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1. Introduction

This is an expository paper on homotopy colimits and homotopy limits. These
are constructions which should arguably be in the toolkit of every modern algebraic
topologist, yet there does not seem to be a place in the literature where a graduate
student can easily read about them. Certainly there are many fine sources: [BK],
[DwS], [H], [HV], [V1], [V2], [CS], [S], among others. Of these my favorites are
[DS] and [H], the first as a general introduction and the second as an excellent
reference work. Yet [H] demands that the student absorb quite a bit before reaching
homotopy colimits, and [DwS] does not delve deeply into the topic. The remaining
sources mentioned above present other difficulties to readers encountering these
ideas for the first time.

What I found myself wanting was a relatively short paper that would start with
the basic ideas and then proceed to give students a ‘crash course’ in homotopy
colimits—a paper which would survey the basic techniques for working with them
and show some examples, but not weigh the reader down with too many details.
That is the aim of the present document. Like most such documents, it probably
fails to truly meet its goals—as one example, it is not very short!

Many proofs are avoided, or perhaps just sketched, and the reader is encouraged
to seek out the complete proofs in the above sources.

1.1. Prerequisites. The reader is assumed to be familiar with basic category the-
ory, in particular with colimits and limits. [ML] is a fine reference. Some experience
with simplicial sets will be helpful, as well as some experience with model categories.
For the former we recommend [C], and for the latter [DwS].

Almost no model category theory is used in the first eight sections, where we
keep the focus mostly on topological spaces. Readers will only have to know that a
cellular inclusion is the main example of a cofibration, and that a CW-complex is
the main example of a cofibrant object. “Weak equivalence” means weak homotopy
equivalence—that is to say, a map inducing isomorphisms on all homotopy groups.

In Sections 7–10 model category theory is much more prevalent. Although one
can state the basic properties of homotopy colimits and limits without using model
categories, the most elegant proofs all use model category techniques. So it is very
useful to become proficient in this way of thinking about things.

What we have just outlined is something like the ‘minimum basic requirements’
assumed in the paper. In reality we have assumed more, because we assume
throughout that the reader has a certain amount of experience with many ba-
sic homotopy-theoretic constructions (classifying spaces, spectral sequences, etc.)
Hopefully students with just one or two years experience past their first algebraic
topology course will find the paper accessible, though.

1.2. Organization. Part 1 of the paper (Sections 2–6) develops the basic definition
of homotopy colimits and limits, as well as some foundational properties. Every-
thing is done in the context of topological spaces, although the entire discussion
adapts more or less verbatim to other simplicial model categories.

Parts 2 and 3 of the paper (Sections 7–12) concern more advanced perspectives
on homotopy colimits and limits. We develop spectral sequences for computing
some of their invariants, explain how to adapt the constructions to arbitrary model
categories, and in Part 2 we intensively discuss the connection with the theory of
derived functors.
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To conclude the paper we have Part 4, concerning examples. Most of the material
here only depends on Part 1, but every once in a while we need to use something
more advanced. Most readers will be able to understand the basic ideas without
having read Parts 2 and 3 first, but will occasionally have to flip back for complete
details.

1.3. Notation. If C is a category and X and Y are objects, then we will write
C(X,Y ) instead of HomC(X,Y ). The overcategory (C ↓ X) is the category whose
objects are pairs [A,A → X] consisting of an object A in C and a map A → X.
A map [A,A → X] → [B,B → X] consists of a map A → B making the evident
triangle commute. Occasionally we will denote an object of (C ↓ X) as [A,X ← A],
depending on the circumstance.

1.4. Acknowledgments. I am grateful to Jesper Grodal, Robert Lipshitz, and
Don Stanley for alerting me to errors in an early version, and to Owen Gwilliam
for encouraging me to actually finish this manuscript. I would especially like to
acknowledge an intellectual debt to Phil Hirschhorn and Dan Kan. Much of my
understanding of homotopy colimits was passed down from them, and learning from
[H] was one of the great pleasures in my early education.
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Part 1. Getting started

2. First examples

The theory of homotopy colimits arises because of the following basic difficulty.
Let I be a small category, and consider two diagrams D,D′ : I → Top. If one has
a natural transformation f : D → D′, then there is an induced map colimD →
colimD′. If f is a natural weak equivalence—i.e., if D(i)→ D′(i) is a weak equiv-
alence for all i ∈ I—it unfortunately does not follow that colimD → colimD′ is
also a weak equivalence. Here is an example:

Example 2.1. Let I be the ‘pushout category’ with three objects and two non-
identity maps, depicted as follows: 1←− 0 −→ 2. Let D be the diagram

∗ ←− Sn −→ Dn+1

and let D′ be the diagram
∗ ←− Sn −→ ∗.

Let f : D → D′ be the natural weak equivalence which is the identity on Sn and
collapses all of Dn+1 to a point. Then colimD ∼= Sn+1 and colimD′ = ∗, so the
induced map colimD → colimD′ is certainly not a weak equivalence.

So the colimit functor does not preserve weak equivalences (one sometimes says
that the colimit functor is not “homotopy invariant”, and it means the same thing).
The homotopy colimit functor may be thought of as a correction to the colimit,
modifying it so that the result is homotopy invariant.

There is one simple example of a homotopy colimit which nearly everyone has
seen: the mapping cone. We generalize this slightly in the following example, which
concerns homotopy pushouts.

Example 2.2. Consider a pushout diagram of spaces X
f←− A

g−→ Y . Call this
diagram D. The pushout of D is obtained by gluing X and Y together along the
images of the space A: that is, f(a) is glued to g(a) for every a ∈ A. The homotopy
pushout, on the other hand, is constructed by gluing together X and Y ‘up to
homotopy’. Specifically, we form the following quotient space:

hocolimD =
[
X q (A× I)q Y

]
/∼

where the equivalence relation has

(a, 0) ∼ f(a) and (a, 1) ∼ g(a), for all a ∈ A.

We can depict this space by the following picture:

X Y

A× I
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Consider the open cover {U, V } of hocolimD where U is the union of X with the
image of A× [0, 3

4 ), and V is the union of Y with the image of A× ( 1
4 , 1]. Note that

U deformation retracts down to X, V deformation retracts down to Y , and that the
map A→ U∩V given by a 7→ (a, 1

2 ) is a homotopy equivalence. The Mayer-Vietoris
sequence then gives a long exact sequence relating the homology of hocolimD with
H∗(X), H∗(Y ), and H∗(A). Similarly, the Van Kampen theorem shows (assuming
X, Y , and A are path-connected, for simplicity) that π1(hocolimD) is the pushout
of the diagram of groups π1(X)←− π1(A) −→ π1(Y ). The moral is that the space
hocolimD is pretty easy to study using the standard tools of algebraic topology—in
contrast to colimD, which is much harder.

It is now easy to prove that our construction of hocolimD preserves weak equiv-
alences. Suppose D′ is another pushout diagram X ′ ←− A′ −→ Y ′, and that
D → D′ is a natural weak equivalence. Let {U ′, V ′} be the cover of hocolimD′ de-
fined analogously to {U, V }. Note that the map hocolimD → hocolimD′ restricts
to maps U → U ′, V → V ′, and U ∩V → U ′∩V ′, and these restrictions are all weak
equivalences (because U and U ′ deformation retract down to X and X ′, and so
forth). It then follows from the naturality of the Van Kampen theorem, and of the
Mayer-Vietoris sequence, that hocolimD → hocolimD′ induces isomorphisms on
π1 and on all homology groups with local coefficients. So it is a weak equivalence
by the Whitehead Theorem [DaK, Theorem 6.71??]. (A better proof, that avoids
the Whitehead Theorem and gets more to the heart of the matter, follows directly
from the little-known but foundational result [Gr, 16.24]).

Before leaving this example we should relate it to mapping cones. If f : A→ X is
a map, then the quotient X/f(A) is the pushout of ∗ ←− A −→ X. The homotopy
pushout of ∗ ←− A −→ X, as defined above, is nothing other than the mapping
cone of f .

There are several things to be learned from the above example, and we will
return to it often as we develop the general theory. For now, here are four basic
things to notice right away:

(1) Whereas the colimit of a diagram is obtained by taking the spaces in the di-
agram and gluing them together, the homotopy colimit will be constructed
by “gluing them up to homotopy”. Sometimes one says that the homotopy
colimit is a “fattened up” version of the colimit. The above example is per-
haps misleadingly simple, because the indexing category I is so simple—for
general categories quite a bit more will be involved in encoding the necessary
homotopies. Still, this basic idea of ‘gluing up to homotopy’ is the important
one.

(2) Note that in the above example one has a map hocolimD → colimD obtained
by collapsing the homotopy. Specifically, one defines a map

X q (A× I)q Y → X qA Y
by letting it be the natural maps on the X and Y factors, and on the A × I
factor it is the projection A× I → A followed by the evident map into XqA Y .
This respects the identifications in the definition of hocolimD, so we get our
map hocolimD → X qA Y .

This situation is typical. When we finally define hocolimD for general dia-
grams we will find that there is a natural map hocolimD → colimD obtained
by ‘collapsing homotopies’.
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(3) Many algebraic-topological invariants of the space hocolimD should be com-
putable in terms of the invariants for the Di’s. We will see, for instance,
that this is true for any cohomology theory E∗(−) and any homology theory
E∗(−). This is one of the main ways in which homotopy colimits are better
than colimits—they interact in predictable ways with the standard machinery
of algebraic topology.

(4) It is not completely obvious, but it turns out that in our construction of
hocolimD we could have replaced the interval I by any contractible space
Z admitting a cofibration {0, 1}� Z. So we could have defined hocolimD as
[X q (A×Z)q Y ]/∼ where (a, 0) ∼ f(a) and (a, 1) ∼ g(a). This gives a space
which is weakly equivalent to the definition we used above. (Even more, we
could have replaced A×Z with any space B admitting a cofibration AqA� B
and a weak equivalence B → A coequalizing these two maps A → B). What
this is telling us is that there is not really a single homotopy colimit of a di-
agram; rather, there are lots of different models for the homotopy colimit, all
weakly equivalent to each other. The model where we used the interval I is in
some sense more natural than the others, but we don’t always want to be tied
down to one model.

2.3. The million-dollar question. Why should one learn about homotopy col-
imits? How are they useful? These are the kind of questions every student should
ask their professors before learning about something. It is often hard to give a
simple answer, but here are my attempts:

(a) As remarked above, it is relatively easy to compute the homology or cohomology
of a homotopy colimit (“easy” in the sense that there is a spectral sequence).
So if one is studying a space X and can identify it as being a certain homotopy
colimit (or more precisely, weakly equivalent to a certain homotopy colimit),
then one has a good chance of computing the homology and cohomology groups
of X.

(b) Many things that happen in algebraic topology come down, in the end, to
showing that two spaces X and Y are weakly equivalent. As we will see, there
are many techniques for showing that different homotopy colimits are weakly
equivalent. So if one can first identify X and Y as certain homotopy colimits,
there are suddenly a number of tools available for proving that X ' Y .

(c) Algebraic topology is full of machinery . This word can mean lots of things, but
what I mean at the moment is a method for starting with some input data and
producing a space or a sequence of spaces. For instance, one can start with a
category and produce its classifying space; or start with a symmetric monoidal
category and produce a Γ-space, and from the Γ-space get a spectrum. In
algebraic K-theory one starts with a ring, considers the exact category of R-
modules, and from this data constructs a K-theory space K(R). These are only
the most obvious examples—a complete list of such ‘machines’ would probably
fill hundreds of pages.

Anyway, the point I want to make is that homotopy colimits (and limits) play
an important role in the construction of the output spaces for many of these
machines. If you are a student of homotopy theory and haven’t yet encountered
homotopy colimits, it is only a matter of time.
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2.4. One more example. Before ending this section we examine another brief
example. Consider a diagram of spaces

A
f−→ X

g−→ Y.

One way to construct the homotopy colimit in this case is as the double mapping
cylinder shown below

A

X

Y

This is the space [(A × I) q (X × I) q Y ]/ ∼ in which we have identified
(a, 1) ∼ (f(a), 0) and (x, 1) ∼ g(x), for all a ∈ A and x ∈ X. Note that this
space deformation retracts down to Y .

Now consider the following. For the colimit of a diagram D, every map f : Di →
Dj in the diagram tells us to glue a ∈ Di to f(a) ∈ Dj . In the homotopy colimit
we are supposed to glue up to homotopy, and this is what we tried to do in the
double mapping cylinder above. But note that we have only done this for f and g,
whereas there is a third map in our diagram—namely, the composite gf ! Maybe
we should glue in a homotopy for that map, too.

This suggests that we should do the following. Start with AqXqY and glue in
a cylinder for f , g, and gf . This gives us the following space, which we’ll call W :

A

X

Y

Unfortunately W is clearly not homotopy equivalent to Y , and therefore not ho-
motopy equivalent to our double mapping cylinder above. But we can fix this as
follows.

There is an evident map A × ∂∆2 into W : we have an A × I occuring in the
mapping cylinders for f and gf , forming two of the ‘sides’ of A× ∂∆2. The third

side comes from the composite A × I f×id−→ X × I → W , where the second map is
the cylinder part of the mapping cylinder for g. What we will do is take W and
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attach a copy of A×∆2 along the image of A× ∂∆2; that is, we form the pushout

A× ∂∆2 //
��

��

W

��
A×∆2 // W ′.

It is hard to draw a picture for W ′, but maybe we can try something like this:

A

X

Y

This new space W ′ is homotopy equivalent to the double mapping cylinder we
started with: the cylinder corresponding to gf can be squeezed down into the
double mapping cylinder, via the A×∆2 piece we just attached. So W ′ is another
model for the homotopy colimit of our diagram

2.5. Summary. The previous example suggests the following. Suppose given a
small category I and a diagram D : I → Top. To construct hocolimD we should
start with qiD(i), and then for every map f : i→ j in I we should glue in a cylinder
D(i)×∆1 corresponding to f . Then for every pair of composable maps

i
f−→ j

g−→ k

in I we should glue in a copy of D(i) × ∆2. Continuing the evident pattern, for
every sequence of n composable maps

i0 → i1 → i2 → · · · → in

we should glue in a copy of D(i0)×∆n. The problem is to figure out how to keep
track of all this gluing in an efficent way! We’ll begin developing the techniques for
this in the next section.
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3. Simplicial spaces

Before giving a general construction of homotopy colimits we need some prelim-
inary machinery.

Let ∆ be the cosimplicial indexing category: the objects are the finite ordered
sets [n] = {0, 1, . . . , n} for n ≥ 0, and the maps are the monotone increasing
functions. Note that there is an inclusion ∆ ↪→ Top which sends [n] to ∆n and sends
a map σ : [n]→ [k] to the corresponding linear map ∆n → ∆k which coincides with
σ on the vertices of ∆n. Sometimes we will blur the distinction between ∆ and
this subcategory of Top which is its image; in fact, historically the category ∆ first
arose as this subcategory—the description in terms of ordered sets is really just a
modern convenience.

If C is any category, a simplicial object in C is a functor X : ∆op → C. This
is commonly drawn as a diagram consisting of spaces Xn = X([n]) together with
‘face’ and ‘degeneracy’ maps between them:

