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PREFACE

I first learned Serre’s definition of intersection multiplicity from Mel Hochster,
back when I was an undergraduate. I was immediately intrigued by this surprising
connection between homological algebra and geometry. As it has always been for
me when learning mathematics, I wanted to know how I could have guessed this
definition for myself—what are the underlying principles that tell us to go looking
in homological algebra for a definition of multiplicity. This question has been in the
back of my mind for most of my mathematical life. It took me a long time to accept
that the answers to such questions are not often readily available; one has to instead
make do with vague hints and partial explanations. I still believe, though, that the
answers exist somewhere—and that it is the ultimate job of mathematicians to
uncover them. So perhaps it is better said this way: those questions often don’t
have simple answers yet.

During my first year of graduate school I tried to puzzle out for myself the secrets
behind Serre’s definition. Thanks to the Gillet-Soulé paper [GS| I was led to K-
theory, and similar hints of topology seemed to be operating in work of Roberts
[R1, R4]. Coincidentally, MIT had a very active community of graduate students
in topology, and I soon joined their ranks. Although there were other factors, it
is not far from the truth to say that I became a topologist in order to understand
Serre’s definition.

In Winter quarter of 2012 I taught a course on this material at the University
of Oregon. The graduate students taking the course converted my lectures into
LaTeX, and then afterwards I both heavily revised and added to the resulting doc-
ument. The present notes are the end result of this process. I am very grateful
to the attending graduate students for the work they put into typesetting the lec-
tures. These students were: Jeremiah Bartz, Christin Bibby, Safia Chettih, Emilio
Gardella, Christopher Hardy, Liz Henning, Justin Hilburn, Zhanwen Huang, Tyler
Kloefkorn, Joseph Loubert, Sylvia Naples, Min Ro, Patrick Schultz, Michael Sun,
and Deb Vicinsky.
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Introduction
1. ALGEBRAIC INTERSECTION MULTIPLICITIES

Let Z be the parabola y = 22 in R?, and let W be the tangent line at the vertex:
the line y = 0. Then Z and W have an isolated point of intersection at (0,0):

Y

Since high school you have known how to associate a multiplicity with this inter-
section: it is multiplicity 2, essentially because the polynomial 22 has a double
root at = 0. This multiplicity also has a geometric interpretation, coming from
intersection theory. If you perturb the intersection a bit, say by moving either Z
or W by some small amount, then you get two points of intersection that are near
(0,0)—and these points both converge to (0,0) as the perturbation gets smaller
and smaller.

You might object, rightly so, that I am lying to you. If we perturby =0toy =,
with € > 0, then indeed we get two points of intersection: (1/e,€) and (—/€,€). And
these do indeed converge to (0,0) as € — 0. But if we perturb the line in the other
direction, by taking € to be negative, then we get no points of intersection at all!
To fix this, it is important to work over the complex numbers rather than the reals:
the connection between geometry and algebra works out best (and simplest) in this
case. If we work over C, then it is indeed true that almost all small perturbations
of our equations yield two solutions close to (0,0).

Our goal will be to vastly generalize the above phenomenom. Let fy,..., fx €
Clz1,. .., 2y, and let Z be the algebraic variety defined by the vanishing of the f’s.
We write

Z=V(f1,..., fx) ={x € C"| fi(z) = fa(x) = -+ = fr(x) = 0}.
Likewise, let g1,...,9; € Clxy,...,2,] and let W = V(gy,...,9;). Assume that P
is an isolated point of the intersection ZNW. Our goal is to determine an algebraic
formula, in terms of the f;’s and g;’s, for an intersection multiplicity «(Z, W; P).
This multiplicity should have the basic topological property that it coincides with
the number of actual intersection points under almost all small deformations of Z
and W.

Here are some basic properties, by no means comprehensive, that we would want
such a formula to satisfy:
(1) i(Z,W; P) should depend only on local information about Z and W near P.
(2) i(Z,W;P) > 0 always.
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(3) If dim Z+dim W < n then i(Z, W; P) = 0 (because in this case there is enough
room in the ambient space to perturb Z and W so that they don’t intersect at
all).

(4) If dim Z + dim W = n then i(Z, W; P) > 0.

(5) If dim Z + dimW = n and Z and W meet transversely at P (meaning that
TpZ ® TpW = C"), then i(Z,W; P) = 1.

Note that because of property (1) we can extend the notion of intersection mul-
tiplicity to varieties in CP", simply by looking locally inside an affine chart for
projective space that contains the point P. From now on we will do this without
comment. The two statements below are not exactly ‘basic properties’ along the
lines of (1)—(5) above, but they are basic results that any theory of intersection
multiplicities should yield as consequences.

(6) Suppose that X — CP" is the vanishing set of a homogeneous polynomial,
that is X = V(f). Let L be a projective line in CP" that meets X in
finitely-many points. Then

> i(X, L; P) = deg(f).
PexnL
(7) (Bezout’s Theorem) Suppose that X,Y < CP? are the vanishing sets of
homogeneous polynomials f and g, and that X NY consists of finitely-many
points. Then

> (X, Y;P) = (deg f)(deg g).
PeXny
Note that (6), for the particular case n = 2, is a special case of (7).
If you play around with some simple examples, an idea for defining intersection
multiplicities comes up naturally. It is

(1.1) z’(Z,W;P):dimc[(C[xl,...,xn}/(fl,...,fk,gl,...,gl)}P.

Here the subscript P indicates localization of the given ring at the maximal ideal
(x1—p1,-..,Tp —pp) where P = (p1,...,pn). The localization is necessary because
ZNW might have points other than P in it, and our definition needs to only depend
on what is happening near P.

The best way to get a feeling for the definition in is via some easy examples:

Example 1.2. Let f = y — 22 and g = y. This is our example of the parabola and
the tangent line at its vertex. The point P = (0,0) is the only intersection point,
and our definition tells us to look at the ring

Clz,yl/(y — 2% y) = Cla]/(2®).
As a vector space over C this is two-dimensional, with basis 1 and x. So our
definition gives i(Z, W; P) = 2 as desired. [Note that technically we should localize
at the ideal (z,y), which corresponds to localization at (z) in C[z]/(z?); however,
this ring is already local and so the localization has no effect].

Example 1.3. The above example readily generalizes. If h(x) € C[z] then let
f =y —h(z) and g = y. Factor h(z) = [],(x — 2;)® and consider the intersection
multiplicity of V(f) and V(g) at the point (z1,0). Here we get Clz,y]/(f,g) =
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Clz]/(h(x)) and after localization at the ideal (x — z1) the factors x — z; for i > 1
become units so that we have

Cla](z—2)/(M2)) = Cla](y—2) /(@ — 21)*" = Cluw)/(u™).
The dimension over C is then eq, coinciding with the multiplicity of z; as a root of

h(x).

Example 1.4. Let f =y? —2® —3z and g =y — 32 — 1. Then Z = V(f) is an
elliptic curve, and one can check that W = V(g) is the tangent line at the point
P =(1,2). Let us recall how this works: the gradient vector to the curve is

Vf=[-3x*—-3,2y]

and this is normal to the curve at (z,y). A tangent vector is then [2y,3z? + 3]
(since this is orthogonal to Vf), which means the slope of the curve at (x,y) is
(32% + 3)/2y. At the point (1,2) we then get slope 3, and V (g) is the line passing
through (1,2) with this slope.

The line V(g) intersects the curve at one other point, which we find by simulta-
neously solving y? = 2% + 3z and y = %x + % This yields the cubic

0=2+32— (3z+ %)%
Since we know that = 1 is a root, we can factor this out and then solve the
resulting quadratic. One finds that the cubic factors as

0=(z—1)?2 (z—1).

The second point of intersection is found to be Q = (i %)

Note the appearance of (z — 1) with multiplicity two in the above factorization.
The fact that we had a tangent line at z = 1 guaranteed that the multiplicity
would be strictly larger than one. Likewise, the fact that (x — i) has multiplicity
one tells us that V(g) intersects the curve transversely at the second point. These
facts suggest that i(Z, W; P) = 2 and ¢(Z,W;Q) = 1. Let us consider these in
terms of point-counting under small deformations. We can perturb either Z or W,
but it is perhaps easiest to perturb the line W: we can write § = y — Az — B and
then consider what happens for all (A, B) near (%, %) We will need to find the
intersection of Z and W = V(g), which as before requires us to solve a cubic. Let
us again arrange for there to be a known solution which we can factor out. It is
possible to have this solution be either (1,2) or (1, I). The calculations turn out
to be a little easier for the latter, despite the annoying fractions. So we assume
1= % +Borg=y—Alx— 1) — %. Since we want to look at A near 3, it is
convenient to write A = % + € where € is near zero.

Finding common solutions of f = 0 and § = 0 yields a cubic with (z — 1) as a

1
factor, and dividing this out we obtain the quadratic
O:x2—x(2+36+62)+(1—e+§).

The discriminant of this quadratic is D = €(e® + 6¢2 +4e+ 16), so the quadratic has
a double root when ¢ = 0 (as expected) but simple roots for values of € near but
not equal to zero. So for these values of ¢ we get two points of intersection of V' (f)
and V(g) near P, and it is easy to see that they converge to P as € approaches zero.
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Let us now see what our provisional definition from (1.1) gives. The quotient
ring in our definition is

Clay)/ (v — «* =32,y — 3o — 3) = Cla/ (G + 3)* — «° — 32)
o (C[x]/((m —1)*(z — i))

Here we are killing a cubic in Clz], and so we get a three-dimensional vector space
with basis 1, z, 2. Note that this is, in some sense, seeing all of the information at
P and @ together—this demonstrates the importance of localization. Localization
at P corresponds to localizing at (z — 1), which turns (z — 1) into a unit. So our

localized ring is
Cla] -1/ ((x = 1)%) = Clt] )/ (t?)
(where we set t = 2 — 1), and this has dimension 2 over C. So i(Z,W; P) = 2, as
desired.
If we localize at (x — 1) then the (z — 1)? factor becomes a unit, and our local-
ized ring becomes Clz](,_1)/(z — 1) = Clt](1)/(t), which is just a copy of C. So
(Z,W;Q) =1.

Note that Example through involve a key step where the variable y is
eliminated, thus bringing the problem down to the multiplicity of a root in a one-
variable polynomial. One cannot always do such an elimination—in fact it happens
only rarely. So these examples are very special, although they still serve to give
some sense of how things are working.

It turns out that our provisional definition from is enough to prove Bezout’s
Theorem for curves in CP?. But in some sense one is getting lucky here, and it
works only because the dimensions of the varieties are so small. When one starts
to look at higher-dimensional varieties it doesn’t take long to find examples where
the definition clearly gives the wrong answers:

Example 1.5. Let C* have coordinates u, v, w, y, and let X, Y C C* be given by
X =V(u® =02 vy — vw, uw — vy, w? — uy?), Y =V(u,y).

Note that X is somewhat complicated, but Y is just a plane. If a point (u,v,w,y)
ison X NY then u = y = 0 and therefore the equations for X say that

vP=0, vw=0, and w?=0

as well. So X NY counsists of the unique point (0, 0,0,0). Our provisional definition
of intersection multiplicities would have us look at the ring

(C[ua v, w, y]/(ua Y, u3 - U27 U2y -, uw — vy, w2 - qu) = (C[’U, ’LU]/(U2, vw, w2)

which is three-dimensional over C. If this were the correct answer, then perturbing
the plane Y should generically give three points of intersection. However, this is
not the case. If we perturb Y to V(u — €,y — d) then the intersection with X is
given by the equations

u=¢, y=96, € =11 E5=vw, ew=uvd, w?=ed.

As long as € # 0 we have two solutions for v, and then the fourth equation deter-
mines w completely (the last two equations 7are redundant). So we only have two
points on the intersection, after small perturbations. This is, in fact, the correct
answer: i(Z, W; P) = 2, and our provisional definition has failed.
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Serre discovered the correct formula for the interesection multiplicity [S]. His

formula is as follows. If we set R = C[zq,...,z,] then
(1.6) i(Z,W3P) = >_(=1) dime [Torf (R/(fr,- -, fo), R grs o)) |
§=0

There are several things to say here. First, although the sum is written to infinity
it turns out that the Tor modules vanish for all j > n (we will prove this later).
So it is, in fact, a finite sum. Secondly, the condition that P be an isolated point
of intersection forces the C-dimension of all the Tor’s to be finite. So the formula
does make sense. As to why this gives the “correct” numbers, it will take us a while
to explain this. But note that the j = 0 term is the dimension of

TOYO(R/(fla~"7fk)?R/(glv"'7gl)) g‘R/(flamfk) ®RR/(91»~~'agl)
gR/(fl7"'aflmgla"'agl)'

So our provisional definition from is just the j = 0 term. One should think
of the higher terms as “corrections” to this initial term; in a certain sense these
corrections get smaller as j increases (this is not obvious).

An algebraist who looks at (|1.6) will immediately notice some possible gener-
alizations. The R/(f) and R/(g) terms can be replaced by any finitely-generated
module M and N, as long as the Tor;(M, N) modules are finite-dimensional over
C. For this it turns out to be enough that M ®pr N be finite-dimensional over
C. Also, we can replace C[z1,...,z,] with any ring having the property that all
finitely-generated modules have finite projective dimension—necessary so that the
alternating sum of is finite. Such rings are called regular. Also, instead of
localizing the Tor-modules we can just localize the ring R at the very beginning.
And finally, in this generality we need to replace dim¢ with a similar invariant: the
notion of length (meaning the length of a composition series for our module). This
leads to the following setup.

Let R be a regular, local ring (all rings are assumed to be commutative and
Noetherian unless otherwise noted). Let M and N be finitely-generated modules
over R such that M ®pg N has finite length. This implies that all the Tor;(M, N)
modules also have finite length. Define

(1.7) e(M,N) = (=1)’¢(Tor;(M, N))
j=0

and call this the intersection multiplicty of the modules M and N.

Based on geometric intuition, Serre made the following conjectures about the
above situation:
(1) dim M + dim N < dim R always
(2) e(M,N) > 0 always
(3) If dim M 4 dim N < dim R then e(M, N) = 0.
(4) If dim M 4 dim N = dim R then e(M, N) > 0.
In [S] Serre proved all of these in the case that R contains a field, the so-called
“geometric case” (some non-geometric examples for R include power series rings
over the p-adic integers Z,). Serre also proved (1) in general. Conjecture (3) was
proven in the mid 80s by Roberts and Gillet-Soule (independently), using some
sophisticated topological ideas that were imported into algebra. Conjecture (2)



A GEOMETRIC INTRODUCTION TO K-THEORY 9

was proven by Gabber in the mid 90s, using some high-tech algebraic geometry.
Conjecture (4) is still open.

1.8. Where we are headed. Our main goal in these notes is to describe a par-
ticular subset of the mathematics surrounding Serre’s definition of multiplicity. It
is possible to explore this subject purely in algebraic terms, and that is basically
what Serre did in his book [S]. In contrast, our main focus will be topological.
Although both commutative algebra and algebraic geometry play a large role in
our story, we will always adopt a perspective that concentrates on their relations
to topology—and in particular, to K-theory.
Here is a brief summary of some of the main points that we will encounter:

(1) There are certain generalized cohomology theories—called complez-oriented—
which have a close connection to geometry and intersection theory. Any such
cohomology can be used to detect intersection multiplicities.

(2) Topological K-theory is a complex-oriented cohomology theory. Elements of
the groups K*(X) are specified by vector bundles on X, or more generally by
bounded chain complexes of vector bundles on X. Fundamental classes for
complex submanifolds of X are given by resolutions.

(3) When X is an algebraic variety there is another version of K-theory called
algebraic K -theory, which we might denote K;‘lg(X ). The analogs of vector
bundles are locally free coherent sheaves, or just finitely-generated projective
modules when X is affine. Thus, in the affine case elements of K, (X) can be
specified by bounded chain complexes of finitely-generated projective modules.
This is the main connection between homological algebra and K-theory.

(4) Serre’s definition of intersection multiplicities essentially comes from the inter-
section product in K-homology, which is the cup product in K-cohomology
translated to homology via Poincaré Duality.

We will spend a large chunk of this book filling in the details behind (1)—(4).
But whereas we take our motivation from Serre’s definition of multiplicity, that is
not the only subject we will cover. Once we have the K-theory apparatus up and
running there are lots of neat things to do with it. We have attempted, for the
most part, to chose topics that accentuate the relationship between K-theory and
geometry in the same way that Serre’s definition of multiplicity does.
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Part 1. K-theory in algebra

In this first part of the book we investigate the K-theory of modules over a
commutative ring R. There are two main varieties: one can study the K-theory
of all finitely-generated modules, leading to the group G(R), or one can study the
K-theory of finitely-generated projective modules, leading to the group K(R). In
the following sections we get a taste for these groups and the relations between
them.

