar{b}$	$c \bar{c}$	$\tau^{+} \tau^{-}$	$g g$
$H \rightarrow W W^{\star}$	214	12.7	3.3	0.5	98
$H \rightarrow b \bar{b}$	27.9	1599	59.7	0	13.9
$H \rightarrow c \bar{c}$	7.0	13.6	29.3	0.02	12.2
$H \rightarrow \tau^{+} \tau^{-}$	0.3	0	0.3	189.6	0
$H \rightarrow g g$	52.7	9.8	3.0	0	112.8
$H \rightarrow Z Z^{\star}$	1.0	0.6	0.1	0	0
$e^{+} e^{-} \rightarrow Z Z$	123.2	524.7	38.6	24.8	161.1
$e^{+} e^{-} \rightarrow W W$	0	0	0	0	0
$e^{+} e^{-} \rightarrow q \bar{q}$	0	0	0	0	0
$e^{+} e^{-} \rightarrow t \bar{t}$	0	0	0	0	0

PURITY/EFFICIENCY PLOTS

Purity vs. efficiency for the case $m_{H}=120 \mathrm{GeV}$. The maximum possible efficiency is 0.31 due to mass cuts.

FRACTIONAL BRANCHING RATIO RESULTS

Listed below are the fractional branching ratio errors $\delta_{B R} / B R$.

Mode	115	120	140	160	180	200
$\bullet H \rightarrow W W^{\star}$	0.16	0.10	0.03	0.02	0.03	0.04
$\bullet H \rightarrow b \bar{b}$	0.027	0.029	0.038	0.13	0.59	-
$\bullet H \rightarrow \tau^{+} \tau^{-}$	0.07	0.08	0.10	0.36	-	-
$\bullet H \rightarrow c \bar{c}$	0.31	0.39	0.44	-	-	-
$\bullet H \rightarrow g g$	0.16	0.18	0.23	-	-	-
$\bullet H \rightarrow c \bar{c}+g g$	0.15	0.16	0.20	-	-	-

OTHER HIGGS BRANCHING RATIO STUDIES

Study	\sqrt{s} / GeV	$\int d t L / \mathrm{fb}^{-1}$	Mode	$P\left(e^{-}\right)$
- H/B/B	500	50	$Z H$	0
- N/K	300	50	$Z H$	-0.95
- B	350	500	$Z H+H \nu \bar{\nu} 0$	
- B/R	350	500	$Z H$	0
- B/P/I	500	500	$Z H$	± 0.8

$H / B / B=M . D$. Hildreth, T.L. Barklow and D.L. Burke, Phys. Rev. Lett., 49, 34411994

N/K=I. Nakamura and K. Kawagoe, in Proceedings of the Workshop on Physics and Experiments with Linear Colliders, vol. II, World Scientific, Singapore 1996.
$B=M$. Battaglia, in Proceedings of the International Workshop on Linear Colliders LCWS99 1999.
$B / R=G$. Borisov and F. Richard, in Proceedings of the International Workshop on Linear Colliders LCWS99 1999.
$\mathrm{B} / \mathrm{P} / \mathrm{I}=\mathrm{J}$. Brau, C. Potter and M. Iwasaki, in Proceedings of the Linear Collider Workshop LCWS2000 2000.

COMPARISON TO OTHER HIGGS BR STUDIES

The fractional branching ratio errors $\delta_{B R} / B R$ from each study are shown in the table below. Here $m_{H}=120$ GeV .

Mode	$\mathrm{H} / \mathrm{B} / \mathrm{B}$	N / K	B	B / R	$\mathrm{B} / \mathrm{P} / \mathrm{I}$
- $H \rightarrow W W^{\star}$	0.48	-	0.054	0.051	0.10
- $H \rightarrow b \bar{b}$	0.07	0.041	0.024	-	0.029
- $H \rightarrow c \bar{c}$	-	0.80	0.083	-	0.39
- $H \rightarrow g g$	-	-	0.055	-	0.18
- $H \rightarrow \tau^{+} \tau^{-}$	0.14	0.15	0.06	-	0.08
- $H \rightarrow c \bar{c}+g g$	0.39	0.17	-	-	0.16

Given the different parameters assumed in each study, such a direct comparison may be misleading.

CONSISTENCY CHECK

The fractional branching ratio error $\delta_{B R} / B R$ goes like $\left(\sigma \int d t L\right)^{-1 / 2}$. The former divided by the latter is plotted against the latter for the case $m_{H}=120 \mathrm{GeV}$.

Broadly, the results are consistent though there is some discrepancy in the $H \rightarrow c \bar{c}$ and $H \rightarrow g g$ results.

IMPROVING THE STUDY

By the end of Snowmass 2001, this study should be extended and improved in the following ways:

- Analyze higher Higgs mass cases.
- Confer with other authors to resolve differences in results ($H \rightarrow c \bar{c}$ and $H \rightarrow g g$).
- Consider how to apply this analysis to the light MSSM h^{0} in the decoupling limit.