· · · //
////// X2

//////
~~~~~~

X1
////

zzzz
X0

zz
.

The face maps decrease dimension, and the degeneracies increase dimension; we
will usually not draw the degeneracies, for typographical reasons. A cosimplicial
object in C is a functor Z : ∆ → C, which is a similar diagram with all the arrows
going in the other direction.

3.1. Geometric realization. Suppose X : ∆op → Top is a simplicial space. The
geometric realization of X is the space

|X| = coeq

[ ∐
[n]→[k]

Xk ×∆n ⇒
∐
n

Xn ×∆n

]
.(3.2)

This is a ‘coequalizer’, which is just another name for a colimit of a diagram
consisting of two parallel arrows: so the coequalizer of two arrows f, g : S ⇒ T is
the quotient space T/∼ in which one identifies f(s) ∼ g(s) for all s ∈ S.

To finish explaining the formula in (3.2), we should mention that the first co-
product in the coequalizer is taken over all maps in ∆. If σ : [n]→ [k] is a map in
∆ then there are two evident maps from Xk ×∆n into

∐
iXi×∆i. The first sends

Xk ×∆n to Xn ×∆n via the map σ∗ : Xk → Xn, and the second sends Xk ×∆n

to Xk × ∆k via the map σ∗ : ∆n → ∆k. This gives the two parallel maps in the
coequalizer diagram.

A little thought shows that the above formula for |X| can also be written as

|X| =

(∐
n

Xn ×∆n

)/
∼

where the equivalence relation has

(dix, t) ∼ (x, dit) and (six, t) ∼ (x, sit).

Here the di and si are the face and degeneracy maps in X, whereas the di and
the si are the coface and codegeneracy maps in the cosimplicial object ∆ → Top
sending [n] 7→ ∆n.
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Remark 3.3. Note that if each Xn is a discrete space then we can regard X as a
functor ∆op → Set and the above construction is the same as the usual geometric
realization of a simplicial set.

3.4. Homotopy invariance of geometric realization. By a map of simplicial
spaces X → Y we mean a natural transformation of functors. Such a map is said to
be an objectwise weak equivalence if Xn → Yn is a weak equivalence of spaces,
for all n. It is not quite true that if X → Y is an objectwise weak equivalence of
simplicial spaces then |X| → |Y | is a weak equivalence of spaces. At about the same
time, Segal [Se] and May [M] independently developed conditions under which this
is true. We will describe a modern version of such conditions next.

If si : Xn−1 → Xn is a degeneracy map, 0 ≤ i ≤ n− 1, then note that one of the
simplicial identities is disi = id; so Xn−1 is a retract of Xn. We then have that si
is injective, and a point-set-topology argument shows that the topology on Xn−1

coincides with the subspace topology on its image. So si is an inclusion. If Xn

is Hausdorff (which is necessarily true if Xn is cofibrant), more point-set topology
shows that si is in fact a closed inclusion.

Define the nth latching object of X to be the subspace

LnX =

n−1⋃
i=0

si(Xn−1) ⊆ Xn.

The inclusion LnX ↪→ Xn is called the nth latching map.
The first few latching spaces are easy to picture: L0X = ∅, L1X ∼= X0, and

L2X ∼= X1 qX0 X1. These spaces get more complicated as n grows. For instance,
L3X consists of three copies of X2 glued together along three copies of X1, all
containing a single copy of X0.

A simplicial space X is called Reedy cofibrant if the latching maps LnX → Xn

are cofibrations, for all n. If X is Reedy cofibrant then each Xn is cofibrant, by an
induction starting with the fact that the 0th latching map is ∅ → X0.

Theorem 3.5. Suppose X → Y is an objectwise weak equivalence between two
simplicial spaces, both of which are Reedy cofibrant. Then |X| → |Y | is also a weak
equivalence.

Sketch of proof. Let Skn |X| denote the subspace of |X| defined by

Skn |X| = coeq

[ ∐
[k]→[l]
k,l≤n

Xl ×∆k ⇒
∐
k≤n

Xk ×∆k

]
.

Then there is a sequence of closed inclusions

Sk0 |X| ↪→ Sk1 |X| ↪→ Sk2 |X| ↪→ · · ·
and the colimit is |X|. One shows that there are pushout squares

(LnX ×∆n)q(LnX×∂∆n) (Xn × ∂∆n)

��

// Skn−1 |X|

��
Xn ×∆n // Skn |X|

for each n, and our assumption that X is Reedy cofibrant implies that the left
vertical map is a cofibration.
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Using that X → Y is an objectwise weak equivalence, one shows inductively that
each LnX → LnY is a weak equivalence, and then that each Skn |X| → Skn |Y | is
a weak equivalence. It then follows that |X| → |Y | is also a weak equivalence. �

Remark 3.6 (The fat realization). Let X be a simplicial space. Define

||X|| = coeq

[ ∐
[n]↪→[k]

Xk ×∆n ⇒
∐
n

Xn ×∆n.

]
where the left coproduct runs over all injections in ∆. Note that this definition
completely ignores the degeneracy maps in the simplicial space X. The space ||X||
is called the fat realization of X.

The disadvantage of ||X|| over |X| is that the former space is always much bigger
and more complicated—in fact, it is always infinite-dimensional! For instance,
suppose X is the simplicial space consisting of one point in every dimension. Then
|X| is just a point, but ||X|| is a space consisting of one 0-cell, one 1-cell, one 2-cell,
etc. This is because the degenerate stuff in X hasn’t been collapsed, as it was in
|X|.

The advantage of ||X|| over |X| is that this fat construction preserves weak
equivalences under much weaker hypotheses. If X → Y is an objectwise weak
equivalence between simplicial spaces which are cofibrant in each dimension, then
||X|| → ||Y || is a weak equivalence. We will see a proof of this in Example 9.15
below.

3.7. Collapsing the geometric realization. One often thinks of the Xn × ∆n

pieces in |X| as ‘higher homotopies’. Consider the process of collapsing them, in
which one shrinks every ∆n to a point. Thus, we consider the diagram∐

[n]→[k]

Xk ×∆n

��

//// ∐
[n]

Xn ×∆n

��∐
[n]→[k]

Xk

//// ∐
[n]

Xn

where the vertical maps come from the projections Xk×∆n → Xk and Xn×∆n →
Xn. The coequalizer of the bottom two arrows is precisely colim∆op X. Thus, we
have a natural map

|X| → colimX.

Now, colimX can be identified with the coequalizer of the first two face maps
d0, d1 : X1 → X0. This is an exercise for the reader; clearly there is a map
coeq(X1 ⇒ X0) → colimX, and one can prove using the simplicial identities that
any map X0 → Z which coequalizes d0, d1 : X1 → X0 actually induces a map
colimX → Z. Thus, one gets a map colimX → coeq(X1 ⇒ X0), and one readily
sees that the two compositions are the identities. (See also Example 21.1 below).

Putting everything together, we have shown that there is a natural map

|X| → coeq
[
X1 ⇒ X0

]
.

Remark 3.8. Note that if X is a simplicial set then this coequalizer is just π0(X),
the set of path components. In this case our map is just the usual one from |X| to
its set of path components (equipped with the discrete topology).
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3.9. Degenerate simplicial spaces. A simplicial space X is degenerate in di-
mension q and above if the maps LkX → Xk are homeomorphisms for all k ≥ q.
It follows that the spaces Xk, k ≥ q, all get collapsed inside of |X|. The reason is
that if x ∈ Xk then x = si1si2 . . . siry for some y ∈ Xq−1 (where r = k− q+ 1). So
for any t ∈ ∆k we have

(x, t) = (si1 . . . siry, t) ∼ (y, sir · · · si1t)
in |X|. A little thought shows that in this case we can write

|X| = Skq |X| = coeq

[ ∐
[n]→[k]
n,k≤q

Xk ×∆n ⇒
∐
n≤q

Xn ×∆n

]
.

This observation simplifies the process of computing |X| in many cases, and we will
use it in the next sections when faced with some specific examples.

3.10. Contracting homotopies. Suppose X∗ is a simplicial set and ∗ is a 0-
simplex of X. A contracting homotopy for X is a collection of combinatorial data
which will guarantee that |X| deformation-retracts down to ∗. So we need to deform
each n-simplex of X down to a point, and the deformations for different simplices
need to be compatible. The easiest way to accomplish this is to specify the following
data:

• For each 0-simplex a of X, a 1-simplex S(a) connecting a to ∗;
• For each 1-simplex b ofX, a 2-simplex S(b) whose base is b, whose remaining

vertex is ∗, and whose ‘sides’ are the 1-simplices previously specified;
• And so on—for each n-simplex c of X we will need an (n + 1)-simplex

whose base is c, whose remaining vertex is ∗, and whose sides coincide with
previously specified data.

A contracting homotopy for X will therefore be a collection of maps S : Xn → Xn+1

which are required to satisfy some identities. These identities will take a different
form depending on whether we want the simplices S(a) to point towards the simplex
∗ or away from the simplex ∗. We will differentiate these cases by calling them
“sinklike” and “sourcelike” contracting homotopies, respectively (reflecting whether
the vertex ∗ acts like a sink or source).

Before giving the formal definition it will be useful to generalize somewhat. By
an augmented simplicial set we mean a simplicial set X together with a set W
and a map X0 →W which coequalizes the two maps X1 ⇒ X0. This is the same as
having a map of simplicial sets X → cW , where cW is the constant simplicial set
having W in every dimension. A contracting homotopy for an augmented simplicial
set X∗ → W will be a map W → X0 such that W → X0 → W is the identity
together with a way of deformation-retracting X∗ down to the image of W in X0.

Finally, we wish to generalize our discussion from simplicial sets to simplicial
spaces. The basic formalism is the same, and in particular the definition of aug-
mented simplicial space is the same.

Definition 3.11. Let X∗ → W be an augmented simplicial space. It will be con-
venient to define X−1 to be W , and to have the map X0 → W be denoted by d0.
Then a sinklike contracting homotopy is a collection of maps S : Xn → Xn+1
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for n ≥ −1 such that for each a ∈ Xn one has

di(Sa) =

{
S(dia) if 0 ≤ i ≤ n
a if i = n+ 1

and S(sia) = si(Sa) for 0 ≤ i ≤ n.

Likewise, a sourcelike contracting homotopy for X is a collection of maps
S : Xn → Xn+1 for n ≥ −1 such that for each a ∈ Xn one has

di(Sa) =

{
a if i = 0

S(di−1a) if 0 < i ≤ n+ 1
and S(sia) = si+1(Sa) for 0 ≤ i ≤ n.

Proposition 3.12. Let X∗ → W be an augmented simplicial space which admits
either a sinklike or sourcelike contracting homotopy. Then |X| →W is a homotopy
equivalence.

Proof. An easy exercise, or see Appendix A. �

Example 3.13. Let X be the simplicial set ∆n. The k-simplices of X are all the
monotone increasing sequences of length k + 1 taking values in {0, 1, . . . , n}. We
regard X as augmented by the one-point space, so we set X−1 = {∗}; it is useful
to think of the element of X−1 as the “empty sequence”.

One can define a sourcelike contracting homotopy for X by having the contrac-
tion operator S : Xn → Xn+1 send a sequence a0 . . . an to the sequence 0a0 . . . an.
In other words, the contracting homotopy inserts a 0 at the beginning of every
sequence. One can also define a sinklike contracting homotopy for X, by inserting
an n at the end of every sequence.

Example 3.14. Let f : X → Y be a map of topological spaces, and consider the
simplicial space Č(f) defined by

[n] 7→ X ×Y X ×Y · · · ×Y X ((n+ 1) factors).

If (x0, . . . , xn) is an element of Č(f)n, then the ith face map omits xi and the jth
degeneracy repeats xj . This simplicial space is called the Čech complex of f . If
we forget the topological structure then this is the nerve of a category, where there
is one object for every element of X and a unique map between any two objects
which have the same image under f .

We may regard Č(f) as being augmented by Y , via the map f . Suppose s : Y →
X is a section of f . Define a sourcelike contracting homotopy for Č(X) by sending
the point (x0, . . . , xn) to (s(f(x0)), x0, . . . , xn). Note that one can also obtain a
sinklike contracting homotopy by appending s(f(xn)) to the end of the tuple. So
if f admits a section then |Č(f)| → Y is a homotopy equivalence.

Example 3.15. This example will not be needed until Part 2, but we include
it here as a titillating exercise. Let L : C � D : R be adjoint functors between
two categories. Recall that such a pair is equipped with natural transformations
LR(X)→ X and Z → RL(Z), which we’ll refer to as ‘contraction’ and ‘expansion’.
These natural transformations have the property that the two composites RX →
RLR(X) → RX and LZ → LRLZ → LZ (both obtained by first expanding and
then contracting in the evident way) are the identities.

For each X ∈ D one can construct a simplicial object BLR(X) over C having the
form

[n] 7→ (LR)n+1(X).
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If the LR pairs in BLR(X)n are labelled as 0 through n (left to right), then the
face map di applies contraction to the ith LR pair; the jth degeneracy sj applies
an expansion between the L and R of the jth LR pair. Using only the facts stated
in the previous paragraph, one may check that these face and degeneracy maps
indeed satisfy the axioms for a simplcial object.

Note that the contraction map LR(X) → X provides an augmentation for
BLR(X). The simplicial object BLR(X) is called the bar construction on X
associated to the adjoint pair (L,R). The name comes from a historical precedent
described in Example 3.17 below.

Now apply R levelwise to BLR(X) to obtain a simplicial object over C. One
can check that RBLR(X)→ RX admits a sourcelike contracting homotopy, where
the map S : R[BLR(X)]n → R[BBL(X)]n+1 is simply an expansion before the first
R—that is, S is the map Z → RL(Z) where Z = BLR(X)n. It is routine to check
that the necessary identities are satisfied.

Likewise, consider the case where X = LA. The augmented simplicial ob-
ject BLR(LA) → LA admits a sinklike contracting homotopy, where the map
BLR(LA)n → BLR(LA)n+1 inserts an expansion between the L and the A.

Exercise 3.16. Given a map of topological spaces f : X → Y , there are adjoint
functors

L : (Top ↓ X) � (Top ↓ Y ) : R

where L is composition with f and R is pullback along f . Check that the bar
construction for LR, applied to the terminal object of (Top ↓ Y ), is Č(f). How do
the contracting homotopies of Example 3.14 relate to the ones in Example 3.15?

Example 3.17. Let G be a finite group, and let GTop denote the category of
G-spaces and equivariant maps. There are adjoint functors

Top
F // GTop
U

oo

where U is the functor that forgets the G-action and F is the free functor F (Y ) =
G × Y . Note that the counit FU(X) → X of the adjunction is the action map
G×X → X, and the unit Y → UF (Y ) is the map Y → G×Y given by y 7→ (e, y).

If X is a G-space then consider the simplicial space BFU (X) from Example 3.15.
A little thought reveals that this is the simplicial space

· · · //
////// G×G×G×X ////// G×G×X //// G×X

where the face and degeneracy maps are described as follows. Write a tuple
(g0, g1, . . . , gn, x) ∈ Gn+1 × X as g0|g1|g2| · · · |gn|x. If the vertical bars are in-
dexed left to right, with the first bar having index 0, then di removes bar i and sj
inserts “e|” after bar j. The use of bars in the above notation is why this simplicial
space is called the “bar construction”. The element g0|g1|g2| · · · |gn|x is in some
contexts denoted [g0|g1| · · · |gn|x], [g0|g1| · · · |gn]x, or g0[g1| · · · |gn]x.

Write E•(G,X) = BFU (X) and E(G,X) = |E•(G,X)|. The latter is a G-space,
and in fact the action is free: this follows immediately from the fact that the G-
action on each level of E•(G,X) is free. The augmentation E•(G,X)→ X induces
a natural G-equivariant map E(G,X) → X. If we forget the G-action then the
simplicial space E•(G,X) has a contracting homotopy (as in Example 3.15) and so
E(G,X)→ X is a weak equivalence.



A PRIMER ON HOMOTOPY COLIMITS 15

When X = ∗, the space E(G, ∗) is usually just written as EG. It is a contractible
space with a free G-action.

There are other models for the space EG. For any set S let πS : S → ∗ be the
projection, and consider the simplicial set Č(πS). This simplicial space depends
functorially on S, and the realization |Č(πS)| is contractible by Example 3.14. In
particular, if S is a G-set then G acts on Č(piS) (diagonally in each level) and hence
on |Č(piS)|. When S = G then the action is free in every level, and so |Č(πG)| is
a contractible space with a free G-action.

The simplicial spaces Č(πG) and E(G, ∗) are different, as one can readily check.
But they are isomorphic: verify that the maps Gn → Gn given by

(g0, g1, . . . , gn−1) 7→ (g0, g
−1
0 g1, g

−1
1 g2, . . . , g

−1
n−2gn−1)

give an isomorphism Č(πG) → E(G, ∗) of simplicial G-spaces (recall tha the G-
action on E(G, ∗) is via the leftmost G, whereas G acts diagonally on Č(πG)).

Finally, let us turn back to E(G,X) for general G-spaces X. This is a simplicial
G-space, free in every degree, whose realization is naturally equivalent to X. The
space E(G, ∗)×X (with diagonal G-action on the product) is another such space:
and of course they turn out to be isomorphic. Check that the maps Gn × X →
Gn ×X given by

(g0, . . . , gn−1, x)→ (g0, . . . , gn−1, g0g1 · · · gn−1x)

give an isomorphism E(G,X)→ E(G, ∗)×X of simplicial G-spaces.
The quotient (EG × X)/G is called the Borel construction on X, and it

appears often in algebraic topology (for more about why, see Section 7). It is often
written as EG ×G X, and of course it is also E(G,X)/G. When X is a point the
Borel construction is EG/G, and this is usually denoted BG. Note that there is a
principal G-bundle G→ E(G,X)→ E(G,X)/G, and E(G,X) ' X.
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4. Construction of homotopy colimits

Let I be a small category, and let D : I → Top be a diagram. We will now explain
how to construct the homotopy colimit of D (really we should say, “a homotopy
colimit of D”).

The simplicial replacement of D is the simplicial space∐
i0

D(i0)
∐

i0←i1
D(i1)oooo

∐
i0←i1←i2

D(i2)oooo
oo · · ·oo

oooo
oo

We will denote this srep(D). So we have

srep(D)n =
∐

i0←i1←···←in

D(in)

where the coproduct ranges over chains of composable maps in I. We must define
the face and degeneracy maps. If σ = [i0 ← i1 ← · · · ← in] is a chain and 0 ≤ j ≤ n,
then we can ‘cover up’ ij and obtain a chain of n−1 composable maps—call this new
chain σ(j). When j < n, the map dj : srep(D)n → srep(D)n−1 sends the summand
D(in) corresponding to σ to the identical copy of D(in) in srep(D)n−1 indexed by
σ(j). When j = n we must modify this slightly, as covering up in now yields a chain
that ends with in−1. So dn : srep(D)n → srep(D)n−1 sends the summand D(in)
corresponding to the chain σ to the summand D(in−1) corresponding to σ(n), and
the map we use here is the map D(in)→ D(in−1) induced by the last map in σ.

The degeneracy maps sj : srep(D)n → srep(D)n+1, 0 ≤ j ≤ n, are a bit easier
to describe. Each sj sends the summand D(in) corresponding to the chain σ =
[i0 ← i1 ← · · · ← in] to the identical summand D(in) corresponding to the chain
in which one has inserted the identity map ij ← ij .

Example 4.1. The nerve of a small category I is the simplicial set NI which in
dimension n consists of all strings [i0 → i1 → · · · → in] of n composable arrows. The
face map dj corresponds to ‘covering up’ the object ij , as above. The classifying
space of I is the geometric realization of the nerve; it will be denoted BI.

The nerve of the opposite category Iop may be identified with the simplicial set
which in dimension n consists of all strings [i0 ← i1 ← · · · ← in] of n composable
arrows, where the face map dj again corresponds to covering up the object ij . This
is very similar to the nerve of I, but not identical—the order of the faces and
degeneracies have been reversed. These simplicial sets are not isomorphic, but they
are naturally weakly equivalent.

Suppose D : I → Top is the diagram for which D(i) = ∗ for all i ∈ I. Then
srep(D) is just the nerve of the category Iop.

Remark 4.2. Note that we have made a choice when defining the simplicial re-
placement. We could have defined the nth object to be∐

i0→i1→···→in

D(i0)(4.3)

and again defined the degeneracy dj to be the map associated to ‘covering up’ ij .
This is related to the distinction between the nerve of a category I and the nerve of
its opposite. The simplicial space from (4.3) is not isomorphic to srep(D), although
their geometric realizations are homeomorphic.
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So there are two natural definitions of the simplicial replacement (as well as for
the nerve of a category), and one is forced to choose. Our choices were made to
agree with the conventions in [H].

It turns out to be useful to have both definitions around at the same time. They
are brought together in the two-sided bar construction which we will talk about in
Section 11.

Remark 4.4. Note that if each D(i) is a cofibrant space, then the simplicial re-
placement is automatically Reedy cofibrant (cf. Section 3.4). This is because
the nth latching object of srep(D) is just the subspace of srep(D)n consisting
of all summands corresponding to chains which have identity maps in them. So
the latching object is just a summand inside the whole space, and the comple-
mentary summand is cofibrant (being a disjoint union of cofibrant spaces). Thus,
Ln(srep(D))→ srep(D)n is a cofibration.

Definition 4.5. The homotopy colimit of a diagram D : I → Top is the geometric
realization of its simplicial replacement. That is,

hocolimD = | srep(D)|.
Sometimes we will write hocolimI D to remind us of the indexing category.

4.6. Homotopy invariance of the homotopy colimit.

Proposition 4.7. If D,D′ : I → Top are two diagrams consisting of cofibrant
objects and α : D → D′ is a natural weak equivalence, then the induced map
hocolimD → hocolimD′ is a weak equivalence.

Proof. We get a map of simplicial spaces srep(D) → srep(D′), and this is an ob-
jectwise weak equivalence. Since srep(D) and srep(D′) are both Reedy cofibrant,
it follows from Theorem 3.5 that the induced map of realizations is also a weak
equivalence. �

Remark 4.8. Note that we could have instead defined hocolimD to be || srep(D)||.
That is, we could have used the fat realization instead of the usual geometric
realization. This would still give a homotopy invariant construction, and would
be weakly equivalent to the definition of hocolimD adopted above. This is further
demonstration that there is not really a single homotopy colimit construction; there
are many such constructions, all weakly equivalent to each other.

Remark 4.9 (Cofibrancy assumptions). Proposition 4.7 is perhaps weaker than
one would hope for, because of the cofibrancy conditions on the objects of D and
D′. There are two things to say about this. In a general model category, to get the
‘correct’ homotopy colimit of a diagram D one should first arrange things so that all
the objects are cofibrant—for instance, by applying a cofibrant-replacement functor
to all the objects of D. Then one can apply specific formulas for the hocolim, such
as the one above.

In the category Top, though, an ‘accident’ occurs, in that the cofibrancy con-
ditions on the objects are not necessary at all! That is to say, Proposition 4.7 is
true even without these conditions. A proof can be found in [DI, Appendix]. We
will tend to ignore this, however, and continue to state results with the objectwise
cofibrant hypotheses in them. This is because we want to state the results so that
they generalize to other model categories.
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4.10. The natural map from the homotopy colimit to the colimit. Note
that colimD is the coequalizer of d0 and d1 in srep(D): that is, it is the quotient
space [qiD(i)]/∼ where for every map σ : i → j in I we identify points x ∈ D(i)
with σ∗(x) ∈ D(j). The canonical map

| srep(D)| → coeq
[
srep(D)1 ⇒ srep(D)0

]
from Section 3.7 therefore can be written as a map hocolimD → colimD.

Example 4.11. Let us return to our most basic example, where I is the pushout

category and D is a diagram X
f←− A

g−→ Y . The simplicial replacement has
X q A q Y in dimension 0, and X q A q A q Y in dimension 1; everything in
dimensions 2 and higher is degenerate. So by the discussion in Section 3.9, when
forming | srep(D)| we only have to pay attention to the spaces in dimensions 0 and
1.

It is perhaps better to write srep(D)1 = Xid qAf qAg q Yid, where we are now
keeping track of the maps in I indexing the summands (thus, “Af” is the copy of
A indexed by the map f). We see that the X and Y are degenerate, and a little
thought shows that | srep(D)| is the quotient space

[X qAq Y q (Af ×∆1)q (Ag ×∆1)]/ ∼
in which the following identifications are made:

(1) (a, 0) ∈ Af × ∆1 is identified with f(a) ∈ X, whereas (a, 1) ∈ Af × ∆1 is
identified with a ∈ A.

(2) (a, 0) ∈ Ag × ∆1 is identified with g(a) ∈ Y , whereas (a, 1) ∈ Af × ∆1 is
identified with a ∈ A.

We thus get something like the following picture (but where the two cylinders do
not really intersect except at their ends):

X YA

A× IA× I

Note that this is homeomorphic to the space from Example 2.2.

Exercise 4.12. Work through the definition of hocolimD when D is the diagram
A→ X → Y , and check that it is homeomorphic to the space W ′ from our example
in Section 2.4.

4.13. A different formula. Here is another formula for the homotopy colimit.
Although it looks quite different at first, the space it describes is homeomorphic to
that of our previous definition (we will explain why below). The new formula is:

hocolim
I

D = coeq

[∐
i→j

Di ×B(j ↓ I)op ⇒
∐
i

Di ×B(i ↓ I)op

]
.(4.14)
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There are a few things to say about this formula. If C is a category, then BC
is its classifying space—the geometric realization of its nerve. And Cop denotes
the opposite category. The op’s are needed in the above formula only to make
it conform with the choices we made in defining the simplicial replacement. The
category (i ↓ I) is the undercategory of i, defined dually to the overcategories
described in Section 1.3. Finally, if i → j is a map in I then there is an evident
induced map of categories (j ↓ I) → (i ↓ I), and this is being used in one of the
maps from our coequalizer diagram.

The formula in (4.14) gives a more direct comparison between the homotopy
colimit and the ordinary colimit. The colimit is, after all, the coequalizer

colim
I

D = coeq

[∐
i→j

Xi ⇒
∐
i

Xi

]
.

One finds a map from the previous coequalizer diagram to this one simply by
collapsing the spaces B(i ↓ I)op to a point; thus, one gets the map hocolimD →
colimD.

Below we will prove rigorously that the space defined in (4.14) is homeomorphic
to the space | srep(D)|, but let us pause to explain the general idea. In constructing
| srep(D)|, for every chain i0 ← i1 ← · · · ← in we have added a copy of Din ×∆n.
So if we fix a particular spot Di of the diagram, this means that we are adding a
copy of Di ×∆n for every string i0 ← i1 ← · · · ← in−1 ← i. Such a string gives an
n-simplex in B(i ↓ I)op, corresponding to the chain

[i, i0 ← i]← [i, i1 ← i]← · · · ← [i, in−1 ← i]← [i, i← i]

(which is a chain in (i ↓ I)). In the formula (4.14) we are simply grouping all these
Di × ∆n’s together—fixing i and letting n vary—into the space Di × B(i ↓ I)op.
In other words, the space B(i ↓ I)op is parameterizing all the ‘Di-homotopies’ that
are being added into the homotopy colimit.

Here is a simple example:

Example 4.15. Consider again the case where I is the pushout category 1← 0→ 2
and D is a diagram X ← A → Y . Then (1 ↓ I) and (2 ↓ I) are both the trivial
category with one object, whereas (0 ↓ I) is the category a← b→ c (isomorphic to
I again). So B(0 ↓ I) is the space consisting of two intervals joined at one endpoint:

r r r
The above formula says

hocolim
I

D =
[
X q

(
A×B(0 ↓ I)op

)
q Y

]/
∼

and one checks that the quotient relations give the same space we saw in Exam-
ple 4.11.

If one is willing to learn some more machinery, there is a very slick proof that our
two formulas for hocolimD are naturally homeomorphic. We give this in Section 11.
For the moment we will be content with an argument which is more longwinded,
but requires less background.
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Consider the following big diagram:

· · ·

������

· · ·

������

· · ·

������∐
i,k0←k1←j←i

Xi
// //

����

∐
i,j0←j1←i

Xi
//

����

∐
j0←j1

Xj1

����∐
i,k0←j←i

Xi
//// ∐
i,j0←i

Xi
// ∐
j0

Xj0

Each column is a simplicial space. The rightmost column is srep(X), the middle
column is

∐
i(Xi×N(i ↓ I)op), and the leftmost column is

∐
i→j(Xi×N(j ↓ I)op).

We have a map of simplicial spaces from the middle column to the right column.
In degree n this sends the summand Xi indexed by the string [j0 ← j1 ← · · · jn ← i]
to the summand Xjn indexed by [j0 ← · · · ← jn], via the map Xi → Xjn induced
by i→ jn. This is clearly compatible with face and degeneracies.

We have two maps of simplicial spaces from the left column to the middle column.
In simplicial degree n, one map sends the summand Xi indexed by the string
[i, k0 ← k1 ← · · · ← kn ← j ← i] to the summand Xi indexed by the string
[i, k0 ← · · · ← kn ← i] (forget about j). The other map sends our summand Xi to
the summand Xj indexed by [j, k0 ← · · · ← kn ← j] (forget about i).

Now, it is easy to check that each horizontal level of our diagram is a coequalizer
diagram; that is to say, the objects in the right column are the coequalizers of
the objects in the other two columns. Geometric realization is a left adjoint, and
therefore will commute with coequalizers. So this identifies | srep(D)| with the
coequalizer of ∐

i→j
|Xi ×N(j ↓ I)op|⇒

∐
i

|Xi ×N(i ↓ I)op|.

Finally, observe that if K is a simplicial set than X × |K| can be identified with
the geometric realization of the simplicial space

[n] 7→ X ×Kn =
∐
Kn

X

(use the fact that both |− | and X× (−) are left adjoints, therefore they commute).
So the above coequalizer can instead be written as∐

i→j
Xi × |N(j ↓ I)op|⇒

∐
i

Xi × |N(i ↓ I)op|

and this completes the argument.
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5. Homotopy limits and some useful adjunctions

We have not yet talked about homotopy limits. The story is completely dual
to that for homotopy colimits, the main difference being that the pictures are not
quite as easy to draw. We will just outline the basic constructions, accentuating
the small differences.

Example 5.1. We again start with the most basic example, generalizing slightly
the notion of a homotopy fiber. Let I be the pullback category 1 → 0 ← 2, and

let D : I → Top be a diagram X
p−→ B

q←− Y . A point in the pullback X ×B Y
consists of a point x ∈ X and a point y ∈ Y such that p(x) = q(y). A point in the
homotopy pullback will consist of a point x ∈ X, a point y ∈ Y , and a path from
p(x) to q(y).

Formally, we define holimD to be the pullback of the diagram

BI

��
X × Y

p×q // B ×B

where BI is the space of maps γ : I → B and BI → B sends γ to (γ(0), γ(1)). It is
sometimes useful to depict a point in holimD via a picture like the following:

X
B

Y

x

y

q(y)

p(x)

Note that if X
p−→ B is a map and ∗ ∈ B is a basepoint, then the homotopy

fiber of p, as classicaly defined, is just the homotopy pullback of the diagram

X −→ B ←− ∗.

Generally speaking, if I is any indexing category and D : I → Top is a diagram,
then a point in limD consists of points in each D(i) which ‘match up’ as you
move around the diagram. A point in holimD will consist of points in each D(i),
together with paths connecting their images as you move around the diagram, as
well as ‘higher homotopies’ connecting the paths, and paths of paths, etc. It is a
bit hard to describe, but here is one more example.

Example 5.2. Consider a diagram D of the form A
f−→ X

g−→ Y . A point in
holimD will consist of points a ∈ A, x ∈ X, y ∈ Y , together with the following
extra data. First, we need a path α from f(a) to x, a path β from g(x) to y, and
a path γ from g(f(a)) to y. Applying g to α gives a path from g(f(a)) to g(x),
and so now we have a map ∂∆2 → Y consisting of the three paths g(α), β, and γ.
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Finally, we also require a map ∆2 → Y extending our map ∂∆2 → Y . This is a
‘higher homotopy’.

5.3. Tot of a cosimplicial space. A cosimplicial space is a functor X : ∆→ Top,
drawn as follows:

X0
//// X1

// //// X2
////////// · · ·

(and here we are omitting the codegeneracy maps for typographical reasons). Let
∆∗ denote the cosimplicial space corresponding to the standard inclusion ∆ ↪→ Top.
As a cosimplicial space, ∆∗ is

∆0 //// ∆1 ////// ∆2 ////////// · · ·
If X is any cosimplicial space we can talk about the space of maps from ∆∗ to X:

the points are the natural transformations ∆∗ → X, and they are topologized as a
subspace of

∏
nX

∆n

n . This space of maps is sometimes denoted Map(∆∗, X), but
is more commonly denoted TotX. It is called the totalization of X, or usually
just “Tot of X”, for short. We can also describe it as an equalizer:

TotX = eq

[∏
n

X∆n

n ⇒
∏

[n]→[k]

X∆n

k

]
.

The two maps in the equalizer can be defined as follows, using that any map