For the duration of the book all rings are commutative with identity unless
otherwise stated. Some of the theory we develop works in greater generality, but
we will stay focused on the commutative case.

2. A FIRST LOOK AT K-THEORY

Understanding Serre’s alternating-sum-of-Tor’s formula for intersection multi-
plicities will be a gradual process. In particular, there is quite a bit of nontrivial
commutative algebra that is needed for the story; we will need to develop this as
we go along. We will continue to sweep some of these details under the rug for the
moment, but let us at least get a couple of things out in the open. To begin with,
we will need the following important result:

Theorem 2.1 (Hilbert Syzygy Theorem). Let k be a field and let R be k[x1, . .., 2]
(or any localization of this ring). Then every finitely-generated R-module has a free
resolution of length at most n.

We will prove this theorem in Section [I§ below. We mention it here because
it implies that Tor;(M,N) = 0 for j > n. Therefore the sum in Serre’s formula
is actually finite. More generally, a ring is called regular if it is Noetherian and
every finitely-generated module has a finite projective resolution. It is a theorem
that localizations of regular rings are again regular. Hilbert’s Syzygy Theorem
simply says that polynomial rings over a field are regular. We will find that regular
rings are the ‘right’ context in which to explore Serre’s formula.

We will also need the following simple observation. If P is a prime ideal in any
commutative ring R, then

[Torg(M, N)|p = Tor™ (Mp, Np).
To see this, let Q, — M — 0 be an R-free resolution of M. Since localization is
exact, (Q,)p is an Rp-free resolution of Mp. Hence
TOYfP (Mp,Np) = H;((Q.)p ®r, Np) = H;j(Q. ®r Rp ®r,, N ®r Rp)

= H;(Q.®r N ® Rp)

=H;(Q.®r N)® Rp

= Torf(M,N) ®g Rp.
The importance of this observation is that it tells us that each Tor in Serre’s formula
for i(Z,W; P) may be taken over the ring Rp. So we might as well work over this
ring from beginning to end. Moreover, without loss of generality we might as well
assume that our point of intersection is the origin, which makes the corresponding
maximal ideal (z1,...,z,).

Let R = Clz1,...,Zn](ay,....z,), and let M and N be finitely-generated modules
over R. Assume that dimc(M ®g N) < oo. It turns out that this implies that
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dimc Tor; (M, N) < oo for every j, so that we can define

[e )

e(M,N) = (—1)’ dimc Tor;(M, N).
j=0
The above definition generalizes the notion of intersection multiplicity from pairs

(R/I,R/J) to pairs of modules (M, N). The reason for making this generalization
might not be clear at first, but the following nice property provides some justifica-
tion:

Lemma 2.2. Suppose that 0 — M' — M — M" — 0 is a short exact sequence
of R-modules, where R = Clz1,...,Tn)(2,,....0,)- Then e(M,N) = e(M',N) +
e(M",N), assuming all three multiplicities are defined (that is, under the assump-
tion that dime(M ® N) < oo and similarly with M replaced by M' and M" ).

Proof. Consider the long exact sequence
-+« = Torj(M',N) — Tor;(M,N) — Tor;(M",N) — - --

This sequence terminates after a finite number of steps, by Hilbert’s Syzygy Theo-
rem. By exactness, the alternating sum of the dimensions is zero. This is precisely
the desired formula. O

Lemma[2.2)is referred to as the additivity of intersection multiplicities. Of course
the additivity holds equally well in the second variable, by the same argument.

While exploring ideas in this general area, Grothendieck hit upon the idea of in-
venting a group that captures all the additive invariants of modules. Any invariant
such as e(—, N) would then factor through this group. Here is the definition:

Definition 2.3. Let R be any ring. Let F(R) be the free abelian group with one gen-
erator [M] for every isomorphism class of finitely-generated R-module M. Let G(R)
be the quotient of F(R) by the subgroup generated by all elements [M]—[M'] — [M"]
for every short exact sequence 0 — M’ — M — M" — 0 of finitely-generated R-
modules. The group G(R) is called the Grothendieck group of finitely-generated
R-modules.

Remark 2.4. It is important in the definition of G(R) that one use only finitely-
generated R-modules, otherwise the group would be trivial. To see this, if M is any
module then let M = M @& M @ M ---. Note that there is a short exact sequence

0> M—M>®—M>*—0

where M is included as the first summand. If we had defined G(R) without the
finite-generation condition, we would have [M*°] = [M] + [M*°] and therefore
[M] = 0. Since this holds for every module M, the group G(R) would be zero.
This is called the “Eilenberg Swindle”.

Because of the need to focus on finitely-generated modules, and the fact that
arguments will often require us to bring in submodules, results from here on out
will often assume that R is Noetherian. The first example of this is part (c) of the
next result.

The following proposition records some useful ways of obtaining relations in

G(R):
Proposition 2.5. Let R be any ring.
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(a) If 0 = C, = Cpy — -+ = C1 = Cy — 0 is an exact sequence of finitely-
generated R-modules, then Y (—1)'[C;] = 0 in G(R).

(b)) If M = My O My 2 My 2O --- O M, 2 M,y1 = 0 is a filtration of M by
finitely-generated modules, then [M] =" .[M;/M; 1] in G(R).

(c) Assume that R is Noetherian, and let 0 = C,, = Cp_1 — -+ =5 C1 = Cyp — 0
be any chain complex of finitely-generataed R-modules. Then Y,(—1)'[C;] =

>i(=1)'[Hi(C)] in G(R).

Proof. We prove (a) and (c) at the same time. If C, is a chain complex, note that
one has the short exact sequences 0 — Z; — C; — B;_1 — 0 where Z; and B;
are the cycles and boundaries in each dimension. One also has 0 — B; — Z; —
H;(C) — 0. Assuming everything in sight is finitely-generated, one gets a series
of relations in G(R) that immediately yield Y (—1)![C;] = Y_(—=1)'[H;(C)]. So if
R is Noetherian we are done, because everything indeed is finitely-generated; this
proves (c). In the general case where R is not necessarily Noetherian, we know that
each B; is finitely-generated because it is the image of C;;1. But if C, is exact
then B; = Z; and so the Z;’s are also finitely-generated. We have the relations
[Ci] = [Z:])+ [Bi-1] = [Z:]+[Zi-1], and from this it is evident that >_(—1)[C;] = 0.
This proves (a).

The proof of (b) is similarly easy; one considers the evident exact sequences
0— M;11 — M; — M;/M; 1 — 0 and the resulting relations in G(R). ]

Here are a series of examples:

(1) Suppose R = F, a field. Clearly G(F) is generated by [F], since every finitely-
generated F-module has the form F™. If we observe the existence of the group
homomorphism dim: G(F) — Z, which is clearly surjective because it sends
[F] to 1, then it follows that G(F') = Z.

(2) More generally, suppose that R is a domain. The rank of an R-module M is
defined to be the dimension of M @ QF(R) over QF(R), where QF(R) is the
quotient field. The rank clearly gives a homomorphism G(R) — Z, which is
surjective because [R] — 1. So G(R) has Z as a direct summand.

(3) Next consider R = Z. Then G(Z) is generated by the classes [Z] and [Z/n]
for n > 1, by the classification of finitely-generated abelian groups. The short
exact sequence 0 — Z —= Z — Z/n — 0 shows that [Z/n] = 0 for all n,
hence G(Z) is cyclic. Using (b), it follows that G(Z) = Z. This computation
works just as well for any PID.

(4) So far we have only seen cases where G(R) = Z. For a case where this is not
true, try R = F x F where F is a field. You should find that G(R) = Z? here.
More generally, the theory of modules over a product ring R x S yields that
G(R x S) 2 G(R) ® G(S) (this is a nice exercise).

(5) The definition of G(R) can also be made for R non-commutative, using left
R-modules (one can of course define another group using right R-modules, but
that would be G(R°P)). As an example, let G be a finite group and let R = C[G]
be the group algebra. So R-modules are just representations of G on complex
vector spaces. The basic theory of such finite-dimensional representations says
that each is a direct sum of irreducibles, in an essentially unique way. Moreover,
each short exact sequence is split. A little thought shows that this implies that
G(R) is a free abelian group with basis consisting of the isomorphism classes
of irreducible representations.
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(6) So far all the examples we have computed have G(R) equal to a free abelian
group. This is not always the case, although I don’t know an example where
it is really easy to see this. For a not-so-simple example, let R be the ring of
integers in a number field. It turns out that G(R) = Z & CI(R), where CI(R)
is the ideal class group of R. This class group contains some sophisticated
number-theoretic information about R. It is known to always be torsion, and
it is usually nontrivial. We will work out a simple example when we have more
tools under our belt: see Example [£.2]

(7) As another simple example, we look at R = F[t]/(t?) where F is a field. For any
module M over R we have the filtration M D tM, and so [M] = [M /tM]+[tM].
But both M/tM and tM are killed by ¢, hence are direct sums of copies of F
(where t acts as zero). This shows that G(R) is generated by [R/tR]. We also
have the function dimp(—): G(R) — Z. Since this function sends [R/¢R] to 1,
it must be an isomorphism.

(8) The final example we consider here is a variation of the previous one. Let us
look at R = Z/p?. The R-modules are simply abelian groups killed by p?.
Given any such module A one can consider the sequence 0 — pA — A —
A/pA — 0, and observe that the first and third terms are Z/p-vector spaces.
So [R/p] generates G(R). We claim that G(R) = Z, and as in the previous
example the easiest way to see this is to write down an additive invariant of
R-modules taking its values in Z. All finitely-generated R-modules have a finite
composition series, and so we can take the Jordan-Hoélder length; this is the
same as {(A) = dimg,, A/pA + dimgz,, pA. With some trouble one can check
that this is indeed an additive invariant (or refer to the Jordan-Holder theorem),
and of course ¢(Z/p) = 1. This completes the calculation.

Exercise 2.6. Prove that G(R) 2 Z for R = F[t]/(t") or R =Z/p"™.

The above examples help establish some basic intuition. In general, though, it
can be very hard to compute G(R). In fact, given two modules M and N it can
be hard to decide whether or not [M] = [N] in G(R). The following result (taken
from [Hel Lemma 2.1]) at least deconstructs the problem into something concrete:

Proposition 2.7. Let M and N be finitely-generated R-modules. Then the follow-

ing are equivalent:

(1) [M] = [N] in G(R).

(2) There exist two exact sequences of finitely-generated modules 0 - A — X —
B—=0and0— A—Y — B — 0 and a finitely-generated module C such that
X2MaCadY =ZNaC.

(8) There exist two exact sequences of finitely-generated modules 0 - A — X —
B—0and0—>A—-Y > B—0suchthat M®X=ZNQDY.

Proof. We will prove (3)=-(2)=-(1)=(3). For (3)=(2) use the sequences
0 MOINBPA-MONOBY - B =0

and

0O MOINBPA-MOINBSX —-B—=0
with C = M® X 2 N@Y. (2)=(1) is easy since the hypotheses show that
[M]+ [C] = [X] = [4] + [B] = [Y] = [N] + |C], and therefore [M] = [N]. The real
content is therefore (1)=(3).



14 DANIEL DUGGER

Let Rel C F(R) be the subgroup generated by all elements [J] — [J'] — [J”] for
short exact sequences 0 — J' — J — J” — 0. If [M] — [N] € Rel then there
exist two collections of such sequences 0 — A, — A, — A — 0,1 < i < kp, and
O—>B§-—>Bj—>B;-’—>O71§j§k2, such that

(M) - (V] = D (1A - 140 - [40) +Z (1B4]+ 18] - 5,)

in F(R). Rearranging, this gives the identity in ff (R)

M)+ 3 (1 + 147) + 1B = | Z S+ ().

The only way such sums of basis elements can give the same element of F(R) is if
the collection of summands on the two sides are the same up to permutation. But
in that case one can write

M@@ AL AY) @@B NN@@A @@ B @ B).
Finally, consider the evident short exact sequences
0+ @B o4 Dao B o8 > @aro @B 0
J % i j p r
and

0-EPBjeoPa-@PB aoPe ) PAalo@B] —o.
7 [ J % [ 7

Adding N to the middle term of the first sequence is isomorphic to the result of
adding M to the middle term of the second. (I

We can adapt our definition of intersection multiplicity of two modules to define
a product on G(R), at least when R is regular. For finitely-generated modules M
and N, define

[M]®[N] =) (~1)[Tor;(M, N)].
J

Regularity of R guarantees that this is a finite sum. The long exact sequence for
Tor shows that this definition is additive in the two variables, and hence passes
to a pairing G(R) ® G(R) — G(R). It is not at all clear that this is associative,
although we will prove this shortly (Corollary .

The above product on G(R) is certainly not the first thing one would think of.
It is more natural to try to define a product by having [M]-[N] = [M ®g N, but of
course this is not additive in the two variables because of the failure of the tensor
product to be exact. The higher Tor’s are correcting for this. However, we can
make this naive definition work if we restrict to a certain class of modules. To that
end, let us introduce the following definition:

Definition 2.8. Let R be any ring. Let Fi(R) be the free abelian group with
one generator [P] for every isomorphism class of finitely-generated, projective R-
module M. Let K(R) be the quotient of Fi(R) by the subgroup generated by all
elements [P] — [P'] — [P"] for every short exact sequence 0 — P' — P — P" — 0 of
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finitely-generated projectives. The group K(R) is called the Grothendieck group
of finitely-generated projective modules.

Every short exact sequence of projectives is actually split, so we could also have
defined K(R) by imposing the relations [P @ Q] = [P] + [Q] for every two finitely-
generated projectives P and (). This makes it a little easier to understand when
two modules represent the same class in K(R):

Proposition 2.9. Let P and Q be finitely-generated projective R-modules. Then
[P] = [Q] in K(R) if and only if there exists a finitely-generated projective module
W such that P& W =2 Q & W. In fact, the same remains true if we require W to
be free instead of projective.

Proof. The first statement is immediate from Proposition (which can be re-
proven verbatim in the present context) using that short exact sequences of projec-
tives always split. For the second claim use that projectives are direct summands
of free modules, so that there exists a W’ such that W @& W’ is finitely-generated
and free. |

Exercise 2.10. Give a direct proof of Proposition [2.9] along the lines of what we
did for Proposition [2.7]

Exercise 2.11. Let 0 - P, - P,_1 — --- — P = Py — 0 be an exact sequence
of finitely-generated projectives. Prove that > ,(—1)[P;] = 0 in K(R). |Note that
this is almost Proposition 2.5(a) but maybe a tiny bit more thought is required.|

Since projective modules are flat, the product [P]-[Q] = [P®g Q)] is additive and
so extends to a product K (R)® K(R) — K(R). Note that this product is obviously
associative, and so makes K (R) into a ring. This is true without any assumptions
on R whatsoever (except our standing assumption that R be commutative).

Remark 2.12. Given the motivation of having the tensor product give a ring
structure, one might wonder why we used projective modules to define K (R) rather
than flat modules. We could have done so, but for finitely-generated modules over
commutative, Noetherian rings, being flat and projective are equivalent notions—
see [E| Corollary 6.6]. For various reasons it is more common to make the definition
using the projective hypothesis.

There is an evident map a: K(R) — G(R) which sends [P] to [P] (note that
these two symbols, while they look the same, denote elements of different groups).
This brings us to our first important theorem:

Theorem 2.13. If R is reqular then a: K(R) — G(R) is an isomorphism.

Proof. Surjectivity is easy to see: if M is a finitely-generated module, choose a
finite, projective resolution P, - M — 0. Then Zj(fl)j[Pj] = [M] in G(R), and
this proves that [M] is in the image of a.

Proving injectivity is slightly harder, and it will be most convenient just to
define an inverse for «. The above paragraph gives us the definition: for a finitely-
generated R-module M, define

B(M]) =) (~1)'[P)]
J
where P, — M — 0 is a finite resolution by finitely-generated projectives. We need
to show that this is independent of the choice of P, and that it is additive: these
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facts will show that 3 defines a map G(R) — K(R). It is then obvious that this is
a two-sided inverse to a.

Suppose @), — M — 0 is another finite projective resolution of M. Use the
Comparison Theorem of homological algebra to produce a map of chain complexes

P Py M 0
fli foi \Lid
Q1 Qo M 0

Let T, be the mapping cone of f: P, — @),. Recall this means that T; = Q; ® Pj_1,
with the differential defined by

dr(a,b) = (dg(a) + f(b), —dp(v)).
There is a short exact sequence of chain complexes
0->Q—=>T—3P—0

where X P denotes a copy of P in which everything has been shifted up a dimension
(so that (X P),, = P,—1) and the differential picks up a negative sign (dyp = —dp).
The long exact sequence on homology groups shows readily that T is exact, hence
we have Ej(—l)j[Tj] =0in K(R) by Exercis_e Since [T}] = [Q;] + [Pj-1] in
K(R) this gives that }_.(—1)’[P;] = >_,(—1)?[Q;]. Hence our definition of 3 does
not depend on the choice of resolution.