σ : [n] → [k] induces a corresponding map σ∗ : ∆n → ∆k. Given a sequence of
elements sn ∈ X∆n

n , one of our maps sends this to the collection σ 7→ sk◦σ∗ ∈ X∆n

k .

The other map sends the sequence sn to the collection σ 7→ X(σ)◦sn ∈ X∆n

k , where
X(σ) is the induced map Xn → Xk.

In words, a point in TotX consists of a point x0 ∈ X0, an edge x1 in X1, a
2-simplex x2 in X2, and so on, which are compatible in the following two ways:

(1) The two images of x0 under X0 ⇒ X1 are the two endpoints of x1; the three
images of x1 under the maps d0, d1, d2 : X1 → X2 are the three faces of the
2-simplex x2; and so on.

(2) The image of x1 under the codegeneracy X1 → X0 is the map ∆1 → X0

collapsing everything to x0; the image of x2 under the two codegeneracies

X2 ⇒ X1 are the two maps ∆2 ⇒ ∆1 x1−→ X1, etc.

There doesn’t seem to be a particularly simple way to think about all this! Usually
I think of a point in TotX as being a point x0 ∈ X0 plus an edge connecting its
two images in X1, plus a 2-simplex connecting the three images of this edge in
X2, and so on, with the proviso that all this data must be compatible under the
codegeneracies.

Note that there is an evident map eq(X0 ⇒ X1)→ TotX defined as follows. If
x0 ∈ X0 is equalized by the two maps to X1, then we can choose our 1-simplex x1

in X1 to be constant. Then we can also choose our 2-simplex in X2 to be constant,
and so on down the line. All of these choices are automatically compatible under
codegeneracies, so we get a point in TotX.

5.4. Reedy fibrancy. It is not true that if X → Y is an objectwise weak equiva-
lence between cosimplicial spaces then TotX → TotY is a weak equivalence. It is
true if X and Y satisfy some conditions, which we now explain.

Let X be a cosimplicial space and let a ∈ Xn. Applying the codegeneracy maps
to a gives an n-tuple (s0a, s1a, . . . , sn−1a) ∈ (Xn−1)n. This is not an arbitrary
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n-tuple, as the cosimplicial identities give us some relations among the coordinates.
If we relabel this n-tuple as (x0, . . . , xn−1), we find that sixi = sixi+1 for each i in
the range 0 ≤ i ≤ n − 2. The nth matching object of X is the subspace of all
n-tuples satisfying these relations; that is,

MnX = {(y0, y1, . . . , yn−1) ∈ (Xn−1)n | siyi = siyi+1 for 0 ≤ i ≤ n− 2}.
The map Xn → MnX sending a to (s0a, . . . , sn−1a) is called the nth matching
map.

Definition 5.5. A cosimplicial space is Reedy fibrant if the associated matching
maps Xn →MnX are fibrations, for all n ≥ 0.

Proposition 5.6. Let X → Y be an objectwise weak equivalence between cosim-
plicial spaces, each of which is Reedy fibrant. Then TotX → TotY is a weak
equivalence of spaces.

Proof. See [BK, ????]. �

5.7. Construction of homotopy limits. Let I be a small category and let
D : I → Top be a diagram. The cosimplicial replacement of D is the cosim-
plicial space crep(D) defined as

crep(D)n =
∏

i0→i1→···→in

D(in).

The cofaces and codegeneracies are the evident ones, defined analogously to the
case of simplicial replacements.

The cosimplicial replacement of a diagram is always Reedy fibrant, provided that
the diagram was objectwise fibrant (which is always true in Top, since all spaces
are fibrant). So one defines the homotopy limit of D by

holimD = Tot[crep(D)].

It readily follows from Proposition 5.6 that this construction is homotopy invariant.
The equalizer of crep(D)0 ⇒ crep(D)1 is just limD; a point in this equalizer

consists of choices of points in each Di which are compatible as one moves around
the diagram. The natural map from this equalizer into Tot(crep(D)) gives us a
natural map limD → holimD.

Just as for homotopy colimits, we can describe holimD via another formula—this
time an equalizer formula:

holimD ∼= eq

[∏
i

X
B(I↓i)
i ⇒

∏
i→j

X
B(I↓i)
j

]
.

5.8. Adjunctions. If D : I → Top and X ∈ Top, there is a useful adjunction
formula

Top(colim
I

D,X) ∼= lim
I

Top(D(i), X).

Here Top(A,B) denotes the set of maps from A to B in the category Top. The
formula just says that giving a map colimD → X is the same as giving a bunch of
maps D(i)→ X which are compatible as i changes. There is a similar formula

Top(A, lim
I
D) ∼= lim

I
Top(A,D(i))

which has an analogous interpretation.
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When generalizing to homotopy limits and colimits, the difference is that one
replaces the set of maps in Top with the mapping space Map(X,Y ) (also denoted
XY ) . For this we need to assume we are working in a ‘good’ category of spaces
where the mapping space is a true right adjoint (like the category of compactly-
generated spaces). We then have natural isomorphisms

Map(hocolim
I

D,X)→ holim
Iop

Map(D(i), X)(5.9)

and

Map(A,holim
I

D)→ holim
I

Map(A,D(i)).(5.10)

We will only explain the map in (5.9), as the other one is similar. Using the
description of hocolimD from (4.14), we have maps

Map(hocolimD,Z)

∼=��

eq

[
Map

(∐
iDi ×B(i ↓ I)op, Z

)
⇒ Map

(∐
i→j Di ×B(j ↓ I)op, Z

)]
∼=
��

eq

[∏
i Map

(
Di ×B(i ↓ I)op, Z

)
⇒
∏
i→j Map

(
Di ×B(j ↓ I)op, Z

)]
∼=
��

eq

[∏
i Map

(
Di, Z

)B(i↓I)op

⇒
∏
i→j Map

(
Di, Z

)B(j↓I)op
]

∼=
��

eq

[∏
i Map

(
Di, Z

)B(Iop↓i)
⇒
∏
i→j Map

(
Di, Z

)B(Iop↓j)
]

holim
Iop

Map(D(i), Z).

In the first two maps we are using that Map(−, Z) takes colimits to limits, which
follows from the adjointness properties. The third map just uses the adjunction,
and in the fourth map we have used the identification (i ↓ I)op = (Iop ↓ i).
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6. Changing the indexing category

As mentioned briefly in Section 2.3, one is often in the situation of wanting to
prove that the homotopy colimits of two different diagrams are weakly equivalent.
There are a variety of techniques for this, and we will describe a few in this section.
Unfortunately, the proofs of these results require more technology than is yet at
our disposal—so we will defer the proofs until Section 10.

Let α : I → J be any functor between small categories. Then given any diagram
X : J → Top, one obtains a new diagram α∗X : I → Top by α∗X = X ◦α. We wish
to compare hocolimJ X with hocolimI(α

∗X). In particular, under what conditions
will they be weakly equivalent?

6.1. The classical problem for colimits. The corresponding problem in the case
of ordinary colimits is probably familiar. There is a canonical map

colim
I

(α∗X)→ colim
J

X

and one wants to know when this is an isomorphism. A common situation is that I
is a subcategory of J , and one usual definition for I to be ‘cofinal’ in J is something
like:

(1) For each j ∈ J , there is an i ∈ I and a map j → i.
(2) For any two parallel maps j ⇒ i where i ∈ I, there is a map i → i′ in I such

that the two composites j → i′ are the same.

This is actually a special case of a much more general definition. Recall that for
any j ∈ J , the undercategory (j ↓ α) is the category whose objects are pairs
[i, f : j → α(i)] consisting of an object i ∈ I and a map f : j → α(i) in J . A map
from [i, f ] to [i′, f ′] consists of a map i→ i′ in I making the diagram

j
f //

f ′   

α(i)

��
α(i′)

commute.

Definition 6.2. The functor α : I → J is terminal (or final, or left cofinal) if
for each j ∈ J the undercategory (j ↓ α) is non-empty and connected.

Theorem 6.3. If α : I → J is terminal then for every diagram X : J → Top, the
map colimI(α

∗X)→ colimJ X is an isomorphism.

Proof. See [ML, Thm. IX.3.1]. �

Remark 6.4. There is a nice way to remember the above definition and theorem.
One particularly simple case is when J has a terminal object w, and I = {w} is the
subcategory consisting of this single object. In this case it is clear that colimJ X
should just be X(w), which is colimI(α

∗X).
The condition for being a terminal object is that the undercategories (j ↓ {w})

are trivial categories consisting of one object and an identity map. This is a very
special case of the connectedness condition above.
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6.5. Extension to the case of homotopy colimits. Let α : I → J be a functor
between small categories. We first note that for any diagram X : J → Top there is
a natural map of simplicial spaces

φα : srep(α∗X)→ srep(X).

In simplicial degree n this is the map∐
i0←i1←···←in

(α∗X)(in) −→
∐

j0←j1←···←jn

X(jn)

which sends the summand (α∗X)(in) indexed by the chain [i0 ← · · · ← in] to the
summand X(α(in)) corresponding to the chain [α(i0) ← · · · ← α(in)]. Note that
(α∗X)(in) = X(α(in)), and the map is really just the identity on these summands.
This is clearly compatible with the face and degeneracy maps, and so gives a map
of simplicial spaces.

Taking realizations gives us a natural map

φα : hocolim
I

α∗X → hocolim
J

X.

Definition 6.6. The functor α : I → J is homotopy terminal (or homotopy
final, or homotopy left cofinal) if for each j ∈ J the undercategory (j ↓ α) is
non-empty and contractible (meaning that its nerve is contractible).

See Remark 6.13 for more about the above choices in terminology.

Theorem 6.7 (Cofinality Theorem). If α is homotopy terminal then for every di-
agram X : J → Top, the map hocolimI(α

∗X)→ hocolimJ X is a weak equivalence.

Proof. See Section 10.6 for a complete proof, and Section 11 for a different perspec-
tive. �

There is one special case of Theorem 6.7 which we will prove now, both because
the proof is simple and because we will need it later.

Lemma 6.8. Suppose that J has a terminal object z. Then for every diagram
X : J → Top, the map hocolimJ X → colimJ X → X(z) is a weak equivalence.

Proof. Consider the simplicial space srep(X). There is an evident augmentation
srep(X) → X(z), and we claim that this augmented simplicial space admits a
sourcelike contracting homotopy (see Definition 3.11). The contraction operator
S : srep(X)n → srep(X)n+1 will send the summand X(in) labelled by [i0 ← i1 ←
· · · ← in] to the summand X(in) labelled by [z ← i0 ← i1 ← · · · ← in]. It is routine
to check that this satisfies the identities for a contracting homotopy, and therefore
by Proposition 3.12 we find that | srep(X)| → X(z) is a homotopy equivalence. �

It is often useful to know how the maps φα behave under composition. Suppose

now that I1
α−→ I2

β−→ I3 are two functors between categories, and that X : I3 →
Top is a diagram. We have three natural maps of simplicial spaces, forming a
triangle which is readily checked to commute:

srep[(βα)∗X]
φα //

φβα ((

srep(β∗X)

φβ

��
srep(X).
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This yields a commutative triangle of homotopy colimits:

hocolimI1(βα)∗X
φα //

φβα ))

hocolimI2 α
∗X

φβ

��
hocolimI3 X.

Here is another result about changing the indexing category. Suppose again that
α : I → J is a functor and X : J → Top. For each j ∈ J , let uj : (α ↓ j)→ J be the
map sending [i, α(i)→ j] to α(i). Notice that there is a canonical map

colim
(α↓j)

u∗jX → Xj .

Theorem 6.9. Let α : I → J be a functor, and let X : J → Top. Suppose that for
each j ∈ J the composite map

hocolim
(α↓j)

u∗jX → colim
(α↓j)

u∗jX → Xj

is a weak equivalence. Then the map hocolimI α
∗X → hocolimJ X is a weak equiv-

alence.

Proof. See Section 10.6. �

6.10. Dual results for homotopy limits. Suppose α : I → J and X : J → Top.
There is a natural map of cosimplicial spaces

crep(X)→ crep(α∗X),

and after taking Tot this gives a map α∗ : holimJ X → holimI(α
∗X).

Definition 6.11. The functor α : I → J is homotopy initial (or homotopy
cofinal, or homotopy right cofinal) if for each j ∈ J the overcategory (α ↓ j) is
non-empty and contractible (meaning that its nerve is contractible).

The following is the dual version of Theorem 6.7:

Theorem 6.12. If α is homotopy initial then for every diagram X : J → Top, the
map holimJ X → holimI(α

∗X) is a weak equivalence.

Remark 6.13. The terms ‘final/cofinal’ and—even worse—‘left/right cofinal’ are
easily mixed up, and it is also easy to mix up which one goes with colimits and
which one goes with limits. The terms ‘homotopy initial’ and ‘homotopy terminal’
are better in this regard, as they fit naturally with the notions of initial and terminal
object.

If a category has a terminal object, it is easy to compute the homotopy colimit .
The condition that a category I has a terminal object ω says something about the
undercategories (i ↓ ω) for each object i; likewise, the condition that a functor
α : K → I be homotopy terminal says something about the undercategories (i ↓ α).
So the adjective ‘terminal’ lets one remember how to connect all these concepts
(and likewise for ‘initial’).

One also has the following analog of Theorem 6.9:
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Theorem 6.14. Let α : I → J be a functor, and let X : J → Top. Suppose that
for each j ∈ J the composite map

Xj → lim
(j↓α)

u∗jX → holim
(j↓α)

u∗jX

is a weak equivalence, where uj : (j ↓ α)→ J is the evident functor. Then the map
holimJ X → holimI α

∗X is a weak equivalence.

6.15. Further techniques. We give one more result related to changing the index-
ing category. We will only state the hocolim version; the holim version is entirely
analogous.

Suppose that α, α′ : I → J are two functors and η : α → α′ is a natu-
ral transformation. If X : J → Top then η induces a natural transformation
η∗ : α∗X → (α′)∗X. The following triangle commutes in the homotopy category
Ho (Top):

hocolimI α
∗X

φα //

η∗

��

hocolimJ X

hocolimI(α
′)∗X.

φα′

66

Proposition 6.16. Let α : I → J be a functor between small categories, and let
X : J → Top be a diagram. Suppose that there is a functor β : J → I together with
natural transformations η : αβ → idJ and θ : βα→ idI such that the following two
conditions hold:

(1) Applying X to the maps η(j) : αβ(j)→ j yields weak equivalences, for all j ∈ J ;
and

(2) Applying α∗X to the maps θ(i) : βα(i) → i also yields weak equivalences, for
all i ∈ I.

Then the induced map hocolimI α
∗X → hocolimJ X is a weak equivalence.

Moreover, the same conclusion holds if there are zig-zags of natural transfor-
mations between βα and idI , and between αβ and idJ , provided each step in the
zig-zags induces weak equivalences after applying X and α∗X, respectively.

Proof. See [D, Proposition A.4]. �
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7. A few examples
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Part 2. A closer look

So far we have understood the homotopy colimit as a ‘fattened up’ version of the
colimit. Whereas taking a colimit can be thought of as gluing objects together, tak-
ing a homotopy colimit amounts to indirectly gluing them together via homotopies
and higher homotopies. We saw that this process can be described by a certain
formula (the geometric realization of the simplicial replacement), which is not hard
to describe but perhaps not so easy to manipulate.

In the next few sections we will take a closer look at this formulaic approach
to homotopy colimits, and we will encounter several variations of the main idea.
The ostensible goal will be to learn some clever techniques for manipulating these
formulas, but along the way we will make discoveries which slowly take us further
and further away from the formulaic perspective. In Part 3 we will then take up
those discoveries from a more abstract point-of-view.

There is a central theme which drives most of what follows. Given a diagram
D : I → Top, there is a way of constructing the homotopy colimit by first replacing
D with an ‘equivalent’ (but nicer) diagram QD : I → Top (having QDi ' Di for
each i) and then taking the ordinary colimit of QD. The diagram QD is in some
sense a resolution of D, and this leads us to view the homotopy colimit as a derived
functor of the colimit. When we first encounter this idea in Section 9 it might seem
like there is not much content to it—we are just rewriting the old formula for the
homotopy colimit in a different way. But the power of homological (or homotopical)
algebra comes in realizing that one doesn’t have to use the same resolution every
time; any nice enough resolution will do the job. So in the end this new way of
looking at things will prove very useful.

Here is a good analogy to keep in mind (and it turns out to be more than just an
analogy). In homological algebra, one could choose to define Tor and Ext groups
by always using the standard resolution (also called the bar resolution) of a mod-
ule. From a theoretical perspective this is perfectly reasonable, and in some ways
very convenient, but it makes computations almost impossible. There are very few
instances where one can get enough control over the standard resolution to success-
fully compute something. But one eventually realizes that Tor and Ext groups are
computable, either by using smaller resolutions or techniques that involve patch-
ing more manageable pieces of information together. This is what remains in our
journey through homotopy colimits: we haved defined them via a “standard reso-
lution”, and this is enough to prove some basic properties, but we need different
techniques for actually getting our hands on them.

This is probably belaboring the point, but I can’t resist one last analogy—again
because it goes deeper than it first seems. Imagine teaching the theory of ordinary
homology by writing down the singular chain complex on the first day of class.
One can do this without too much trouble, and one can maybe even prove some
basic results about this theory; but it is nearly impossible to make a computation
based on the definition itself. The singular chain complex is huge, and the large size
plays out opposing ways: good because it is easy to write down and convenient for
proving basic properties, but bad in the sense of allowing for computations. One
should think of our initial definition of homotopy colimits in similar terms.
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8. Brief review of model categories

Model categories will weave their way in and out of the next few sections. They
have proven themselves to be a valuable ally when dealing with derived functors
and homotopical algebra.

We will not recall the notion of a model category here. The reader may consult
[DwS], [H], or [Ho] for nice overviews. Suffice it to say that a model category M

is a category equipped with three collections of maps—the cofibrations, fibrations,
and weak equivalences—which are required to satisfy five basic axioms. A map is
called a ‘trivial cofibration’ if it is both a cofibration and a weak equivalence, and
similarly for ‘trivial fibration’.

The basic examples are as follows:

(1) Top, where the weak equivalences are weak homotopy equivalences, the fibra-
tions are Serre fibrations, and the cofibrations are retracts of cellular inclusions.

(2) sSet, where the weak equivalences are the maps which become weak homotopy
equivalences after geometric realization. The fibrations are the Kan fibrations,
and the cofibrations are the monomorphisms.

(3) Ch≥0(R), where R is a ring. This is the category of non-negatively graded
chain complexes. We equip it with the so-called projective model category
structure: the weak equivalences are the quasi-isomorphisms, the fibrations are
maps which are surjective in positive dimensions, and the cofibrations are the
monomorphisms which in each level are split with projective cokernel.

(4) Ch≤0(R), where R is a ring. This is the category of non-positively graded
chain complexes (or cochain complexes, after re-indexing). Here we use the so-
called injective model category structure: the weak equivalences are the quasi-
isomorphisms, the cofibrations are the monomorphisms, and the fibrations are
the surjections which in each level are split with injective kernel.

There are many other examples, for instance several different model categories
of spectra.

8.1. Quillen functors. If M and N are two model categories, a Quillen pair is
an adjoint pair

L : M � N : R

which satisfies the following two equivalent conditions:

(1) L preserves cofibrations and trivial cofibrations—that is so say, if f is a cofi-
bration (resp. trivial cofibration) in M then L(f) is a cofibration (resp. trivial
cofibration) in N.

(2) R preserves fibrations and trivial fibrations.

The most familiar example is the adjoint pair

| − | : sSet� Top : Sing

where | − | is geometric realization and Sing is the functor which sends a space X
to the simplicial set [n] 7→ Top(∆n, X).

One can prove that when (L,R) is a Quillen pair, L preserves weak equivalences
between cofibrant objects and R preserves weak equivalences between fibrant ob-
jects. The ‘derived functor’ of L applied to an object A ∈ M is obtained by
choosing a weak equivalence QA→ A in which QA is cofibrant, and then applying
L to QA. If Q′A→ A is another weak equivalence in which Q′A is cofibrant, then
the model category axioms show that there is a weak equivalence QA→ Q′A; thus,
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L(QA)→ L(Q′A) is also a weak equivalence. This tells us that the derived functor
of L gives a well-defined homotopy type.

Similarly, the derived functor of R applied to an object Z ∈ N is obtained by
choosing a weak equivalence Z → FZ in which FZ is fibrant, and then applying R
to FZ.

8.2. Simplicial model categories. We will need this material only rarely in the
following, but this is a reasonable place to quickly review it. A model category M

is called simplicial if there are bifunctors

⊗ : sSet×M→M, Map: Mop ×M→ sSet, F : sSetop ×M→M

satisfying the usual adjunctions

Map(K ×X,Y ) ∼= sSet(K,Map(X,Y )) ∼= Map(X,F (K,Y ))

where sSet(−,−) is the simplicial mapping space between two simplicial sets. As-
sociativity and unital properties of ⊗ are also required, and these bifunctors need
to be compatible with the model category structure in the sense that the following
axiom is satisfied:

[SM7] For every cofibration j : K � L in sSet and every fibration p : X � Y in
M, the map

Map(L,X)→ Map(K,X)×Map(K,Y ) Map(L, Y )

is a fibration. Moreover, it is a trivial fibration if either j or p is a weak
equivalence.

The following two conditions are known to be equivalent to SM7:

(1) For any cofibrations j : K � L in sSet and f : A� B in M, the induced map
(K ⊗ B) q(K⊗A) (L ⊗ A) → L ⊗ B is a cofibration, and it is trivial if either j
or f is so.

(2) For any cofibration j : K � L in sSet and fibration p : X � Y in M, the map

F (L,X)→ F (K,X)×F (K,Y ) F (L, Y )

is a fibration, and it is trivial if either j or p is.

Example 8.3. The model category Top becomes a simplicial model category via

K ⊗X = |K| ×X, F (K,X) = X |K|, and Map(X,Y ) = Sing(Y X)

where Sing is the usual singular complex functor Sing : Top→ sSet.
The model category sSet is a simplicial model category where

K ⊗X = K ×X, F (K,X) = sSet(K,X), and Map(X,Y ) = sSet(X,Y ).

These are the two standard examples, and most other examples are model categories
that are derived from Top or sSet in some way.

Remark 8.4. While not every model category can be given a simplicial struc-
ture, there is a certain sense in which every model category is almost simplicial.
The Dwyer-Kan theory of framings gives a way of defining K ⊗X, F (K,X), and
Map(X,Y ) in any model category, but things like the adjunction formula and the
associativity of ⊗ only turn out to be true up to homotopy, not on the nose. See
??? for more information.
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Remark 8.5. The theory of homotopy colimits and homotopy limits that we have
developed so far adapts more or less verbatim to any simplicial model category.
With only slightly more trouble, the theory of framings allows one to also extend
the definitions to any model category. We will not need this for a while, but it is
good to know right at the start that the theory really does work in a very great
generality.
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9. The derived functor perspective

In this section we explain a sense in which the homotopy colimit is the derived
functor of the colimit functor. We also discuss a universal property (of sorts)
enjoyed by the homotopy colimit.

Example 9.1. To motivate what follows, we return to our basic example of a

pushout diagram X
f←− A

g−→ Y . Recall that the homotopy pushout consists
of a copy of X, a copy of Y , and a cylinder A × I in which the two ends of the
cylinder have been glued to X and Y via the maps f and g. We can arrive at this
construction in a different way, as follows.

Let Cyl(f) and Cyl(g) denote the mapping cylinders of f and g; for example, the
former is the quotient space [Xq(A×I)]/∼ where (a, 0) ∼ f(a). Let i : A ↪→ Cyl(f)
denote the inclusion a 7→ (a, 1), and let j : A ↪→ Cyl(g) be defined similarly. We

have the new pushout diagram of the form Cyl(f)
i←− A j−→ Cyl(g); let’s call this

new diagram QD. Note that there is a natural weak equivalence QD → D obtained
by collapsing the cylinders, and that the colimit of QD is a model for hocolimD.

To summarize, we have found the following prescription for constructing the
homotopy colimit. First replace the diagram D by a new one QD in which one
adds homotopies to the objects in a certain way, without affecting their homotopy
type. Sometimes this is called ‘fattening up’ the diagram D. The homotopy colimit
of D is then just the colimit of the new diagram QD.

9.2. Construction of QX. We will next explain how to adapt the above example
to the general case. Let X : I → Top be a diagram. Basically what we want to do is
replace each object Xi with the homotopy colimit of all the objects in the diagram
mapping to Xi. To say this precisely, for each i ∈ I consider the overcategory
(I ↓ i) and the forgetful functor ui : (I ↓ i) → I sending the pair [j, j → i] to j.
Write

(QX)i = hocolim
(I↓i)

u∗iX.

The category (I ↓ i) has a terminal object, namely the pair [i, id : i→ i]. So there
are natural maps

Xi = (u∗iX)([i, i→ i])→ (QX)i → colim
(I↓i)

u∗iX → Xi

and the composite is the identity. It follows from Lemma 6.8 that (QX)i → Xi a
weak equivalence.

Note that (QX)i is the realization of the following simplicial space:∐
i←i0

X(i0)
∐

i←i0←i1
X(i1)oooo

∐
i←i0←i1←i2

X(i2)
oooooo · · ·oooooooo(9.3)

Now suppose that we have a map f : i → j, and let uf denote the functor
(I ↓ i) → (I ↓ j) sending [k, k → i] to [k, k → j] (obtained by composing with f).
This functor induces a map

(uf )∗ : (QX)i = hocolim
(I↓i)

u∗iX → hocolim
(I↓j)

u∗jX = (QX)j .

At the simplicial level (9.3), this is just the map that composes with i→ j in all the

indexing strings. If i
f−→ j

g−→ k are two maps in I then we have a commutative
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diagram

(I ↓ i)
uf //

ugf $$

(I ↓ j)

ug

��
(I ↓ k)

and therefore get a commutative triangle

(QX)i
(uf )∗ //

(ugf )∗ $$

(QX)j

(ug)∗

��
(QX)k.

So QX is a new diagram I → Top.
The natural maps hocolim(I↓i) u

∗
iX → colim(I↓i) u

∗
iX
∼= Xi compile to give a

map of diagrams QX → X. By the remarks above, this is an objectwise weak
equivalence.

Remark 9.4. Note that we also have weak equivalences Xi → QXi coming from
the terminal object of (I ↓ i), but these are not compatible as i varies. That is,
they do not assemble to give a map of diagrams X → QX. See Example 9.1.

Our final claim is that colimI(QX) ∼= hocolimI X. It is not so hard to just think
about it and see that this must be true. We will be able to explain it better after
a brief detour, though.

9.5. Homotopy coherent maps and the universal property. Suppose that
X,Y : I → Top are two diagrams. A map of diagramsX → Y consists of a collection
of maps Xi → Yi which are compatible as i varies. A homotopy coherent map
X → Y consists of a collection of maps Xi → Yi (which might not be compatible
as i varies), together with the following data:

(1) For every map i→ j in I, a homotopy Xi ×∆1 → Yj between the composites
Xi → Xj → Yj and Xi → Yi → Yj .

(2) For every composable pair i→ j → k, a map Xi×∆2 → Yk whose restriction to
Xi × ∂∆1 gives the three homotopies corresponding to the maps i→ j, i→ k,
and j → k.

(3) For every chain of n morphisms i0 → i1 → · · · → in, a map Xi0 ×∆n → Yin
which extends previous data on the subspace Xi0 × ∂∆n.

Of course we have been very sloppy in writing down the third condition. We
have also left out something: for any chain of maps containing an identity, the
corresponding ∆n-homotopy should be an appropriate degeneration of the ∆n−1-
homotopy associated to the smaller chain in which the identity map is omitted.
That’s quite a mouthful, and pretty intimidating to deal with.

A convenient way to be more rigorous is as follows. One can form a cosimplicial
space Map(X,Y )

∏
i

Map(Xi, Yi)
//// ∏
i0→i1

Map(Xi0 , Yi1)
// ////

∏
i0→i1→i2

Map(Xi0 , Yi2)
// ////// · · ·

with the evident coface and codegeneracy maps, and a homotopy coherent map
X → Y is precisely a point in Tot of this cosimplicial space. The maps from ∆n
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into the nth level are all the n-fold homotopies, compatibility with coface maps
is condition (3) from above, and compatibility with codegeneracies is the wordy
condition that we initially left out.

The cosimplicial space that appears above is called the two-sided cobar con-
struction. We will explore it in much more detail in Section 12.

Remark 9.6. Let Z be a space. To give a map colimX → Z is equivalent to
giving a map of diagrams X → cZ, where cZ is the constant diagram containing
Z at every spot (and all identity maps). The reader may check that to give a
map hocolimX → Z is the same as giving a homotopy coherent map of diagrams
X → cZ. This can be thought of as the ‘universal property’ for homotopy colimits.

Let TopI denote the category whose objects are functors I → Top, and where the
maps are natural transformations. To distinguish these maps from the homotopy
coherent maps, we will occasionally refer to them as “honest maps”. If X and Y
are I-diagrams and we write X → Y , this will always denote an honest map.

Let hc(X,Y ) denote the set of homotopy coherent maps from X to Y . Note that
honest maps of diagrams X ′ → X and Y → Y ′ give maps hc(X,Y ) → hc(X ′, Y )
and hc(X,Y )→ hc(X,Y ′) in the evident way.

Let QX denote the diagram constructed in the previous section. We claim that
to give a map of diagrams QX → Y is the same as giving a homotopy coherent
map from X to Y :

Proposition 9.7. There is a natural bijection between TopI(QX,Y ) and hc(X,Y ).

Proof. This is just a matter of chasing through the definitions. If you are willing
to wait for more machinery, a slick proof is given in Section 12 below. �

Corollary 9.8. There is a natural isomorphism colimI QX → hocolimI X.

Proof. We first give a handwavy argument that nevertheless offers a bit of intuition.
To give a map colimI QX → Z is to give, for each i ∈ I, maps hocolim(I↓i)X → Z
which are compatible as i varies. This is the same as giving, for each i ∈ I,
a homotopy coherent map X|(I↓i) → (cZ)|(I↓i), which are again compatible as i
varies. But clearly this is the same thing as just giving a homotopy coherent map
X → cZ! Since this is in turn the same as giving a map hocolimI X → Z, it follows
that colimI QX ∼= hocolimI X.

A cleaner argument goes like this. For any space Z we have a sequence of natural
bijections

Top(colimQX,Z) ∼= TopI(QX, cZ) ∼= hc(X, cZ) ∼= Top(hocolimX,Z),

where the middle bijection is from Proposition 9.7. This implies that colimQX ∼=
hocolimX. �

For future reference we make the following observation.

Proposition 9.9. Let E → E′ be an objectwise trivial fibration of I-diagrams in
Top, and let D be an objectwise cofibrant I-diagram. Then hc(D,E) → hc(D,E′)
is surjective.

Proof. The proof is a straightforward induction. Suppose given a homotopy coher-
ent map from D to E′. The maps Di → E′i lift to maps Di → Ei. Then for each
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map i→ j in I we have a diagram

Di × ∂∆1 //
��

��

Ej

∼
����

Di ×∆1 // E′j

where the top horizontal map consists of the two composites Di → Ei → Ej and
Di → Dj → Ej . We get a lifting because the left vertical map is a cofibration and
the right vertical map is a trivial fibration. When i → j is an identity map we
choose the particular lift that is the constant homotopy.

For each composable pair i→ j → k in I we now have a diagram

Di × ∂∆2 //
��

��

Ek

∼
����

Di ×∆2 // E′k

and again we choose a lifting. If either i→ j or j → k is an identity map then we
choose the explicit lifting given by the constant homotopy.

Proceeding in this way, one inductively constructs a point in hc(D,E) that lifts
the original point in hc(D,E′). �

9.10. Model categories of diagrams. Model categories provide a very useful
way for understanding the derived functor perspective on homotopy colimits. It
turns out that TopI has a model category structure in which a map X → Y is a

(1) weak equivalence if and only if each Xi → Yi is a weak equivalence, and
(2) a fibration if and only if each Xi → Yi is a fibration.

The cofibrations are a bit awkward to describe, but they are the maps with the
left-lifting-property with respect to the trivial fibrations. We will talk more about
the cofibrant objects in Section ?????.

There are adjoint functors

colim: TopI � Top : c

where c is the constant diagram functor. Clearly c preserves fibrations and trivial
fibrations, so this is a Quillen pair. To compute the derived functor of colim applied
to a diagram X, one first chooses a weak equivalence X̂ → X where X̂ is cofibrant,
and then L colim(X) is just colim X̂. For this to be useful, we need to be able to

find the cofibrant model X̂:

Proposition 9.11. If X : I → Top is objectwise cofibrant then QX → X is a
cofibrant-replacement in TopI .

Proof. We have already remarked that QX → X is an objectwise weak equivalence,
so we just need to prove that QX is cofibrant. Let W → Z be an objectwise
trivial fibration. Then the map TopI(QX,W ) → TopI(QX,Z) is isomorphic to
hc(X,W ) → hc(X,Z). By Proposition 9.9, this is surjective; so we have a lift
QX →W as desired. We summarize this: �

Note that since colimQX ∼= hocolimX, we have now identified hocolim with the
derived functor of colim.
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Remark 9.12. Below it will be useful to have a name for a construction parallel
to QX. Namely, if X : I → Top is a diagram let

hocolim’
I

X = coeq

[∐
i→j

Xi ×B(j ↓ I) ⇒
∐
i

Xi ×B(i ↓ I)

]
.

This is the same formula as (4.14), but without the “op” symbols on the overcate-
gories; it can also be described as the realization of the simplicial space∐

i0

X(i0)
∐

i0→i1
X(i0)oo oo

∐
i0→i1→i2

X(i0)oo oo
oo · · ·oo

oooo
oo

Clearly hocolim’I X and hocolimI X are isomorphic, but this hinges on the fact
that reversing the order of the face and degeneracy maps in a simplicial spaces
yields an isomorphic geometric realization. At the simplicial level, pre-realization,
the two constructions are somewhat different, although they are clearly “doing the
same thing”.

Let us now define Q′X to be the diagram

i 7→ hocolim’
(I↓i)

(u∗iX).

Repeating the arguments from above, one finds when X is objectwise cofibrant
that Q′X is also a cofibrant-replacement for X in TopI . Note that if ∗ denotes the
constant diagram I → Top whose value is a single point, then Q′(∗) is the diagram
i 7→ B(I ↓ i) whereas Q(∗) is the diagram i 7→ B(I ↓ i)op.

9.13. Tensor products of diagrams. Suppose X : I → Top and Ω: Iop → Top
are given diagrams. The tensor product X ⊗ Ω is defined to be

X ⊗ Ω = coeq

[∐
i→j

Xi × Ωj ⇒
∐
i

Xi × Ωi

]
.

This kind of construction is called a coend, and we have seen it several times
already.

Example 9.14.

(a) A simplicial space is a functor X : ∆op → Top. If j : ∆ ↪→ Top is the canonical
functor, then |X| is just X ⊗ j.

(b) Recall that ∆f ↪→ ∆ is the subcategory consisting of the face inclusions. If
X ′ : ∆op

f → Top denotes the restriction of X to ∆op
f , and j′ : ∆f → Top is the

restriction of j, then ||X|| is X ′ ⊗ j′.
(c) Let X : I → Top be a diagram, and let Ω: Iop → Top be the diagram such that

Ω(i) = ∗ for each i. Then X ⊗ Ω ∼= colimX.
(d) Let X : I → Top be a diagram. Let B(− ↓ I)op : Iop → Top denote the functor

i 7→ B(i ↓ I)op. Then hocolimI X ∼= X ⊗B(− ↓ I)op.

If we fix X, the functor X ⊗ (−) has a nice adjointness property. Namely, it

is the left adjoint to the functor Top → TopI
op

which sends Z to the diagram
i 7→ Top(Xi, Z). We will call this functor Hom(X,−). Our adjoint pair is therefore

X ⊗ (−) : TopI
op

� Top : Hom(X,−).

Assuming X is objectwise cofibrant, then Hom(X,−) takes fibrations to object-
wise fibrations, and trivial fibrations to objectwise trivial fibrations. So the above
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is a Quillen pair. One useful consequence is that the left adjoint preserves weak
equivalences between cofibrant objects.

Let BI denote the Iop-diagram i 7→ B(i ↓ I)op. There is of course a map BI → ∗,
and this is an objectwise weak equivalence because each category (i ↓ I) has an
initial object and is therefore contractible. What’s more, BI is actually cofibrant in

TopI
op

. This is because BI is none other than the diagram Q′(∗), where ∗ denotes
the constant Iop-diagram consisting of a point in every spot (see Remark 9.12 for
Q′). That is to say, for each i ∈ I one has

Q′(∗)i = B(Iop ↓ i) ∼= B(i ↓ I)op.

The second isomorphism is canonical, and so gives an isomorphism of diagrams
BI ∼= Q′(∗). The latter is cofibrant by Proposition 9.11 (the version that applies to
Q′ rather than Q).

So now we understand the formula for the homotopy colimit from another per-

spective: it came from taking a cofibrant approximation to ∗ in TopI
op

, and then
tensoring this with our given diagram. But model category theory now tells us that
we could have used any cofibrant approximation to ∗, and we would have gotten
something weakly equivalent (since any two cofibrant approximations are weakly
equivalent, and X ⊗ (−) preserves weak equivalences between cofibrant objects).
This is useful for obtaining other models for homotopy colimits.

Example 9.15. Recall that ∆f denotes the subcategory of ∆ consisting only of
inclusions. Let D : ∆f → Top denote the diagram [n] 7→ ∆n, obtained by restricting
the canonical diagram ∆→ Top. The map D → ∗ is obviously an objectwise weak
equivalence, and we claim additionally that D is cofibrant in Top∆f . This is easy

to see because if X
∼
−� Y is an objectwise trivial fibration and D → Y is a map,

then one can inductively product a lifting D → X.
So D and B∆f

are both cofibrant replacements for the constant diagram ∗ in

Top∆f . They are therefore weakly equivalent. If X : ∆op
f → Top is any objectwise

cofibrant diagram then X ⊗ (−) is a left Quillen functor, and so we conclude that
X ⊗D is weakly equivalent to X ⊗B∆f

. That is to say, ||X|| is weakly equivalent
to hocolim∆f

X.
This is one way to justify our claim—from way back in Remark 3.6—that if

X → Y is an objectwise weak equivalence between objectwise cofibrant simplicial
spaces, then ||X|| → ||Y || is necessarily a weak equivalence.
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10. More on changing the indexing category

We discuss relative homotopy colimits (also called homotopy left Kan exten-
sions), and use these to revisit the problem of changing the indexing category.
Combining these new ideas with the techniques from the last section, we will be
able to give proofs of two results we skipped in Part 1.

10.1. Relative homotopy colimits. Let α : I → J be a functor. Denote by
α∗ : TopJ → TopI the functor sending a diagram X : J → Top to the composition
I → J → Top. We call the functor α∗ ‘restriction along α’. It has a left adjoint
called the relative colimit or left Kan extension, denoted colimI→J or colimα.
In the case where J = ∗, the trivial category, this is the usual colimit functor.

There is a simple formula for colimI→J(A), where A is in TopI . Namely, it is

the diagram in TopJ given by

j 7→ colim
(α↓j)

(u∗jA)

where uj : (α ↓ j) → I is the forgetful functor. This is a simple exercise using the
universal property of colimits.

The adjoint pair

colimI→J : TopI //
TopJ : α∗oo

is a Quillen pair, as the right adjoint α∗ clearly preserves fibrations and trivial
fibrations. Given A : I → Top one defines the relative homotopy colimit (or
homotopy left Kan extension) to be the J-diagram given by

hocolim
I→J

A = colim
I→J

QA.

Observe that this is the derived functor of colimI→J .
We can also give a more explicit description of the relative homotopy colimit:

Proposition 10.2. Fix α : I → J . Then for A : I → Top, hocolimI→J A is the
J-diagram

j 7→ hocolim
(α↓j)

(u∗jA).

Proof. Let j be an object in J . Notice that

[hocolim
I→J

A]j = [colim
I→J

QA]j = colim
(α↓j)

u∗j (QA) and hocolim
(α↓j)

u∗jA = colim
(α↓j)

Q(u∗jA).

So it suffices to prove that Q(u∗jA) = u∗j (QA). The former is the (α ↓ j)-diagram
sending

[i, α(i)→ j] 7→ hocolim
(α↓j)↓[i,α(i)→j]

u∗jA.

One readily checks that the category
(
(α ↓ j) ↓ [i, α(i) → j]

)
may be identified

with (I ↓ i), and so we are looking at the diagram

[i, α(i)→ j] 7→ hocolim
(I↓i)

u∗iA.

But this is just u∗j (QA), so we are done. �



A PRIMER ON HOMOTOPY COLIMITS 41

10.3. Changing the indexing category. Let α : I → J be a functor. Our next
goal will be to relate hocolimI α

∗X to relative homotopy colimits; this will then
allow us to prove the Cofinality Theorem. Let αop : Iop → Jop be the associated
functor of opposite categories, and let B(− ↓ α)op denote the diagram Jop → Top
sending j 7→ B(j ↓ α)op.

The following proposition uses the functor Q′ discussed in Remark 9.12.

Proposition 10.4. For any α : I → J one has:

(a) B(− ↓ α)op ∼= colim
Iop→Jop

Q′(∗), where ∗ is the constant Iop-diagram whose value

is ∗.
(b) B(− ↓ α)op is cofibrant in TopJ

op

.
(c) For any X : I →M, there is a natural isomorphism hocolimI X ∼= X⊗IopQ′(∗).
(d) There is a natural isomorphism

X ⊗B(− ↓ α)op ∼= hocolim
I

α∗X.

Proof. For part (a) we begin by applying Proposition 10.2—or more precisely, the
analogous result where every hocolim is relaced with hocolim’. This tells us that
for every object j in J ,[

colim
Iop→Jop

Q′(∗)
]
j

∼= hocolim’
(αop↓j)

∗ ∼= B(αop ↓ j) = B(j ↓ α)op.

Part (b) is an immediate consequence of (a), since Q′(∗) is cofibrant in TopI
op

(see Remark 9.12) and colimIop→Jop is a left Quillen functor.
Part (c) is just a restatement of things we have seen before: (4.14) says that

hocolimI X ∼= X ⊗Iop B(− ↓ I), and B(− ↓ I) ∼= Q′(∗) by Remark 9.12.
Finally, part (d) is an argument with adjunctions. For all spaces Z we have

Top
(
X ⊗B(− ↓ α)op, Z) ∼= Top

(
X ⊗ colim

αop
Q′(∗), Z

)
∼= TopJ

op
(

colim
αop

Q′(∗), Hom(X,Z)
)

∼= TopI
op
(
Q′(∗), α∗Hom(X,Z)

)
= TopI

op
(
Q′(∗), Hom(α∗X,Z)

)
= Top

(
α∗X ⊗Q′(∗), Z

)
.

Since these isomorphisms are natural and hold for all spaces Z, it follows that

X ⊗B(− ↓ α)op ∼= α∗X ⊗Q′(∗).
But by (c) the object on the right is precisely hocolimI α

∗X. �

Remark 10.5. Note that in part (a) we could also have written

B(− ↓ α)op ∼= hocolim’
Iop→Jop

∗.

10.6. Proof of the cofinality theorem. We can now give two of the proofs we
skipped over in Part 1.

Proof of Theorem 6.7. First note that if α : I → J is a functor then there is a map
of Jop-diagrams

B(− ↓ α)op → B(− ↓ J)op.
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So for any diagram X : J → Top there is an induced map

X ⊗B(− ↓ α)op → X ⊗B(− ↓ J)op.

The right object is hocolimJ X, and by Proposition 10.4(d) the left object is
hocolimI α

∗X. One checks that the above is the natural map hocolimI α
∗X →

hocolimJ X.
Suppose now that α : I → J is homotopy terminal. This means that for all

objects j in J , the space B(j ↓ α) is contractible. So the map of Jop-diagrams

B(− ↓ α)op → B(− ↓ J)op

is an objectwise weak equivalence, since both diagrams are objectwise contractible.
As X ⊗ (−) is a left Quillen functor, it necessarily preserves weak equivalences
between cofibrant objects. So

X ⊗B(− ↓ α)op → X ⊗B(− ↓ J)op

is a weak equivalence of spaces, which is what we wanted. �

Proof of Theorem 6.9. Recall that α : I → J , X : J → Top, and we assume that for
each object j in J the composite

hocolim
(α↓j)

u∗jX → colim
(α↓j)

u∗jX → Xj(10.7)

is a weak equivalence. Consider the two adjoint pairs

TopI
colimα //

TopJ
colim //

α∗
oo Top.

c
oo

The composite of the right adjoints is the constant diagram functor, so the com-
posite of the left adjoints is the colimit functor.

Start by observing that there is a natural diagram

Q(α∗X)
φ //

' %%

α∗(QX)

'yy
α∗X.

The two diagonal maps are familiar, and are both objectwise equivalences. At a
particular object i in I, the horizontal morphism φ is the evident map

hocolim
(I↓i)

u∗i (α
∗X)→ hocolim

(J↓α(i))
u∗α(i)X

(induced by α). Note that φ must also be an objectwise weak equivalence, since
the other two maps in the triangle are so.

Apply colimα to the above triangle to get

colimαQ(α∗X)
φ //

' ((

colimα α
∗(QX)

'vv

// QX

'
xx

colimα α
∗X // X.

Consider the composite

colim
α

Q(α∗X)→ colim
α

(α∗X)→ X.
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This is a map of J-diagrams, and in spot j it is precisely the map from (10.7). So
our hypothesis is precisely that this map is an objectwise weak equivalence. It then
follows from the above diagram that

colim
α

Q(α∗X)→ QX(10.8)

is also an objectwise weak equivalence.
The diagramQ(α∗X) is cofibrant in TopI , by Proposition 9.11. So colimαQ(α∗X)

is cofibrant in TopJ , as colimα is a left Quillen functor. Therefore (10.8) is an ob-
jectwise weak equivalence between cofibrant diagrams. Applying colimJ to this
yields

hocolim
I

α∗X → hocolim
J

X,

where on the left side we are using that colimJ ◦ colimα = colimI . Since left Quillen
functors preserve weak equivalences between cofibrant objects, this map is a weak
equivalence and we are done. �
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11. The two-sided bar construction

The material in this section is from the beautiful paper [HV]. We will see that
there is a single construction which unifies almost everything we have talked about
so far. Using this, one obtains very slick proofs of most of the main theorems.

11.1. Basic definitions. Let M be a simplicial model category (see Section 8.2).
The reader is free to assume M = Top, but we have reason for the extra generality.

Let I be a small category and let X : I → M and W : Iop → M. Define
B•(W, I,X) to be the simplicial object

[n] 7→
∐

i0←i1←···←in

W (i0)×X(in).(11.2)

The face map dj corresponds to ‘covering up ij ’, with two provisos. In
dn : Bn(W, I,X) → Bn−1(W, I,X) one must use the map X(in) → X(in−1),
whereas in d0 one must use the map W (i0)→W (i1). The degeneracies correspond
to insertion of identity maps, as we are used to. The simplicial object B•(W, I,X)
is called the two-sided bar construction.

Example 11.3. For the case W = ∗ (the constant diagram) one has B•(∗, I,X) =
srep(X). We can also regard X as a functor (Iop)op →M and thereby consider the
object B•(X, I

op, ∗). This is not srep(X) but rather the other simplicial replace-
ment that was defined in Remark 4.2.

Remark 11.4. Note that if S is a set and X ∈M then the notation S ×X makes
sense: it means the coproduct of copies of X, one for each element s ∈ S. Given a
map of sets S → T and a map X → Y in M, there are natural maps S×X → T×X
and S ×X → S × Y . Using this observation, the construction B•(W, I,X) makes
sense if X : I → M and W : Iop → Set, or if X : I → Set and W : Iop → M. It
even makes sense if X : I → Set and W : Iop → Set, in which case it produces a
simplicial set.

The two-sided bar construction also makes sense if X : I → M, Y : Iop → sSet,
and we replace × with ⊗ in the definition (this is the tensor that is part of the
simplicial structure on M). We will still write B•(W, I,X) in this case, as it should
always be clear from context what exactly is meant by this notation.

Example 11.5. B•(∗, I, ∗) is the nerve of Iop.

Assume again that X : I → M and W : Iop → M, but keep in mind that all of
our remarks apply to other settings as well. Let B(W, I,X) = |B•(W, I,X)|. Note
that one has a natural map

B(W, I,X)→ coeq

[
B1(W, I,X) ⇒ B0(W, I,X)

]
= W ⊗I X

(see Section 9.13 for the tensor product). One thinks of B(W, I,X) as a fattened
up version of the tensor product; or sometimes as the ‘homotopy tensor product’.
Note that if f : X → X ′ and g : W → W ′ are maps of diagrams then there are
induced maps

B(W, I,X)→ B(W ′, I,X) and B(W, I,X)→ B(W, I,X ′).

We would like to claim that if f and g are weak equivalences then both these maps
are also weak equivalences, but this requires some additional assumptions.
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Proposition 11.6. Suppose that for any cofibrant object Z in M, the functor
(−)×Z preserves weak equivalences between cofibrant objects. Then for any object-
wise weak equivalences f : X → X ′ and g : W → W ′ between objectwise-cofibrant
diagrams, the two maps B(W, I,X)→ B(W ′, I,X) and B(W, I,X)→ B(W, I,X ′)
are weak equivalences.

Proof. The main step is to check that if W and X are objectwise-cofibrant diagrams
then B•(W, I,X) is a Reedy cofibrant simplicial object. This is true for basically
the same reason as in the case of the simplicial replacement: the nth latching object
sits inside Bn(W, I,X) as a summand of the coproduct. However, there is one extra
hitch: we need to know that the summands W (a) ×X(b) of these coproducts are
themselves cofibrant. This is taken care of by the hypothesis on M.

Once the Reedy cofibrancy is established, the result follows immediately from
Theorem 3.5. �

As explained in [HV], it is useful to think of the theory of diagrams as being a
generalization of the theory of modules. One should think of a diagram X : I →M

as a left I-module, and a diagram W : Iop → M as a right I-module. This is
particularly satisfying if the objects of M are sets with extra structure: for an
x ∈ X(i) and a map f : i→ j, write f.x for the image of x under X(i)→ X(j); for
w ∈W (j) write w.f for the image of w under W (j)→W (i).

If I is a small category then write Mod−I for the category of right I-modules,
i.e. the category of functors Iop →M. Likewise, write I−Mod for the category of
left I-modules, i.e. the category of functors I → M. Note that we are leaving out
M from the notation, though it should be understood from context.

If I and J are small categories, then an I−J bimodule is a diagram I×Jop →
M. If W is an I − J bimodule and X is a J −K bimodule, then by B(W,J,X) we
mean the I −K bimodule defined as

(i, k) 7→ B(Wi, J,Xk).

Here Wi is the Jop-diagram j 7→ W (i, j), and Xk is the J-diagram j 7→ X(j, k).
Note that the construction of B(W,J,X) makes sense even if the target of X is Set,
or if the target of W is Set.

Example 11.7. If I is a category then for each i ∈ I we obtain a left I-module
I(i,−) and a right I-module I(−, i). These are free modules, in the following
sense. For any object Z ∈ M, consider the right I-module I(−, i) ⊗ Z sending
j 7→ I(j, i)⊗ Z. Then for any right I-module X there is a bijection

HomMod−I(I(−, i)⊗ Z,X) ∼= HomM(Z,Xi)(11.8)

obtained by restricting to the canonical copy of Z in the ith spot of the diagram.
Similarly, there are bijections

HomI−Mod(I(i,−)⊗ Z,W ) ∼= HomM(Z,Wi)

for each left I-module W .
An easy adjointness argument now shows that there are natural isomorphisms

I(−, i) ⊗I W ∼= Wi and X ⊗ I(i,−) ∼= Xi. For example, the former follows from
the fact that for any object U in M we have the natural bijections

HomM(I(−, i)⊗W,U) ∼= HomMod−I(I(−, i),Hom(W,U)) ∼= Hom(W,U)i
∼= HomM(Wi, U).
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Note that at the second stage Mod−I refers to the category of right I-modules with
values in Set, and the second isomorphism is an instance of (11.8) where Z = ∗.

Example 11.9. Putting the left and right modules I(j,−) and I(−, i) together, we
have an I − I bimodule given by the functor I × Iop → Set sending (i, j) 7→ I(j, i).
We will call this functor I, by abuse. [The switching in the order of i and j is
annoying, but seems unavoidable; the problem is that the notation in mathematics
always wants to be right to left, so that to talk about maps from a to b we should
really write “Hom(b, a)”; but we don’t.]

By the above observations, for any left I-module X (that is to say, for any
diagram X : I → M) we get a left I-module B(I, I,X). Notice that the I in the
first slot refers to the bimodule from the preceeding paragraph, whereas the I in
the second slot is the category. Similarly, for any right I-module W we get another
right I-module B(W, I, I). We will see in a moment that these are precisely the
diagrams QX and Q′W defined in Section 9.

Exercise 11.10. If X : I → Set, then B•(I, I,X) is an I-diagram of simplicial
sets. Check that B•(I, I, ∗) is the diagram i 7→ N(I ↓ i)op. Similarly, check that
B•(∗, I, I) is the diagram i 7→ N(i ↓ I)op.

Exercise 11.11. Let α : I → J be a functor. There there is a functor J×Iop → Set
given by (j, i) 7→ J(α(i), j). This is really obtained by starting with the J − J
bimodule J and restricting the right action along α. We will still call this bimodule
J , but now regard it as a J − I bimodule.

Check that B•(J, I, ∗) is the left J-module given by j 7→ N(α ↓ j)op. Similarly,
B•(∗, I, J) is the right J-module given by j 7→ N(j ↓ α)op.

Exercise 11.12. Let α : I → J be a functor. For any right I-module X, the
tensor product X ⊗I J is a right J-module. Make sense of this and prove that
X ⊗I J = colimαop X.

11.13. Main properties and applications. The central result of [HV] is the
following:

Theorem 11.14. Let I, J , K, and L be small categories. Suppose given an I − J
bimodule X, a J − K bimodule Y , and a K − L bimodule Z. Then there is a
canonical isomorphism

B(X, J, Y )⊗K Z ∼= B(X, J, Y ⊗K Z)

of I − L bimodules.
Similarly, if W is an H − I bimodule then there is a canonical isomorphism

W ⊗I B(X, J, Y ) ∼= B(W ⊗I X, J, Y )

of H −K bimodules.

Remark 11.15. The above theorem has an open-ended interpretation, as we have
not specified the target categories for the bimodules X, Y , and Z. For instance, X
and Y could take their values in Set and Z could take its values in M; or X and Z
could take their values in Set and Y could take its values in M; or all three functors
could take their values in Set. The isomorphism of the theorem is valid in all these
cases.
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The proof of Theorem 11.14 is a simple exercise in adjoint functors. We will give
it at the end of the section. What we will do now is point out that the theorem
allows one to give very slick proofs of many of our results about homotopy colimits.

Example 11.16 (The two formulas for hocolim). Recall that if X : I → Top then
B(∗, I,X) = | srep(X)| = hocolimI X. By Theorem 11.14 we can also write

B(∗, I,X) ∼= B(∗, I, I ⊗I X) ∼= B(∗, I, I)⊗I X.
But B(∗, I, I) is the diagram i 7→ N(i ↓ I)op, and so the right-most object is the
formula from (4.14). This seems to be the slickest proof that the two formulas for
hocolimX are isomorphic.

Example 11.17 (The diagrams QX). Let X : I → M and consider the left I-
module B(I, I,X). This is the diagram

i 7→ B(I(−, i), I,X) = B(I(−, i), I, I)⊗I X.
But it is easy to check that B•(I(−, i), I, I) = B•(∗, I ↓ i, I). So we are really
looking at the diagram

i 7→ B(∗, I ↓ i, I)⊗I X = B(∗, I ↓ i,X) = hocolim
I↓i

u∗iX.

Therefore B(I, I,X) is the I-diagram QX defined in Section 9.
Recall that we have a natural map of I-diagrams B(I, I,X) → I ⊗I X = X.

This is our map QX → X. Finally, note that one has

colim
I

QX = colim
I

B(I, I,X) = ∗ ⊗I B(I, I,X) ∼= B(∗, I,X) ∼= hocolim
I

X.

This gives a very elegant proof of Corollary 9.8 that doesn’t go through Proposi-
tion 9.7.

Example 11.18 (The diagrams Q′X). We again start with X : I → M, but now
we regard X as a right Iop-module. It is easy to see that B•(X, I

op, ∗) is the ‘other’
simplicial replacement for X considered in Remark 4.2; and so B(X, Iop, ∗) is what
we called hocolim’X in Remark 9.12.

The object B(X, Iop, Iop) is a right Iop-module, or equivalently a left I-module;
in other words, it is a diagram I → M. An analysis similar to the one in the
previous example shows that this is precisely the diagram Q′X defined in (9.12).

Just as in the previous example, we find that

colim
I

Q′X = B(X, Iop, Iop)⊗I ∗ ∼= B(X, Iop, ∗) = hocolim’
I

X.

Example 11.19 (Changing the indexing category). Suppose α : I → J is a functor
and X : J →M. Then we can write

hocolim
I

α∗X = B(∗, I,X) ∼= B(∗, I, J ⊗J X) ∼= B(∗, I, J)⊗J X.

Note that the natural map hocolimI α
∗X → hocolimJ X is the map

α∗ : B(∗, I, J)⊗J X → B(∗, J, J)⊗J X.
Observe that B(∗, I, J) is the Jop-diagram given by j 7→ N(j ↓ α)op (see Exam-

ple 11.11). So the above formula for hocolimI α
∗X recovers Proposition 10.4(d).

We can also recover the other parts of Proposition 10.4. For instance, let us
consider part (a). For any diagram X : I → M, we have already remarked that
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Q′X = B(X, Iop, Iop). So if we want to apply Q′ to the constant Iop-diagram
whose value is a point, then we have

Q′(∗) = B(∗, I, I).

It follows that

colim
Iop→Jop

Q′(∗) = Q′(∗)⊗I J = B(∗, I, I)⊗I J = B(∗, I, I ⊗I J) = B(∗, I, J),

where in the first equality we are using Exercise 11.12. But we have already re-
marked that B(∗, I, J) is the Jop-diagram j 7→ N(j ↓ α)op, so this proves Proposi-
tion 10.4(a).

This completes our examples. Hopefully they demonstrate the power of learning
to manipulate the two-sided bar construction. After proving just a few basic results,
many significant corollaries come along almost for free.

For ease of future reference, we now summarize the relations between the two-
sided bar construction and other objects considered in this paper. In the following,
I → J is a map of small categories and X is a diagram I →M.

B(∗, I, ∗) = BIop

B(I, I,X) = QX = B(I, I, I)⊗I X
B(X, Iop, Iop) = Q′X = X ⊗Iop B(Iop, Iop, Iop)

B•(∗, I,X) = srep(X)

B(∗, I,X) = hocolim
I

X = B(∗, I, I)⊗I X

B(J, I,X) = hocolim
I→J

X = B(J, I, I)⊗I X

B(X, Iop, ∗) = hocolim′I X = X ⊗Iop B(Iop, Iop, ∗)
B(X, Iop, Jop) = hocolim′I→J X = X ⊗Iop B(Iop, Iop, Jop)

11.20. Proof of the Hollender-Vogt theorem. We have one last thing to wrap
up before closing this section:

Proof of Theorem 11.14. ??? �
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12. Function spaces and the two-sided cobar construction

This section is a companion to the last one. We saw that the two-sided bar
construction is a homotopical version of the tensor product of diagrams. Dually,
there is a two-sided “cobar construction” that serves as a homotopical version of
the function space between two diagrams.

As in the last section, fix a simplicial model category M. Let I be a small
category, and let X and Y be left I-modules with values in M. One defines the
function space from X to Y to be

FI(X,Y ) = eq

(∏
i

Map(X(i), Y (i)) ⇒
∏
i→j

Map(X(i), Y (j))

)
.

Note that this is a simplicial set.
If X is an I −K bimodule, then the natural extension of this definition gives a

left K-module FI(X,Y ) (taking values in sSet). Likewise, if Y is an I−L bimodule
then FI(X,Y ) is a right L-module.

Proposition 12.1. Let I and K be small categories. Let Z be a left K-module,
X an I −K bimodule, and Y a left I-module. Then there are natural adjunction
isomorphisms

(a) HomK−Mod(Z,FI(X,Y )) ∼= HomI−Mod(X ⊗K Z, Y ), and
(b) FK(Z,FI(X,Y )) ∼= FI(X ⊗K Z, Y ).

Proof. An easy argument, left to the reader. �

Remark 12.2. Recall that if I is a small category we have the I-I bimodule
i, j 7→ I(j, i), and this is also denoted by the symbol I. If i is an object of I, an easy
adjointness argument using Proposition 12.1(a) and the fact that I(i,−)⊗I Y ∼= Yi
shows that FI(I(i,−), Y ) ∼= Yi. This isomorphism is natural in i, and so can be
interpreted as an isomorphism of left I-modules

FI(I, Y ) ∼= Y,(12.3)

where the left I-module structure on FI(I, Y ) is induced by the right I-module
structure on I.

Just as the tensor product (−)⊗I (−) can be expanded to a homotopical version
B(−, I,−), its adjoint FI(−,−) also has a homotopical version which we denote
ΩI(X,Y ). We define Ω•I(X,Y ) to be the cosimplicial object

[n] 7→
∏

i0→i1→···→in

Map(X(i0), Y (in)),

with the evident coface and codegeneracy operators, and we define ΩI(X,Y ) =
Tot Ω•I(X,Y ). Note that there is a natural map FI(X,Y )→ ΩI(X,Y ).

Recall that we have seen the construction Ω•I(X,Y ) before, in Section 9.5 when
we discussed homotopy coherent maps between diagrams. For X,Y : I → Top we
defined hc(X,Y ) to be the underlying set of ΩI(X,Y ).

The following results are dual versions of Theorem 11.14:

Theorem 12.4. Let I and K be small categories. Let Z be a left K-module, let X
be an I-K bimodule, and let Y be a left I-module. Hypothesis on M? There are
natural isomorphisms
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(a) FK(Z,ΩI(X,Y )) ∼= ΩI(X ⊗K Z, Y ),
(b) ΩK(Z,FI(X,Y )) ∼= FI(B(X,K,Z), Y ), and
(c) ΩK(Z,ΩI(X,Y )) ∼= ΩI(B(X,K,Z), Y ).

Proof. ??? �

To demonstrate the power of this machinery we give a very quick proof of a
result we encountered back in Section 9.5:

Alternate Proof of Proposition 9.7. Recall that X,Y : I → Top are two diagrams.
Observe that the set TopI(X,Y ) is just the underlying set of FI(X,Y ). We simply
write

FI(QX,Y ) = FI(B(I, I,X), Y ) = ΩI(X,FI(I, Y )) = ΩI(X,Y ).

The second equality is by Theorem 12.4(b), and the third equality uses (12.3).

Taking underlying sets gives us TopI(QX,Y ) = hc(X,Y ), as desired. �

Notice that Ω•I(∗, Y ) = crep(Y ) and ΩI(∗, Y ) = holimY . As further practice
with the machinery we will develop the dual of the construction X 7→ QX. To this
end, if Y is a left I-module define RY = ΩI(I, Y ). This is also a left I-module, and
it comes with a natural map

Y = FI(I, Y )→ ΩI(I, Y ) = RY.

Note that

lim
I
RY = FI(∗, RY ) = FI(∗,ΩI(I, Y )) = ΩI(I ⊗I ∗, Y ) = ΩI(∗, Y ) = holim

I
Y.

We claim that the natural map Y → RY is an objectwise weak equivalence. This
is simply because for every object i in I the co-augmented cosimplicial space

Yi // ∏
i0

Map(I(i, i0), Yi0) ////
∏

i0→i1
Map(I(i, i0), Yi1) ////// · · ·

has a contracting homotopy. To write this down, notice that in level n we have
the product, indexed over all strings i → i0 → · · · → in, of Yin . It is convenient,
though not technically correct, so imagine the set-theoretic situation and write
such an element as a tuple (s[i→i0→···→in] ∈ Yin). The contraction (i.e., the extra
codegeneracy) sends such a tuple to the assignment

[i→ i0 → · · · → in−1] 7→ s[i→i→i0→···→in−1]

where of course the map i→ i is the identity.

Remark 12.5. There is another way to see the above contracting homotopy. Let
ob(I) be the category with the same objects as I, but where the only maps are the

identities. There is a forgetful functor U : TopI → Topob(I), and this has both a left
and right adjoint. The right adjoint G may be readily checked to be the map that

sends W ∈ Topob(I) to the diagram

i 7→
∏
i→i0

Wi0 .

The adjoint pair (U,G) allows us to write down the (coaugmented) cosimplicial
object

Y // GU(Y ) //// GUGU(Y ) // //// · · ·
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We leave the reader to check that Tot of this cosimplicial object is precisely RY .
Applying U everywhere, we pick up a contracting homotopy by the dual of the situ-
ation in Exercise 3.15. This shows that Y → RY is an objectwise weak equivalence.

By analogy with what we saw for QX, one would expect RY to be a fibrant
replacement for Y in the model category MI and for our conclusion to be that
holimI(−) is the derived functor of limI(−). This does not quite fit with what we
have done so far, though. Notice that the adjoint functors

c : M //
MI : limoo

are not usally Quillen functors. For example, the constant functor c need not
preserve cofibrant objects; likewise, the right adjoint lim typically doesn’t preserve
fibrations or trivial fibrations.

The trouble here is that the model category structure on MI that was the right
one to use for the colimit story is not the right one to use for the limit story. We
will talk more about this in the next section (????).

12.6. Relative limits and homotopy limits. Let α : I → J be a functor between
small categories. The restriction functor α∗ : MJ → MI has a left adjoint that we
have used before (the relative colimit), but it also has a right adjoint. Write limα

or limI→J for this right adjoint. If X : I →M then this right adjoint is given by[
lim
I→J

X
]
j

= lim
(j↓α)

u∗jX

for each object j in J .
Another formula for the relative limit is

lim
I→J

X = FI(J,X)

where J is the usual J-J bimodule, regarded as an I-J bimodule via restriction
along α. We can see this through the adjunctions

J−Mod(A,FI(J,X)) ∼= I−Mod(J⊗JA,X) ∼= I−Mod(α∗A,X) ∼= J−Mod(A, lim
I→J

X)

where we have used J ⊗J A = A (but it equals α∗A when we restrict and think of
it as a left I-module).

We define the relative homotopy limit via

holim
I→J

X = lim
I→J

(RX) = FI(J,ΩI(I,X)) = ΩI(I ⊗I J,X) = ΩI(J,X).

12.7. Wrap-up. We close by listing relations between the cobar construction Ω and
other things we have considered in this paper. Here I → J is a functor between
small categories, and Y : I →M is a diagram.

Ω•I(∗, Y ) = crep(Y )

ΩI(∗, Y ) = holimY

ΩI(X,Y ) = hc(X,Y )

ΩI(I, Y ) = RY

ΩI(J, Y ) = holim
I→J

Y.
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Part 3. The homotopy theory of diagrams

Let I be a small category and consider the category of diagrams TopI . A map
of diagrams X → Y is defined to be an objectwise weak equivalence if Xi →
Yi is a weak equivalence for every i in I. Two diagrams are said to be weakly
equivalent if they can be connected by a (possibly very long) zig-zag of objectwise

weak equivalences. The homotopy category of diagrams, denoted Ho(TopI), is

the localization of TopI with respect to these objectwise weak equivalences. (In
general, there are set-theoretic problems in forming such localizations: they can be