A similar argument can be used to show additivity. Suppose that 0 — M’ —
M — M" — 0 is a short exact sequence, and let P, — M’ and ), — M be finite
projective resolutions. Lift the map M’ — M to a map of complexes f: P, — Q,,
and let T, be the mapping cone of f. The long exact sequence for homology readily
shows that T is a projective resolution of M”. So

BM") =Y (-1 (T3] = > (-1)[Q;] = Y (~1Y[Pj] = B(M) — B(M)
and this proves additivity. This completes our proof. ([l
Using the isomorphism K(R) — G(R) (when R is regular), we can transplant
the ring structure on K (R) to the group G(R). We claim that this gives the product

© defined via Tor. In the following result, 3: G(R) — K(R) is the inverse to «
defined in the proof of Theorem

Proposition 2.14. Assume that R is reqular. Then for any two finitely-generated
modules M and N we have

o8] ® BUND] = 30(=1)7Tor; (M, N)] = [M] © [N].

Proof. Let P, — M and @@, — N be finite projective resolutions. Fix j, and
consider the complex P, ® ();. This is a resolution of M ® @), since @; is flat. So
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(1P ® Q;] = [M ® Q] in G(R). Using this for each j, we have that
a[B([M)) @ BIN])| = ZH)”J‘[H Q)

= Z M & QJ}
= Z (M ®Q)] using Proposition [2.5]c)
= Z )/ [Tor; (M, N)].

Corollary 2.15. When R is regular the product ® on G(R) is associative.

Proof. This follows immediately from the fact that the tensor product gives an
associative multiplication on K (R). O

Let us review the above situation. For any ring R, we have the group K (R) which
also comes to us with an easily-defined ring structure ®. We also have the group
G(R)—but this does not have any evident ring structure. When R is regular, there
is an isomorphism K(R) — G(R) which allows one to transplant the ring structure
from K (R) onto G(R): and this leads us directly to our alternating-sum-of-Tors
formula.

This situation is very reminiscent of something you have seen in a basic algebraic
topology course. When X is a (compact, oriented) manifold, there were early
attempts to put a ring structure on H,(X) coming from the intersection product.
This is technically very difficult. In modern times one avoids these technicalities
by instead introducing the cohomology groups H*(X), and here it is easy to define
a ring structure: the cup product. When X is a compact, oriented manifold one
has the Poincaré Duality isomorphism H*(X) — H,.(X) given by capping with the
fundamental class, and this lets one transplant the cup product onto H,(X). This
is the modern approach to intersection theory.

The parallels here are intriguing: K(R) is somehow like H*(X), and G(R) is
somehow like H,(X). The regularity condition is like being a manifold. We will
spend the rest of this course exploring these parallels. [The reader might wonder
what happened to the assumptions of compactness and orientability. Neither of
these is really needed for Poincaré Duality, as long as one does things correctly.
For the version of Poincaré Duality for noncompact manifolds one needs to replace
ordinary homology with Borel-Moore homology—this is similar to singular homol-
ogy, but chains are permitted to have infinitely many terms if they stretch out to
infinity. For non-orientable manifolds one needs to use twisted coefficients.|

Exercise 2.16. Check that the tensor product makes G(R) into a left module over
K(R) in the evident way. The canonical map «: K(R) — G(R) is just multiplica-
tion by the class [R] € G(R).

Exercise 2.17. Let f: R — S be a map of commutative rings. If P is a finitely-
generated projective R-module check that S ®g P is a finitely-generated projective
S-module. Verify that there is an induced map f.: K(R) — K(S) sending each
[P] to [S ®g P], and that f, is a ring map.
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Exercise 2.18. Let f: R — S be a flat map. Prove that there is an induced map
of groups fi: G(R) — G(S5) sending each [M] to [S @ M].

Exercise 2.19. Let f: R — S be a ring map where S is finitely-generated as an
R-module. Prove that there is a map of groups f*: G(S) — G(R) that sends [sM]
to [rM] for every finitely-generated S-module M.

Exercise 2.20. In topology H,(X) is a module over H*(X) via the cap product.
Given f: X — Y there are maps f*: H*(Y) - H*(X) and f.: H.(X) = H.(Y),
and f, is a map of H*(Y)-modules (where the module structure on the domain is
via restriction of scalars along f*): this last statement is the so-called projection
formula f.(zN f*y) = fexNy. If f: R — S is a map where S is module-finite over
R, then we have f.: K(R) — K(S) and f*: G(S) — G(R). Prove the analgous
statement that f* is a map of K (R)-modules.

2.21. Some very basic algebraic geometry. To further develop the analogies
between (K(R),G(R)) and (H*(X), H.(X)) we need more of a geometric under-
standing of the former groups. This starts to require some familiarity with the
language of algebraic geometry.

At its most basic level, algebraic geometry attempts to study the geometry of
affine n-space C™ by seeing how it is reflected in the algebra of the ring of polynomial
functions R = Clxy,...,2,]. Hilbert’s Nullstellensatz says that points of C" are
in bijective correspondence with maximal ideals in R: the bijection sends ¢ =
(q1,-..,¢n) to the maximal ideal my; = (21 — q1,...,2n — qn). With a little work
one can generalize this bijection. If S C C™ is any subset, define J(S) = {f €
R| f(x) = 0 for all x € S}. This is an ideal in R, in fact a radical ideal (meaning
that if f™ € 3(S) then f € 3(S)). In the other direction, if I C R is any ideal then
define V(I) = {z € C™|f(x) = 0 for all f € I'}. Notice that V(m,) = {¢} and
I({a}) = m,.

An algebraic set in C" is any subset of the form V(I) for some ideal I C R.
The algebraic sets form the closed sets for a topology on C", called the Zariski
topology. One form of the Nullstellensatz says that V' and J give a bijection
between algebraic sets and radical ideals in R. Under this bijection the prime
ideals correspond to irreducible algebraic sets—ones that cannot be written as
X UY where both X and Y are proper closed subsets. Algebraic sets are also
called algebraic subvarieties.

The above discussion is summarized in the following table:

’ Geometry \ Algebra ‘
C™ or A% Clxy,...,xn] =R
Points (q1,...,qn) Maximal ideals (21 — q1,...,Zn — ¢n)
Algebraic sets Radical ideals
Irreducible algebraic sets Prime ideals

The ring R is best thought of as the set of maps of varieties A® — A!, with
ring operations given by pointwise addition and multiplication. If we restrict to
some irreducible subvariety X = V(P) C A™ instead, then the ring of functions
X — Alis R/P. This ring of functions is commonly called the coordinate ring
of X. Much of the dictionary between A" and R discussed above adapts verbatim
to give a dictionary between X and its coordinate ring:
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’ Geometry \ Algebra ‘
X =V (P Clz1,....24]/P = R/P
Points in X Maximal ideals in R/P
Algebraic subsets V(I) C X Radical ideals in R/P
Irreducible algebraic sets V(Q) C X | Prime ideals in R/P.

Note that ideals in R/P correspond bijectively to ideals in R containing P, and
likewise for prime (respectively, radical) ideals.

We need one last observation. Passing from A™ to A™*! corresponds algebraically
to passing from R to R[t]. If X = V(P) C A™ is an irreducible algebraic set, then
X x At C Antlis V(P[t]) where P[t] C R[t]. That is, the coordinate ring of X is
R/P and the coordinate ring of X x A' is R[t]/P[t] = (R/P)[t]. We supplement
our earlier tables with the following line:

’ Geometry \Algebra‘
[ X~ X xAT] S~ S[t] |

So far our story involves pairing rings that are finitely-generated over C with their
corresponding geometric objects. With a leap of faith one can extend this to rings
that are finitely-generated over an algebraically closed field, and even to finitely-
generated rings over any field. One of the great developments in 20th century
algebraic geometry is to go all in and extend the theory even further, to all com-
mutative rings. To any commutative ring R we attach the geometric object Spec R.
As a set, this is the set of prime ideals in R. We equip it with the Zariski topology,
where the closed sets are the ones of the form V(I) = {P € Spec(R)|P D I}. As
a topological space this is a very primitive object with only bare-bones geometric
information. To find more geometry we have to look to the maps between these
gadgets.

The object Spec Z[t] will be called the affine line and denoted A}. A basic fact
to remember is that everything is going to be set up so that Hom(Spec R, A}) = R.
That is, R is the ring of functions from Spec R to the affine line. A map Spec R —
Spec S will then give rise to a map of rings Hom(Spec S, A}) — Hom(Spec R, A}),
i.e. a map of rings S — R. In fact, let us just define the category of affine schemes
Aff to have objects the Spec R and where maps from Spec R to Spec.S are the
same as ring maps from S to R. That is, Aff = (CommRing)°?P.

One final piece of terminology for now. The phrase “affine scheme” just means
one of the objects Spec R. The phrase“affine variety” technically means a Spec R
where R is an integral domain that is finitely-generated over a ground field k. For
some reason the word “variety” is the more appealing of the two words, and as
a result one sometimes ends up saying “variety” when what one really means is
“scheme”. In almost all cases the true intent is clear from context, so we won’t
worry too much about this distinction.

We have defined G(—) and K(—) as functors taking rings as their inputs, but
we could also think of them as taking affine schemes as their inputs. We will write
G(R) and G(Spec R) interchangeably, and similarly for the K-groups. It turns out
that the geometric perspective and notation are very useful—many properties of
these functors take on a familiar “homological” form when written geometrically.
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For example, a map u: Spec R — Spec S yields a map u*: K(Spec S) — K(Spec R)
as one would expect for a cohomology ring.

For the moment we will mostly keep with the algebraic notation, writing K (R)
more often than K (Spec R). But it is good to train oneself to “see” K (Spec R) even
when it is not explicitly written that way.

2.22. Further properties of G(R). We return to the study of the groups G(R)
and K(R), for the moment concentrating on the former.

Theorem 2.23. If R is Noetherian, the Grothendieck group G(R) is generated by
the set of elements [R/P] where PCR is prime.

Before proving this result let us comment on the significance. When X is a
topological space, the groups H,.(X) have a geometric presentation in terms of
“cycles” and “homologies”. The cycles are, of course, generators for the group. The
definition of G(R) doesn’t look anything like this, but Theorem says that the
group is indeed generated by classes that have the feeling of “algebraic cycles” on
the variety Spec R. One thinks of G(R) as having a generator [R/P] for every
irreducible subvariety of R, and then there are some relations amongst these that
we don’t yet understand. It is worth pointing out that in H,.(X) the cycles are
strictly separated by dimension—the dimensions 7 cycles are confined to the single
group H;(X)—whereas in G(R) the cycles of different dimensions are all inhabiting
the same group. This is one of the main differences between K-theory and singular
homology /cohomology.

To prove Theorem [2.23] we first need a lemma from commutative algebra:

Lemma 2.24. Let R be a Noetherian ring. For any nonzero finitely-generated
R-module M there exists a prime ideal PCR and an embedding R/P — M. Equiv-
alently, there is some z€M whose annihilator is prime.

Proof. Consider the set of ideals
8 = {Ann(m) |m € M, m # 0}.

Equivalently, 8 is the set of ideals I such that R/I embeds into M. Note that S # )
because M # 0. Since R is Noetherian 8§ has a maximal element I = Ann(m). We
will prove that I is prime. Suppose ab € I and b ¢ I. Then bm # 0 so Aun(bm) € §
and Ann(bm) O Ann(m) = I. By maximality Ann(bm) = I. But ab € I so
abm = 0, hence ¢ € Ann(bm) and therefore a € I. This completes the proof that I
is prime. O

Proof of Theorem[2.23 Let M be a finitely-generated R-module. We will use re-
peated applications of Lemma [2:29] to construct a so-called prime filtration of
M. Pick an embedding R/Py — M, and let My = R/Py. Next consider M /M.
If M/My = 0, our filtration is complete. If M /M0, then there exists a prime
Py and an embedding R/P; < M /M. Let m: M — M /My denote the projection
and define M; = 7~ Y(R/P;). Then m: M7 — R/P; also has kernel My; that is,
MoCM; and M, /My=R/P;. Next consider M/M; and repeat. This process yields
a filtration of M
0OCMyCM C---CM

such that M; 1 /M;=R/P;. The filtration must be finite since R is Noetherian. By
Proposition 2.5(b) we have that [M] = > [M;1/M;] = > [R/P;], and so the set
{[R/P]| P is prime in R} generates G(R). O
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Remark 2.25. The prime filtrations constructed in the above proof are very useful,
and will appear again and again in our arguments. For future use we note that
if an ideal ICR is such that IM = 0, then I also kills any subquotient of M.
Consequently, I will be contained in any P; for which R/P; appears as a subquotient
in a prime filtration of M.

If M is an R-module write M|t] for the R[t]-module M®@prR][t]. The functor
M — M]t] is exact because R|[t] is flat (in fact, free) over R. So we have an induced
map «: G(R) — G(R[t]) given by [M] — [M]t]].

Theorem 2.26 (Homotopy invariance). If R is Noetherian, a: G(R) — G(R]t])
is an isomorphism.

We comment on the name “homotopy invariance” for the above result. If X =
Spec R then Spec R[t] = X x A!, so the result says that G(—) gives the same values
on X and X x A'. This is reminiscent of a functor on topological spaces giving the
same values on X and X x I.

Proof. We will first construct a left inverse 8: G(R[t]) — G(R). A naive possibility
for the map 3 is J +— J/tJ = J@pgp R[t]/(t), but this doesn’t preserve short exact
sequences in general. So we correct this using Tor, and instead define

B([J]) = [Torg " (1, RIt)/(¢))] — [Tory™ (J, R[] /(1)))-

Before checking that this is well-defined, let us analyze the two Tor-groups. Recall
that we can calculate Tor by taking an R[t]-resolution of either variable. In this
case, it is easier to resolve R[t]/(t):

0 — R[t] 5 R[t] — R[t]/(t) — 0.

Tensoring with J yields 0 — J -5 J — 0, so that TorOR[t](J,R[t]/(t)) = J/tJ and
TorF™(J, R[t]/(t)) = Anny(t). Notice also that Tor:l(.J, R[t]/(t)) = 0 for i > 1.
We have

o0
B(LTY) = /4] — [Anny (0] = 3 (~1)/[Tor™ (1, It} /(1))
i=0

The fact that § is a well-defined group homomorphism now follows by the usual
argument: a short exact sequence of modules induces a long exact sequence of Tor
groups, and the alternating sum of these is zero in G(R). It is immediate that Sa =
Id: this follows from the fact that for any R-module M one has Mt]/tM[t] = M
and Annyp(t) = 0. Consequently, « is injective.

The difficult part of the proof is showing that « is surjective. We will use the
fact, from Theorem that G(R]t]) is generated by elements of the form [R[t]/Q]
for primes QCRJt]. It suffices to show that each [R[t]/Q)] is in the image of a. Let
us write S for R[t], and define

T={QNR|Q C S isprime and [S/Q]¢im(c)}.
Our goal is to show that T" must be empty.
If T+#() then since S is Noetherian it has a maximal element P = QNR for some
prime QCS. Using this P and this @, we will construct an S-module W which

forces [S/Q)] to lie in im(«), thus obtaining a contradiction.
First, some observations:
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(1) If I C R is any ideal then the expansion I.S equals I]t], the set of polyno-
mials with coefficients in I. One has S/IS = (R/I)][t].

(2) Any S-module M which is killed by P + u for some u € R — P must lie in
im(a). This is because for each prime @Q; appearing in a prime filtration of
M, we have Q;2 Anng(M)2DP + u. In particular, none of these Q; can be
in T since P was chosen to be maximal. So [S/Q;]€ im(«) for all these Q;,
and hence [M]€im(a) as well.

(3) For any prime JCR we have [S/JS]€im(a), since S/JS = (R/J)[t] =
a([R/J]).

(4) If feS — JS where JCR is prime, then [S/(JS + f)] = 0 in G(S) since
S/(JS + f) fits into the short exact sequence

0— S/JS L5 S/TS — S/(JS + f) — 0.

Note that S/JS = (R/J)[t], which is a domain—and this is why multipli-
cation by f is injective.
Consider the maps
S — S/PS < (R— P)"'(S/PS).

Observe that (R — P)~*(S/PS) = (Rp/PRp)[t]. But Rp/PRp is a field, so the
ring (R — P)~1(S/PS) is a PID. Therefore the image of Q in (R — P)~(S/P[t]) is
generated by a single element. Let f € @ be some lifting of this generator to S.

Consider the S-module W = Q/(PS+ f). Since Q and f have the same image in
the ring (R— P)~1(S/PS), we have (R— P)~'W = 0. Now, W is finitely generated
(as an S-module), so there exists some v € R— P such that ul¥ = 0. Since PW =0
by the definition of W, we have that W is killed by P+4w. By observation (2) above,
(W] € im(a).