handled by adopting the axioms of Grothendieck universes if necessary, but they
can also be handled by showing that TopI has a model category structure with the
aforementioned weak equivalences.)

In general, when M is a model category then Ho(M) only encodes a fraction
of the homotopical information in M. Dwyer and Kan showed that for any two
objects X and Y in M one can associate a homotopical mapping space Map(X,Y )
(a simplicial set defined up to weak equivalence), where π0 of this mapping space is
Ho(M)(X,Y ). Appropriate models of these mapping spaces can even be bundled
together to give a simplicially enriched category. It gradually became clear that it
was somehow this simplicially enriched category, rather than the model category
structure, that contained the truly homotopical information from M. Dwyer and
Kan gave a construction of this category that only depended on M and the class
of weak equivalences, making it clear that the classes of cofibrations and fibrations
were not essential—rather, they are just tools to help get at the homotopical in-
formation. Kan often advocated for the perspective that a “homotopy theory” was
really just a pair (C,W) consisting of a category C and a subclass W of the mor-
phisms (the “weak equivalences”); but in practice one often accesses this homotopy
theory via a model category structure (Kan likened it to accesing a manifold via a
choice of coordinate system).

In the last several sections we have already found ourselves working with the
homotopy theory of diagrams. We gave ourselves a certain model category structure
on TopI and observed that colim: TopI � Top : c was a Quillen pair (where c is the
constant diagram functor), leading to an adjunction

L colim: Ho(TopI) � Ho(Top) : Rc
(note that Rc really is just the evident ‘constant diagram’ functor). We saw that
our hocolim functor was just a particular model for the left derived functor L colim,
and we began to understand that by “homotopy colimit” one should really mean
any model for that derived functor. We also saw the bar and cobar constructions,
which can also be interpreted as models for derived functors. For example, if X is in

TopI then B(X, I,−) is a model for the derived functor of X⊗ (−) : TopI
op

→ Top.
In the next few sections we want to...
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13. Model structures on diagram categories

Let M be a model category, and let I be a small category. If we are lucky then the
diagram category MI has a model category structure where the weak equivalences
are the objectwise ones induced from M. In some cases it actually has several such
model category structures. We give a brief guide to these results:

(1) If M is cofibrantly-generated, then MI has the so-called projective model
structure where the weak equivalences are objectwise, the fibrations are ob-
jectwise, and the cofibrations are forced to be the maps with the left-lifting-
property with respect to the trivial fibrations.

(2) If M is combinatorial, then MI has the so-called injective model structure
where the weak equivalences are objectwise, the cofibrations are objectwise,
and the fibrations are forced to be the maps with the right-lifting-property
with respect to the trivial cofibrations.

(3) If I is a Reedy category then MI has the so-called Reedy model structure
in which the weak equivalences are objectwise, the cofibrations are maps that
induced M-cofibrations on all latching maps, and the fibrations are maps that
induced M-fibrations on all matching maps. See ???

For the notion of cofibrantly-generated model category, see [H, Chapter 11]. A
model category is called combinatorial if it is both cofibrantly-generated and its
underlying category is locally presentable. Ref??

In the cases where these model structures simultaneously exist, every projective-
cofibration is a Reedy-cofibration and every Reedy cofibration is an injective-
cofibration. Dually, every injective-fibration is a Reedy fibration and every Reedy
fibration is a projective-fibration. This says that the identity maps give Quillen
equivalences

MI
prog

∼−→MI
Reedy

∼−→MI
inj

where the arrows indicate the left adjoints in the Quillen pairs.

13.1. The projective model structure. Recall that if L : A � B : R is an ad-
joint pair and A has a model category structure, then in many cases one can lift
this model structure to B by defining a map b1 → b2 in B to be a weak equivalence
(respectively, fibration) if and only if Rb1 → Rb2 is a weak equivalence (respec-
tively, fibration) in A. The cofibrations in B are defined to be the maps having the
left-lifting-property with respect to the trivial fibrations. This produces a model
structure when A is cofibrantly-generated and one has enough control in B to be
able to perform the small object argument. This is Kan’s Recognition Theorem, see
[H, Theorem 11.3.2]. We will apply this principle to obtain the projective model
structure on MI , using an appropriate adjoint pair.

Let M be a category, and let I be a small category. For any object i in I, consider
the functor evi : M

I → M given by evi(X) = Xi. If M has small coproducts then
evi has a left adjoint A→ Fi(A) where Fi(A) is the I-diagram given by

[Fi(A)]j = I(i, j)⊗A.
Recall that if S is a set and A is an object of M then S ⊗ A denotes a coproduct
of copies of A indexed by the set S. We call Fi(A) the free diagram generated
by A at spot i, or sometimes the i-free diagram generated by A. The idea
is simple enough to remember: if one imagines putting a copy of A at spot i and
writing down the most general possible diagram derived from this, then at spot j



54 DANIEL DUGGER

we must add one copy of A for every map i → j. Note that this free diagram will
typically have more than just a single copy of A at spot i: indeed, there should be
one copy for every element of I(i, i).

Similarly, if M has small products then evi has a right adjoint A → CFi(A)
given by

[CFi(A)]j = AI(j,i)

where if S is a set then AS denotes the product of copies of A indexed by the set
S. We call CFi(A) the co-free diagram generated by A at spot i. We will not
need co-free diagrams in the present section, but they will reappear later.

Of course ob(I) denotes the set of objects of I, but we will also use this to denote
the category having this set of objects and only identity maps. Consider the adjoint
pair

Mob(I)
F //

MI

U
oo

where U(X) is the assignment i 7→ Xi (forgetting all the diagram maps Xi → Xj)

and F ({Ai}) = qiFi(Ai). If M is a model category then Mob(I) inherits a model
structure in the evident way, and the objectwise weak equivalences (resp., objectwise
fibrations) in MI are precisely the maps that become weak equivalences (resp.,
fibrations) upon applying U .

If M is cofibrantly-generated with generating cofibrations {Aα � Bα} and gen-

erating trivial cofibrations {Iα
∼
� Jα}, then the sets

{Fi(Aα)→ Fi(Bα) | i ∈ ob(I)} and {Fi(Iα)→ Fi(Iα) | i ∈ ob(I)}
detect the trivial fibrations and fibrations in MI , respectively. That is to say,
a map in MI is a trivial fibration if and only if it has the right-lifting-property
with respect to all the maps Fi(Aα) → Fi(Bα) for all i and α, and similary for
the fibrations. This is a triviality coming out of the adjointness properties. The
existence of the projective model structure on MI is a direct application of Kan’s
Recognition Theorem.

The following properties are trivial, but worth noting:

Proposition 13.2.

(a) If f : A→ B is a projective-cofibration then f is an objectwise cofibration.
(b) For any cofibration A� B in M and any object i in I, the map Fi(A)→ Fi(B)

is a projective-cofibration. In particular, if A is cofibrant in M then Fi(A) is
projective-cofibrant.

Proof. Let i be an object in I. Let X → Y be any trivial fibraion in M, and suppose
given a lifting diagram

Ai //
��

��

X

��
Bi // Y.

By adjointness we get

A //
��

��

CFi(X)

��
B // CFi(Y ),
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and the construction of CFi(−) shows immediately that CFi(X) → CFi(Y ) is an
objectwise trivial fibration. So a lifting B → CFi(X) exists, and by adjointness
this gives a lifting Bi → X in the original diagram. Since Ai → Bi has the left-
lifting-property with respect to all trivial fibrations, it must be a cofibration in
M.

Part (b) is also an easy exercise using adjointness, or it comes for free from the
fact that (F,U) is a Quillen pair. �

Note that the adjoint pair

MI
colim //

M
c
oo

is a Quillen pair, as c preserves fibrations and trivial fibrations. So if X is a
projective-cofibrant diagram then the natural map hocolimX → colimX is a weak
equivalence.

13.3. The injective structure. The projective model structure on MI is a very
reasonable construction that fit in naturally with the historical development of
model categories. The injective structure, though similar in some ways, is also
rather different. The dual theory all works fine, except for the problem that model
categories are rarely fibrantly-generated: so at first there seem to be very few
examples where the theory applies at all.

The first constructions of the injective model structure on sSetI were given by
Heller [He] and Jardine [J1] (Jardine was really concerned with a whole class of

model structures on sSetI , of which the injective model structure is only one ex-
ample). The proof for the existence of this model structure is very different than
for the projective version: it uses large cardinals and the transfinite version of the
small object argument in a crucial way. Jeff Smith later showed that this proof
goes through in the general context of combinatorial model categories: the “locally
presentable” hypothesis on the underlying category is exactly what one needs to
make the transfinite small object argument work out. Some of Smith’s ideas were
written up by Beke in [Be], but the existence of the injective model structure on MI

is not explicitly stated there. It can readily be deduced from [Be, Theorem 1.7 and
Propositions 1.15, 1.18] using the accessible functor U : MI →Mob(I), and there is
also some general discussion in [Be, Section 3]. Additionally, there are some recent
sources for the existence of this model structure: it follows easily from [BHKKRS,
Theorem 2.23], and it is addressed explicitly in [L, Proposition A.2.8.2].

Once one has constructed the injective model structure, it is trivial to check that

MI
U //

Mob(I)

CF
oo

is a Quillen pair, where CF ({Xi}) =
∏
i CFi(Xi) (the left adjoint U clearly pre-

serves cofibrations and trivial cofibrations). The following properties of the injective
model structure are automatic, with proofs that are completely dual to the projec-
tive version we already saw:

Proposition 13.4.

(a) If f : X → Y is an injective-fibration then f is an objectwise fibration.
(b) For any fibration X � Y in M and any object i in I, the map CFi(X) →

CFi(Y ) is an injective-fibration. In particular, if X is fibrant in M then CFi(X)
is injective-fibrant.
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Also note that the adjoint pair

M
c //

MI

lim
oo

is a Quillen pair, as c preserves cofibrations and trivial cofibrations. So if X is an
injective-fibrant diagram then limX is equivalent to the homotopy limit of X.

13.5. The Reedy structure. If X,Y : ∆ → M then maps of diagrams X → Y
can be produced inductively: at each level there is an extension problem, where one
must produce a map Xn → Yn that is compatible with the previous maps Xi → Yi
for i < n. This compatibility question breaks up into two distinct prices: compati-
bility with the coface maps and compatibility with the codegeneracies. Specifically,
there is a “latching object” LnX obtained by taking a colimit of all the coface
maps landing in degree n, and a dual “matching object” MnX obtained by taking
a limit of all the codegeneracies emanating from degree n. The maps Xi → Yi for
i < n induce maps LnX → LnY and MnX →MnY , and the extension problem is
indicated in the diagram below:

LnX //

��

Xn

��

// MnX

��
LnY // Yn // MnY.

Bousfield-Kan [BK] figured out how to put a model category structure on cosim-
plicial spaces so that the notions of cofibration/fibration interact well with the above
extension problem. Later Reedy, in an unpublished preprint, determined how to do
something similar for simplicial (rather than cosimplicial) objects, and he did this
over any model category. Many years later Kan isolated what makes this work and
generalized it into the notion of a Reedy category . Very briefly, a category is Reedy
if the objects can be assigned an N-grading and the maps can all be decomposed
into “special up-maps” and “special down-maps” that are subject to certain condi-
tions. The conditions are precisely those that allow for the inductive arguments to
go through. This material first appeared in [H, Chapter 15].

We are going to give an extremely quick overview of Reedy model categories,
since there already exists a very nice and thorough discussion in [H].

Definition 13.6. A Reedy category is a small category I together with two sub-
categories Iup and Idn, both of which are required to contain all the objects of I,
such that there exists a function deg : ob(I)→ N such that

(i) Every non-identity map in Iup raises degree;
(ii) Every non-identity map in Idn lowers degree;

(iii) Every map g in I has a unique factorization g = gup ◦ gdn where gup is in Iup

and gdn is in Idn.

A directed Reedy category is a Reedy category in which either Iup or Idn consists
only of identity maps; in the former case we call it an upwards-directed Reedy
category, and in the latter we call it a downwards-directed Reedy category.

Example 13.7.

(a) Let ∆up denote the subcategory of injections and ∆dn denote the subcategory
of surjections. The degree function deg([n]) = n shows that (∆,∆up,∆dn) is a
Reedy category.
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(b) Let (∆op)
up

denote the subcategory consisting of maps that are opposites of

surjections, and let (∆op)
dn

denote the subcategory whose maps are the op-
posites of injections. The degree function deg([n]) = n again shows that

(∆op, (∆op)
up
, (∆op)

dn
) is a Reedy category.

(c) Generalizing the previous example, it is easy to check that if (I, Iup, Idn) is a
Reedy category then so is (Iop, (Idn)op, (Iup)op).

(d) Let I be a category for which there exists a function deg : ob(I) → N having
the property that every non-identity morphism raises degree. Then (I, I, ob(I))
is an upwards-directed Reedy category. Similarly, if there exists a function
deg : ob(I) → N such that every non-identity morphism lowers degree then
(I, ob(I), I) is a downwards-directed Reedy category.

For the rest of this section we assume that (I, Iup, Idn) is a Reedy category and
that M is a given model category.

Definition 13.8. Let X : I →M be a diagram, and let i be an object in I.

(a) Let ∂(Iup ↓ i) be the full subcategory of (Iup ↓ i) containing all objects except
the identity map at i. This is called the latching category of I and i.

(b) Let ∂(i ↓ Idn) be the full subcategory of (i ↓ Idn) containing all objects except
the identity map at i. This is called the matching category of I at i.

(c) Define the latching object of X at i to be

LiX = colim
∂(Iup↓i)

X.

The natural map LiX → Xi is called the latching map of X at i.
(d) Define the matching object of X at i to be

MiX = lim
∂(i↓Idn)

X.

The natural map Xi →MiX is called the matching map of X at i.

Let deg be a chosen degree function for the Reedy category I. Let
A,B,X, Y : I →M, and consider a lifting problem

A //

��

X

��
B //

λ

::

Y.

Imagine a situation in which a partial lifting λ has been produced up through
degree n− 1, and we wish to extend to degree n. We leave it to the reader to check
that this is equivalent to producing, for each i ∈ ob(I) of degree n, a lifting in the
M-diagram

Ai qLiA LiB

��

// Xi

��
Bi //

λi

66

Yn ×MiY MiX

(where all the solid-arrow maps are the evident ones induced by those in the original
lifting diagram). This is the key observation behind the following result:

Theorem 13.9 (Kan). Let I be a Reedy category, and let M be a model category.
Then there is a model category structure on MI where
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(a) The weak equivalences are the objectwise weak equivalences;
(b) A map A → B is a cofibration if and only if the maps Ai qLiA LiB → Bi are

M-cofibrations, for all objects i in I.
(c) A map X → Y is a fibration if and only if the maps Xi → Yi ×MiY MiX are

M-fibrations for all objects i in I.

Proof. See [H, Theorem 15.3.4] or do it yourself as an easy exercise. �

The following proposition shows, in particular, that Reedy cofibrations are ob-
jectwise cofibrations with some extra conditions; and likewise Reedy fibrations are
objectwise fibrations with some extra conditions.

Proposition 13.10. Let I be a Reedy category and M be a model category. Then

(a) If A→ B is a Reedy cofibration in MI then both Ai → Bi and LiA→ LiB are
M-cofibrations, for every object i in I.

(b) If X → Y is a Reedy fibration in MI then both Xi → Yi and MiX →MiY are
M-fibrations, for every object i in I.

Proof. See [H, Proposition 15.3.11]. �

Corollary 13.11. Let I be a Reedy category.

(a) If M is a cofibrantly-generated model category then the identity maps give a
Quillen pair MI

proj � MI
Reedy, where the top map is the left adjoint.

(b) If M is a combinatorial model category then the identity maps given a Quillen
pair MI

Reedy � MI
inj, where the top map is the left adjoint.

In both parts, the given Quillen pairs are in fact Quillen equivalences.

Proof. In (a), the right adjoint preserves fibrations and trivial fibrations. In (b),
the left adjoint preserves cofibrations and trivial cofibrations. In both parts, the
given Quillen functors induced the identity maps on the homotopy categories. But
any Quillen pair that induces an equivalence on homotopy categories is a Quillen
equivalence [Ho, Proposition 1.3.13]. �

In some cases the Reedy model category structure coincides with either the
projective or injective structure:

Proposition 13.12. Let I be a small category and let M be a model category.

(a) If I is an upwards-directed Reedy category then the Reedy and projective model
structures on MI are equal.

(b) If I is a downards-directed Reedy category then the Reedy and injective model
structures on MI are equal.

Proof. In (a), all the matching categories are empty and so the matching objects
for any I-diagram are all equal to the terminal object. Consequently, X → Y is
a Reedy fibration if and only if Xi → Yi is an M-fibration for every i in I. The
weak equivalences and fibrations in MI

Reedy and MI
proj are therefore equal, hence

the cofibrations are also equal. The proof for (b) is the same. �

Note that the adjoint functors colim: MI � M : c do not, in general, give a
Quillen pair when MI is equipped with the Reedy model structure. It is not true in
general that if X is a fibrant object of M then cX is Reedy-fibrant. Similar remarks
hold for the dual pair c : M � MI : lim. But this does happen in some situations,
and they were completely identified by Hirschhorn:
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Theorem 13.13. Let I be a Reedy category, let M be a model category, and equip
MI with the Reedy model structure.

(a) colim: MI � M : c is a Quillen pair (with c the right adjoint) if and only if for
every object i of I, the matching category ∂(i ↓ Idn) is empty or connected.

(b) c : M � MI : lim is a Quillen pair (with c the left adjoint) if and only if for
every object i of I, the latching category ∂(Iup ↓ i) is empty or connected.

Proof. See [H, Section 15.10]. �

Note that part (a) includes all upwards-directed Reedy categories, and part (b)
includes all downwards-directed Reedy categories (as we already knew based on
Proposition 13.12).
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14. Cofibrant diagrams

Suppose M is a model category, I is a small category, and X : I → M is a dia-
gram. If MI has a model category structure where colim: MI � M : c is a Quillen
pair, then the homotopy colimit of X can be computed by finding a cofibrant-
replacement QX → X in MI and taking the ordinary colimit of QX. We have seen
that our standard formula for homotopy colimits comes from a certain “standard”
cofibrant-replacement functor, but the fact that any cofibrant-replacement will do
sometimes allows one to find a model for the homotopy colimit that is easier to
understand. For this reason, it is useful to have some experience determining what
cofibrant diagrams look like in different model structures on MI . We will explore
several examples in this section.

14.1. Upwards-directed Reedy diagrams. Let I be an upwards-directed Reedy
category, and let X : I → Top be a diagram. Recall that for each object i in I
we have a latching object LiX = colim∂(I↓i)X, and this comes equipped with a
latching map LiX → Xi.

Proposition 14.2. If the latching map LiX → Xi is a cofibration for each object i,
then X is projective-cofibrant and so hocolimI X → colimI X is a weak equivalence.

Proof. The assumed conditions on the latching maps say precisely that X is Reedy
cofibrant. But by Proposition 13.12(a), the Reedy and projective model struc-
ture coincide; so X is in fact projective-cofibrant. It is then immediately that
hocolimI X → colimI X is a weak equivalence. �

We will see several explicit examples of upwards-directed Reedy categories in the
further examples below.

14.3. Pushout diagrams. Let I denote the pushout category 1 ← 0 → 2. It is
easy to see that if A1 ← A0 → A2 is a diagram in M then it is projective-cofibrant
if and only if A0 is cofibrant and both A0 → A1, A0 → A2 are cofibrations. To see
this directly, note that a lifting problem

[X1 ← X0 → X2]

'
����

[A1 ← A0 → A2] // [Y1 ← Y0 → Y2]

can be solved in three steps, by sequentially lifting in the following three diagrams:

X0

'
����

A0
//

��

X1

'
����

A0
//

��

X2

'
����

A0
//

>>

Y0 A1

>>

// Y1 A2

==

// Y2,

where A0 → X1 is the composite A0 → X0 → X1, and likewise for A0 → X2.
Alternatively, we can make I into a Reedy category by having both maps raise

degree:
1 2

0.

__ ??
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We know from Proposition 13.12 that the Reedy and projective model structures
agree in this case. Given a diagram A1 ← A0 → A2, the latching objects are
L0A = ∅ and L1A = L2A = A0; so the condition for Reedy cofibrancy are precisely
that ∅ → A0, A0 → A1, and A1 → A2 are all cofibrations.

Since colim: MI
proj →M is a left Quillen functor, we deduce the following:

Proposition 14.4. If A1 ← A0 → A2 is a pushout diagram in a model category M

such that A0 is cofibrant and A0 → A1, A1 → A2 are cofibrations, then the natural
map hocolimA→ colimA is a weak equivalence.

We can improve on the above proposition slightly. Observe that I can be made
into a Reedy category in a different way by arranging the arrows as follows:

2

0

OO

��
1

For a diagram A1 ← A0 → A2 we then have L1A = ∅, L0A = ∅, and L2A = A0.
So A is Reedy cofibrant if and only if A0 and A1 are cofibrant, and A0 → A2 is a
cofibration. The matching categories are empty for the objects 0 and 1, and the
trivial category with one object for 2; so by Theorem 13.13 colim: MI

Reedy →M is
again a Quillen functor. We therefore deduce:

Proposition 14.5. Let A1 ← A0 → A2 be a diagram in a model category M.
Then if A0 and A1 are cofibrant and A0 → A2 is a cofibration, the natural map
hocolimA→ colimA is a weak equivalence.

Example 14.6. If A→ X is a cofibration between cofibrant objects in Top, then
the homotopy pushout of ∗ ← A→ X is weakly equivalent to X/A.

14.7. Coequalizer diagrams. Using exactly the same kind of analysis as for
pushout categories, one can prove the following:

Proposition 14.8. Let A0 ⇒ A1 be a coequalizer diagram in a model category M.
Then if A0 is cofibrant and the evident map A0 q A0 → A1 is a cofibration, then
A is a projective-cofibrant diagram and the map hocolimA → colimA is a weak
equivalence.

Proof. Make the coequalizer category into an upwards-directed Reedy category, so
that the Reedy and projective model structures coincide. The latching objects for
A are L0A = ∅ and L1A = A0 qA0. �

14.9. Sequential colimit diagrams. Let ω denote the category

0→ 1→ 2→ · · ·
We can again make this into an upwards-directed Reedy category, so that the
projective and Reedy model structures coincide. The latching object for a diagram
A at level n is just the object An−1, so the projective-cofibrant objects are the
diagrams such that A0 is cofibrant and An → An+1 is a cofibration, for all n. We
deduce the following:

Proposition 14.10. If A0 → A1 → · · · is a diagram in a model category M such
that A0 is cofibrant and each An → An+1 is a cofibration, then hocolimA→ colimA
is a weak equivalence.
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In the category of topological spaces one often models sequential homotopy col-
imits by “mapping telescopes”: if A0 → A1 → · · · is a diagram of topological spaces
where all the maps are denoted f , then the telescope is

Tel(A) =
(∐
n

An × I
)/
∼

where the equivalence relation has (x, 1) ∼ (f(x), 0) for all x ∈ An and all n ≥ 0.
There is a picture that goes with this:

A0

A1

A2

• • •

Corollary 14.11. Let A0 → A1 → · · · be a diagram of cofibrant spaces in Top.
Then the mapping telescope Tel(A) is a model for the homotopy colimit.

Proof. Define Teln(A) =
(∐n

i=0Ai
)
/∼ where the equivalence relation is the same

as for Tel(A). Then we have the commutative diagram

Tel0(A) // //

'
��

Tel1(A) // //

'
��

Tel2(A)

'
��

// // · · ·

A0
// A1

// A2
// · · ·

where the horizontal maps are the evident inclusions and the vertical maps are the
evident projections. This diagram shows

hocolim
n

Teln(A)→ hocolim
n

An

is a weak equivalence. But the maps Teln(A) → Teln+1(A) are cofibrations, and
so hocolimn Teln(A)→ colimn Teln(A) is a weak equivalence by Proposition 14.10.
Finish by observing that Tel(A) = colimn Teln(A). �

14.12. Group actions. Let G be a discrete group and let BG denote the category
with one object and endormorphism monoid G. A BG-diagram in M is simply an
object X of M with a map of monoids G → M(X,X), which is one way of saying
that we have a left G-action on X

Here we do not have a Reedy structure on MBG, so we will assume that M is
cofibrantly-generated with generating cofibrations {Aα � Bα} and will use the
projective model structure on MBG. For an object X in M the free BG-diagram is
F (X) = G⊗X, where recall that this denotes a coproduct of copies of X indexed by
the elements of G. The G-action is the evident one, where G acts by permutation
of the copies. Then the maps {F (Aα) → F (Bα)} are generating cofibrations for
MBG.
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Let us specialize a bit further by taking M = Top. Then our generating
cofibrations are {Sn−1 ↪→ Dn}, and the generating cofibrations of TopBG are
{G× Sn−1 ↪→ G×Dn}. We conclude:

Proposition 14.13. Every free G-cell complex X is cofibrant in TopBG, and so
has the property that hocolimBGX → X/G is a weak equivalence.

Let EG be a free G-cell complex whose underlying space is contractible. Define
a G-cell complex to be any G-space built up from cell attachments via maps G/H×
Sn−1 ↪→ G/H × Dn, where H ranges over all subgroups of G. If X is any G-cell
complex, then X×EG has an induced G-cell structure where all the G-cells are free
(the basic point here is that G × (G/H) with its diagonal G-action is isomorphic,
as a G-space, to a disjoint union of copies of G). So X ×EG is cofibrant as a BG-
diagram, and the projection X × EG→ X is a weak equivalence of BG-diagrams.
We conclude that colimBG(X × EG) is a model for hocolimBGX. That is:

Proposition 14.14. If X is any G-cell complex then (X ×EG)/G is a model for
hocolimBGX.

14.15. Cubical diagrams. For any set S, let P(S) be the poset of finite subsets
of S, ordered by inclusion. When S is itself finite, P(S) has a terminal object and
often we will want to omit that: so let iP(S) denote the full subcategory of P(S)
consisting of all proper finite subsets. The ‘i’ stands for ‘initial’. We will write iPn
for iP({1, . . . , n}).

Note that iP2 is just the pushout category. The category iP3 is depicted by the
diagram

{3} //

��

{1, 3}

∅ //

==

��

{1}

;;

��

{2, 3}

{2} //

==

{1, 2},
and in general the diagram for iPn can be depicted by a “punctured n-cube”.

There are different ways to regard iPn as a Reedy category, but in some sense
the most obvious is to make it an upward-directed Reedy category by defining the
degree of a subset of be its number of elements. If A : Pn → Top is a diagram then
for any S ⊆ {1, 2, . . . , n} we can identify the latching object as

LS(X) =
[∐
T⊂S

AT

]/
∼

where the quotient relation says that for any two proper subsets T, T ′ ⊂ S and any
x ∈ AT∩T ′ , the images of x under AT∩T ′ → AT and AT∩T ′ → AT ′ are identified.
Note that we could also describe LS(A) as a quotient space [

∐
AU ]/ ∼ where U

runs over the proper subsets of S with |U | = |S| − 1.
The following result is just a restatement of the fact that for an upwards-directed

Reedy category the Reedy and projective model structures are identical:

Proposition 14.16. A diagram A : iPn → Top is projective-cofibrant if and only
if for every finite S ( {1, 2, . . . , n} the latching map LS(A)→ AS is a cofibration.
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Here is a simple application of what we have learned so far. Let X be a topolog-
ical space, and let {A1, . . . , An} be a collection of closed sets which cover X. For
any S ⊆ {1, 2, . . . , n}, set

ÂS =
⋃
j /∈S

Aj .

For example, Â∅ = A1∩ · · · ∩An. Notice that this defines a diagram Â : iPn → Top
by having the maps in the diagram be the evident inclusions. The induced map
colimiPn Â → X is clearly a bijection, and it is easy to check that it is actually a
homeomorphism (but note that this uses that we have a finite cover). We obtain
the following:

Corollary 14.17. Let {A1, . . . , An} be a closed cover for a space X, and let

Â : iPn → Top be as defined above. Assume that for every proper subset S ⊂
{1, . . . , n}, the inclusion

⋃
T⊂S ÂT ↪→ ÂS is a cofibration. Then hocolimiPn Â→ X

is a weak equivalence.

Proof. One simply checks that the latching maps are the maps
⋃
T⊂S ÂT → ÂS . �

Let A : iPn → Top be a diagram. Just as we saw for the pushout category iP2,
one can obtain different criteria for hocolimA→ colimA to be a weak equivalence
by noticing that iPn can be given the structure of a Reedy category in several ways.
For example, the following diagram shows a Reedy structure on iP3:

{1, 2}

{1}

;;

��

{2}

��

cc

{1, 3} ∅

��

;;cc

{3}

cc

##
{2, 3}.

More precisely, the degrees of objects are determined by their vertical position on
the page (with the lowest object having degree zero, for example). The category
iP3

up is the subcategory generated by all of the drawn maps that raise degree, and
iP3

dn is the subcategory generated by the drawn maps that lower degree.
For this Reedy structure to apply to our problem we need to check two things:

(1) Every map in the diagram has a unique factorization as a down-map followed
by an up-map (the condition for being a Reedy category);

(2) For each spot in the diagram, the matching category is either empty or con-
nected (the condition for colim: MI � M : c to be a Quillen pair, cf. Theo-
rem 13.13).

In this case both are easy and left to the reader. Consequently, we obtain the
following:

Proposition 14.18. Suppose given a diagram A : iP3 → Top such that

(1) all objects are cofibrant,
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(2) A3 → A13 is a cofibration,
(3) A∅ → A1 and A∅ → A2 are cofibrations, and
(4) The induced map A1 qA∅ A2 → A12 is a cofibration.

Then the natural map hocolimA→ colimA is a weak equivalence.

Proof. The listed conditions are just the various latching-map conditions for a di-
agram to be Reedy cofibrant. �

Exercise 14.19. Consider the following two pictures showing proposed Reedy
structures on iP3:

{1, 2} {3}

ww ''
{1}

��

77

{1, 3} {2, 3}

{1, 3} ∅

��

gg

''

∅

OO

ww ''
{3}

gg

''

{2}

YY

��

{1}

OO

''

{2}

OO

ww
{2, 3} {1, 2}

One of these is not, in fact, a Reedy structure. The other one is a Reedy structure
but does not satisfy the property about matching categories needed for Hirschhorn’s
Theorem (13.13). Which is which?
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15. Diagrams in the homotopy category

The canonical functor M → Ho(M) induces MI → Ho(M)I , and clearly this
latter map sends objectwise weak equivalences to isomorphisms. So there is an in-
duced functor Ho(MI)→ Ho(M)I . This is typically far from being an equivalence,
so let us investigate some examples demonstrating the differences. We will use the
model category Top∗ of pointed topological spaces; the basepoints are used here for
convenience, rather than for any essential reason.

Example 15.1 (Differences in morphisms). Let I be the category 0 → 1, so that

TopI∗ is the category of maps in Top∗. Morphisms in Ho(Top∗)
I from [Sn → ∗]

to [j : A → X] are in bijective correspondence with {f ∈ πn(A) | j ◦ f ' ∗}. To

compute morphisms in Ho(TopI∗) we first replace [Sn → ∗] with the cofibrant model
[Sn ↪→ Dn+1], then we compute homotopy classes of maps from this model into
[A→ X]. One readily checks that this coincides with the classical definition of the
relative homotopy group πn+1(X,A).

Note that when A = ∗ then

Ho(Top∗)
I
(

[Sn → ∗], [∗ → X]
)

= {∗}

whereas

Ho(TopI∗)
(

[Sn → ∗], [∗ → X]
)

= πn+1(X).

So clearly these can be different.
The map Ho(TopI∗)([S

n → ∗], [A→ X])→ Ho(Top∗)
I([Sn → ∗], [A→ X]) takes

the form
πn+1(X,A)→ {f ∈ πn(A) | j ◦ f ' ∗}

and is readily checked to be the boundary map in the long exact sequence for relative
homotopy groups. Exactness precisely says that the above map is surjective.

It is a general fact that for I equal to 0 → 1 that Ho(TopI∗) → Ho(Top∗)
I

always induces surjections on sets or morphisms (we leave this as an exercise for
the reader). It is possible to given categories I for which this is not true, but coming
up with concrete examples is difficult.

Example 15.2 (Differences in objects). We next give an example where

Ho(TopI∗) → Ho(Top∗)
I is not surjective on isomorphism classes. Starting with

a diagram X : I → Ho(Top∗), a lifting to a diagram X̃ : I → Top∗ is called a rigid-
ification of X (or sometimes a realization of X). So our example will show that
rigidifications do not always exist.

The following example is due to Cooke [Co]. Let I be the category with one
object and endomorphism monoid Z/2. An object of Ho(Top∗)

I can be described
as a homotopy Z/2-action on a space X. Cooke constructed such a homotopy
action that could not be rigidified into an “honest” action. To describe this it will
be useful for us to work stably, which means replacing Top∗ with the category of
spectra. We will do this, but at the same time be casual in our notation and write
things like Sk instead of Σ∞(Sk). If one does not want to use spectra, one can
make all of the arguments below in Top∗ by simply suspending enough times.

Before giving Cooke’s construction let us describe his obstruction to the existence
of rigidifications. If X is a space and f : X → X is such that f2 ' id, choose a
homotopy H : X × I → X such that H0 = id and H1 = f2. Then H ◦ (f × id)
and f ◦ H are both homotopies from f to f3. We regard these as paths in the
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mapping space Map(X,X). Since these two paths have the same beginning and
ending points, we can use them to make a loop: set

Jf,H = H(f × id) ∗ fH ∈ π1(Map(X,X), f).

Here the overline indicates that the path fH is run in reverse.
The loop Jf,H depends on the choice of homotopy H, so we set

Sf = {Jf,H |H is a homotopy from id to f2} ⊆ π1(Map(X,X), f).

This set is an invariant of the pair (X, f). One can readily check that if (X, f)
has a rigidification then Sf contains the constant path. Cooke constructed a pair
(X, f) where he could prove that Sf does not contain the constant path, and so
concluded that the pair did not have a rigidication.

A similar invariant is the Toda bracket 〈f −1, f +1, f −1〉 ⊆ [ΣX,X]∗. If (X, f)
is rigidifiable then this Toda bracket must contain the null map.

Let α ∈ πn−1(Sk) be any element whose order is a multiple of 4 (the first such
example is ν ∈ π7(S4)). Let A = Sk ∪2α e

n, and let X = A ∨ Sn−1 ∨ Sn−1. Let
i : Sk ↪→ A be the inclusion of the bottom cell, and let π : A → Sn be the map
which squashes the bottom cell to a point. Since the stable homotopy category is
additive we can describe maps X → X via 3× 3 matrices. Let f be the element of
[X,X]∗ represented by the matrix I iα 0

0 I 0
ηπ 0 I.


Matrix multiplication shows that f2 is represented by I 2iα 0

0 I 0
2ηπ ηπiα I


and since 2iα : Sn−1 → A, 2η : Sn → Sn−1, and πi are all null-homotopic we find
that f2 ' id. So (X, f) is a homotopy Z/2-action.

Example 15.3 (Colimits in the homotopy category). We give an example showing
that Ho(Top∗)

I generally does not have colimits. Let I be the pushout category

1← 0→ 2, and let X be the diagram ∗ ←− S1 ×2−→ S1 in Ho(Top∗)
I . It is easy to

see that for any pointed space Z one has a natural bijection

Ho(Top∗)
I(X, cZ) ∼= {a ∈ π1(Z) | a2 = 0}.

Let us write Θ(Z) for the group on the right. If W is a colimit for X in Ho(Top∗)
then there is a natural bijection Θ(Z) ∼= Ho(Top∗)(W,Z). Consequently, if Z1 →
Z2 → Z3 is a fiber sequence in Ho(Top∗) then the sequence

Θ(Z1)→ Θ(Z2)→ Θ(Z3)

is exact (as a sequence of pointed sets) in the middle spot. But it is easy to find
counterexamples to this. For example, consider the fiber sequence

K(Z/4, 1)→ K(Z/2, 1)
Sq1

−→ K(Z/2, 2).

Applying Θ gives the sequence

{0, 2} → {0, 1} → {0}
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but where the first map sends both elements to 0; clearly this is not exact. An-
other example is the fiber sequence S1 → RP∞ → CP∞. In any case, we have a
contradiction and so conclude that X does not have a colimit in Ho(Top∗).
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16. Homotopy coherent diagrams

16.1. Introduction. Let I be a small category. A diagram X : I → Top is a pair
of assignments i 7→ Xi and [f : i −→ j] 7→ [Xf : Xi → Xj ] such that Xid = id and

for every pair of composable morphisms [i
f−→ j

g−→ k] the diagram

Xi

Xf //

Xgf   

Xj

Xg

��
Xk

is commutative. A homotopy commutative diagram is a similar pair of assignments
but where the triangle is only required to commute up to homotopy: that is, there
must exist homotopies Hg,f : Xi× I → Xk such that H0 = Xg ◦Xf and H1 = Xgf ,
but no specific homotopy is assumed to be chosen.

Suppose that we actually choose homotopies Hg,f , for every composable pair.
Then for every composable triple h ◦ g ◦ f we get a sequence of homotopies

Xh ◦ (Xg ◦Xf ) Xh ◦Xgf Xh(gf) = X(hg)f Xhg ◦Xf (Xh ◦Xg) ◦Xf .

That is, we get an explicit set of homotopies Hh,g,f demonstrating that composition
of the X-maps is homotopy-associative. Well, for any composable 4-tuple

i0
f // i1

g // i2
h // i3

j // i4

we then get the classical Stasheff pentagon

Xj(Xh(XgXf ))

(XjXh)(XgXf ) Xj((XhXg)Xf )

((XjXh)Xg)Xf (Xj(XhXg))Xf .

These five homotopies assemble to give a loop in the mapping space Map(Xi0 , Xi4),
and we can ask that these loops all be null-homotopic. This is a kind of “higher
homotopy” condition on our diagram. Moreover, explicit choices of null-homotopies
for these Stasheff pentagons then lead to even higher homotopy elements in various
mapping spaces, which we can again require to be null-homotopic.

There is some bookkeeping required to make sense of all this, but very briefly a
homotopy coherent diagram is a homotopy commutative diagram together with an
explicit choice of higher and higher homotopies demonstrating that various homo-
topy elements of mapping spaces are actually null.

Note that every “honest” diagram X : I → Top will yield a homotopy coherent
diagram, by simply taking all the required homotopies to be constant. Likewise,
evey homotopy coherent diagram yields a homotopy commutative diagram, simply
by forgetting the choices of all the higher homotopies.

The theory of homotopy coherent diagrams goes back to Vogt, Dwyer-Kan, and
others ?????. Some of the main points are:
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(1) There are notions of homotopy colimit and homotopy limit that make sense for
homotopy coherent diagrams.

(2) Every homotopy coherent diagram can be “rigidified” into an honest diagram.
Moreover, the homotopy theories of honest diagrams and homotopy coherent
diagrams are equivalent.

(3) Given a homotopy commutative diagram, there is an obstruction theory for
giving it the structure of a homotopy coherent diagram. In light of (2), this
is an obstruction theory for “rigidifying” the given homotopy commutative
diagram into an honest diagram.

16.2. Simplicial diagams. Let Cat denote the category of small categories. By a
simplicial category we mean a simplicial object in Cat where the categories in
each level have the same object set. Alternatively, we may regard such a thing as a
category enriched over sSet. To be concrete, a (small) simplicial category I consists
of

(1) A set of objects (denoted I by abuse);
(2) For each i, j ∈ I, a simplicial set I(i, j);
(3) For each i ∈ I, a distinguished 0-simplex idi ∈ I(i, i);
(4) For each i, j, k ∈ I, composition maps I(j, k) × I(i, j) → I(i, k) which satisfy

associativity and unital axioms.

One defines functors between simplicial categories in the evident manner.
If C is another simplicial category, then an I-diagram in C is just a functor

X : I → C. Concretely, this consists of a collection of objects Xi ∈ C together with
maps of simplicial sets I(i, j)→ C(Xi, Xj) for each i, j ∈ I such that

(1) idi maps to idXi , and
(2) for each i, j, k ∈ I, the diagram

I(j, k)× I(i, j) //

��

I(i, k)

��
C(Xj , Xk)× C(Xi, Xj) // C(Xi, Xk)

commutes.

If X,Y : I → C are two functors then a natural transformation from X to Y is a
collection of maps fi : Xi → Yi such that for any objects i and j, the diagram

I(i, j) //

��

C(Yi, Yj)

(−)◦fi
��

C(Xi, Xj)
fj◦(−) // C(Xi, Yj)

commutes. Here the bottom horizontal map is the composite

C(Xi, Xj) = {fj} × C(Xi, Xj) −→ C(Xj , Yj)× C(Xi, Xj) −→ C(Xi, Yj),

and similary for the right vertical map.
Write CI for the category of all I-diagrams in C. This is itself a simplicial

category, under the following definition. Given X,Y : I → C, define an n-simplex
of Map(X,Y ) to be a collection of maps ∆n → C(Xi, Yi) (for every object i) such
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that for every two objects i and j the following diagram commutes:

∆n × I(i, j)

��

∼= // I(i, j)×∆n

��
C(Xj , Yj)× C(Xi, Xj)

))

C(Yi, Yj)× C(Xi, Yi)

vv
C(Xi, Yj).

It takes a moment to verify that there are evident maps Map(Y, Z)×Map(X,Y )→
Map(X,Z) satisfying the necessary associativity and unital axioms.

Definition 16.3. A simplicially-powered category C is a simplicial category
together with functors ⊗ : sSet × C0 → C0 and F : sSetop × C0 → C0 such that the
following axioms are satisfied:

(1) C(X ⊗K,Y ) ∼= Map(K, C(X,Y )) ∼= C(X,F (K,Y )).
(2) ???

Note that this actually has the structure of a simplicial category, and is simpli-
cially tensored and cotensored if C is so. ?????

Remark 16.4. Now let M be a simplicial model category, and let X : I → M be
a diagram. Note that the maps I(i, j) → M(Xi, Xj) yield maps I(i, j) ⊗ Xi →
Xj via adjointness. So an I-diagram in M can be thought of as a collection of
objects Xi and a collection of ‘action’ maps I(i, j)⊗Xi → Xj satisfying the evident
associativity and unital conditions. Just as we did for diagrams indexed by ordinary
categories, we will think of diagrams I →M as ‘left I-modules’.

Let C be simplicially tensored. Then for any i in I, the evaluation functor
evi : CI → C has a left adjoint Fi given by

[Fi(A)]j = I(i, j)⊗A.
The structure maps I(j, k)⊗ [Fi(A)]j → [Fi(A)]k are the evident ones that use the
composition pairings in I. We leave it to the reader to verify that this is indeed a
left adjoint to evi.

Theorem 16.5 (???). Let M be a cofibrantly-generated, simplicial model category.
Then MI has a model category structure where the weak equivalences and fibrations
are determined objectwise. This is called the projective model structure on MI .
Moreover, the canonical simplicial structure on MI makes this into a simplicial
model category.

Let α : I → J be a map of simplicial categories. Then there is a restriction
functor α∗ : MJ → MI , and this functor has both left and right adjoints, denoted
Lα and Rα. If X : I →M then LαX is given by

[LαX]j = coeq

[∐
i

J(αi, j)⊗Xi ⇔
∐
i0,i1

J(αi1, j)⊗ I(i0, i1)⊗Xi0

]
where the two maps in the coequalizer come from the pairings

I(i0, i1)⊗Xi0 −→ Xi1 ,

J(αi1, j)⊗ I(i0, i1) −→ J(αi1, j)⊗ J(αi0, αi1) −→ J(αi0, j).
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We leave it to the reader to check that there are evident pairings

J(j, j′)⊗ [LαX]j → [LαX]j′

making LαX into a J-diagram, and to verify that this is indeed left adjoint to α∗.
Note that α∗ preserves objectwise weak equivalences and objectwise fibrations,

and so we have a Quillen pair

Lα : MI � MJ : α∗.

Theorem 16.6 (???). Let α : I → J be a map of simplicial categories having
the same object set (and assume that α is the identity on objects). Suppose that
I(i, j)→ J(i, j) is a weak equivalence for all objects i and j. Then the adjoint pair
Lα : MI � MJ : α∗ is a Quillen equivalence.

Before proving this result let us introduce the version of the bar construction that
is relevant to simplicial diagrams. We will be concerned with the object B•(J, I,X),
which to every j in J associates the simplicial object

[n] 7→
∐

i0,i1,...,in

[
J(αi0, j)⊗ I(i1, i0)⊗ · · · ⊗ I(in, in−1)⊗Xin

]
.

Note the similarities to (11.2). The tensor product of the I-factors generalizes the
strings i0 ← i1 ← · · · ← in that we used in the version for non-simplicial categories.

?????

Proof of Theorem 16.6. Let X be a J-diagram. We must show that [LαQ(α∗X)]→
X is an objectwise weak equivalence, so let j be an object in J . The key step is to
examine the following map of simplicial objects:∐

i0

J(αi0, j)⊗Xi0

��

∐
i0,i1

J(αi1, j)⊗ I(i0, i1)⊗Xi1
oooo

��

· · ·oooo
oo

∐
j0

J(j0, j)⊗Xj0

∐
j0,j1

J(j1, j)⊗ J(j0, j1)⊗Xj1
oooo · · ·oooo

oo

where in level n the vertical map is induced by the maps α : I(a, b) → J(a, b) and
on indices can be described by the “substitution” ir 7→ jr for r < n and αin → jn.
The hypotheses on α imply that the above is a levelwise weak equivalence, and
so it induces a weak equivalence on realizations. The bottom simplicial object
has a contracting homotopy induced by the identity map on j (it is an instructive
exercise to write this down). This completes the argument. For Y an I-diagram,
the argument for showing that Y → α∗[Lα(QY )] is an objectwise weak equivalence
is very similar.

Now we give the slick version. The map we are trying to analyze is the composite

B(J, I,X) −→ B(J, J,X) −→ X.

The first map is an objectwise equivalence because I → J is so, and the second
map is always an objectwise equivalence. For the other direction we are looking at

Y −→ B(I, I, Y ) −→ B(J, I, Y ).

Again, the first map is always an objectwise equivalence and the second map is so
because of the hypothesis on α. �
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Finally, we note that the theory of homotopy colimits for simplicial diagrams
works just as for ordinary diagrams, via the evident modifications. For example,
if X : I → C is a simplicial diagram then its homotopy colimit is defined to be the
realization of the simplicial replacement∐
i0

X(i0)
∐
i0,i1

I(i1, i0)⊗Xi1
oooo

∐
i0,i1,i2

I(i1, i0)⊗ I(i2, i1)⊗Xi2
oo oooo · · ·oooooooo

We leave the reader to check to develop the details of the theory for him- or herself.

16.7. Resolutions of categories. Let I be an ordinary category. We can regard
I as a simplicial category by regarding all its mappings sets as discrete simplicial
sets. By a resolution of I we mean a simplicial category Ĩ with the same set of
objects as I, together with a map of simplicial categories Ĩ → I with the property
that for every i, j ∈ I the map Ĩ(i, j)→ I(i, j) is a weak equivalence.

If S is a set, define a graph G with object set S to be an assignment (s, t) 7→
G(s, t) for s, t ∈ S. Morphisms of graphs are the evident ones, and Graph(S) will
denote the category of all graphs with object set S. Likewise, let Cat(S) denote the
category of small categories with object set S.

There is a forgetful functor Ũ : Cat(S) → Graph(S), and this has a left adjoint

F̃ : if G is a graph, then the morphisms in F̃ (G) are formal compositions of the
elements in the appropriate G(s, t) sets. If I is an object in Cat(S) we can look at
the (augmented) bar resolution

· · · //////// F̃ Ũ F̃ Ũ F̃ Ũ(I)
////// F̃ Ũ F̃ Ũ(I) // // F̃ Ũ(I) // I

from Example 3.15. Write (F̃ Ũ)•(I) for the simplicial category (without the aug-

mentation). Applying Ũ , we pick up a contracting homotopy; this shows that

[(F̃ Ũ)•(I)](i, j) → I(i, j) is a weak equivalence for all objects i and j. In other

words, (F̃ Ũ)•(I)→ I is a resolution of categories.
There is a variant of this construction that is also useful. Define the trivial

pointed graph on a set S to be graph [S] for which [S](s, t) = ∅ if s 6= t and
[S](s, s) = {∗} for every s ∈ S. Define a pointed graph on a set S to a graph
G together with a morphism [S] → G. Let Graph∗(S) be the category of pointed
graphs on S. There is then an evident forgetful functor U : Cat(S) → Graph∗(S),
where the extra “pointed” structure consists of the identity maps. This has a left
adjoint F : Graph∗(S)→ Cat(S) which can be described as “take the category freely
generated by the non-identity edges of the graph”. One still has that (FU)•(I)→ I
is a resolution of I by free categories.

While both constructions are large, we prefer (FU)•(I) because it is noticeably

smaller than (F̃ Ũ)•(I). It is convenient to not have to add formal generators
correponding to identity maps when one forms (FU)(I).

Definition 16.8. Let I be a small category and let M be a simplicial model category.
A homotopy coherent diagram in M is a simplicial functor (FU)•(I)→M. The
category of homotopy coherent diagrams is M(FU)•(I).

We aim to investigate the simplicial categories (FU)•(I) in some examples. Let
[n] denote the category 0 → 1 → · · · → n. That is, the object set is {0, 1, . . . , n}
and there is a unique map i → j when i ≤ j. We will investigate the simplicial
categories (FU)•([n]).



74 DANIEL DUGGER

It is immediate that (FU)([0]) = [0] (note that this would not be true if we

used (F̃ Ũ)), and also that (FU)([1]) = [1]. So we have (FU)•([0]) = c[0] and
(FU)•([1]) = c[1], where the c(−) means regard the argument as a constant sim-
plicial category.

The first place things are interesting is with (FU)([2]). Let the maps in [2]

be denoted 0
g−→ 1

f−→ 2. If u is a morphism in a category I, write [u] for
the corresponding “free generator” in the category FU(I). Then (FU)([2]) is the
category

1
[f ]

��
0

[g]
@@

[f ][g] //
[fg]

// 2

and (FUFU)([2]) is the category

1
[[f ]]

��
0

[[g]]
@@

[[f ][g]] //
[[fg]]

//

[[f ]][[g]]

88
2.

In general, (FU)n([2]) has exactly one map from 0 to 1, one map from 1 to 2, and
exactly n+ 1 maps from 0 to 2. A little work verifies that the morphism simplicial
sets are

Hom(FU)•([2])(i, j) =

{
∗ if i < j and (i, j) 6= (0, 2)

∆1 if (i, j) = (0, 2).

For (FU)•([3]), the full subcategory consisting of objects 0, 1, and 2 is readily
identified with what we just described. Similarly for the full subcategory consisting
of objects 1, 2, and 3. The only thing new is the space of morphisms from 0 to
3. We leave the reader to verify that there are four morphisms from 0 to 3 in
(FU)([3]), and nine in (FUFU)([3]).

Definition 16.9. Fix n ≥ 1. For 0 ≤ i ≤ j ≤ n let Pi,j denote the poset of subsets
of {i, i + 1, . . . , j} that contain i and j. Let µ : Pj,k × Pi,j → Pi,k be the unique
functor given on objects by union of subsets.

Let NPn be the simplicial category whose object set is {0, 1, . . . , n} and whose
simplicial set of morphisms from i to j is the nerve NPi,j, with composition induced
by the maps µ.

Remark 16.10. Note that if j > i then Pi,j is isomorphic to the poset consisting
of all subsets of {i+ 1, . . . , j − 1}, and so NPi,j ∼= (∆1)j−i−1.

Proposition 16.11. There is an isomorphism of simplicial categories (FU)•([n]) ∼=
NPn.

Proof. The proof we give is adopted from [DS, Section A.7]. Let mi denote the
unique map in [n] from i − 1 to i. Then morphisms from i to j in FU([n]) are in
bijective correspondence with bracketings of the expression mjmj−1 · · ·mi+1 having
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the property that every mr is inside exactly one set of brackets. For example, the
maps from [0] to [3] are

[m3m2m1], [m3m2][m1], [m3][m2m1], [m3][m2][m1].

Such bracketings can be parameterized by subsets of {i, i + 1, . . . , j} containing i
and j: namely, send an expression to the union of {i} and the set of indices that
occur immediately after a left bracket. In order, the bracketed expressions listed
above correspond to {0, 3}, {0, 1, 3}, {0, 2, 3}, {0, 1, 2, 3}.

If one thinks of maps in FU([n]) as formal compositions of maps in [n], the
associated subset can be thought of as the set of “intermediate stops” in the formal
composition.

Generalizing the above analysis, maps from i to j in (FU)r([n]) correspond to
bracketings of the expression mjmj−1 · · ·mi+1 having the property that every ms

is inside exactly t sets of brackets. For example, when r = 3 here are some maps
from 0 to 3:

[[[m3m2m1]]], [[m3][m2]][[m1]], [[m3m2][m1]], . . .

In such a bracketed expression, rank the brackets by “interiority”: outermost brack-
ets have rank 0, and innermost brackets have rank r − 1. The face map dj corre-
sponds to removing all brackets of rank j, whereas the degeneracy sj amounts to
doubling all brackets of rank j. For example,

d0

(
[[m3][m2m1]]

)
= [m3][m2m1], d1

(
[[m3][m2m1]]

)
= [m3m2m1],

s0

(
[[m3][m2m1]]

)
= [[[m3][m2m1]]], s1

(
[[m3][m2m1]]

)
= [[[m3]][[m2m1]].

Given a bracketed expression ω, define the sth vertex vs(ω) to be the expression
obtained by removing all brackets except those of rank s. Using the bijection
between simple bracketed expressions and subsets that we discussed already, each
vs(ω) corresponds to a subset Ss of {i, i + 1, . . . , j}. The fact that the rank s
brackets are inside the rank s− 1 brackets implies that Ss−1 ⊆ Ss.

A bracketed expression with s layers therefore corresponds to a chain S0 ⊆ S1 ⊆
· · · ⊆ Ss−1 ⊆ {i, i+ 1, . . . , j}, and it is easy to see that this indeed gives a bijection.
It is immediate to check that this is compatible with face and degeneracy operators,
giving an isomorphism of simplicial sets (FU)•([n])(i, j) ∼= NPi,j .

Composition in (FU)•([n]) corresponds to concatenation of bracketed expres-
sions, which in turn clearly corresponds to the union of subsets. A little thought
completes the proof. �
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Part 4. Other useful tools
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17. Homology and cohomology of categories

This section is really a prelude to the following one. If D : I → Top is a diagram
and E∗(−) is a homology theory, it turns out that there is a certain spectral se-
quence that starts with the groups E∗(Di) and computes the groups E∗(hocolimD).
The starting page for this spectral sequences is a collection of groups written
Hp(I;Eq(D)) that are called the “homology of I with coefficients in the functor
Eq(D)”. Here Eq(D) denotes the diagram I → Ab given by i 7→ Eq(Di).

There is a similar spectral sequence for computing E∗(hocolimD), starting with
cohomology groups Hp(Iop;Eq(D)). Likewise, there is a spectral sequence for com-
puting π∗(holimD) starting with the groups Hp(I;πq(D)) (assuming appropriate
connectivity hypotheses on the spaces Di).

Section 18 will describe all of these spectral sequences in detail. In the present
section we develop the algebraic constructions H∗(I;F ) and H∗(I;F ), where F is
a functor I → Ab.

17.1. Homology and cohomology of a category with coefficients in a func-
tor. Fix an abelian category A. In our applications below this will always be the
category of abelian groups.

Let I be a small category, and let D : I → A be a functor. We will define objects
Hp(I;D) and Hp(I;D) in A, for each p ≥ 0. One approach starts by writing down
the cosimplicial replacement for F :∏

i

D(i) // //
∏

i0→i1
D(i1)

//////
∏

i0→i1→i2
D(i2)

//////// · · ·

This is a cosimplicial object over A. Taking the alternating sum of the coface maps
gives a cochain complex over A, and we define Hp(I;D) to the the pth cohomology
group of this complex.

Note that H0(I;F ) is just the equalizer of the first two arrows in our cosimplicial
object, which is precisely limF . So in some sense the groups Hp(I;F ) are ‘higher
limit functors’. One somtimes writes

Hp(I;F ) = limpD.

We will make the connection with derived functors more precise in a moment.
Similarly, the homology group Hp(I;D) is defined to be the pth homology group

of the chain complex associated to the simplicial replacement of D:∐
i0

D(i0)
∐

i0←i1
D(i1)oooo

∐
i0←i1←i2

D(i2)oooo
oo · · ·oo

oooo
oo

Here we have H0(I;D) ∼= colimI D, and one sometimes writes

Hp(I;D) = colimpD.

The connection with derived functors is given by relative homological algebra,
and we will take a brief digression to describe this general theory.

Definition 17.2. Let C be an abelian category. A projective class in C consists
of a pair (P,E) where P is a class of objects, E is a class of morphisms, and the
following axioms are satisfied:

(1) An object U is in P if and only if C(U,X) → C(U, Y ) is surjective for every
X → Y in E;
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(2) A map X → Y lies in E if and only if C(U,X)→ C(U, Y ) is surjective for every
U in P;

(3) For every X in C, there is a morphism P → X in E such that P is in P.

Objects of P are called P-projectives or relative projectives. Elements of E are
called P-epimorphisms or relative epimorphisms.

Example 17.3. Here are three standard examples of projective classes:

(a) R is a ring and C is the category of left R-modules. Let E consist of the surjective
maps, and and P consist of the direct sums of free modules (the “categorical”
projectives).

(b) Let A be any abelian category, let P consist of all objects of A, and let E consist
of the split-epimorphisms. This is called the trivial projective class.

(c) Let A be an abelian category, let I be a small category, and let C = AI . Define
P to consist of all retracts of coproducts of the free diagrams Fi(A) where A is
in A and i is in I. Define E to be the class of objectwise split-epimorphisms: the
maps of diagrams D1 → D2 such that D1(A)→ D2(A) is a split-epimorphism
for every A in A. A little thought shows that (P,E) is a projective class; we
will call it the standard projective class on AI .

Remark 17.4 (Pullbacks of projective classes). If L : C1 � C2 : R are an adjoint
pair between abelian categories and (P1,E1) is a projective class on C1, then one
can lift this to a projective class on C2. Define P2 to be the collection of all retracts
of objects L(P ) for P in P1, and define E2 to be R−1(E1). One can readily theck
that (P2,E2) is indeed a projective class. Example 17.3(c) is an example of this,
using the usual adjoint pair Aob(I) � AI and lifting the trivial projective class
from Aob(I).

Given a projective class (P,E) in C, a sequence A → B → C in C is defined to
be P-exact if the composite is zero and if for every P in P the sequence

C(P,A)→ C(P,B)→ C(P,C)

is an exact sequence of abelian groups. Homological algebra then goes through in
the context of projective classes with little change from the usual story. If F is an
additive functor on C then one gets derived functors LPk F as follows: for X in C
one builds a P-projective resolution Ω∗ → X, and then (Lrelk F )(X) = Hk(F (Ω)).
The usual arguments show that this is independent of the choice of resolution, up
to unique isomorphism.

Note that there is a completely dual notion of injective class, and that one can
use these to define right derived functors.

17.5. (Co)homology of categories as a derived functor. Let A be an abelian
category, I be a small category, and let (P,E) be the standard projective class on
AI . Recall that for each i in I we have the adjoint pair Fi : A� AI : evi, and by
definition the objects Fi(A) are all P-projectives for any A in A. For j in I one has
Fi(A) = I(i, j)⊗ A. Note that if f : i → j is a map in I then there is a canonical
map Fj(A)→ Fi(A) which is adjoint to the map A→ [Fi(A)]j which includes the
copy of A indexed by the map f . So in fact we have a diagram F(−)(A) : Iop → AI .

For a given diagram D : I → A consider the following augmented simplicial
object in AI :
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D
∐
i0

Fi0(Di0)oo ∐
i0←i1

Fi0(Di1)oo oo
∐

i0←i1←i2
Fi0(Di2)oo oo

oo · · ·oo
oooo
oo

This is the bar resolution associated to the adjoint pair F : Aob(I) � AI : U , and
so the usual arguments (???) show that upon taking alternating sums of face maps
we get a resolution of D by P-projectives.

The next step is to apply the colimit functor to every stage of this resolution.
Since colim is a left adjoint, it commutes with coproducts. Also, the pair of adjoint
functors

A
Fi // AI
evi

oo
colim // I
c

oo

gives that colim ◦Fi is left adjoint to evi ◦c. But since the latter is the identity
this implies that there exists natural isomorphisms colim(Fi(A)) ∼= A. So applying
colim to the above resolution exactly reproduces the simplicial replacement of D,
and we have therefore proven that

Hk(I;D) ∼= [Lrelk colim](D).

The situation for cohomology is completely similar. Here one uses the coaug-
mented cosimplicial object

D // ∏
i0

CFi0(Di0) // //
∏

i0→i1
CFi0(Di1)

// ////
∏

i0→i1→i2
CFi0(Di2)

// ////// · · ·

which gives a relative injective resolution of D with respect to the standard injective
class on AI . The natural isomorphisms limCFi(A) ∼= A then lead to the conclusion
that

Hk(I;D) ∼= [Rkrel lim](D).

17.6. One more persepective on (co)homology of categories.

Let K be a simplicial set. The category of simplices of K is the Grothendieck
construction of K : ∆op → Set. That is, an object of ∆K is a pair ([n], α : ∆n → K)
and a morphism ([n], α) → ([k], β) is a map σ : [k] → [n] in ∆ (it goes the other
way in ∆op) such that β = α ◦ σ.

Define a homological coefficient system on K to be a functor F : ∆K → Ab.
A coefficient system is called locally constant if it takes every map in ∆K to an
isomorphism in Ab.

Given a coefficient system F on K, we can produce the following simplicial
abelian group:

∐
a0∈K0

F ([0], a0)
∐

a1∈K1

F ([1], a1)oo oo
∐

a2∈K2

F ([2], a2)oooo
oo · · ·oo

oooo
oo

The face and degeneracy operators are induced, in an evident way, from the ones
on K and the functor structure of F . We then define C∗(K;F ) to be the associated
chain complex, and H∗(K;F ) as the homology.

Analogously, define a cohomological coefficient system on K to be a functor
F : (∆K)op → Ab. Given such a system, we can construct the cosimplicial abelian
group



80 DANIEL DUGGER

∏
a0∈K0

F ([0], a0) ////
∏

a1∈K1

F ([1], a1)
//////
∏

a2∈K2

F ([2], a2)
//////// · · ·

and the associated cochain complex C∗(K;F ). Then we write H∗(K;F ) for the
cohomology groups.

Note that these constructions are quite general: given a simplicial set K and
a (co)homological coefficient system F , we get (co)homology groups H∗(K;F ) or
H∗(K;F ).

Now let I be a category and F : I → Ab be a functor. This induces a coefficient
system F on the nerve NI by(

[n], [i0 → i1 → · · · → in]
)
7→ F (i0).

One readily checks that our definitions of H∗(I;F ) and H∗(NI;F).

17.7. Examples of homology and cohomology groups of categories.

Example 17.8 (Homology of groups). Let A be the category of vector spaces over
a field k. Let G be a group, and let BG be the category with one object whose
endomorphism group is G. Then a functor D : BG→ A is just a representation of
G over k, and H∗(BG;D) is just classical group cohomology. In particular, note
that the cohomology groups are often nontrivial when ∗ > 0, even though A is
“just” the category of vector spaces.

As one specific example, let X be an object in A with a Z/2-action. Let σ
denote the generator of Z/2. The free diagram F (X) is X ⊕ X where σ acts by
swapping the two factors. We surject F (X) onto X using the equivariant map
1 + σ : X ⊕X → X, and then kernel is {(x,−σx) |x ∈ X}. We can equivariantly
surject F (X) onto this kernel in the evident way, and continuing like this we object
the resolution

· · · −→ X ⊕X h−→ X ⊕X g−→ X ⊕X h−→ X ⊕X 1+σ−→ X −→ 0

where h sends (x, 0) 7→ (x,−σx) and g sends (x, 0) 7→ (x, σx) (the behavior of h
and g on (0, x) is forced by equivariance). In this case the colimit functor quotients
by the Z/2-action, which identifies the two copies of X in each appearance of F (X).
So Hk(BZ/2;X) is the kth homology group of

· · ·X 1−σ−→ X
1+σ−→ X

1−σ−→ X −→ 0.

This is, of course, the usual computation of the group homology H∗(Z/2;X). We
leave the reader to go through the similar process to check that H∗(BZ/2;X) ∼=
H∗(Z/2;X), using that the co-free object is X×X where σ again acts by swapping
the two factors. (Note that X ×X = X ⊕X, since we are in an additive category).

Example 17.9 (The pushout category). Let I be the category 1← 0→ 2, and let
A = [A1 ← A0 → A2] be a diagram in some abelian category A. The three types
of free diagrams are readily checked to be

F0(X) = [X
id←− X id−→ X], F1(X) = [X ←− 0 −→ 0]