At the same time, W fits into the exact sequence 0 — W — S/(PS + f) —
S/Q — 0, and we know [S/(PS + f)] = 0 in G(S) by observation (4). But this
implies that [W] and [S/Q)] are additive inverses, and hence [S/Q] lies in im(«),
contradicting our choice of Q. O

Here is an interesting consequence of homotopy invariance:
Corollary 2.27. Let F be a field. Then K(F[x1,...,2,])=Z.

Proof. We have K(F[x1,...,2,])2G(F|x1...,2,]) by Theorem [2.13] since the
ring Flxy,...,2z,] is regular by Hilbert’s Syzyzy Theorem. We also have
G(Flx1,...,2,])=G(F) by homotopy invariance, and G(F)=Z via the dimension
map. O

In the next section we will see what Corollary says about projectives over
Flzy,...,2,]. See Proposition

2.28. Regular local rings. We have seen that regularity is an important condition
when dealing with K-theory, and so it is worth giving a crash course on the theory
of regular local rings. We start with some examples. All of the following local rings
are regular:

(1) k[z1,...,2Zn)(a,,...,2,) Where k is a field;

(2) K[[z1,...,z,]], the ring of formal power series over a field k;
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(3) any discrete valuation ring V' (equivalently, a local PID), for example Z, or

its p-adic completion Z, or any local ring of the ring of integers in a number
field;

(4) V[[z1,...,x,]] where V is any discrete valuation ring;

(5) Zpllzy, ... wna]l/ (2l + 23+ + 2] —p).

We next give some general information that will help sort the above examples
into classes. Let (R, m,k) be a Noetherian local ring. This means that R is a
Noetherian ring with unique maximal ideal m and k = R/m. If char(R) = char(k)
then R is said to be equicharacteristic, and otherwise it is mixed characteristic.
Regular local rings are always integral domains and so the possibilities for the pair
(char(R), char(k)) are only (0,0), (p,p), and (0,p) where p is a prime.

Note that K[[x1,...,x,]] is equicharacteristic, whereas rings like Z,) and
Zy[[z1, - - ., xy,]] are mixed characteristic. The equicharacteristic case has the closer
ties to geometry, whereas the mixed characteristic case appears more in number-
theoretic situations.

Mixed characteristic local rings (R, m, k) can be further divided into two classes
depending on whether or not p € m2. If p € m? one says that R is ramified, and
otherwise R is unramified. Note that Z,) and Zp are unramified, whereas the
example from (5) above is ramified.

If one takes an algebraic variety over a field k and looks at the local ring at a
nonsingular point, one obtains a regular local ring that is most likely not in the list
(1)—(5) above. It is far from true, for example, that the local ring of a dimension
n nonsingular variety is isomorphic to k[x1,...,Zn|(s,,... 2,). However, it turns
out that this is true after completion. The upshot is that there are not very many
complete regular local rings, and in some sense we know them all. This is part of the
Cohen structure theorems for complete local rings. The following theorem brings
together several results, but (d) and (e) are the Cohen classification theorems:

Theorem 2.29. Let (R, m, k) be a local ring and set n = dim R.
(a) If R is reqular then it is a domain.
(b) R is reqular if and only if the m-adic completion R is reqular.
(c) If R is regular and f € m —m? then R/f is also regular.
(d) If R is complete and regular and equicharacteristic then R = k[[x1,...,zy]] for
some field k.
(e) Suppose R is complete and regular and mized characteristic. Then there are
two possibilities:
o If R is unramified (p ¢ m?) then R = V|[[x1,...,2,_1]] for some complete
discrete valuation ring V' with mazimal ideal (p).
o If R is ramified (p € m?) then R = V{[zy,...,z,]]/(p — f) for some
complete discrete valuation ring V' with mazimal ideal (p) and some f €
(p, @1, 2n)% such that p[f.

For parts (a)—(c) see [BH, Propositions 2.2.2-2.2.4]. Parts (d) and (e) are from
[Col, with [Sam| another good source. The equicharacteristic case in (d) can also
be found in [ZS] Section 12 of Chapter VIII|.

Theorem [2.29| gives us a very good handle on complete regular local rings in the
equicharacteristic and the unramified mixed characteristic cases. But although the
theorem says something concrete and useful about the mixed ramified case, things
are much more mysterious here because of how open the choice of f is. Many
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theorems about regular local rings are known in the equicharacteristic and mixed
unramified cases but open in the ramified case.

o Exercises o

Exercise 2.30. Let R be a commutative ring.
(a) Let Q C R be a prime ideal. Prove that

P dimgpr/q) (QF(R/Q) ®r/q P/QP)
is an additive function on finitely-generated projectives and therefore induces
a homomorphism rankg: K(R) — Z.
(b) Let @ € R be a minimal prime ideal. Then R is Artinian, so every finitely-
generated module has finite length. Prove that M ~ {g,(Mq) is additive and

so induces a homomorphism ¢g: G(R) — Z.
(¢) Prove that in both K(R) and G(R) the class [R] is non-torsion.

Exercise 2.31. If R has the property that every finitely-generated module has a
finite free resolution, prove that K(R) = Z and G(R) = Z. Give an example of an
R for which this property fails. Even better, give an example of a regular ring R
for which this property fails.

Exercise 2.32. Let R = k[x]/(z™) where k is a field and n > 2. Use the classifica-
tion of modules over k[z] to prove that every finitely-generated projective R-module
is free. Verify that K(R) = G(R) = Z but that the canonical map K(R) — G(R)
is isomorphic to multiplication-by-n (and in particular, is not an isomorphism).

Exercise 2.33. Fix a prime p and set R = Z[z]/(2? — px).

(a) Determine all the prime ideals in R and verify that Spec R looks like two copies
of SpecZ glued together at the prime (p).

(b) Suppose @ is a prime in R other than (z), (z — p), and (x,p). Show that
R/Q has a finite free resolution and use this to prove that [R/Q] = 0 in G(R).
Likewise, find an exact sequence showing that [R/(x,p)] = 0 in G(R). So G(R)
is generated by [R/xR] and [R/(x — p)R]. Also prove that [R] = [R/zR] +
[R/(x —p)R].

(¢) Use the maps on G-groups induced by R — R/xR and R — R/(x — p)R to
prove that G(R) = Z2.

(d) Find a free resolution of R/zR and use this to prove that Tor,(R/zR, R/(x,p))
is nonzero in all degrees. Conclude that R is not regular.

[Note: We will investigate K (R) in Exercise [3.9].

Exercise 2.34. Let R = Z[v/-3] = Z[X]/(X? + 3).

(a) Determine all of the prime ideals of R. Prove that Spec R — SpecZ is surjec-
tive, and that the fiber over (p) is two elements when 3|p — 1 and a singleton
otherwise. Prove that every prime other than (2,1 + X) is principal.

(b) Construct a free resolution of R/(2,1 + X) and prove that Tor;(R/(2,1 +
X),R/(2,1 + X)) is nonzero for all i. Deduce that R is not regular. [Hint:
The resolution can be made to exhibit a nice periodicity.]

(¢) Check that Rp is regular for every prime P except for (2,14+X). Said differently,
(2,1+ X) is the only singular point of Spec R.

(d) Construct an exact sequence 0 — R/(2,1+ X) — R/(2) - R/(2,1+ X) — 0.
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(e) Using the previous parts deduce that G(R) is generated by [R] and [R/(2,14X)]
and is either Z or Z & Z/2, depending on whether [R/(2,1 + X)] is zero or

nonzero.
(f) 7777

Exercise 2.35. Let S = Z[w]/(w?+w+1) and let R be as in the previous exercise.
It will be convenient to regard R C S via X = 2w + 1 (if we regard these rings as
inside of C then X = v/3i and w = _H‘T\/‘;’Z) Note that w is integral over Z; it
turns out that S is the integral closure of R. The ring S is the ring of integers in

the number field Q(v/—3).

(a) Determine all of the prime ideals in S and prove that SpecS — SpecR is
bijective.

(b) Check that the prime in S lying over (2,1 + X) is (2), and in particular is
principal. Note that R/(2,1+ X) — S/(2) is the field extension Fy < Fy.

(c) Verify that S is a PID and conclude K(S) = G(S) = Z.
[Discussion: What is happening geometrically here is that Spec.S — Spec R
resolves the singularity in Spec R. The point (2,1 + X) € Spec R, with residue
field Fq, is being “blown up” into the point (2) € Spec S with residue field Fy.
Away from these points the map Spec S — Spec R is an isomorphism.|

3. A CLOSER LOOK AT PROJECTIVES

Recall that a module is projective if and only if it is a direct summand of a free
module (there is also a description in terms of lifting criteria, of course). So free
modules are projective, and for almost all applications in homological algebra one
can get by with using only free modules. Consequently, it is common for students
not to know many examples of non-free projectives. One of our goals in this section
is to remedy this.

It turns out to be very useful to be able to think about projectives geometrically.
Projectives over a commutative ring R correspond to vector bundles over Spec R.
This is not at all obvious, and we won’t fully understand it until Section [L0] after we
have developed more tools from the theory of vector bundles. But in this section we
will start to see these ideas play out as we import some of the geometric language
and intuition into our algebraic discussion.

Before diving into some examples we need a couple of small tools. Just as vector
bundles are “locally trivial”, projectives are locally free. This is a fun piece of local
algebra:

Proposition 3.1. Owver a local ring all projectives are free.

Proof. Let (R,m,k) be a local ring. A set of generators for an R-module M is
minimal (in the sense of no proper subset also generating M) if and only if its
image in M/mM is an R/m-basis. So all minimal generating sets for a module have
the same size. (Of course this is wildly false when R is not local). Every relation
amongst the elements of a minimal set of generators must have all coeflicients
belonging to m, otherwise there would be a unit coefficient and we would contradict
minimality.

Pick a generating set for M and map a free module Fy — M by sending the
free basis to these generators. Then take the kernel K and repeat, mapping a free
module F; — K by sending the free basis to a minimal generating set. Note that
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these generating sets might be infinite here. Continuing in this way we build a
so-called ‘minimal resolution’ Fy — M — 0.

The fact that we picked minimal generating sets at each stage implies that Fy ®
R/m has vanishing differentials, since all relations amongst the minimal generators
have coefficients in m. So rank(F;) = dimy, Tor;(M, k).

If M is projective then it is also flat, and hence all of the higher Tor’s must
vanish. Therefore F; = 0 and the resolution 0 — Fy — M — 0 shows that M is
free. O

Let R be a commutative ring, P a finitely-generated projective over R, and ¢ C R
a prime ideal. Then F; is free and finitely-generated over R,, so let us define

rank,(P) = rankg_ (P,).

Note that rank, is additive in the sense that rank,(P & Q) = rank,(P) @ rank,(Q).
If ¢ C ¢ then P, = (Py), and so rank,(P) = rank, (P). Therefore rank,(P) is
constant on chains of primes. If R is a domain, for example, then all primes can
be connected by a chain to (0) and so rank(P) is constant. In this context we will
just talk about the rank of P. (An example of a projective with different ranks at
different primes is given in (1) below).

Note that when m is a maximal ideal we can also write

rank,,(P) = rankg, (Py) = dimg, /mg,, (Pm/mPp) = dimg/m, (P/mP).

Recall that maximal ideals are the closed points in Spec R. The R/m-vector space
P/mP plays the role of the “fiber” of the projective over our closed point.

Remark 3.2 (The geometry of local rings). In view of the above discussion this
might be a good time to clarify some mysteries about local rings. If ¢ is a prime in
R then Spec R, may be identified with the subset of Spec R consisting of all primes
contained in g. This subset is usually neither open nor closed in Spec R. What we
have instead is this:
Spec R, = ﬂ U.
geUeprenCSpec R

That is, Spec R, is the intersection of all Zariski open neighborhoods of ¢ in Spec R.
For Hausdorff topological spaces such an intersection would always just be the point
itself, and therefore non-interesting. The analog here is that Spec R, has only one
closed point, but it nevertheless has a significant amount of information lurking in
the non-closed points.

For a typical space that appears in algebraic topology—a manifold or CW-
complex, for example—while the intersection of open neighborhoods of a point
is just the point itself one can nevertheless sense that the open neighborhoods
get similar as they get smaller and smaller. In some sense there is some limiting
information there that is not captured at just the set level. This is really what
is happening in algebraic geometry. Our Spec R, behaves like an “infinitesimal”
Zariski neighborhood of ¢q. This idea takes some getting used to, but it is impor-
tant for understanding how information passes back and forth between algebra and
geometry.

Now let us turn to some examples of interesting projectives:
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(1) Let R = Z/6. Since Z/2 ® Z/3 = Z/6, both Z/2 and Z/3 are projective R-
modules—and they are clearly not free. More generally, if R = .5 x T then we
can make S into an R module via (s,t).u = su where s,u € S and t € T. Then
S is projective but not free.

Geometrically, what is happening here is that Spec R = Spec .S II SpecT.
When we make S into an R-module as above we are consructing the vector
bundle that is free of rank one on the Spec S component but zero on the SpecT’
component. Check algebraically that rank,,(S) is either 0 or 1 and depends on
the choice of m.

(2) Let R = Z[/=5] and I = (2,1 + v/=5) = (2,1 — v/=5). For convenience let
us write p = /5. A standard tool for dealing with this ring is the norm
map N(a + bu) = (a + bu)(a — bu) = a® + 5b%. This is multiplicative, i.e.
N(zy) = N(x)N(y). Using this one argues that if I were generated by a single
element a + by then 2 would be a multiple of a? + 56, and one quickly obtains
a contradiction. So [ is not principal.

Let K be the kernel of the map R? — I sending e; to 2 and ey to 1 + p.
A little work shows that K is spanned by (1 + p,—2) and (—3,1 — ). If one
defines x: R? — K by

X(el) = (3a71+:u)’ X(GQ) = (1+/u'7 *2)7
it is readily verified that y is a splitting for the sequence 0 — K — R? — I — 0.
So K @ I = R?, and hence both K and I are projective.

The inclusion I C R becomes an isomorphism after tensoring with QF(R),
so I has rank one. If I were free then we would have I = R. However, this
would contradict I being non-principal. So I is a non-free projective.

This example generalizes: if D is a Dedekind domain (such as the ring of
integers in an algebraic number field) then every ideal I C D is projective.
Non-principal ideals are never free.

Exercise 3.3. Verify that K is generated by (1 + p,—2) and (—3,1 — u). Note
that the second coordinates of elements of K therefore all belong to I. Prove that
the composition K < R =2 I is an isomorphism. Deduce that I &I = R @ R.

(3) Let R = R[z,y,2]/(2? + y* + 22 — 1). If C(S?) denotes the ring of continuous
functions S? — R, note that we may regard R as sitting inside of C(S?): it is
the subring of polynomial functions on the 2-sphere. The connections with the
topology of the 2-sphere will be important below.

Let 7: R3 — R be the map 7(f,g,h) = xf + yg + zh. That is, 7 is left-
multiplication by the matrix [m Y z] Let T be the kernel of 7:

0 T R*—"s>R 0.

The map 7 is split via x: R — R? sending 1 — (z,y,z). We conclude that
T@® R = R3, soT is projective.

We claim that T is not free. Suppose, towards a contradiction, that T is
free. Since T @ R = R® we have rank(T) = 2, and so T = R%. Choose an
isomorphism R? — T, let e; and ep be the standard basis for R?, and let the
image of e; under our isomorphism be (f,g,h). So f,g, and h are polynomial
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functions on S? and

P1 f (p)
p2 || 9(p) | =0
P3 h(p)

for all p = (p1,p2,p3) € S%. So p — (f(p),g(p), h(p)) is a tangent vector field
on S2. By the Hairy Ball Theorem we can find a point ¢ = (q1,q2,q3) € S?
such that f(q) = g(¢) = h(q¢) = 0. Let m = (x — 1,y — ¢2,2 — ¢3) C R and
consider the commutative diagram

R? = T R3

N

(R/mR)? —T/mT>—— (R/mR)3.

The lower right map is an injection because the upper right map is a split
injection. Note that R/mR = R via F +— F(q). Start with ey in the upper left
corner and compute its image in (R/mR)? = R3 under the two outer ways of
tracking around the diagram. Along the top route e; maps to (f(q),9(q), h(q))
which is just (0,0,0). On the other hand, along the bottom route e; first maps
to (1,0) € R? and then the bottom composite is an injection—so the image in
R3 is nonzero. This is a contradiction, so we conclude that 7" is not free. (In
fact, we have proven more: we have proven that 7" does not contain R as a
direct summand).

Note that 7T is an algebraic analog of the tangent bundle of S2. As remarked
at the beginning of the section, these parallels between projective modules and
vector bundles are very important. We will see much more about them in
Section
Let us do one more example where we use topology to produce an example of a
non-free projective. This example is based on the Mébius bundle over S*. Let

S =R[z,y]/(«® +y* - 1)

and let R C S be the span of the even degree monomials. One should regard S
as the ring of polynomial functions on the circle, and R is the ring of polynomial
functions f(x,y) satisfying f(z,y) = f(—z,—y). So R is trying to be the ring
of polynomial functions on RP* (which happens to be homeomorphic to S1).