F2(X) = [0←− 0 −→ X].
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Using these, we surject onto A in an evident way and readily compute the kernel,
which turns out to be free. The resolution so obtained is:

0

��
[A0 ← 0→ 0]⊕ [0← 0→ A0]

��
[A0 ← A0 → A0]⊕ [A1 ← 0→ 0]⊕ [0← 0→ A2]

��

[A1
f← A0

g→ A2]

��
0,

where the maps are evident ones that we will leave the reader to work out. Applying
the colimit functor, we find that the groups H∗(I;A) are the homology groups of
the chain complex

0 −→ A0 ⊕A0 −→ A0 ⊕A1 ⊕A2 −→ 0

where the middle map sends (x, y) 7→ (x+ y,−f(x),−g(y)). One readily finds that

H∗(I;A) =


colimI A when ∗ = 0,

ker f ∩ ker g when ∗ = 1,

0 otherwise.

This is a good example of how we can effectively compute by using resolutions that
are not the standard resolution.

Example 17.10 (The pullback category). Let I be the category 1→ 0← 2. The
resolution we used in the previous example dualizes to give a co-free resolution in
this case. We leave the reader to work out that

H∗(I;A) =


limI A when ∗ = 0,

A/(im f + im g) when ∗ = 1,

0 otherwise.

This can also be deduced from the previous example by an appropriate use of
opposite categories.

Example 17.11 (The indexing category for sequential colimits). Let I denote
the category 0 → 1 → 2 → · · · and let A : I → A be a diagram. Let us write
f : Ai → Ai+1 to denote all the maps in the diagram.

The free diagram Fi(X) looks like

0 −→ 0 −→ · · · −→ 0 −→ X
id−→ X

id−→ · · ·
where the first X occurs in spot i. To surject onto A we need to use ⊕iFi(Ai), but
it is easy to see that the kernel of ⊕iFi(Ai) → A is then free. That is to say, we
have a short free resolution of the form

0 −→ ⊕iFi+1(Ai)
g−→ ⊕iFi(Ai) −→ A −→ 0
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where the map g can be described as follows: on Fi+1(Ai) it is the adjoint of the
map

Ai //

id⊕f

44[Fi(Ai)]i+1 ⊕ [Fi+1(Ai+1)]i+1 Ai ⊕Ai+1

(where the equality sign denotes the canonical isomorphism). This is a mouthful,
but this is a case where it is really easier to work it out oneself than to read an
explanation.

Applying the colimit functor to each stage of the resolution, we find that the
groups H∗(I;A) are the homology groups of the complex

0 −→ ⊕iAi
g̃−→ ⊕iAi −→ 0

where g̃ restricts to the map id ⊕ f on Ai. It is easy to check that H0(I;A) =
colimI A here, but an analysis of H1 is difficult in this generality. So let us now
assume that A is the category of left R-modules, for some ring R. Then g̃ acts on
elements as

g̃(a0, a1, a2, . . .) = (a0, a1 − f(a0), a2 − f(a1), . . .).

Note that the tuples must be eventually zero, being in the direct sum and not the
direct product of the Ai. Now one readily finds that

H∗(I;A) =

{
colimI A if ∗ = 0,

0 otherwise.

Be warned that it is not true that H1(I;A) = 0 in all abelian categories, we
have only proven this for categories of modules over a ring. We will shortly see a
counterexample to the general statement.

Example 17.12 (The indexing category for sequential limits). Here let J = Iop,
where I is from the previous example. So J indexes sequential limit diagrams.
The co-free diagram CFi(X) looks like

· · · −→ X
id−→ X

id−→ X −→ 0 −→ 0 −→ · · · −→ 0

where the rightmost X occurs in spot i. A diagram A can be resolved by co-free
diagrams via

0 −→ A −→
∏
i

Fi(Ai)
g−→
∏
i

Fi+1(Ai) −→ 0

where g is defined dually to what we saw for I-diagrams. At spot j this is the exact
sequence

0 // Aj
(id,f,...,fj)// Aj ×Aj−1 × · · · ×A0

g // Aj−1 × · · · ×A0
// 0

where the component of g mapping into Ak is the difference πk − fπk+1 and πi is
the evident projection onto Ai.

Applying the limit functor to each stage of our resolution gives that H∗(J ;A)
is calculated as the cohomology groups of

0 −→
∏
i

Ai
g̃−→
∏
i

Ai −→ 0

where the component of g̃ mapping into Ai is again πi − fπi+1. The kernel of g̃ is
clearly H0(J ;A), but the cokernel is hard to analyze. Even in the case where the
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abelian category A is R-modules, this cokernel is not easy to describe. It is usually
denoted lim1A. So we have computed

H∗(J ;A) =


limJA if ∗ = 0,

lim1A = coker(g̃) if ∗ = 1,

0 otherwise.

Example 17.13 (A non-vanishing lim1). Let A be the category of abelian groups,
and consider the diagram

· · · −→ Z 2−→ Z 2−→ Z 2−→ Z.
Then lim1 of this diagram is the cokernel of∏

i

Z −→
∏
i

Z, (a0, a1, . . .) 7→ (a0 − 2a1, a1 − 2a2, . . .).

If a sequence (u0, u1, . . .) is in the image of this map, then notice that

u0 ≡ a0 (mod 2), u0 + 2u1 ≡ a0 (mod 2), u0 + 2u1 + 4u2 ≡ a0 (mod 2)

and so forth. So the series u0 +2u1 +4u2 + · · · converges to an integer in the 2-adic
topology on Z. It is easy to give examples of sequences where this fails, for example
1 = ui for all i. This proves that lim1 is non-vanishing in this case.

We can actually compute lim1 explicitly for this example. Consider the exact
sequence of diagams

...

��

...

��

...

��
0 // Z

2
��

8 // Z
1
��

// Z/8

����

// 0

0 // Z
2
��

4 // Z
1
��

// Z/4

����

// 0

0 // Z
2 ��

2 // Z
1��

// Z/2

����

// 0

0 // Z 1 // Z // 0 // 0.

Call the columns A, B and C, from left to right. The long exact sequence for lim∗

gives

0 // limA // limB // limC // lim1A // lim1B // lim1 C // 0

0 Z Z∧2 ?? 0 lim1 C

where Z∧2 denotes the 2-adic completion of Z. The fact that lim1B = 0 follows
directly from the definition. Consequently, the above exact sequence shows that
lim1 C = 0 and also lim1A = Z∧2/Z. Note that Z∧2 is uncountable, and the same is
therefore true of lim1A.

Remark 17.14. Let us now return to our analysis of H1(I;A) in Example 17.11.
We saw that this vanished when the abelian category is the category of R-modules.
To see a case where it does not vanish, take A = Abop (the opposite category of
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abelian groups). The computations for H1(I;−) are then the same as for H1(J ;−)
in Ab, and we have just seen that these groups can be nonzero.

This example illustrates an important point regarding abelian categories. It
is sometimes said that the Freyd-Mitchell Embedding Theorem shows that one
can always pretend that any abelian category is a category of modules, and can
therefore prove theorems by assuming that the objects in the abelian category have
underlying sets that behave just as in the module case. This is fine up to a point,
but our analysis of H1(I;−) shows that it only goes so far.

Specifically, the Freyd-Mitchell Embedding Theorem says that if A is a small
abelian category then there is a fully faithful and exact functor E : A → R −Mod
for some ring R. Here “exact” means that the functor preserves finite limits and
colimits. It is the “finite” word that is important for our discussion, as our analysis
of H1(I;−) required us to work with an infinite coproduct. As the Freyd-Mitchell
theorem does not guarantee that E preserves such coproducts, one cannot reduce
the H1(I;−) computation to the case where A is a subcategory of R−Mod.
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18. Spectral sequences for holims and hocolims

If D : I → Top is a diagram, there is a spectral sequence for computing
π∗(holimD) from knowledge of π∗(Di) for each i. Actually, this is not always
a true spectral sequence due to the fact that π0 may not be a group, and π1 may
not be an abelian group. So one has these problems on the ‘fringe’. There are ways
to deal with these problems, but very often one is in a situation where they actually
aren’t there. One way this can happen is if one is really dealing with spectra rather
than spaces. Another way is if one is dealing with spaces which are all connected
with abelian fundamental groups. We will develop things in these two special cases.

If E is a cohomology theory, then there is a related spectral sequence for comput-
ing E∗(hocolimD) from knowledge of E∗(Di), for all i. In fact this can be obtained
as a special case of the above, using the adjunctions in the category of spectra

En(hocolimD) = π−n Map(hocolimD,E) = π−n

[
holim
I

Map(D(i), E)
]
.

Here we are writing E also for some spectrum representing our given cohomology
theory. In this section we will explain these two spectral sequences.

18.1. A motivating example. Before tackling the general case, we pause to con-
sider one special example. Given a pushout diagram X = [B ← A→ C] of cofibrant
objects, we have seen that one model for hocolimX is the double mapping cylinder
obtained as a pushout of

B q C ←− AqA −→ A× I.
As discussed in Example 2.2, there is an evident open cover {U, V } of this space
obtained by roughly cutting the cylinder in half (but allowing a little overlap be-
tween the two pieces). The intersection U ∩ V is then homotopy equivalent to A,
and U ' B and V ' C. Mayer-Vietoris gives a long exact sequence

· · · → E∗(hocolimX)→ E∗(B)⊕ E∗(C)→ E∗(A)→ E∗+1(hocolimX)→ · · ·
This long exact sequence is a degenerate case of the spectral sequence we are after.

There is another way to get this long exact sequence that works if A is well-
pointed. Choose a basepoint ∗ in A such that ∗ ↪→ A is a cofibration, and consider
the subspace W = B∪(∗×I)∪C inside of hocolimX. The quotient (hocolimX)/W
is isomorphic to ΣA and W ' B ∨ C, so the long exact sequence for the pair
(hocolimX,W ) can be written as

· · · → E∗(ΣA, ∗)→ E∗(hocolimX)→ E∗(B ∨ C)→ E∗+1(ΣA, ∗)→ · · ·
One can check that this is “the same” as the previous long exact sequence, after
appropriate use of the suspension isomorphism.

This example indicates the basic idea: for a general diagram X, the construc-
tion of hocolimX should yield a certain decomposition of this space into simpler
components—either via an open covering or otherwise. The usual tools of cohomol-
ogy theories will take such a decomposition and churn out a spectral sequence. In
fact, the description of hocolimX as a geometric realization immediately suggests
the “skeletal” filtration where one decomposes the space by the dimension of the
attached simplices (this is basically what we did in the second approach above).
The problem to be solved is really just one of bookkeeping: how does one describe
the filtration quotients and compute the initial input for the spectral sequence.
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The situation for homotopy limits is completely dual. If Y = [B → A← C] is a
diagram of pointed spaces then one model for the homotopy limit is the pullback

of B × C −→ A×A π←− AI . The map AI → A×A is a fibration whose fiber over
(∗, ∗) is ΩA, and so pulling back gives a fibration sequence

ΩA→ holimY → B × C.
The long exact sequence in homotopy groups becomes

· · · → πi+1(A)→ πi(holimY )→ πi(B)⊕ πi(C)→ πi(A)→ · · ·
and again this can be regarded as a certain degenerate example of a spectral se-
quence.

18.2. The spectral sequences. Let D : I → Top be a diagram, and let E∗ be a
homology theory. Write Ek(D) for the diagram I → Ab given by i 7→ Ek(Di), and
write Ek(D) for the analogous diagram Iop → Ab.

Theorem 18.3 (Spectral sequences for homotopy colimits).

(a) There is a spectral sequence E2
p,q = Hp(I;Eq(D)) ⇒ Ep+q(hocolimD). The

differentials have the form dr : Erp,q → Erp−r,q+r−1.

(b) There is a spectral sequence Ep,q2 = Hp(Iop;Eq(D)) ⇒ Ep+q(hocolimD). The
differentials have the form dr : Ep,qr → Ep+r,q−r+1

r .

The dual version for homotopy limits is a bit more dicey to state, because of
the problem that the homotopy groups πi of a space depend on basepoints, are
nonabelian when i = 1, and are not groups at all when i = 0. There are ways to
deal with these issues and talk about a “fringed spectral sequence”, but we will not
tackle this and instead assume we are in a situation where these problems are not
present.

Theorem 18.4 (Spectral sequences for homotopy limits). Assume either that

(1) Each space Di is path-connected with abelian fundamental group, or
(2) D is actually a diagram in some category of spectra.

Then there is a spectral sequence Ep,q2 = Hp(I;πqD)⇒ πq−p(holimD). The differ-
entials have the form dr : Ep,qr → Ep+r,q+r−1

r .

We will later discuss where these spectral sequences come from and how to
remember the bigrading of the differentials.

18.5. Examples.

Example 18.6 (Homology of a homotopy pushout). Let I be the category 1 ←
0→ 2, and let D = [B ← A→ C] be a I-diagram in Top. Let E∗(−) be a homology
theory. Recall that Hp(I;−) is nonzero only for p = 0, 1. Since the dr-differential
maps the p = k line to the p = k − r line, the spectral sequence collapses at the
E2-page.

Also, recall that we computed

H0(I;Eq(D)) = coker
[
Eq(A)→ Eq(B)⊕ Eq(C)

]
= cokerq

H1(I;Eq(D)) = ker
[
Eq(A)→ Eq(B)

]
∩ ker

[
Eq(A)→ Eq(C)

]
= kerq .

Note that cokerq and kerq are simply abbreviations that will be useful below.
We have the following picture:
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coker0

coker1

coker2

ker0

ker1

ker2

p

q

d2

The spectral sequence tells us there is a very short filtration En(hocolimD) =
F0 ⊆ F1, and the groups (F0/F1)⊕ F1 are the ones appearing in the nth diagonal
in the E∞-term (where the second“diagonal” is the one circled in the picture). It
remains to remember the order in which these two terms appear along the diagonal:
to do this, move along the diagonal in the vague direction of the differentials. In
our picture this takes us from lower to higher in the diagonal. The quotient group
of En(hocolimD) (F0/F1 in our notation) is always the one near the tail of the
differential. So in our case this says

F0/F1
∼= kern−1 and F1

∼= cokern .

Putting everything together, the spectral sequence is giving us short exact se-
quences

0 −→ cokern −→ En(hocolimD) −→ kern−1 −→ 0.

Note that this is the same information as in the long exact sequence

· · · En(A) En(B)⊕ En(C) En(hocolimD)

En−1(A) En−1(B)⊕ En−1(C) · · ·

Exercise 18.7. Check that the spectral sequence for computing the cohomology
of a homotopy pushout, and for computing the homotopy groups of a homotopy
pullback, represent the same information that we saw in the motivating examples
from Section 18.1.

Example 18.8 (Homotopy of a sequential homotopy limit). Let · · · → X2 → X1 →
X0 be an inverse limit system of pointed topological spaces (connected with abelian
fundamental groups). Let J denote the indexing category · · · → 2 → 1 → 0. The
spectral sequence

Hp(J ;πq(X))⇒ πq−p(holimX)

is again concentrated along the lines p = 0, 1, and the differentials leave this range
and so are all zero. Recall that

H0(J ;πq(X)) = limπq(X), H1(J ;πq(X)) = lim1 πq(X).

This time our spectral sequence looks like
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limπ0

limπ1

limπ2

lim1 π0

lim1 π1

lim1 π2

p

q

d2

Reasoning as in the previous example, the spectral sequence gives us short exact
sequences

0 −→ lim1 πn+1(D) −→ πn(holimD) −→ limπn(D) −→ 0.

Exercise 18.9. Given a sequence of spaces X0 → X1 → · · · , use the spectral
sequence for the cohomology of a sequential colimit to derive the short exact se-
quences

0 −→ lim1 En−1(X) −→ En(hocolimXn) −→ limEn(X) −→ 0.

This is usually called the Milnor exact sequence.

18.10. Spectral sequences for simplicial and cosimplicial spaces. ?????
This is an immediate consequence of the following result about cosimplicial

spaces. If X is a cosimplicial pointed space, one may form a cosimplicial abelian
group by applying πn(−, ∗) to each level (assuming that n ≥ 2, or that the spaces
Xi are connected with abelian fundamental group). After taking the alternating
sum of the coface maps, the cosimplicial abelian group becomes a cochain complex.
Let Hp(πq(X)) denote the pth cohomology group.

Theorem 18.11. Let X be a Reedy fibrant simplicial space, such that each Xn

is connected with abelian fundamental group. Then there is a spectral sequence of
the form Ep,q2 = Hp(πq(X)) ⇒ πq−p(TotX), where the differentials have the form
dr : Ep,qr → Ep+r,q+r−1

r .

Remark 18.12. There is an easy way to remember how the differentials work in
the above spectral sequence, at least if one understands the two spectral sequences
associated to a double chain complex. Suppose that, instead of X being a cosim-
plicial space, X were a cosimplicial chain complex. That is, suppose that instead of
working in the model category Top we were working in the model category Ch(Z).

Now each Xn is a chain complex, which we draw vertically with the differentials
going down. We are now looking at a cosimplicial chain complex, which after taking
the alternating sum of coface maps becomes a double complex. In this case TotX
“is” the totalization of this double complex, and the spectral sequence “is” the
spectral sequence obtained by first taking homology groups in the vertical direction
and then in the horizontal direction. So if one knows how the indexing works in
the latter spectral sequence, one also knows how it works in the former.

18.13. Spectral sequences for homotopy colimits. Suppose D : I → Top, and
that E∗ is a cohomology theory represented by a spectrum E. Note that for each
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n one obtains an Iop-diagram of abelian groups by i 7→ En(D(i)). We’ll call this
diagram En(D), for short.

Proposition 18.14. There is a spectral sequence Ep,q2 = Hp(Iop;Eq(D)) ⇒
Ep−q(hocolimD). The differentials have the form dr : Ep,qr → Ep+r,q−r+1

r .

Proof. This is obtained by dualizing the spectral sequence for a homotopy limit. �

One can also derive a spectral sequence for computing the E-homology of a ho-
motopy colimit. This is based on the following spectral sequence for the homotopy
groups of a geometric realization of spectra:

Proposition 18.15. Let [n] 7→ Gn be a simplicial spectrum. Then there is a
spectral sequence

E1
p,q = πpGq ⇒ πp+q|G|

where the differentials have the form dr : Erp,q → Erp+r−1,q−r. The differential d1 is
the alternating sum of the face maps in the cosimplicial abelian group [n] 7→ π∗Gn.

Proof. This is the homotopy spectral sequence associated to the tower of homotopy
cofiber sequences

∗ // |Sk0G| //

��

|Sk1G| //

��

|Sk2G| //

��

· · ·

G0 ΣG1 Σ2G2 · · ·
In spectra, homotopy cofiber sequences are also homotopy fiber sequences—so each
layer in the tower gives a long exact sequence in homotopy groups, resulting in an
exact couple. �

Remark 18.16. Again, there is a nice way to remember how the differentials go
in the above spectral sequence. Imagine the parallel situation in which the Gi are
chain complexes rather than spectra. Then what we really have is a double complex,
and we are looking at the spectral sequence whose G2-term is obtained by first
taking the homology of the Gi’s and then taking homology in the other direction.
Provided one can remember how the differentials work in the spectral sequence
of a double complex, one also knows how they work in the spectral sequence of
Proposition 18.15.

Proposition 18.17. Let E be a spectrum and let X : I → Top be a diagram of
spaces. Then for each p one gets a diagram of abelian group i 7→ Ep(Xi); call this
diagram EpX.

There is a spectral sequence

E2
p,q = Hq(I;EpX)⇒ Ep+q(hocolim

I
X).

The differentials have the form dr : Erp,q → Erp+r−1,q−r.

Proof. Consider the simplicial spectrum [n] 7→ E ∧ Σ∞(srep(X)n). The geometric
realization of this simplicial spectrum is hocolimI(E∧Σ∞(Xi)+), which is the same
as

E ∧ Σ∞(hocolim
I

Xi).

The spectral sequence of Proposition 18.15 converges to the (p + q)th homotopy
group of this geometric realization, which is therefore Ep+q(hocolimI X). �
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19. Homotopy limits and colimits in other model categories

So far we have been almost exclusively working in the model category of topolog-
ical spaces. In this section we will explain some of the ways in which our methods
adapt to more general model categories. In many cases this takes the form, “If a
model category satisfies P and Q then everything we did before works exactly the
same. However, if the model category does not satisfy P or Q then one can still
get the same basic results, but it requires harder work.”

We also make some remarks particular to the case where the model category is
chain complexes over an abelian category. Here, the study of homotopical algebra
is really just ordinary homological algebra. So the theory of homotopy colimits can
be phrased in somewhat more algebraic terms. We make some of this explicit.

19.1. Simplicial model categories. A model category M is called simplicial if
for every X,Y ∈M and K ∈ sSet one has functorial constructions

X ⊗K ∈M, F (K,X) ∈M, and Map(X,Y ) ∈ sSet
together with adjunction isomorphisms

Map(X ⊗K,Y ) ∼= Map(X,F (K,Y )) ∼= sSet(K,Map(X,Y ))

(note that these are isomorphisms of simplicial sets). One assumes there is
a composition law Map(Y, Z) × Map(X,Y ) → Map(X,Z) and identity maps
∗ → Map(X,X) satisfying the expected properties, and also an isomorphism
Map(X,Y )0

∼= M(X,Y ) that commutes with composition. Finally, one assumes
the pushout-product axiom SM7; there are several equivalent versions, but we will
use the one saying that if i : A � B is a cofibration in M and j : K ↪→ L is a
cofibration in sSet, then the map

i�j : (A⊗ L)q(A⊗K) (B ⊗K)→ B ⊗ L
is a cofibration which is a weak equivalence if either i or j is so. A detailed treatment
of simplicial model categories can be found in [H, Chapter 9].

Example 19.2. The model category Top is a simplicial model category, where one
defines

X ⊗K = X × |K|, F (K,X) = X |K|

and where Map(X,Y ) is the simplicial set [n] 7→ Top(X ×∆n, Y ).
Similarly, sSet is a simplicial model category where one defines

X ⊗K = X ×K, F (K,X) = sSet(K,X), and Map(X,Y ) = sSet(X,Y ).

In a simplicial model category, one can give formulas for homotopy limits and
colimits exactly like what we have described for Top. One uses exactly the same
definitions, and all the same results hold.

19.3. The homotopy theory of diagrams. Let M be any model category, and
let I be a small category. Let MI denote the category of I-diagrams and natural
transformations.

One would like there to be a model category structure on MI where the weak
equivalences are the objectwise weak equivalences. Unfortunately this probably
doesn’t exist in general. However, it does exist if I is a so-called Reedy category,
and for all I if M is a cofibrantly-generated model category.
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Theorem 19.4. Assume M is a cofibrantly-generated model category. Then for
any small category I there is a model category structure on MI where the weak
equivalences and fibrations are determined objectwise. This is commonly called the
projective model category structure on MI .

Proof. See [H, Section 11.6]. �

If M is cofibrantly-generated, we can again consider the adjoint functors

colim: MI � : M : c

and these are again a Quillen pair. One can define the homotopy colimit of a
diagram as the derived functor of the colimit, just as we did in Top. Notice that
this works even if M is not simplicial! Relative homotopy colimits can also be
defined, and the whole theory is exactly the same as for Top.

The dual story for homotopy limits is also a little different. Here one wants
a model category structure on MI where the weak equivalences and cofibrations
are defined objectwise. For the following, recall that a model category is called
combinatorial if it is cofibrantly-generated and the underlying category is locally
presentable.

Theorem 19.5 (J. Smith, unpublished). Assume that M is a combinatorial model
category. Then for any small category I there is a model category structure on MI

in which the weak equivalences and cofibrations are determined objectwise. This is
commonly called the injective model category structure on MI .

If M is a combinatorial model category one can then consider the adjoint functors

c : M � MI : lim

(where c is the left adjoint), and observe that c preserves cofibrations and trivial
cofibrations. To this is a Quillen pair, and one can define the homotopy limit of a
diagram to be the derived functor of lim.

Remark 19.6. Even if the appropriate model category structure on MI does not
exist, there are other techniques for making the derived functor perspective work.
One can still define a homotopy category of diagrams Ho (MI), even though an
underlying model category structure may not exist. And one can still talk about
the derived functors of colim and lim. See [DHKS] for this approach.

For yet another approach to homotopy limits and colimits in general model
categories, see [CS].

19.7. Non-simplicial model categories. Formulas for homotopy limits and col-
imits can also be given without assuming a simplicial structure on the model cat-
egory; one just has to work a little harder. This is due to Dwyer-Kan, and it is
described in detail in [H, Chapters 16, 19].

If X is a cofibrant object in a simplicial model category, then one can obtain
a cylinder object for X by looking at X ⊗ ∆1. One also has cylinder objects in
non-simplicial model categories: they can be constructed by factoring the fold map
∇ : X qX → X into a cofibration followed by a trivial fibration:

X qX � Cyl(X)
∼
−� X.

These are even functorial, using that our factorizations are functorial.
In the same way, in any model category one can construct objects which “look

like” X ⊗ ∆2, X ⊗ ∆3, etc. This is due to Dywer-Kan and is referred to as the
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theory of framings. For instance, to construct an object that looks like X⊗∆2 one
does the following. Recall that our cylinder object Cyl(X) came with two maps
d0, d1 : X → Cyl(X). One can make an object that looks like X ⊗ ∂∆1 by forming
the colimit of the diagram

X

d0

��
d1

((

X
d0

vv

d1

((

X

d1

��d0vv
Cyl(X) Cyl(X) Cyl(X).

This corresponds to gluing three copies of Cyl(X) to make the picture

•

•

Cyl(X)

Cyl(X)
•

Cyl(X)

corresponding to ∂∆1. Let Z denote this colimit.
Our canonical map Cyl(X) → X coequalizes d0 and d1, and therefore induces

a map Z → X. Factoring this again as a cofibration followed by trivial fibration
gives

Z � X[2]
∼
−� X

and this X[2] is our object which “looks like” X⊗∆2. Note that it is also functorial
in X, due to the functoriality of our factorizations.

For an object X ∈M, let cX denote the constant cosimplicial object which is X
in every dimension. Briefly, a cosimplicial frame on X is a cosimplicial object X̂ in
M, together with an objectwise weak equivalence X̂ → cX which is an isomorphism
in level 0. When X is cofibrant, one also requires that X̂ satisfy a certain Reedy
cofibrancy condition having to do with latching maps being cofibrations—we will
not write this down. The nth object of X̂ is our object which “looks like” X ⊗
∆n. Dwyer and Kan showed that cosimplicial frames exist in any model category,
essentially by inductively continuing the procedure we began above.

Let I be a small category. Given a diagram D : I → M, a cosimplicial frame
on D is a diagram D̂ : I → cM (a diagram of cosimplicial objects on M) together

with natural weak equivalences D̂(i)→ c[D(i)] which make each D̂(i) a cosimplicial
frame on D(i). Again, cosimplicial frames on diagrams always exist.

Once one has a cosimplicial frame on D, one can again write down explicit
formulas for the homotopy colimit. (For the homotopy limit one needs a simplicial
frame on D—we have not defined this but it is completely dual). The formulas are
exactly what we wrote down in the simplicial case, one just has to develop enough
machinery to realize that they really do make sense.

There is no point in us describing this theory in more detail because the reader
should just go read [H]. The theory of frames and homotopy limits/colimits in
general model categories is wonderfully presented there.

19.8. Abelian categories. Let A be an abelian category with enough projectives
and injectives. Then there are model categories on Ch≥0(A) and Ch≤0(A) which
exactly parallel the two model category structures described at the beginning of
this section, when A is the category of modules over a ring. In these categories



A PRIMER ON HOMOTOPY COLIMITS 93

the theory of homotopy limits and colimits becomes somewhat simpler and more
familiar.

Recall that if B is an additive category then there is an equivalence between the
category of simplicial objects in B and the category Ch≥0(B). In one direction
one replaces a simplicial object by its normalized chain complex; up to quasi-
isomorphism, this is the same as the chain complex obtained by just taking the
alternating sum of face maps.

Also, recall that if D∗,∗ is a double chain complex then one may form a total

chain complex in two ways. One way has Tot⊕(D)n =
⊕

p+q=nDp,q and the other

has Tot⊗(D)n =
⊗

p+q=nDp,q. We will have need for both of these.

Suppose given a simplicial object X∗ of Ch≥0(A). Since the category of chain
complexes is additive, we may take the alternating sum of face maps. . .and what
we get is a double complex! Let Xalt

∗ denote this double complex. The result we
are after is the following:

Proposition 19.9. The two chain complexes hocolimX∗ and Tot⊕(Xalt
∗ ) are

quasi-isomorphic.

Similarly, suppose Z∗ is a cosimplicial object in Ch≤0(A). Let Z∗alt denote the
double complex obtained by taking the alternating sum of coface maps. Then

Proposition 19.10. The complexes holimZ∗ and Tot⊗(Z∗alt) are quasi-isomorphic.

What these propositions say is that the theory of homotopy colimits in Ch≥0(A)
(and of homotopy limits in Ch≤0(A)) can be drastically simplified by using to-
tal complexes. For instance, if D : I → Ch≥0(A) is a diagram then to construct
hocolimD one can form the simplicial replacement, take the alternating sum of
faces, and then apply Tot⊕. No geometric realization (or Tot) is needed.

What about homotopy limits in Ch≥0(A)? Here the story is a little more com-
plicated, but only barely. The difficulty is as follows. Suppose Z∗ is a cosimplicial
object in Ch≥0(A). Taking alternating sums of coface maps gives a double complex
Z∗alt. But taking the total complex now gives a complex which has terms in nega-
tive degrees, so it does not lie in Ch≥0(A). How does one fix this? Well, for any
Z-graded chain complex C∗ one can obtain a non-negatively graded chain complex
by considering the truncation τ≥0(C∗) given by

Z0 ← C1 ← C2 ← · · ·
where Z0 is the subobject of cycles in degree 0.

Proposition 19.11. If Z∗ is a cosimplicial object in Ch≥0(A), then holimZ∗ is
quasi-isomorphic to τ≥0 Tot⊗[Z∗alt].

Similarly, we have

Proposition 19.12. If X∗ is a simplicial object in Ch≤0(A), then hocolimX∗ is
quasi-isomorphic to τ≤0 Tot⊕[X∗alt]. Here, if C∗ is a Z-graded chain complex then
τ≤0(C∗) is the non-positively graded chain complex given by

C0/B0 → C−1 → C−2 → C−3 → · · ·
where B0 is the subobject of boundaries in degree 0.

Again, the above propositions show that the theory of homotopy limits and
colimits in Ch≥0(A) and Ch≤0(A) can be drastically simplified by using total
complexes in place of geometric realizations or Tot.
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20. Various results concerning simplicial objects

This section is under construction!
Let I and J be two small categories, and let X → I × J → Top be a diagram.

Note that for any i ∈ I we get a J-diagram by j 7→ X(i, j), and likewise for any
j ∈ J we get an I-diagram

Proposition 20.1. There are canonical zig-zags of weak equivalences between the
three objects

hocolim
I

[i 7→ hocolim
J

X(i,−)], hocolim
J

[j 7→ hocolim
I

X(−, j)],

and hocolimI×J X.

20.2. Homotopy colimits and realizations. Let X : ∆op → Top. We have al-
ready talked about the geometric realization |X|, but we can also form the ho-
motopy colimit hocolimX. These are both homotopy invariant constructions, but
they are usually different. We can compare them, though:

Proposition 20.3. There is a natural map hocolimX → |X| called the Bousfield-
Kan map. It is a weak equivalence when X is Reedy cofibrant.

Similarly, if Z : ∆ → Top is a cosimplicial space then there is a natural map
TotZ → holimZ; this is a weak equivalence if Z is Reedy fibrant.

The proof of the above proposition requires more techniques than we have at the
moment. However, we can at least describe the map. Recall that

hocolim
∆op

X = coeq

[ ∐
[n]→[k]

Xk ×B([n] ↓ ∆op)op ⇒
∐
n

Xn ×B([n] ↓ ∆op)op

]

= coeq

[ ∐
[n]→[k]

Xk ×B(∆ ↓ [n]) ⇒
∐
n

Xn ×B(∆ ↓ [n])

]
.

Likewise, we have

|X| = coeq

[ ∐
[n]→[k]

Xk ×∆n ⇒
∐
n

Xn ×∆n

]
.

We can produce a map hocolimX → |X| by finding maps αn : B(∆ ↓ [n]) 7→ ∆n

having the property that for every σ : [n]→ [k] one gets a commutative square

B(∆ ↓ [n])

��

σ∗ // B(∆ ↓ [k])

��
∆n σ∗ // ∆k.

We’ll actually produce maps of simplicial sets N(∆ ↓ [n]) 7→ ∆n. Recall that ∆n is
the simplicial set [k] 7→ ∆([k], [n]). A k-simplex in N(∆ ↓ [n]) is a string

[i0]→ [i1]→ · · · → [ik]→ [n].

We can produce a map [k]→ [n]—that is, a k-simplex in ∆n—by sending an element
j ∈ [k] to the image in [n] of the last vertex of [ij ] under the above composition of