Let P C S be the R-linear span of the homogeneous polynomials with odd
total degree. Observe that P is a finitely generated R-module and we have
7: R? —» P via m(e1) = z and ©(ez) = y. Define x: P — R? via

hHX(h):[ZH.

One checks that m o x = id, so P is projective. We leave it as an exercise for
the reader to show that P is not free.

Exercise 3.4. Complete example (4) above by showing that P is not free.

The topological examples (3) and (4), as well as many similar ones, can be found

in the lovely paper [Sw|. See also Section [10| below.

Example 3.5. Here is an example of an algebraic problem whose solution involves
non-free projectives coming from topology. If A and B are commutative rings such



A GEOMETRIC INTRODUCTION TO K-THEORY 29

that A[X] = B[X], does it follow that A = B? This is a natural question that once
upon a time had people stumped. The first counterexample was due to Hochster
[Hoc| and is closely related to our current discussion.

Let R = R[z,y, z]/(2? + y?> + 22 — 1) as in (3) above, and let T also be as above.
Recall that T is not free but that there is an isomorphism R? =2 T @ R. Apply the
symmetric algebra construction Sympg(—) to obtain

R[U,V,W] = Symp(R?) = Symy(T @ R) = Symz(T) ®r Sympz(R)
= Symg(T) ®r R[W]
= Symg(T)[W].

We take A = R[U,V] and B = Symp(T), and the above gives a ring isomorphism
A[W] = B[W].

It requires a little work to prove that A 2 B, though it is not too bad. We only
give a sktech. One first argues that any isomorphism must be R-linear, then that
the isomorphism must map R onto itself. By composing with the inverse to this
automorphism of R, one can assume that the isomorphism A — B is R-linear. But
if there is such an R-algebra isomorphism then B is generated as an R-algebra by
two elements, and one readily proves that the degree 1 homogeneous components
of those two pieces generate T" as an R-module. But the arguments from (3) above
show that T cannot be generated by two elements, and this is the contradiction.
We refer to [Hoc| for more details.

The original question about A and B, together with some variants, are often
called the Zariski Cancellation Problem. This is an active area of research. For
example, one open question is whether or not there exist counterexamples where
A is a polynomial ring over a field of characteristic zero (such counterexamples are
known in positive characteristic, by recent work of Gupta [Gull]). We mention the
survey paper [Gu2| as just one point of entry into this subject.

A projective module P is called stably free if there exists a free module F' such
that P @ F is free. The example in (3) gives a projective that is stably-free but
not free. It turns out that K (R) can be used to tell us whether such modules exist
or not. To see this, recall that if m C R is a maximal ideal then rank,,(—) is an
additive function on finitely-generated, projective modules. So it induces a map
rank,,(—): K(R) — Z, which is evidently surjective because rank,,(R) = 1. This
shows that K(R) always contains Z as a direct summand.

Define the reduced Grothendieck group of R to be

K(R) = K(R)/([R]).

Here is another way to define this group. Take the set of isomorphism classes of
finitely-generated projectives and impose the equivalence relation (P) ~ (P & R)
for every P. Such equivalences classes are called stable projectives. Define a
monoid structure on this set by (P) 4+ (Q) = (P ® Q), and note that (0) = (R) is
the identity. If P is any projective then there exists a ) such that P @ @ is free,
and therefore (P) 4 (@) = 0 in this monoid; hence, we have a group. This is called
the Grothendieck group of stable projectives. One readily checks that this
group is isomorphic to K (R), with the equivalence class (P) corresponding to the
element [P] € K(R).
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Proposition 3.6. Let R be a commutative ring. The following are equivalent:
(1) K(R) =2

(2) K(R)=0

(3) Ewvery finitely-generated, projective R-module is stably-free.

Proof. Immediate. U

Example 3.7. Recall from Corollary [2:27] that if F is a field then
K(F[z1,...,2,])) = Z. Thus, every finitely-generated, projective Flx1,...,2,]-
module is stably-free.

In the 1950s, Serre conjectured that every finitely-generated projective over
Flz1,...,xy] is actually free. As we will see later (Remark [11.6]below), the motiva-
tion for this conjecture is inspired by topology and the connection between vector
bundles and projective modules. Quillen [Q4] and Suslin [Su] independently proved
Serre’s conjecture in the 1970s.

Example 3.8. Let R = Z[/—5] and let I be the ideal (2,1 + /=5). We saw in
example (2) from the beginning of this section that I is a rank one projective that
is not free. Could I be stably free? If it were, then we would have I @ RF = RF+1,
for some k. Apply the exterior product A*+1(—) to deduce that

R AN R 2 AR T RM) 2 AN () @ AFRF) 2 ToR=T

(in the third isomorphism we have used the formula for the exterior product of
a direct sum, together with the general fact that AJ(P) = 0 for j > rank(P)).
However, this is a contradiction as we have already seen that I is not free. Hence
I is not stably free and so [I] determines a nonzero class in K(R). By Exercise
we know I @1 = R? and so 2[I] = 0 in K (R), therefore we have a nonzero 2-torsion
class.

Again, this example generalizes to any Dedekind domain D. If I C D is a non-
principal ideal then I is a rank one projective that is not stably free. So a Dedekind
domain has K (D) = Z if and only if D is a PID. As another consequence, we observe
that over any commutative ring a rank one projective P cannot be stably free unless
it is actually free.

o Exercises o

Exercise 3.9. Let R = Z[z]/(2? — px) as in Exercise Here we will analyze
K(R). Recall that geometrically Spec R looks like two copies of SpecZ that are
glued together at the point (p). The theme of this exercise is that projectives over
R are obtained by taking trivial modules of the same rank on the two copies of
SpecZ and then gluing them together via an isomorphism on their fibers over (p).
(a) For u € (Z/p)* set J, = {(f,g9) € Z* |uf = g (p)}. Make J, into an R-module
by X.(f,g) = (0,pg). Prove that J, is generated over R by (1,u) and (0,p)
and that the surjection R?> — J, sending e; and e, to these two generators has
an R-linear splitting. So J,, is projective.
(b) Prove that J, = R if and only if v = +1, and more generally J, & J, <=
u = tv.
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(¢) Suppose that P is a rank one projective over R. Then P/xP is a rank
one projective over the PID R/xR, so we can choose an R-linear isomor-
phism ¢1: P/aP — R/xR. Likewise, we can choose an R-linear isomor-
phism ¢o: P/(x — p)P — R/(x — p)R. We then obtain induced isomorphisms
¢1,02: P/(x,x — p)P — R/(z,x — p)R, so that the composite ¢,'¢; is an
R-linear automorphism of R/(z,z — p) R and therefore multiplication by a unit
u. Use these ideas to prove that P = J,.

(d) The set of isomorphism classes of rank one projectives becomes a group under
the tensor product; this is called the Picard group of R and denoted Pic(R).
Putting the previous parts together, prove that Pic(R) = (Z/p)*/ £ 1.

(e) For A € GL,(Z/p) define Ja = {(f,9) € Z" x Z" | Af = g(p)}. Extend the
above ideas to prove that J4 can be generated by 2n elements over R and that
J 4 is projective. Prove that J,p = Ja = Jp, for any P € GL,(Z) (where P
is the mod p reduction), so that A — J4 gives a map

GLy(Z)\GLy(Z/p)/GLn(Z) — {iso. classes of rank n projectives over R}.

Verify that this is a bijection. [Discussion: Essentially what is happening here
is that we are building vector bundles on Spec R by taking two trivial bundles
on SpecZ and then gluing together their fibers over p. The “gluing map” is
the matrix in GL,(Z/p), and the left and right multiplications by GL, (Z)
correspond to change-of-bases in the two factors.]

(f) Using the previous part, prove that every finitely-generated projective decom-
poses as a direct sum of a rank one projective and a free module. Furthermore,
prove that J, ® J, &£ R® J,, and that R" & J, is free if and only if u = +1.
[Hint: Suppose A, A" € GL,(Z/p) and one can obtain A’ from A by a row
(or column) operation that adds a multiple of one row (or column) to another.
Prove that A ~ A’ in the orbit space from (e). Then use this technique in the
first two proofs. For the third, use the determinant.|

(g) Define a map Z @ [(Z/p)*/ £ 1] — K(R) by (r,u) — R" @ J,. Prove that this
is an isomorphism, so that

Y/ if p=2,
K(R) = po1y

Deduce that the canonical map K(R) — G(R) is neither injective nor surjective
when p > 3.

Exercise 3.10. Let k be a field not of characteristic 2 and let R = k[z,y]/(y* —
2%(z +1)). This is the coordinate ring of a nodal cubic:

In particular, R is not regular. In this exercise we will explore projectives over R.
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Set t = ¥ and note that t2 = x + 1, hence t is integral over R. It turns out
that the integral closure of R is R = k[t], with R < R sending z — ¢*> — 1 and
y > t(t? — 1). Geometrically, the map Spec R — Spec R looks as follows:

The curve in the left is just the affine line Specklt], but it has been depicted in

a way that is compatible with the map to Spec R. The points ¢ = 1 and ¢t = —1

(shown in the left picture lying above each other) are sent to (0,0), and away from

these points the map is an isomorphism. Note that R C k[t] may be regarded

as the subring of polynomials f such that f(1) = f(—1). In particular note that

(t? = 1)k[t] C R.

All vector bundles on the affine line Spec R are trivial (e.g. use the classification
of modules over a PID). We can make bundles on Spec R by taking a trivial rank
n bundle on Spec R and gluing the two fibers at ¢t = 41 together via a fixed
isomorphism A € GL, (k).

Define P4 = {g € k[t]” | g(1) = Ag(—1)} and note that this is naturally an R-
module. We claim that P4 is a projective over R and that every projective over R
is of this form. Moreover, we can precisely describe the set of isomorphism classes
of all rank n projectives, for any n. These are the goals of this exercise.

(a) First consider n = 1 and u € k*, with J, = {g € k[t] | g(1) = ug(—1)}. Prove
that J, is generated as an R-module by t> — 1 and «,, = Mﬂ_l)t (the 2
in the denominator is not necessary, but leads to nicer-looking formulas in the
end). Observe that if f € J, and g € J, then fg € Jy,, or that multiplication
gives maps J, ® J, — Jyup. Also note that J; = R.

(b) Let 7: R? — J, send e; — t*> — 1 and ey — «,. Find elements P,Q € J, 1
such that f — (Pf,Qf) gives an R-linear splitting for .

(¢) Prove that J, = R if and only if u = 1.

(d) Suppose that P is a rank 1 projective over R. Then P ®p k[t] is a rank 1
projective over k[t], hence it is isomorphic to k[t] as a k[t]-module. Choose a
k[t]-linear isomorphism P ®pg k[t] = k[t]. Then the composite

p—=p®1 o

P P og k[t] = k[t)

is an R-linear embedding. Let P denote the image. Observe that there exist
po,p1 € P such that 1 = py + pi1t. Use this to prove that t2 — 1,¢(t> — 1) € P
and then that P = .J, for some u € k*. [Hint for the last part: Show that P is
generated by the three elements t? — 1,¢(t> — 1), ag + a1t for some ag,a; € k.
In the cases ag + a1 = 0 or ag — a; = 0 prove that P could not be projective.|
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(e) The Picard group Pic(R) is the set of isomorphism classes of rank 1 projectives
over R, which becomes a group under the tensor product. Verify that the
previous parts give an isomorphism k* — Pic(R) sending u — J,,.

(f) Generalize the previous parts to n > 1. Show that J4 = (£* — 1)k[t]" + R.((I +
A)ay + (A — Iayt) for some ay,a; € k™. In particular, J4 can be generated
by 2n elements. Produce an R-linear splitting for the projection R?" — J4 to
show that J4 is projective. Also, verify that Jgap-—1 = J4 for any B € GL, (k).

(g) Prove that the set of isomorphism classes of rank n projectives over R is in
bijective correspondence with the quotient set GL,, (k)/~ where the equivalence
relation is conjugation (A ~ BAB™!).

4. A BRIEF TOUR OF LOCALIZATION AND DEVISSAGE

It would be nice if we could compute the K-groups of more rings. For example,
we haven’t even computed K (R) for a simple ring like R = Z[\/—5]. But so far we
don’t have many techniques to tackle such a computation. An obvious thing to try
is to relate the K-groups of R to those of simpler rings made from R, for example
quotient rings R/I and localizations S™'R. We will start to explore these ideas
in the present section. For the moment it will be easier to do this for G-theory,
though, rather than K-theory. Note that R = Z[y/—5] is a regular ring, and so
K(R) 2 G(R) by Theorem hence, the focus on G-groups still gets us what we
want in this case.

Let R be a commutative ring and let f € R. Consider the maps
G(R/f) =" G(R) —">G(f'R)

where d; ([M]) = [M] and do([W]) = f~'W. Clearly dy o d; = 0. We claim that dy
is also surjective. To see this, let Z be an f~! R-module with generators z1,. .., z,.
Let W = R(z1,...,2n) € Z be the R-submodule generated by the z;’s. Then
Ff7I'W =2 Z, and so d, is surjective.

Theorem 4.1. When R is Noetherian the sequence
G(R/f)

dy do

G(R) G(f'R) —=0

15 exact.

We will delay the proof of this theorem for the moment, as it is somewhat
involved. Let us first look at an example.

Example 4.2. Let R = Z[/-5] and f = (2). Note that R is not a PID but f~'R
is. Thus G(f~'R) = Z. Now we compute

R/f = Z/2[a)/(e + 5) = Z/2[e)/ (2 + 1) = Z/20al/((x + 1)?) = Z/20)/ ().

We calculated in example (7) from Section [2f that G(Z/2[t]/(t?)) = Z and is gen-
erated by the module Z/2 with ¢ acting as zero. Translated into the present situa-
tion, we are saying G(R/f) = Z with the group being generated by R/(2,z + 1) =
R/(2,1+ v/=5).

We have computed that the exact sequence from Theorem has the form

di do

Z Z 0

G(R)
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where di(1) = [R/(2,1 ++/=5)] and do([R]) = 1. Let I = (2,1 + +/=5) and notice
that G(R) is generated by [R] and [R/I].

Now look at the short exact sequence 0 — K — R2 s I — 0 where
dler) = 2, dlea) = 14+ /=5, and K = ker(¢) = {(z,y) |2z + (1 + v/=5)y = 0}.
In example (2) from Section [3| we saw that K = I. So we have [I] + [I] = [R?] in
G(R), or 2([R] — [I]) = 0. But [R] — [I] = [R/I], hence 2[R/I] = 0. It follows that
G(R) is either Z or Z & Z/2, depending on whether the class [R/I] = [R] — [I] is
Zero or not.

Now use that R is regular, so that G(R) = K(R). Recall that we saw in Exam-
ple that K(R) # 0, or equivalently K(R) # Z. In fact we saw precisely that
[R] — [I] is not zero in K(R). We conclude that G(R) = Z @ Z/2, with generators
[R] and [R/I] for each of the two summands.

Remark 4.3. Theorem gives another parallel between G(—) and singular
homology. If X = SpecR then A = SpecR/f is a closed subscheme, and
Spec f7'R = X — A is the open complement. So the sequence in Theorem
can be written as
GA) —-GX)>GX—-A)—0.

This is somewhat reminiscent of the long exact sequence in singular homology
-+ = Hy(A) - H.(X) —» H(X,A) — -+ but with some important differences.
One obvious difference is that our sequence does not yet extend to the left to give a
long exact sequence, but that turns out to be just a lack of knowledge on our part:
we will eventually see that there are ‘higher G-groups’ completing the picture. The
other evident difference is the presence of G(X — A) as the ‘third term’ in the long
exact sequence, rather than a relative group G(X, A). There are several things to
say about this that would be a distraction to delve into at the moment, but perhaps
the most relevant is that H,.(—) is really the wrong analogy to be looking at. If we
instead consider Borel-Moore homology, then there are indeed long exact sequences
that look like --- — HPM(A) - HPM(X) - HEM(X — A) — ---

Remark 4.4. It is important in Theorem that we are using G-theory rather
than K-theory. In K-theory we have maps K(R) — K(R/f) and K(R) —
K(f~'R), both given by tensoring, but in neither case do we have an evident
‘third group’ that might form an exact sequence. In essence this is because we need
relative K-groups; we will start to encounter these in the next section.

We will now work towards proving Theorem[d.1] The proof is somewhat involved,
and the result is actually not going to be used much in the rest of the notes. But
the proof is very interesting, as it demonstrates many general issues that arise in
the subject of K-theory. So it is worth spending time on this.

The proof comes in two parts. For the first part, let us introduce the multiplica-
tive system S = {1, f, 2, 3,...}. Write

G(M|S™'M = 0)
for the Grothendieck group of all finitely-generated R-modules M such that
S~IM = 0. The notation is a little slack, but it is very convenient. There are
evident maps
GM|S™'M =0) = G(R) - G(S™'R) — 0,
and we will prove that this is exact for any multiplicative system S. This is called
the localization sequence for G-theory.



A GEOMETRIC INTRODUCTION TO K-THEORY 35

The second step is to notice that if M is an R/f-module then as an R-module
it has the property that S~'M = 0. So we have a map

(4.5) G(R/f) = G(M|S™'M = 0).

If M is an arbitrary finitely-generated R-module, the condition S~*M = 0 just
says that M is killed by a power of f. So we would have a filtration

M2OfMDfPM2--2f"M=0

where the factors are all R/ f-modules. This shows that the map in (4.5)) is surjec-
tive, and in fact these ideas allow one to define an inverse. The fact that

G(R/f) = G(M|S™'M = 0)

is an example of a general principle known as dévissage. When we come to prove
this in a moment we will develop the generalization and get a better understanding
of what is going on here.

So those are the two pieces for the proof of Theorem a general localiza-
tion sequence where the third term is something we had not considered before—in
essence, a relative G-group—and a dévissage theorem identifying that third term
with something more familiar.

4.6. The localization sequence. To begin with we will need some basic facts
about the localization functor v: (R — Mod)) — ((S™'R — Mod)). Note that if
M and N are R-modules then the map Hompg(M, N) — Homg-1z(S~1M,S™IN)
factors through the S-localization to give

(4.7) S~'Hompg (M, N) — Homg-1 (S~ "M, S™N).
By extension the same is true for the maps Ext’ (M, N) — Exts_1 p(S~'M, S™'N),
giving us

(4.8) ST Exth (M, N) — BExts 1 p(S™'M,S7IN).

Proposition 4.9. Let R be a commutative ring and let M and N be R-modules.
If M s finitely-presented then the map from is an isomorphism. If M has
a resolution by finitely-generated projective modules then the map from (@ is an
isomorphism.

Proof. First observe that (4.7)) is readily checked to be an isomorphism when M
is free and finitely-generated. If we have a finite presentation F; — Fy - M — 0
then consider the diagram

0 —= S~ Homg(M,N) —— S~ Hompg(Fy, N) — S~ ! Hompg(Fy, N)

| i |

0 — Homy(S™*M,S™IN) — Homp (S~ Fy, S™'!N) — Homp (S~ 1Fy, STIN)

where we write T = S™!'R for typographical reasons and where each vertical map
is an instance of ([£.7). The top row is exact by the left exactness of Hompg(—, N)
together with the exactness of S-localization. The bottom row is exact by the
exactness of S-localization and then the left exactness of Homy(—, S~*N). The two
vertical maps on the right are isomorphisms because the F; are free and finitely-
generated. So the left vertical map is also an isomorphism.
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Note that the map from (4.7) is also an isomorphism when M is a finitely-
generated projective, either using the fact that projectives are retracts of free mod-
ules or by the fact that finitely-generated projectives are automatically finitely-
presented.

For the Ext-statement, choose a projective resolution P, — M where the P; are
all finitely-generated. Then S™!P, — S~'M is a free resolution over S~ R, and so

Exti 1 z(S™'M,S7!N) = H*(Homg 1z(S™*P,S™'N))
= H*(S™! Homg(P, N))
= S~ H*(Homp(P,N)) = S~ Ext}(M, N).
Here the equalities are really canonical isomorphisms, and the second equality is
the Hom-isomorphism we have already proven. ([l

Exercise 4.10. For the verification that (4.7) is an isomorphism when M is finitely-
generated and free, think through where the finite-generation hypothesis is needed.

Corollary 4.11. Let R be Noetherian and let S C R be a multiplicative system.
In each of the parts below the modules are always assumed to be finitely-generated.

(a) For any S™'R-module W there exists an R-module A and an isomorphism
STlA=Ww.

(b) For any R-modules Ay and Ay and map of S~ R-modules f: S™1A; — St Ay,
there exists a map of R-modules g: A1 — As and a diagram of S~ R-modules

514, 2% g-14,

e

SilAl — SilAg.

Note that the right vertical map need not be the identity.
(c) For any short exact sequence of S~ R-modules

0—->W; - Wy — W3 =0,

there exists a short exact sequence of R-modules

0— A — Ay — A3 =0
and isomorphisms
0—=8"14; — =614, — > 857143 — >0

ui ul lu

0 W1 W2 W3 0

Proof. We saw the technique for (a) already, in the paragraph prior to the statement
of Theoremm pick a set of generators wy, ..., wy for W as an S~!R-module, and
let A be the R-linear span of those generators. The inclusion A — W gives an
inclusion S™!'A <+ S~'W which is surjective, hence an isomorphism.

Parts (b) and (c) are direct consequences of the surjectivity of the Hom- and
Ext!-maps from Proposition [l
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Remark 4.12. The proofs of Corollary [£.11|(b) and (c) are very slick, and some-
times it can be good to also think through more concretes approaches. To this end,
here is a sketch of an alternative proof.

For (b), choose presentations F; — Fy — A; — 0 and G; — Gg — A4y — 0
where the F; and G; are finitely-generated and free. The map f lifts to a map
of complexes f: S™'F — S7!G. Represent the maps fy and f; by matrices, and
choose t € S large enough to clear the denominators for all entries at once. Since
the matrices ¢ ﬁ have entries in R we may regard them as maps F; — G;. Consider
the square

Fy h Gy

"y

FO —_— Go.
This square need not commute, but it commutes after S-localization: so there
exists some u € S such that multiplying the two horizontal maps by v makes the
square commutative. Now redefine ¢ to be tu, so that the above square truly does
commute. Taking the induced map of cokernels now gives a map ¢g: A1 — As. In
the diagram
1 tfl —1 =1t -1
S F1 — S G1 — S G1

R

§-1p, s g-1q, 5 91,

A

S71A 225714, L~ 5714,

the composition of the first two rows are f; and fy, so the composition of the
bottom row is f. This completes the proof for (b).

The proof of (c) is along similar lines. Choose A; and A3 such that S~1A4; = W,
and S~1A3 =2 Ws. Then choose free presentations Fy — Fy — Ay and G; — Gy —
Aj. Use the Horseshoe Lemma from homological algebra [W1l, 2.2.8] to create a
free presentation for Wy of the form S~1(Fy @ G1) — S~1(Fy @ Gy), sitting in the
middle of a short exact sequence with the previous two. Play the same game as
in (b) with clearing denominators on the maps in this presentation, so that one
can lift to a diagram of R-modules. There are a couple of slightly tricky points to
think through, but one can in this way create the desired short exact sequence of
R-modules (though not necessarily with the originally chosen A;). We leave the
reader to ponder the details here.

With these basic results about localization out of the way, we can now derive
some consequences for K-theory.

Corollary 4.13. When R is Noetherian the following subgroups of G(R) are all
equal:

(1) ([A] - [B]| 5~' A= $~'B)

(2) ([A] — [B] | there exists a map f: A — B such that S~'f is an isomorphism)
(3) (71| §11=0).
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Proof. Let Hy, Ha, and H3 be the subgroups listed in (1)—(3). Clearly H; 2 Hs D
Hj. The opposite subset H; C H, follows directly from Corollary b). To prove
Hy C H3, let f: A — B be a map of finitely-generated R-modules such that S~!f
is an isomorphism. Consider the short exact sequence

0— ker f - A— B — coker f — 0,

and note that our hypothesis implies that S~!(ker f) = 0 = S~!(coker f). But
[A] — [B] = [ker f] — [coker f] in G(R), so we have that [A] — [B] € Hs. O

Proposition 4.14. Let R be Noetherian and let S C R be a multiplicative system.
The sequence

G(M|S™M =0) % G(R) -5 G(S™'R) = 0

is exact, where a and b are the evident maps.

Proof. Part (a) of Corollary gives surjectivity of b. The somewhat tricky thing
is to get the exactness in the middle. Let F(R) denote the free abelian group on
isomorphism classes of finitely-generated R-modules, and let Rel(R) C F(R) denote
the subgroup generated by elements [M/] + [M]'] — [M;] for short exact sequences
0 — M} — M; — M/ — 0. Note that [0] # 0 in F(R); we could have imposed this
as an extra condition, but it is slightly more convenient to not do so. Consider the
following diagram

0— Rel(R) F(R) G(R) ——=0

e b

0 ——Rel(S™'R) —=F(S7'R) —= G(S7'R) —0,

which we wish to regard as a short exact sequence of chain complexes (the columns
become chain complexes by adding zeros above and below). Corollary a) gives
surjectivity of 7, and Corollary c) gives surjectivity of 7|ge;. The long exact
sequence in homology then becomes

(4.15) 0 — ker(m|rer) — ker(m) — kerb — 0.

We next analyze the kernel of 7.
Assume that 2 € ker(7). One can write z in the form

= (M) + [(Ma] -+ (M) = (LA] + -+ (]
for some modules M, ..., My, Ji,...,J;. We then have
0=n(z) = ([5*1M1] FISTIMy) et [S*IM,C]) - ([S*lm TR [sfljl])

in F(S7'R). How can this happen? It can only be that k = [ and that for each
module S™'M; there is some i for which S™'M; = S~1J;. By pairing the terms
up two by two we find that

v (|4~ [B]|§' A= 57B) C F(R).

So kerm = ([A] — [B]|S7'A = S7'B). It then follows from (4.15) and Corol-

lary -13] that
kerb = ([J]| S™'J = 0) C G(R).

This is what we wanted to prove. (Il
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4.16. Dévissage. Now we move to the second stage of the proof of Theorem [4.1]
We can rephrase what needs to be shown as saying that the map

G(M|M is killed by f) — G(M|M is killed by a power of f)

is an isomorphism. We have seen a baby version of this argument before, namely
back in Section [2] when we showed that

G(Z/p) = G(Z/p*) and G(F) = G(F[t]/(t*))
are both isomorphisms. These are both maps of the form
G(M|M is killed by f) — G(M|M is killed by f?),

for the rings R = Z and R = F'[t], respectively. Iterating the same idea we used to
prove these—filter by powers of f—allows one to prove the required generalization.
But while we're at it, let us generalize even further.

Let B be an exact category. I will not say exactly what the definition of such
a thing is, except that B is an additive category with a collection of sequences
M — M — M" called “exact”, and the collection must satisfy a reasonable list of
axioms. Any abelian category with its intrinsic notion of short exact sequence is
an example. The complete definition is in [Q3]. We are not giving it here in part
because the reader can manufacture a suitable definition for themself: just figure
out what axioms one needs to make the following proof work.

Theorem 4.17 (Dévissage). Let B be an eract category, and let A — B be an
exact subcategory such that any object in B has a finite filtration whose factors are

in A. Then G(A) — G(B) is an isomorphism.

Proof. The inclusion i: A — B induces a map a: G(A) — G(B), and we want to
define an inverse 8: G(B) — G(A). To do so, for M € B choose a filtration

M=My2M 2M 22 M, =0,
whose quotients M;/M;,q are in A, and define

B(M]) = [Mi/Mis].

We must check that § is well-defined, because it seems to depend on the choice of
filtration. There are two pieces of this. The first and easier one is to check that our
formula gives the same class in G(A) if we refine the filtration, meaning that we
replace one of the links M; O M;; with a longer chain M; 2D Mi1 2D M =
M;11. This is trivial using Proposition b) (or really, its analog in the present
setting).

The second part is to recall something you probably learned in a basic algebra
class, namely the Jordan-Holder Theorem. This says that given any two filtrations
of M we can refine each one so that the two refinements have the same quotients
up to reindexing. If you accept this, it shows that 3([M]) does not depend on the
choice of filtration. It is a simple exercise to prove that 3 is additive, which we
leave to the reader.

At this point we have the map 3. It is immediate that Sa = id and a8 =id. O

Remark 4.18. We will not prove the Jordan-Holder Theorem, as this is something
that can be found in basic algebra textbooks, but let us at least recall the main
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idea for why it is true. Suppose M O A D 0 and M D B D 0 are two filtrations for
M. Consider the refinement of the first given by

MD>DA+B2ADANBDOO,

having quotients M/(A+ B), (A+ B)/A=B/(ANB), A/(ANnB) = (A+ B)/B,
and A N B, Interchanging the roles of A and B gives a similar filtration refining
M DO B D 0, having the same set of filtration quotients.

Once one has the above basic idea, it is not hard to extend to longer filtrations.

Note that it is often true in mathematics that the hard work goes into showing
that something is well-defined, and afterwards the rest is easy. This was the case
for the Dévissage Theorem, where all the hard work went into constructing the map

3.

4.19. Recap and summary. We embarked on the above journey in order to prove
Theorem so let us now come back to that.

Proof of Theorem[/-1. Recall that R is a Noetherian ring and f € R. Let S be the
multiplicative system {f* | i > 0}. By Proposition we have an exact sequence

GM | S *M=0)— GR) — G(S™'R) — 0.

The inclusion of R/ fR-modules into modules M such that S™1M = 0 satisfies the
hypotheses of the dévissage theorem (Theorem , by looking at the filtration
M D fM D f?M D ---. The conditions that S™'M = 0 and M is finitely-
generated guarantee that f¥M = 0 for some k, so that this filtration is finite.
Therefore we have an isomorphism G(R/fR) = G(M | S=*M = 0), allowing us to
write our exact sequence as

G(R/fR) — G(R) — G(S™'R) — 0.

The composite G(R/fR) — G(R) is the evident map that regards an R/ f R-module
as an R-module. 0

5. K-THEORY OF COMPLEXES AND RELATIVE K-THEORY

Recall that there is always a map K(R) — G(R) sending the K-class of a
projective to the G-class of the same projective. We proved in Theorem [2.13] that
when R is regular this map is an isomorphism, and we did this by constructing
the inverse: it sends a class [M] to >.(—1)![P,], where P, — M is any bounded
resolution of M by finitely-generated projectives. If you go back and examine the
proof of that result, you might notice that the alternating sums are largely an
annoyance in the proof—all the key ideas are best expressed without them, and
they are only forced into the proof so that we get actual elements of K(R). If
you think about this enough, it might eventually occur to you to try to make a
definition of K (R) that uses chain complexes instead of modules, thus eliminating
the need for these alternating sums. We will show how to do this in the present
section.

The importance of using chain complexes extends much further than simply
changing language to simplify a proof. We will see that defining K-theory in terms
of complexes allows us to write down natural definitions for relative K-groups as
well.
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Throughout this section let R be a fixed commutative ring. By a bounded chain
complex over R we mean a chain complex which is nonzero in only finitely-many
degrees. We begin by making the following definition.

Definition 5.1.
Z( [P.]

P, is a bounded chain complex of f.g. projectives)
( Relation 1, Relation 2 )

chlx (R) _

where the relations are
(1) [P,] = [P!] if P, and P! are chain homotopy equivalent,

(2) [P,] = [P]]+ [P!] if there is a short exact sequence 0 — P! — P, — P! — 0.

The second relation is the one that by now we would expect in a K-group, but
the first relation is new to us. If one goes back and thinks about the proof of
Theorem the need for this first relation quickly becomes clear: it guarantees,
for instance, that two projective resolutions of a module will represent the same
class in the K-group.

Regarding relation (1), let us introduce some common terminology:

Definition 5.2. A map of chain complexes C, — D, is a quasi-isomorphism
if the induced maps H;(C,) — H;(D,) are isomorphisms for all i € Z. Two chain
complexes C, and D, are quasi-isomorphic, written C, ~ D,, if there is a zig-zag
of quasi-isomorphisms

c, S Jb&s g S S &b,
The following proposition is basic homological algebra. We omit the proof, but
it is very similar to the proof that two projective resolutions of the same module
are chain homotopy equivalent.

Proposition 5.3. If P and Q are bounded below complexes of projectives, then
every quasi-isomorphism P — Q is a chain homotopy equivalence.

Exercise 5.4. Prove Proposition or look up a proof in a book on homological
algebra.

Proposition lets us replace the words “chain homotopy equivalence” with
“quasi-isomorphism” in any statement about bounded, projective complexes. In
particular, we do this in relation (1) from the definition of K°?**(R). The advantage
of doing this is simply that quasi-isomorphisms are somewhat easier to identify than
chain homotopy equivalences.

Here is our main result concerning the K-theory of complexes:

Proposition 5.5. K(R) = K% (R) for any commutative ring R.

Before giving the proof we record two useful results. For any chain complex C,
recall that ¥C' denotes the chain complex obtained by shifting every module up
one degree and adding a sign to all differentials: (XC),, = Cy,—1, and dsc = —dc.
Also, if f: A — B is a map of chain complexes then the mapping cone Cf is the
chain complex with (C'f),, = A,—1 ® B, and dcy(a,b) = (—da + f(b),db). Note
that XA is the mapping cone of A — 0.