maps. Note that this gives a monotone increasing function [k] → [n], as desired.
The resulting map N(∆ ↓ [n]) → ∆n is called the last vertex map. The reader
may easily check that it gives the necessary commutative squares.
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20.4. Fat vs. non-fat. Recall that ∆f ⊆ ∆ is the subcategory consisting of all
the co-face maps. A ‘∆-complex’ is a functor ∆op

f → Top—it is a simplicial set
without the degeneracy maps. If Z is a ∆-complex then the above Bousfield-Kan
construction gives a natural map hocolim∆f

Z → ||Z||.
So if X is a simplicial space one has the following square:

hocolim
∆op

X // |X|

hocolim
∆op
f

X

OO

// ||X||

OO

Proposition 20.5. If X is objectwise cofibrant, the two maps with domain
hocolim∆op

f
X are weak equivalences. If X is also Reedy cofibrant, the other two

maps are weak equivalences as well.
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Part 5. Examples

21. Homotopy initial and terminal functors

In this section we present several specific examples of functors which are homo-
topy initial or terminal.

Our first example is a functor which is merely initial, not homotopy initial:

Example 21.1. Let J ↪→ ∆ denote the subcategory consisting of the objects [0],
[1], and the two maps d0, d1 between them. We claim that J ↪→ ∆ is initial; this is
equivalent to saying that Jop → ∆op is terminal. This will justify our claim from
Section 3.7 that if X is a simplicial space then colim∆op X is homeomorphic to the
coequalizer of d0, d1 : X1 ⇒ X0.

To see that i : J ↪→ ∆ is initial, we must verify that for every n ≥ 0 the category
(i ↓ [n]) is connected. The objects in this category consist of all maps [0] → [n]
and all maps [1]→ [n]. Let ek : [0]→ [n] denote the map whose image is {k}. Let
fk : [1]→ [n] denote the map whose image is {k}. Finally, if k < l let gk,l : [1]→ [n]
be the map sending 0 7→ k and 1 7→ l. These are all the objects in (i ↓ [n]).

One readily checks that there are maps in (i ↓ [n]) from ek to gk,l, el to gk,l, and
from ek to fk. This proves that (i ↓ [n]) is connected.

Example 21.2. Let ∆f ↪→ ∆ be the subcategory consisting of all maps which are
monomorphisms (that is, all coface maps). We claim that the inclusion functor
i : ∆f ↪→ ∆ is homotopy initial. As a consequence, iop is homotopy terminal; so
the homotopy colimit of a simplicial object can be obtained by instead taking the
homotopy colimit of the object obtained by forgetting all degeneracies.

We must prove that for every n ≥ 0, the overcategory (i ↓ [n]) is contractible.
To do this, consider the functor

F : (i ↓ [n]) −→ (i ↓ [n])

which sends a map σ : [k]→ [n] to the map Fσ : [k + 1]→ [n] given by

(Fσ)(0) = 0, (Fσ)(i) = σ(i− 1) if i ≥ 1.

This becomes a functor in the evident way.
Let e : [0]→ [n] denote the map whose image is 0, and let E : (i ↓ [n])→ (i ↓ [n])

be the functor which sends every object to e and every map to the identity. We
thus have three functors

F, id, e : (i ↓ [n]) −→ (i ↓ [n]).

The reader can check that there are natural transformations id → F and e → F .
This shows that upon taking classifying spaces the maps induced by F , id, and e
are all homotopic. In particular, the identity map is null-homotopic; so (i ↓ [n]) is
contractible.

The argument from the above example actually shows the following. For each
σ : [k] → [n] in ∆, let sh(σ) denote the map [k + 1] → [n + 1] which sends 0 7→ 0
and i 7→ σ(i− 1) + 1 for i ≥ 1. So sh(σ) is a ‘shift’ of the map σ.

Proposition 21.3. Let J ↪→ ∆ be a subcategory satisfying the following:

(1) For each map σ in J , sh(σ) is also in J ;
(2) For each n ≥ 0, the ‘add 1 map’ [n]→ [n+ 1] given by i 7→ i+ 1 belongs to J .
(3) For each n ≥ 0, the map [0]→ [n] whose image is {0} belongs to J .
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Then J ↪→ ∆ is homotopy initial.

Proof. Left to the reader. �

The reader can check that ∆f is the smallest subcategory of ∆ satisfying the
three conditions in the above proposition.

Exercise 21.4. Let Ω be the full subcategory of Set consisting of the objects
[0], [1], [2], . . .. Recall that [n] = {0, 1, . . . , n}. Note that ∆ is a subcategory of Ω,
with the only maps in ∆ being the monotone increasing functions.

Adapt the method used in Example 21.2 to prove that the inclusion ∆ ↪→ Ω is
homotopy initial.

Example 21.5. Consider the product category ∆×∆. Objects are pairs ([n1], [n2]),
and a map ([k1], [k2]) → ([n1], [n2]) simply consists of two maps k1 → n1 and
k2 → n2.

Let d : ∆→ ∆×∆ denote the diagonal functor. We claim that this is homotopy
initial. As a consequence, dop is homotopy terminal; so if X∗,∗ is a bisimplicial
space then its homotopy colimit is weakly equivalent to the homotopy colimit of
the simplicial space [n] 7→ Xn,n.

To justify the claim, we prove that
(
d ↓ ([p], [q])

)
is contractible for any p and

q. The method is similar to that of the previous example. Recall that an object
of
(
d ↓ ([p], [q])

)
consists of an object [n] in ∆ and a map d([n]) → ([p], [q]). So

we have an [n] and two maps [n]→ [p] and [n]→ [q]. Given an [n′] and two maps
[n′]→ [p] and [n′]→ [q], a map from the first object to this one consists of a map
[n]→ [n′] making the two evident triangles commute.

Let
F :
(
d ↓ ([p], [q])

)
−→

(
d ↓ ([p], [q])

)
be the functor which sends the object ([n], σ1 : [n]→ [p], σ2 : [n]→ [q]) to the object
([n+1], [n+1]→ [p], [n+1]→ [q]) where the first map sends 0 7→ 0 and i 7→ σ1(i−1)
for i ≥ 1, while the second map sends 0 7→ 0 and i 7→ σ2(i − 1) for i ≥ 1. The
functor F has the evident behavior on maps.

Let e : (d ↓ ([p], [q])) −→ (d ↓ ([p], [q])) denote the functor which sends all objects
to ([0], e0, e0) where e0 : [k]→ [n] always denotes the map whose image is {0}.

The reader can check that there are natural transformations id→ F and e→ F .
So after taking classifying spaces one finds that the identity is null-homotopic, and
therefore (d ↓ ([p], [q])) is contractible.

21.6. Truncated simplicial objects. Let ∆≤n be the subcategory of ∆ consisting
of all objects [k] where k ≤ n. A functor (∆≤n)op → X is called an n-truncated
simplicial space, or an n-skeletal simplicial space.

When taking homotopy colimits of an n-truncated simplicial space, one can no
longer throw away the degeneracies and be guaranteed the same answer. That is,
the subcategory of (∆≤n)op consisting of the face maps is no longer homotopy final.
One can see that the proof in Example 21.2 breaks down, as that proof used the
infinite nature of the category ∆. Still, there is a nice reduction one can make.

Let Subn be the poset of subsets of {0, 1, . . . , n}, ordered by inclusion, regarded
as a category in the usual way. A picture of this category would look like an n-cube,
hence the name. Note that Subn can also be thought of as the category of sub-
simplices of ∆n—so the sub-simplices of a simplex form a cube! Let iSubn be the
full subcategory consisting of all objects except {0, 1, . . . , n} (the ’i’ is for ’initial’).
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Notice that there is a functor Γ: iSubn → ∆≤n, defined as follows. For any
subset S = {i0, . . . , ik} of [n], there is a unique order-preserving bijection between
S and [k]. Using this, an inclusion of subsets gives rise to an inclusion in ∆≤n. The
map Γ just sends the subset S to [k], and has the evident behavior on maps. For
instance, the inclusion {1} ↪→ {0, 1} is sent to the map [0] 7→ [1] whose image is 1;
the inclusion {1, 3} ↪→ {1, 2, 3} is send to the map [1]→ [2] whose image is {0, 2}.

Proposition 21.7. The functor Γ: iSubn → ∆≤n is homotopy initial. So
Γop : (iSubn)op → (∆≤n)op is homotopy terminal.

Remark 21.8. Let X be an n-truncated simplicial object. The above proposition
shows that when computing hocolimX the degeneracies don’t really matter—in
the sense that one can write down a cubical diagram, using only face maps, whose
homotopy colimit is hocolimX. However, this does not say that if you look at the
subdiagram of X consisting only of face maps that the homotopy colimit of that
diagram is also the same as hocolimX. The subcategory of (∆≤n)op consisting of
the face maps is not homotopy final!

The proof of the above proposition is more involved than what we have done
so far. The classifying spaces of the overcategories are somewhat complicated, and
their contractibility has to be proven by a combinatorial argument. A nice reference
in the literature is [Si, Section 6].

Let In,k denote the overcategory (iSubn ↓ [k]), where k ≤ n. Note that an object
of In,k is a pair (σ, φ) where σ ⊆ [n] and φ : Γ(σ)→ [k] is an order-preserving map.
It is useful to drop the ‘Γ’, and regard φ just as an order-preserving map σ → [k].
To have a map (σ, φ) → (σ′, φ′) means that σ ⊆ σ′ and φ is the restriction of φ′.
From this it is easy to see that In,k is a poset.

We wish to ultimately show that each In,k is contractible, but we’ll start by
describing a certain stratification of In,k. For each order-preserving map α : [n]→
[k], let Jα denote the full subcategory of In,k consisting of pairs (σ, φ) such that
φ is the restriction of α. It’s easy to check that Jα is isomorphic to the category
iSubn (in effect, the data in φ is redundant), and so the nerve of Jα is sd ∆n.

If α and β are maps [n] → [k] in ∆, then Jα ∩ Jβ consists of pairs (σ, φ) such
that φ is the restriction of both α and β. If we let S denote the maximal subset of
[n] on which α and β agree, then Jα ∩ Jβ is isomorphic to the category of subsets
of S; hence Jα ∩ Jβ is sd ∆i for some i (or empty). This same reasoning applies to
any iterated intersection Jα1

∩ Jα2
∩ . . . ∩ Jαl .

Order-preserving maps [n]→ [k] are in bijective correspondence with monotone

increasing sequences of length n+1, with values in {0, 1, . . . , k}. There are
(
n+k+1

k

)
such sequences (they are in bijective correspondence with monomials of degree n+1
in the variables X0, X1, . . . , Xk, where the exponent of Xi is the number of times
i appears in the sequence). So we have seen how to decompose the nerve of In,k
into

(
n+k+1

k

)
copies of sd ∆n, and the intersection of any number of these copies is

a copy of sd ∆i for some i (or else empty).

Exercise 21.9. Using the above description, work out explicit pictures of I1,1, I2,1,
and I2,2. The first, for instance, is the union of 3 copies of sd ∆1, glued together in
a certain way.

The above description tells us that the nerve of In,k is the barycentric subdivision
of a certain complex we’ll call Ln,k. We can describe this complex as follows:
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(1) The n-simplices correspond to monotone increasing sequences a0 . . . an
whose values are in {0, . . . , k} (i.e., to maps [n]→ [k]).

(2) The (n − i)-simplices correspond to sequences as in (1) except where i of
the aj ’s have been replaced by the symbol ‘?’.

(3) The face-map di corresponds to replacing the ith entry of the sequence with
a ‘?’.

For instance, in L1,1 there are three 1-simplices, indexed by the sequences 00, 01,
and 11. We have that d1(00) = 0? and d1(01) = 0?, etc. So L1,1 consists of three
1-simplices which are glued together sequentially, with one pair head-to-head and
the other pair tail-to-tail: · → · ← · → ·

We need to show that Ln,k is contractible.

Lemma 21.10. Let X be a simplicial complex which is purely of dimension d
(meaning that every simplex is contained in a d-simplex). Suppose the d-simplices
can be ordered as F1, F2, . . . , FM in such a way that for each i ≥ 1

(a) the subcomplex Fi+1 ∪ Fi+2 ∪ · · · ∪ FM intersects Fi purely in dimension d− 1,
and

(b) Fi has at least one face which is not in Fi+1 ∪ · · · ∪ FM .

Then X is contractible.

Proof. The main point is that if σ is an n-simplex and S is any union of codimension
one faces forming a proper subset of ∂σ, then there is a deformation retraction of
σ onto S. Since the n-simplex F1 has a face which is not in F2 ∪ · · · ∪ FM , we
can therefore deformation-retract X down to F2 ∪ · · · ∪ FM . Now proceed by
induction, at each step choosing a deformation retration of Fk ∪ · · · ∪ FM down to
Fk+1 ∪ · · · ∪ FM . �

Proposition 21.11. If k ≤ n, the nerve of Ln,k is contractible.

Proof. We have already seen that Ln,k is purely n-dimensional. The n-simplices of
Ln,k are indexed by monotone increasing sequences of length n + 1 with values in
{0, 1, . . . , k}, and we can order these lexicographically. We claim that this ordering
satisfies the conditions of the lemma.

Let F be the n-simplex corresponding to a sequence a0a1 . . . an. If ai = ai+1 for
some i, then the face of F corresponding to a0a1 . . . ai−1?ai+1 . . . an only belongs to
n-simplices which come before F in the ordering (because such an n-simplex would
have the “?” replaced with a number j ≤ ai+1, and we would then have j ≤ ai as
well). On the other hand, if the sequence a0a1 . . . an has no repeats then it means
that n = k and we are looking at the sequence 0, 1, . . . , n. In this case, the face of
F corresponding to 0, 1, . . . , n− 1, ? only belongs to n-simplices which come before
F in the ordering. This proves property (b).

To prove property (a), suppose that F meets an n-simplex G corresponding to
the sequence b0b1 . . . bn, where {b} is lexicographically greater than {a}. We need
to find a sequence {c} which is also lexicographically greater than {a}, such that
the intersection of F with the {c}-simplex contains an (n− 1)-simplex which itself
contains F ∩G.

Let j be the smallest index for which aj 6= bj . Then F ∩G is contained entirely
in the (n − 1)-simplex a0 . . . aj−1?aj+1 . . . an. Note that we cannot have aj = k,
since aj < bj . If a0a1 . . . aj−1(aj + 1)aj+1 . . . an is a monotone increasing sequence
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then we can take it as our {c}—the corresponding n-simplex intersects F in the
codimension 1 face a0 . . . aj−1?aj+1 . . . an, and this face contains F ∩G.

If the sequence a0a1 . . . aj−1(aj + 1)aj+1 . . . an is not monotone increasing then
this means aj = aj+1 = · · · = aj+p for some p ≥ 1 (where we choose p as large as
possible). Since aj < bj we must have ai 6= bi for i ∈ [j, j+p]—in particular, aj+p 6=
bj+p. In this case take {c} to be the sequence a0a1 . . . aj+p−1(aj+p+1)aj+p+1 . . . an.
Then the intersection of F and the simplex corresponding to {c} contains the
codimension one face a0a1 . . . aj+p−1?aj+p+1 . . . an, which in turn contains F ∩ G.

�

21.12. Homotopical symmetric products. This will be the final example of this
section. Let (n) denote the finite set {1, 2, . . . , n}, and let I denote the category
whose objects are all such sets (with n ≥ 1) and where the maps are monomor-
phisms. The category I is similar to ∆f , except that we have now expanded the
morphisms to include permutations.

Let X be a pointed space. For every map σ : (n)→ (k) in I, there is an induced
map σ∗ : Xn → Xk sending (x1, . . . , xn) to the tuple with xi in spot σ(i) and the
basepoint in all other spots. This gives a diagram X∗ : I → Top.

Our first goal will be to show that the colimit of X∗ is isomorphic to something
more familiar, namely the infinite symmetric product of X. The latter is the space
SP∞(X) = X∞/Σ∞, where X∞ is the colimit of the sequence

X ↪→ X2 ↪→ X3 ↪→ · · ·
in which each map sends (x1, . . . , xn) to (x1, . . . , xn, ∗). To see that colimI X

∗ and
SP∞(X) are isomorphic, follow the steps in the exercise below.

Exercise 21.13. Let ω = {1, 2, 3, . . .}, and let I∞ be the subcategory of Set con-
sisting of the objects (n) (for all n ≥ 1) and ω, where the maps as follows:

• maps from (n) to (k) are the monomorphisms;
• maps from (n) to ω are the monomorphisms;
• maps from ω to ω are the elements of Σ∞.

Let j : I ↪→ I∞ be the inclusion. Finally, let Istd be the subcategory of I consisting
of all objects (n) but where the morphisms are the standard inclusions (n) ↪→ (k).

(a) If D : I → Top, let LjD = colimI→I∞ D be the relative colimit (or left Kan
extension) of D along j. Recall that [LjD](ω) ∼= colimn∈(j↓ω)Dn. Note that
there is an evident functor Istd → (j ↓ ω), and prove that this is terminal.
Deduce that [LjD](ω) ∼= colimIstd D.

(b) Let BΣ∞ denote the category with one object and endomorphism set Σ∞. Note
that there is an evident functor BΣ∞ → Iω sending the unique object to ω.
Prove that this functor is terminal.

(c) If D : I → Top is any diagram, argue that colimD is isomorphic to colim[LjD].
Use (b) to deduce that the latter is is isomorphic to [LjD](ω)/Σ∞, and use (a)
to replace [LjD](ω) with colimIstd D. When D = X∗, deduce that colimI X

∗ ∼=
X∞/Σ∞.

We now wish to consider the homotopy colimit hocolimI X
∗; it is natural to

call this the homotopical infinite symmetric product of X. We’ll use the notation
SPh(X) = hocolimI X

∗. This construction was probably first considered by Jeff
Smith, who used it in the context of symmetric spectra—the first reference I know
in print is [Sh, Section 1]. The spaces SPh(X) were later intensively studied in
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[Schl], where it was shown that if X is path-connected then SPh(X) ' Ω∞Σ∞X;
this is related to the Barratt-Priddy-Quillen theorem.

We proved in the previous exercise that colimI X
∗ ∼= (X∞)/Σ∞, and from this

it would be a natural guess that hocolimI X
∗ ' (X∞)hΣ∞ . However, this guess is

incorrect (for reasons which we will see below). To correct the guess, recall that
ω = {1, 2, 3, . . .}. Let M denote the injective self-maps of ω, which form a monoid
under composition. Clearly we have Σ∞ ⊆ M , and if X is a pointed space there
is a natural action of M on X∞ which extends the action of Σ∞. We have the
following nice result, which is [Schl, Proposition 3.7].

Proposition 21.14. If X is a well-pointed CW -complex, then SPh(X) ' (X∞)hM .

We’ll outline the proof of this following [Schl], leaving most steps as exercises for
the reader. First, let Iω denote the subcategory of Set whose objects are the sets
(n) together with ω, and where the maps are the monomorphisms. Let j : I ↪→ Iω
denote the evident inclusion. Finally, let BM denote the category with one object
and endomorphism set M , and let i : BM → Iω denote the inclusion sending the
unique object of BM to ω.

The following exercise contains a key result due to J. Smith, which first appeared
in [Sh, Lemma 2.2.9]. I owe my understanding of this proof to Stefan Schwede, and
the proof we outline below is entirely from [Sch].

Exercise 21.15. Prove that j : BM ↪→ Iω is homotopy terminal by following the
steps below.

(a) Define a functor c : M →M by the following formula: if f ∈M , then

(cf)(i) =

{
i if i is odd,

2 · f(i/2) if i is even.

Verify that c is a homomorphism of monoids, and therefore induces a functor
Bc : BMcat → BMcat.

(b) Construct a natural transformation id → Bc, as well as a natural transforma-
tion Bc→ ∗ where ∗ is the functor which sends all morphisms to the identity.
Conclude that on classifying spaces one has id ' Bc ' ∗ as maps BM → BM ,
and therefore BM is contractible.

(c) Fix n ≥ 1. For any α ∈M , let α+n be the element of M which is the identity
on the numbers 1, 2, . . . , n and sends n+i to n+α(i) for i ≥ 1. Define a functor
BMcat → ((n) ↓ j) which sends the unique object to the standard inclusion
(n) ↪→ ω and which sends the morphism α ∈ M to α + n. Verify that that
this is indeed a functor, that it is fully faithful, and that it is surjective on
isomorphism classes—so conclude that it as an equivalence of categories.

(d) Deduce that ((n) ↓ j) is contractible, for all n ≥ 1. Prove that (ω ↓ j) has an
initial object and is therefore also contractible. Conclude that j is homotopy
terminal.

Exercise 21.16. Now let D : I → Top be any diagram. Let LjD denote the
homotopy left Kan extension of D along the inclusion j : I ↪→ Iω.

(a) Prove that there are weak equivalences

hocolim
I

D ' hocolim
Iω

(LjD) ' hocolim
BM

(LjD)(ω) = [(LjD)(ω)]hM .

(b) Prove that there is a weak equivalence (LjD)(ω) ' hocolimIstd D.
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(c) Prove that if the maps in D : Istd → Top are all cofibrations, then
hocolimIstd D ' colimIstd D.

(d) Conclude that if X is a well-pointed CW -complex then hocolimI X
∗ '

(X∞)hM .

Remark 21.17. The main difference between the work in Exercises 21.13 and 21.15
is that in the latter we must use Iω instead of I∞. The reason is that although
BΣ∞ → I∞ is terminal, it is not homotopy terminal; this is why the monoid M ,
rather than Σ∞, appears in Proposition 21.14.

Exercise 21.18. Prove that BΣ∞ → I∞ is not homotopy terminal.
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22. Homotopical decompositions of spaces

By a “homotopical decomposition” of a space X we mean a diagram D : I → Top
together with a map colimI D → X, such that the composite hocolimI D →
colimI D → X is a weak equivalence. Note that by Proposition 18.14 a homo-
topical decomposition yields, in particular, a spectral sequence for computing the
cohomology groups E∗(X) from the groups E∗(Di).

We have already seen one example of a homotopical decomposition, back in Sec-
tion 14.15. If {A1, . . . , An} is a closed cover of X then one can form the cubical
diagram A : Pn → Top sending a subset {i1, . . . , ik} to Ai1 ∩ · · · ∩ Aik . Under the
condition of certain inclusions being cofibrations, this is a homotopical decomposi-
tion.

Note that giving a diagram D : I → Top together with a map colimI D → X
is the same as giving a diagram I → (Top ↓ X). If we let Γ: (Top ↓ X) → Top
denote the forgetful functor sending the pair [Y, Y → X] to Y , then D is just the
composite

I −→ (Top ↓ X)
Γ−→ Top.

In many applications I is actually a subcategory of (Top ↓ X).
Homotopical decompositions seem to be useful in a variety of situations. In this

section we will give a few examples of these decompositions.

Here is one example worth recording:

Proposition 22.1. Let {Uα} be an open cover of X. Let I be the subcategory of
(Top ↓ X) consisting of the Uα’s and all their finite intersections. Then

hocolim
I

Γ→ X

is a weak equivalence.

Proof. See [DI]. �

Before proceeding to another important example, we need a new tool. To set
this in context, all of the theorems we stated in Parts 1–3 about homotopy colimits
are actually generic results which work basically the same in any model category
(not just in Top). The following result is very particular to Top, however.

Let D : I → Top and suppose one has a map p : colimI D → X, where X is some
space. For each n and each map σ : ∆n → X, consider the category F (D)σ whose
objects are tuples

[i, α : ∆n → Di]

such that p ◦ α = σ. A map from this object to [j, β : ∆n → Dj ] is a map i → j
making the evident triangle commute. We call F (D)σ the fiber category of D
over σ.

Theorem 22.2. In the above setting, suppose that for each n ≥ 0 and each
σ : ∆n → X, the category F (D)σ is contractible. Then the composite hocolimI D →
colimI D → X is a weak equivalence.

Now assume in addition that there is a diagram D̃ : I → sSet and a natural
isomorphism φi : |D̃i| → Di. For each σ : ∆n → X we can define a new category

F̃ (D)σ as follows. Objects of this category are pairs [i,∆n
s → D̃i] such that the

composite |∆n
s | → |D̃i| → Di → X is equal to α, and maps are the expected things.

Here ∆n
s denote the canonical n-simplex ∆n

s ∈ sSet. Note that there is a map of
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categories F̃ (D)σ → F (D)σ, but there’s no reason to suspect that this is a weak
equivalence.

We have the following refinement of the previous theorem:

Theorem 22.3. In the above setting, suppose that for each n ≥ 0 and each
σ : ∆n → X, the category F̃ (D)σ is contractible. Then the composite hocolimI D →
colimI D → X is a weak equivalence.

We will give the proofs of Theorems 22.2 and 22.3 in Section 22.8 below. But
first we record some useful applications. These are all inspired by the discussion in
[J2, Section 2].

Proposition 22.4. Let ∆ ↓ X denote the overcategory (j ↓ X), where j : ∆→ Top
is the usual functor. The functor j gives us a map (∆ ↓ X)→ (Top ↓ X), and the
natural map

hocolim
(∆↓X)

j∗Γ→ colim
(∆↓X)

j∗Γ→ X

is a weak equivalence.

Proof. Note that the diagram j∗Γ lifts to a diagram Γ̃: (∆ ↓ X) → sSet. So we
can attempt to use Theorem 22.3.

Let I = (∆ ↓ X), and let σ : ∆n → X. An object of F̃ (Γ)σ consists of an object
[k], a map f : ∆k → X, and a simplicial map ∆n → ∆k whose composite with
f is σ. But note that this category has an initial object, given by [n], the map

σ : ∆n → X, and the identity map ∆n → ∆n. So F̃ (Γ)σ is contractible, and we are
done. �

Proposition 22.5. Let ∆c(X) be the full subcategory of Top ↓ X consisting of all
maps whose domain is a simplex. Then hocolim∆c(X) Γ→ X is a weak equivalence.

Proof. This is a consequence of Theorem 22.2. The same kind of argument as in
the previous proof shows that the fiber categories F (Γ)σ are all contractible. �

Now let p : E → B be a map, and let α : I → Top ↓ B be a functor. Let Γp
denote the diagram I → Top sending i to α(i)∗E, the pullback of E → B along
the map α(i). Clearly there is a map colimI Γp → E, and so we may consider the
composite

hocolim
I

Γp → colim
I

Γp → E.

Proposition 22.6. In the above setting, let I = (∆ ↓ B). Then the map
hocolimI Γp → E is a weak equivalence, for any map p which is a fibration.

Proof. Consider the diagram D : I → Top which sends a pair ([k],∆k → B) to the
geometric realization of the simplicial set obtained as the pullback ∆k

s → SB ← SE,
where S(−) is the singular functor.

There is an evident map of diagrams |D| → Γp, and the fact that p is a fibration
implies that this map is an objectwise weak equivalence. One uses here that SE →
SB is a fibration of simplicial sets, and that in sSet a pullback of a weak equivalence
along a fibration is another weak equivalence.

So we are reduced to showing that hocolimI |D| → X is a weak equivalence. This
is an easy application of Theorem 22.3, very similar to the proof of Proposition 22.4.

�

The following corollary is now immediate from Proposition 18.14.
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Corollary 22.7. If p : E → B is a fibration, then for any cohomology theory E

there is a spectral sequence

Ep,q2 = Hp(∆ ↓ B;Eq(Γp))⇒ Ep+q(E).

Note that for each simplex σ : ∆n → B, the space Γp(σ) = σ∗E is weakly
equivalent to the fiber F of p. So the diagram EqΓp is a diagram of abelian groups
where all the abelian groups are isomorphic. One can also check that every map in
the diagram is an isomorphism. So this is something which should be called a “local
coefficient system”. The above spectral sequence is a version of the generalized
Atiyah-Hirzebruch/Leray-Serre spectral sequence.

22.8. Proofs of the two main theorems. The two proofs are both based on an
analogous theorem about simplicial sets. LetD : I → sSet be a diagram of simplicial
sets, let X ∈ sSet, and suppose there is a map colimI D → X. For each simplex
σ ∈ Xn, let F (D)σ denote the category whose objects are pairs [i, α ∈ (Di)n] such
that the map Di → Xi sends α to σ. A map in F (D)σ from [i, α ∈ (Di)n] to
[j, β ∈ (Dj)n] is a map i→ j such that Di → Dj sends α to β. We call F (D)σ the
“fiber category” of D over σ.

The following result is a slight generalization of [J2, Lemma 2.7]. The proof,
however, is exactly the same.

Proposition 22.9. Suppose that D : I → sSet and X are as above, and assume
that for every n ≥ 0 and every σ ∈ Xn, the fiber category F (D)σ is contractible.
Then the map hocolimI D → X is a weak equivalence of simplicial sets.

Proof. Consider the simplicial replacement srep(D), and observe that this is a
bisimplicial set. Let us write srep(D)p,q for the q-simplices in the pth level of
srep(D); that is so say,

srep(D)p,q =
∐

i0←···←ip

D(ip)q.

When drawing the bisimplicial set we draw the q-direction vertically and the p-
direction horizontally.

If B∗,∗ is a bisimplicial set, then there are two geometric realizations of B,
depending on whether we realize vertically or horizontally. Define

|B|h = coeq

[ ∐
[n]→[k]

Bk,∗ ×∆n ⇒
∐
n

Bn,∗ ×∆n

]
and

|B|v = coeq

[ ∐
[n]→[k]

B∗,k ×∆n ⇒
∐
n

B∗,n ×∆n.

]
Note that hocolimI D = | srep(D)|h in this notation.

Let d(B) denote the diagonal simplicial set of B. Then we know there are natural
maps |B|h → d(B)← |B|v and that these are both isomorphisms.

Let chX denote the bisimplicial set with (chX)p,q = Xq, where all the horizontal
faces and degeneracies are the identity map. This bisimplicial set is ‘horizontally
constant’.



106 DANIEL DUGGER

There is a natural map of bisimplicial sets srep(D) → chX. This gives a com-
mutative diagram

| srep(D)|h
∼= //

��

d(srep(D))

��

| srep(D)|v
∼=oo

��
|chX|h ∼=

// d(chX) |chX|v.∼=
oo

Our goal is to show that the left vertical map is a weak equivalence, and so it will
suffice to show that the right vertical map is a weak equivalence.

We will argue that each map of simplicial sets srep(D)∗,q → (chX)∗,q is a weak
equivalence. This will imply that we get a weak equivalence after applying the
vertical geometric realization.

Note that (chX)∗,q is just the discrete simplicial set corresponding to the set Xq.
So it will suffice to prove that the fiber of the map πq : srep(D)∗,q → Xq over any
point is contractible. But if σ ∈ Xq, then one readily checks that the fiber of πq over
σ is the nerve of the category F (D)σ, and hence is contractible by assumption. �

We can now give the proofs of our two theorems:

Proof of Theorem 22.2. Let Sing : Top → sSet denote the usual singular functor.
Applying this toD gives a diagram SingD : I → sSet, together with an induced map
colim(SingD) → SingX. An n-simplex of SingX is just a map σ : ∆n → X, and
the fiber category F (SingD)σ from Proposition 22.9 is precisely the fiber category
F (D)σ from the statement of the theorem. Sincee these fiber categories are assumed
to be contractible, Proposition 22.9 says that hocolimI(SingD)→ SingX is a weak
equivalence of simplicial sets.

The final step is to apply geometric realization to the above map, and then to
use the following commutative diagram:

|hocolim(SingD)| // | colim(SingD)| // |SingX|

hocolim |SingD| //

∼=

OO

∼
��

colim |SingD|

∼=

OO

��

// |SingX|

∼
��

hocolimD // colimD // X.

We know from the previous paragraph that the composite across the top row is a
weak equivalence. The two-out-of-three property then shows that the composite
across the bottom row is also a weak equivalence. �

Proof of Theorem 22.3. This proof is similar to the preceeding one. The natural
maps |D̃i| → Di and Di → X allow us to consider the composites

D̃i → Sing |D̃i| → SingDi → SingX.

These are compatible as i varies, so we have a map colimI D̃ → SingX. The
assumptions of the theorem say precisely that the fiber categories F (D̃)σ are con-
tractible, for every simplex σ of SingX. By Proposition 22.9 we therefore have that
hocolimI D̃ → SingX is a weak equivalence.
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To complete the proof one considers the following diagram:

|hocolim D̃|

∼=
��

∼ // |hocolim(SingD)|

∼=
��

// |SingX|

hocolim |D̃| ∼ // hocolim |SingD| //

��

|SingX|

∼
��

hocolimD // X.

We have proven that hocolimI D̃ → SingX is a weak equivalence. Our assump-
tion that the maps |D̃i| → Di are weak equivalences implies that hocolim |D̃| →
hocolimD is a weak equivalence. The two-out-of-three property, applied several
times, now gives that hocolimDi → X is a weak equivalence. �
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23. A survey of other applications

23.1. Telescopes and the localization of spaces. ????

23.2. Homotopy decompositions of classifying spaces. ?????

23.3. Homotopical sheaf theory. ?????

23.4. Further directions. In this final section we mention aspects of the theory
of homotopy limits and colimits which we have not addressed here. We also suggest
some other references.

(1) A very general approach to homotopy limits and colimits, and particularly their
role as derived functors, can be found in [DHKS].

(2) Let I be a topological category—that is, a category where the morphism sets
have the structure of topological spaces, and where composition is continuous.
An enriched diagram X : I → Top consists of a topological space X(i) for
every i ∈ I, together with continuous maps of spaces I(i, j)→ Map(X(i), X(j))
which are compatible with composition and identities.

One important example of this is when G is a topological group, and I is the
topological category with one object whose endomorphisms are G. An enriched
diagram X : I → Top consists of a space X(∗) and a continuous group action
G×X(∗)→ X(∗).

One can ask for a theory of enriched homotopy colimits and limits. This has
been developed recently in [S].

(3) Section 5 of Thomason’s paper [T] contains a very compact and appealing
treatment of homotopy limits and colimits, their associated spectral sequences,
as well as a “Scholium of Great Enlightenment”. We highly recommend it.

Appendix A. The simplicial cone construction

???
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