Lemma 5.6. Let P and @ be bounded complezes of finitely-generated projectives.
(a) [SP] = —[P] in KP=(R).
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(b) If f: P — Q is a map of complezes then [Cf] = [Q] — [P] in K?*(R).
Proof. Recall that there is a short exact sequence of complexes
0-Q—=Cf—>%XP—0,

which shows immediately that [C'f] = [Q]+[ZP] in K°P'*(R). Let T be the mapping
cone of the identity P — P. Note that T is exact, hence quasi-isomorphic to the
zero complex. So 0 = [T] = [P] + [EP)], from which we get [EP] = —[P]. It then
follows that [Cf] = [Q] + [EP] = [Q] — [P]. O

Exercise 5.7. Prove that if relation (1) in the definition of K°P'*(R) is replaced
with

(1) [P.,] =0 for every exact complex P,,

then the resulting quotient group is also equal to K (R).

Exercise 5.8. Sometimes the sign on the differential is omitted in the definition
of the suspension ¥C. Check that the chain complexes obtained from these two
different conventions are naturally isomorphic. (For this reason, occasionally we
will be sloppy with the sign on the differential).

We now have enough tools to prove the main result of this section:

Proof of Proposition[5.5 If P is a projective R-module, let P[n] denote the chain
complex that has P in degree n and in all other degrees is equal to 0. There is an
obvious map a: K(R) — K'*(R) defined by

[P] = [Pl0]].

It is somewhat less obvious, but one can define a map in the other direction
B: KP*(R) — K(R) by

To see that this is well-defined we need to check that it respects the two defining
relations for K°P'*(R). Relation (2) is obvious, but for the other relation it is
convenient to use Exercise to replace (1) with (1’). The fact that 8 respects
(1’) is immediate, being a consequence of Exercise

It is clear that Soa = id, so « is injective and [ is surjective. To finish the proof,
it is easiest to prove that « is surjective; we will do this in several steps. If P is a
finitely-generated projective then P[0] is obviously in the image of «, and we know
that P[n] = (—1)"[P[0]] by iterated application of Lemma [5.6(a). So P[n] € ima
for all n € Z. Said differently, any complex of projectives of length 0 belongs to the
image of a. We next extend this to all bounded complexes by an induction on the
length.

Let P, be a bounded complex of finitely-generated projectives, bounded between
degrees k and n + k, say. Then Py[k] is a subcomplex of P,, and the quotient @,
has length at most n — 1. We have [P,] = [P[k]] + [Q.], and both [P;[k]] and [Q,]
belong to im « by induction. So [P,] € im «, and we are done. O

We will use our identification of K?*(R) and K (R) implicitly from now on. For
example, if P is a bounded complex of projectives we will often write [P] to denote
an element of K (R)—although of course we mean S([P]).
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Exercise 5.9. Assume that R is Noetherian, and let Ggpq(R) denote the
Grothendieck group of finitely-generated modules having finite projective dimen-
sion. Prove that K'*(R) = Gy,q(R).

Exercise 5.10. If P is a bounded-below complex of projectives then the functor
(=) ® P preserves short exact sequences of chain complexes. Using this, show that
the tensor product of chain complexes gives a ring structure on K?'*(R) and that
the isomorphism K (R) = K°P!*(R) is an isomorphism of rings.

5.11. G-theory and chain complexes. One can prove an analog of Proposi-

tion [5.5] in which the ‘projective’ hypothesis is left out everywhere, showing that

G(R) is isomorphic to a Grothendieck group made from bounded chain complexes

of arbitrary finitely-generated modules. Here the Grothendieck group of complexes

must be defined using relation (1’) instead of (1), though, because they are no

longer equivalent. Other than this small point, all of the arguments are the same.
What is more interesting, however, is a variant that again uses chain complexes

of projectives. Precisely, consider chain complexes P, such that

(1) Each P; is a finitely-generated projective,

(2) P, is bounded-below, in the sense that P; = 0 for all i < 0.

(3) P, has bounded homology, in the sense that H;(P) # 0 only for finitely many

values of i.

Start with the free abelian group on isomorphism classes of such complexes, and
define G°P'*(R) to be the quotient by the analogs of relations (1) and (2) (or equiv-
alently, (1’) and (2)) in the definition of K'*(R).

Note that one readily obtains maps a: GP*(R) — G(R) and 3: G(R) —
Geplz (R) by

o[P)) = Y _(~1)'[H(P)] and B([M]) = [Q.]

where (Q, — M is any resolution by finitely-generated projectives. Though we must
be a little careful here, as we are guaranteed that the H;(P) are finitely-generated
only when R is Noetherian. The fact that o respects the short-exact-sequence
relation follows from the Snake Lemma.

Proposition 5.12. When R is Noetherian the maps « and 3 give inverse isomor-
phisms GP*(R) = G(R).

Proof. Tt is immediate that o8 = id, so that « is surjective and 3 is injective. The
proof will be completed by showing that § is surjective. Let P, be a bounded-
below, homologically bounded chain complex of finitely-generated projectives. We
will prove by induction on the number of nonzero homology groups of P, that
[P,] € im 8. The base is trivial, for if all the homology groups are zero then P, ~ 0
and so [P,] = 0.

Without loss of generality assume that P; = 0 for ¢ < 0. Let n be the smallest
integer for which H,,(P) # 0. If n > 0 then P, — Py is surjective, so there exists
a splitting. Using this splitting one sees that P is quasi-isomorphic to a chain
complex concentrated in degrees strictly larger than zero. Repeating this argument
if necessary, one concludes that P is actually quasi-isomorphic to a chain complex
(of f.g. projectives) concentrated in degrees n and higher. So we may assume that
P has this property, and then by shifting indices we may assume n = 0.

Let Q. — Ho(P) be a resolution by finitely-generated projectives (this exists
because R is Noetherian). Standard homological algebra gives us amap f: P, — @,
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inducing an isomorphism on Hy. Let Cf be the mapping cone of f. The long exact
homology sequence shows that C'f has one fewer non-vanishing homology group
than P, and hence we may assume by induction that [Cf] € im 5. But we know
from Lemma (really, its analog for G°P'*(R)) that [C'f] = [Q] — [P]. Since
[Q] € im S by the definition of 3, it follows that [P] € im § as well. O

When we first learned the definitions of K(R) and G(R), the difference seemed
to be about projective versus arbitrary modules. When we look at these groups as
KP'*(R) and GP'®(R), however, the difference is about bounded versus bounded-
below chain complexes.

5.13. Relative K-theory. It may seem like we have introduced an unnecessary
level of complexity (no pun intended) by introducing K P (R). After all, the proof
of Proposition shows that for any bounded complex P the class [P] is just
the alternating sum Y (—1)?[P;[0]]. That is, in K°*(R) we may decompose any
complex into its constituent modules; one really only needs modules, not chain
complexes. But we will get some mileage out of these ideas by defining similar
K-groups but restricting to complexes subject to certain conditions. In these cases
we might not be able to ‘unravel’ the complexes anymore. We give a few examples:

(i) Let S be a multiplicative system in R. Start with the free abelian group on
isomorphism classes of bounded complexes P, of finitely-generated projectives
having the property that S™!P, is exact. Define K(R,S) to be the quotient
of this free abelian group by the analogs of relations (1) and (2) defining
chlw (R)

(ii) Let I C R be an ideal. Start with the free abelian group on isomorphism
classes of bounded complexes P, of finitely-generated projectives having the
property that each Hy(P) is annihilated by I. Define K(R,I) to be the quo-
tient of this free abelian group by the analogs of relations (1) and (2) defining
chl:c (R)

(iii) Fix an n > 0. Start with the free abelian group on isomorphism classes of
bounded complexes P, of finitely-generated projectives having the property
that each Hy(P) has Krull dimension at most n. (Recall that the dimension
of a module M is the dimension of the ring R/ Ann(M)). Define K(R, < n)
to be the quotient of this free abelian group by the usual relations (1) and

(2)-
Exercise 5.14. In analogy to (iii), define a group K(R,> n). Prove that if n >

dim R then K(R,> n) = 0. If R is a domain and n < dim R then K(R,> n)
K(R). |[Note: By convention the dimension of the zero module is +00.]

Exercise 5.15. Verify that the tensor product of chain complexes gives a ring
structure on K (R, S).

Every map f: P — @ of finitely-generated projectives can be regarded as a
chain complex concentrated in degrees 0 and 1. From now on we will often make
this identification without comment. If S~!f is an isomorphism then we get a
corresponding class in K(R,S). The following lemma about these classes will be
very useful:
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Lemma 5.16. Let a: P — @Q and B: Q@ — W be maps between finitely-generated
projectives, and assume both become isomorphisms after localization at S. Then
P25 W) =[P Ql+[Q 5w

in K(R,S).
Proof. Use the following short exact sequence of maps:
id id,—
0 p (v,id) QaP (id,—a) 0 0
Oéi iid@ PBa iﬁ
id, —id

0 ) (id,B) QoW (8 ) W 0.

This gives that
id Bex a B
Q = QI+ [P —=W]=[P —=Ql+[Q— W],

but of course the first term on the left is zero in K(R,5). O

Note that there is an evident map K(R,S) — K(R) that sends a class [P] in
K (R, S) to the similarly-named (but different) class [P] in K (R) (and recall that we
identify K(R) and K’'*(R) without comment from now on). In colloquial terms,
the map simply ‘forgets’ that a complex P is S-exact. The composite K(R,S) —
K(R) — K(S7'R) is clearly zero.

Proposition 5.17. For any multiplicative system in a commutative ring R the
sequence K(R,S) — K(R) — K(S™'R) is exact in the middle.

Proof. Suppose z € K(R) is in the kernel of the map to K(S™!R). Every element
of K(R) may be written as « = [P] — [Q] for some finitely-generated projectives
P and Q. Then [S7'P] = [S71Q] in K(S™'R), so by Proposition [2.9| there exists
an n such that S7I1P @ (S7IR)" = S71Q @ (S™1R)". Alternatively, write this as
S~H(PoR") =2 S~HQ®R™). By Corollary (b) there exists a map of R-modules
Q@ @& R" — P @ R™ that becomes an isomorphism after S-localization. Regarding
this map as a chain complex concentrated in degrees 0 and 1, it gives an element
in K(R,S). The image of this element under K(R,S) — K(R) is clearly . O

The reader might have noticed that in the above proof we didn’t encounter
any kind of complicated chain complex when trying to construct our preimage in
K(R,S); in fact, we accomplished everything with chain complexes of length 1.
This is a general phenomenon, similar to the fact that elements of K?'*(R) can all
be decomposed into modules. For the relative K-groups one can’t quite decompose
that far, but one can always get down to complexes of length 1. To state a theorem
along these lines, consider maps f: P — @ where P and @ are finitely-generated
R-projectives and S~! f is an isomorphism (it is convenient to regard such maps as
chain complexes concentrated in degrees 0 and 1). Let K(R,S)<1 be the quotient
of the free abelian group on such maps by the following relations:

(1) [f] =0 if f is an isomorphism;
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(2) [f1=1[f]+[f"] if there is a commutative diagram
0 P’ P p” 0
d )
0 Q' Q Q" 0
where the rows are exact.
Notice that there is an evident map K(R,S)<1 — K(R,5).

Theorem 5.18. For any multiplicative system S in a commutative ring R, the
map K(R,S)<1 — K(R, S) is an isomorphism.

The proof of this theorem is a bit difficult, and the techniques are too distant
from the topics at hand to merit spending time on them. We give the proof in
Appendix [F] for the interested reader.

Remark 5.19. Theorem [5.1§ naturally suggests the following question: why use
chain complexes at all, for relative K-theory? That is to say, if one can access the
same groups using only chain complexes of length one, why complicate things by
making the definition using complexes of arbitrary length? There are two answers
to this question. The first concerns the ring structure: the tensor product of two
complexes is again a complex in a natural way, giving a ring structure on K (R, S).
In contrast, there is not a particularly natural way of defining a ring structure on
K(R,S)<1.

The second answer comes from algebraic geometry. Let X be a scheme and let
U be an open subset of X. Then the ‘correct’ way to define a relative K-theory
group K(X,U) is to use bounded chain complexes of algebraic vector bundles on
X that are exact on U. When X = Spec R and U = Spec S™'R then it happens
that one can get the same groups using only complexes of length one—as we saw
above. But even for X = Spec R not every open subset is of this form. A general
open subset will have the form U = (Spec S; ' R)U(Spec Sy ' R)U---U(Spec S; ' R),
and to get the same relative K-group here using complexes with a fixed bound on
their length the best one can do is to take that bound to be d. See [FH, “Main
Theorem”| and [D3, Theorem 1.4] for the proof in this case.

When R is a regular ring all localizations S™!R are also regular. So the groups
K(R) and K(S™'R) can be identified with G(R) and G(S™'R), by Theorem [2.13]
Comparing the localization sequence in K-theory from Proposition [5.17] to the one
in G-theory from Proposition [4.14] suggests an identification of the relative terms.
Indeed, observe that the usual Euler characteristic map x(P,) = >_(—1)![H;(P)]
gives a well-defined map K (R,S) — G(M |S~1M = 0). We have the following:

Theorem 5.20. If R is regular then x: K(R,S) — G(M |S™*M = 0) is an iso-
morphism.

Proof. The proof repeats the ideas we have already seen in Theorem [2.13] Proposi-
tion and Proposition Define 3: G(M | S™'M = 0) — K(R, S) by sending
[M] to [P.] for some finite resolution of M by finitely-generated projectives (which
exists because R is regular). The exact same steps as in the proof of Theorem
show that this is well-defined, and it is clear that xy o § =id. So § is injective and
X is surjective. We finish the proof by showing that g is surjective.
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Let P be a bounded complex of finitely-generated projectives such that S—1P
is exact. If all the homology groups of P are zero then [P] =0 in K(R,S) and so
[P] € im(B). We proceed by induction on the number of non-vanishing homology
groups.

By suspending or desuspending we can assume that P; = 0 for i < 0. If Hy(P) =
0 then we can split off an acyclic complex from the bottom of P and reduce to
a complex of smaller length. So we can also assume Hy(P) # 0. Let @ be a
bounded resolution of Hy(P) by finitely-generated projectives. Then there is a
map of complexes f: P — @ that is an isomorphism on Hy, so that the mapping
cone C'f has fewer nonvanishing homology groups than P. Since S™'P and S~'Q
are exact, ST1(Cf) is also exact. We have [Q] = [Cf] + [P] in K(R,S), [Q] is in
the image of 8 by construction, and by induction [C'f] is also in the image of 8. So
[P] is in the image, and we are done. O

5.21. Relative K-theory and intersection multiplicities. We now wish to
tie several themes together, and use everything we have learned so far to give a
complete, K-theoretic perspective on Serre’s definition of intersection multiplicity.
This perspective is from the paper [GS].

Let R be a Noetherian ring, and let Z C Spec R be any subset. An R-module M
is said to be supported on Z if Mp = 0 for all primes P ¢ Z. One usually defines
Supp M, the support of M, to be {P € Spec R| Mp # 0}. This is known to be
a Zariski closed subset of Spec R, and to say that M is supported on Z is just the
requirement that Supp M C Z. When M is finitely-generated, M is supported on
Z = V(1) if and only if a power of I annihilates M. Likewise, if S is a multiplicative
system then M is supported on Spec R — Spec S™!R if and only if S~'M = 0.

Let G(R)z be the Grothendieck group of all finitely-generated R-modules that
are supported on Z.

Similarly, if C, is a chain complex of R-modules then Supp C' is defined to be
{P € Spec R| H,(Cp) # 0}. We say that C, is supported on Z if SuppC C Z, or
if Cg is exact for every Q ¢ Z. Note that C, is supported on Z if and only if all
the homology modules H,(C') are supported on Z.

Similar to our definitions of K°?'*(R) and K(R,S), define K(R)z to be the
Grothendieck-style group of bounded complexes P, of finitely-generated projective
R-modules having the property that Supp P, C Z. Note that if Z = Spec R —
Spec ST!R then K(R)yz is precisely the group K(R,S) previously defined.

The following statements should be easy exercises for the reader:

(1) The Euler characteristic x(P.) = >.,(—1)"[H;(P)] defines a group homomor-
phism K(R)z — G(R)z.

(2) If R is regular then the map x: K(R)z — G(R)z is an isomorphism.

(3) Tensor product of chain complexes gives pairings

®: K(R)Z®K(R)W — K(R)me

for all pairs of closed subsets Z, W C Spec R.

(4) If M and N are R-modules then Supp(M ® N) = Supp M N Supp N.

(5) Assume that R is regular and transplant the tensor product of chain complexes
from (3) to a pairing
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This sends [M] ® [N] to >_(—1)[Tor;(M, N)]. (Note that this makes sense on
the level of supports: If Z = V(I) and W = V(J) then ZNW = V(I + J).
If M is killed by a power of I and N is killed by a power of J, then M @ N
and all the Tor;(M, N) are killed by some I" 4+ J*® and therefore by a power of
I+J).

(6) Let Z = {m} where m is a maximal ideal of R. If a module is supported on Z
then it has finite length, and the assignment M — ¢(M) gives an isomorphism
G(R)y = 7.

(7) Let M and N be R-modules such that Supp(M ® N) = {m} where m is a
maximal ideal of R (geometrically, Supp M and Supp N have an isolated point
of intersection). Then Serre’s intersection multiplicity e(M, N) is the image of
[M] ® [N] under the composite

G(R)7 ® G(R)\w — G(R) zow — Z,

where we have written Z = Supp M and W = Supp N (and the map labelled ¢
is in fact an isomorphism).

Exercise 5.22. Prove (1)-(7) above.

Remark 5.23. We will understand this better after seeing how intersection mul-
tiplicities fit into algebraic topology, but it is worth noting that the group K(R)z
would—from a topological perspective—be better written as K (X, X — Z), where
X = Spec R. For comparison, relative products in a cohomology theory would give
pairings

KX, X-2)9K(X,X-W) = K(X,(X-Z2)U(X-W)) = K(X,X - (ZnW)),

which is what we saw above in the form K(R)z ® K(R)w — K(R)znw. See
Section for more on relative topological K-theory.

6. K-THEORY OF EXACT COMPLEXES

We have seen the isomorphism of groups K(R) = K®(R). If P, is a bounded,
exact complex of projectives then it gives rise to a relation in K(R), and (equiva-
lently) represents the zero object in K°P!*(R). Given this, it might seem surprising
to learn that there is yet another model for K (R) in which exact complexes can rep-
resent nonzero elements—and even more, all nonzero elements can be represented
this way. The goal of the present section is to explain this model, as well as some
variations. This material is adapted from [Gr2].

Note: The contents of this section are only needed once in the remainder of the book,
for a certain perspective on Adams operations in Section[35 While the material is
intriguing, it can certainly be skipped if desired.

As in the last section, let R be a fixed commutative ring.

Definition 6.1.
Z([P.]

P, is a bounded, exact chain complex of f.g. projectives)
( Relation 1, Relation 2 )

Kcmct (R) —

where the relations are
(1) [P.] = [P!]+ [P!] if there is a short exact sequence 0 — P! — P, — P!" — 0,
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(2) [ER] = —[R.].

If P is a projective module let C'P denote the mapping cone of the identity map
P — P. Specifically, CP is a chain complex concentrated in dimensions 0 and 1
where the only nonzero differential is the identity map on P. Observe that there is
a group homomorphism K (R) — K*“*(R) that sends [P] to [CP].

Proposition 6.2. The map K(R) — K (R) is an isomorphism. The inverse
is denoted X' K““*(R) — K(R) and called the derived (or secondary) Euler
characteristic. If P, is an exact bounded complex of finitely-generated projectives

then
X(P) =Y (-1 PIR) = (1) imd]
J J
where djl Pj — ijl'
Technically speaking the second formula given for x’ doesn’t make sense unless
we know that each imd; is a finitely-generated projective module. This is a simple
exercise, but let us record it in a lemma.

Lemma 6.3. Let P, be a bounded, exact complex of projectives. Then each imd;
is projective, and is finitely-generated if Pj is.

Proof. Without loss of generality we can assume that P, has the form 0 — P, —
-+ — Py — 0. Sody: P, — Py is surjective, hence imd; = Py and there is nothing
to prove here. Exactness gives us short exact sequences 0 — imd;11 — P; —
imd; — 0, for each j. We can assume by induction that imd; is projective, hence
the sequence is split-exact and therefore imd; 1 is also projective.

Since im d; is a quotient of P, it is finitely-generated if P; is. O

The above proof of course gives more than was explicity stated: by choosing
splittings one level at a time one can see that P, decomposes as a direct sum
of exact complexes of length 1. This decomposition is non-canonical, however,
depending on the choices of splitting. For variety we will see a weaker, but more
canonical, version of this decomposition in the next proof.

Proof of Proposition[6.4 Let a denote the map K(R) — K*“/(R) sending [P]
[CP]. Tt is easy to see that « is surjective, because if 0 - P, — -+ — Py — 0 is
an exact complex then there is an evident short exact sequence

0—¥"YCP,) =P, Q. —0
where @, is exact and has length at most n— 1. Since [P,] = [E"1(CP,)] +[Q.] =
(=)™~ 1[CP,] +[Q.], an immediate induction shows that K¢*“!(R) is generated by
the classes [C'P] as P ranges over all finitely-generated projectives.

Note that P, =~ imd,, and @Q,—1 = coker(P,, = P,_1) = imd,_1. The induc-
tion mentioned in the preceding paragraph shows that [P] =3~ (=1)77C(im d;)].
From this it is clear that if an inverse to « exists it must send [P,] to
Zj(—l)j_l[im d;]. Tt is only left to check that this formula does indeed define
a map K°°“‘(R) — K(R).

Let P, be any bounded, exact complex of finitely-generated projectives, and
assume that the smallest degree containing a nonzero module is degree n. Write
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I; = imd;. Since --- — Pjy1 — P; — I; — 0 is exact, we have that [I;] =
Zkzj(—l)k_j[Pk] in K(R). So in K(R) we have

> (-1 =3 N (=) R] = 2:(—1)k_1 > (R

ji>n j>nk>jg n<j<k

= Z —n+1)[P]
—Z Y Lk[Py] + (n — 1)x(P.)
_ Z k 1]€ Pk

In the last equality we have used that x(P,) = 0 since P, is exact.

Define x'(P,) = Y., (—1)*"1k[P;]. One easily checks that this satisfies relations
(1) and (2) in the definition of K**“*(R), and hence defines a map x': K°*“*(R) —
K(R). It is trivial to check that x’ o o = id. Therefore « is injective, and since we
already proved surjectivity it is an isomorphism and x’ is its inverse. O

6.4. Derived Euler characteristics. Now that we have encountered the derived
Euler characteristic it seems worthwhile to take a moment and place it into a
broader context. Consider the definition

(P.) =3 0[P] € K(R)[t,t7").

This function is additive, and in fact one can see that it is the universal additive
invariant for bounded complexes of finitely-generated projectives. The usual Euler
characteristic is x(P,) = x¢(P,)|t=—1. Of course we do not have x+(XP,) = —x:(P.),

this only becomes true after the substitution ¢ = —1; what we have instead is the
identity
(6.5) xt(BP.) =t - xi(P.).

If we differentiate x; with respect to ¢ then we obtain x,(P,) = Y. jt/ [P ]
Clearly this is also an additive invariant of complexes. The invariant we called x’
is just x}(P,)|t=—1. Differentiating (6.5) yields the formula

(66) Xi(BP,) = xe(P.) +t - xi(P.),

and consequently x/(XP,) = x(P,) — x’(P,). This is not the kind of behavior we
are used to, but notice that if we restrict to complexes P, with x(P,) = 0 then we
get the nicer behavior x'(XP,) = —x'(P.).

One can, of course, iterate this procedure. Let y{™ (P,) denote the nth derivative
of x¢(P,), and white (™) (P,) = En)( P,)|t=—1. Call this the nth derived Euler
characteristic. It is an additive function, and if one restricts to complexes such
that 0 = x(»~Y(P,) then it satifies x(™)(XP,) = —x™(P,).

6.7. Doubly-exact complexes. A bicomplex C, , will be called bounded if the
modules C; ; are nonzero for only finitely many values of (¢,7). The bicomplex
will be called doubly-exact if every row and every column is exact. By abuse
of terminology an ordinary chain complex D, will be called doubly-exact if it is
isomorphic to the total complex of a bounded, doubly-exact bicomplex. Doubly
exact complexes all represent zero in K**“(R):
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Proposition 6.8. If P, is a bounded, doubly-exact complex of finitely-generated
projectives then [P,] =0 in K““*(R).

Proof. Let M, , be a doubly-exact bicomplex of finitely-generated projectives. For
some n and k, M;; is zero outside of the rectangle 0 < ¢ < n and 0 < j < k.
Write M; ., for the ordinary complex whose jth term is M; ;, and write M<; , for
the sub-bicomplex of M, , consisting of all M, ; for a < i. Observe that there are
short exact sequences

0 — Tot(M<(i—1),.) = Tot(M<; ) - S°M;, — 0,
for all i. Induction shows that each Tot(M<; ) is exact, and therefore in K¢*“*(R)

we have _ _

(Tot M, ] = S8 M;..] = ST (1A,
(using the analog of Proposition [2.5(b)). But M, , may be regarded as an exact
sequence of chain complexes

0= My — Mp_15 — -+ — My — My, — 0.

The image of each map in this sequence is a chain complex of finitely-generated
projectives (using Lemma , and we have the short exact sequences of chain
complexes
0— im(MH_L*) — Mi,* — 1m(sz*) — 0.

By a straightforward induction, each of these image complexes is exact. Each of
these short exact sequences gives a relation in K°““*( R), and taking their alternating
sum shows that Y_,(—1)*[M;.] = 0. We have therefore shown that [Tot M, ,] = 0
in K¢*¢(R). O

The reader will notice the beginnings of a pattern here. Exact complexes P,
represent zero in K P! (R), but then we produced a new model for this same group
where the exact complexes are the generators. In this new group K¢*“/(R) the
doubly-exact complexes represent zero. It is natural, then, to wonder if there is yet
another model for this group where the doubly-exact complexes are the generators.
Indeed, this works out in what is now a completely straightforward manner, and
can be repeated ad infinitum.

Let us use the term multicomplezr for the evident generalization of bicomplexes
to n dimensions. We will denote a multicomplex by M,, where the symbol x stands
for an n-tuple of integers. Say that the multicomplex is n-exact if every linear
‘row’ (obtained by fixing n — 1 of the indices) is exact.

Definition 6.9.
Z{ [M,] ‘ M, is a bounded, n-exact multicomplex of f.g. projectives)
( Relation 1, Relation 2 )

anezct (R) —

where the relations are

1) [M,] = [M.] + [M!] if there is an exact sequence 0 — M. — M, — M — 0,
() [ * * q * *

(2) [EM,] = —[M,], where ¥ stands for any of the n suspension operators on
n-multicomplexes.
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Given an (n + 1)-multicomplex M, there are (”;1) ways to totalize it to get an
n-multicomplex—one needs to choose two of the n + 1 directions to combine. One
can follow the proof of Proposition [6.8|to show that if M, is (n+ 1)-exact then each
of these totalizations represents zero in K" ¢*“*(R).

If M, is an n-multicomplex then let C'M, denote the cone on the identity map
M, — M,. This is an (n + 1)-multicomplex, defined in the evident manner. This
cone construction induces a group homomorphism K"~ ¢*¢(R) — K (ntl)—czct(R)

Proposition 6.10. The map K" ¢*°(R) — K"+t =¢z<(R) is an isomorphism,
with inverse given by

X (M) = (=1) M)
where the symbols M; . represent the various slices of M, in any fized direction.

Proof. Follow the proof of Proposition almost verbatim, but where each P;
represents an n-exact multicomplex rather than an R-module. ([l

We have the sequence of isomorphisms
K(R) = K“(R) = K> “""(R) — - --

The composite map K(R) — K" “*“‘(R) sends [P] to the n-dimensional cube
consisting of P’s and identity maps. The composite of the ¥’ maps in the other
direction yields the map K"¢*“t(R) — K(R) given by

Mo Y (=0t (M,
J1yesdn
If one considers the formal Laurent polynomial

Xtr,ota (M) = Y 4t My, 5]
J1seedn
then this is the nth order partial derivative 0y, - - - 9, Xt,,....1,, (M) evaluated at t; =
ty=-r=t, = 1.

Remark 6.11. Grayson [Gr2] suggests a perspective where exact complexes are
analogous to the formal infinitesimals from nonstandard analysis. Doubly-exact
complexes are analogues of products of infinitesimals, and so forth.

7. A TASTE OF K,

Note: The material in this section will not be needed for most of what follows. We
include it for general interest, and because the material fits naturally here. But this
section can safely be skipped.

Given a commutative ring R and a multiplicative system S C R, we have seen
the exact sequences

GM|S™'M=0)— G(R) = G(S*R) =0
and
K(R,S) — K(R) — K(S™'R).
It is natural to wonder if these extend to long exact sequences, and the answer is
that they do: in the first case there is an extension to the left, and in the latter

case there is an extension in both directions. These extensions are not easy to
produce, however—they are the subject of ‘higher algebraic K-theory’; a field that
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involves some very deep and difficult mathematics. Our aim here is not to start a
long journey into that subject, but rather to just give some indications of the very
beginnings.

Remark 7.1. From now on the groups K(R) and G(R) will be written Ky(R) and
Go(R).

7.2. The basic theory of K;(R). Let us adopt the perspective that Ky(R) is, in
essence, constructed with the goal of generalizing the familiar notion of dimension
for vector spaces. The key property of dimension is additivity for short exact
sequences, so consequently one forms the universal group with that property. The
group K (R) is obtained similarly but with the goal of generalizing the determinant.

Determinants are invariants of self-maps—maps with the same domain and
target—and we need some language for dealing with such things. Given two self-
maps f: A — Aand g: B — B, we define a map from f to g tobeamapu: A — B
giving a commutative diagram

A—"sB
1l
A—">B.
Likewise, an exact sequence of self-maps is a diagram
(7.3) 0 P> p " pr 0
PP
0 P> p s pr 0

in which the rows are short exact sequences of modules.

Definition 7.4. Form the free abelian group generated by isomorphism classes of
maps [P -+ P] where P is a finitely-generated projective and « is an isomorphism.
Let K1(R) be the quotient of this group by the following relations:

(a) [P % P] =[P LN P+[P" o P"] whenever there is a short exact sequence
as in ;
(b) [P LA Pl=[P-% P]+ [P N P] for all self-maps a,3: P — P.

As a consequence of relation (b) one has that [P A, P =[P A, P]+[P 4, P,

and so [P i, P] = 0 for any finitely-generated projective P. Note also that if
a: P— P and §: @Q — @ are automorphsms then

(7.5) PeQPaq =[PP +[Q-2qQ,

as a consequence of relation (a).

The use of projective modules in the definition of K;(R) turns out to be unnec-
essarily complicated—one can get the same group by only using automorphisms of
free modules. Even more, the use of short exact sequences in relation (a) is un-
necessarily complicated; one can get the same group by only imposing the weaker
relation from . We will prove both of these claims in just a moment.

Observe that there is a map of groups GL,,(R) — K;(R) that sends a matrix A

to the class [R" 4, R™] (left-multiplication-by-A). Relation (b) guarantees that
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this is indeed a group homomorphism. If we let j: GL,(R) < GLy4+1(R) be the
usual inclusion, obtained by adding an additional row and column and a 1 along

the diagonal, then it is clear that [R"*! 24 R = [R" -4 R"]. This follows
from and the fact that [R A, R] = 0. Let GL(R) denote the colimit
GL(R) = colim[GL1(R) — GL2(R) — GL3(R) — - - -],
and call this the infinite general linear group of R. We have obtained a map
GL(R) — Ki(R), and of course this will factor through the abelianization to give
GL(R)ay = GL(R)/|GL(R),GL(R)] — K1(R).
Exercise 7.6. We abelianized after taking the colimit, but could have just as well

done it the other way around. Verify that if G; — Gy — --- is any sequence of
group homomorphisms then [colim,, G,]qp = colim, [(Gp)ab)-

The most fundamental result in the theory of Kj is the following:
Theorem 7.7. The map GL(R)a — K1(R) is an isomorphism.

It will be convenient to prove this at the same time that we give other descriptions
for K1 (R). In particular, we make the following definitions:

(1) K { "(R) is the group defined similarly to K;(R) but changing all occurrences
of ‘projective’ to ‘free’.

(2) K{"(R) is the group defined similarly to K;(R) but replacing relation (a) by
the direct sum relation of . The “sp” stands for “split”.

(3) K:»/"(R) is the group defined by making both the changes indicated in (1)
and (2).

One obtains a large diagram as follows:

(7.8) colimp Aut(P)qp — K;7(R) — K1 (R)

| ! T

GL(R)q, = colim,, GL,,(R)ay — K:P/"(R) —> K{"(R).

The maps labelled as surjections are obviously so. Let us explain the colimit over
projectives P. Let M denote the monoid of isomorphism classes of finitely-generated
projectives, with the operation of @. The translation category T(M) of this monoid
has object set equal to M, and the maps from A to B are the elements C € M
such that A + C = B; composition is given by the multiplication in M. This is the
indexing category for our colimit. Given an isomorphism f: P — @, there is an
induced map of groups Aut(P) — Aut(Q) sending a to faf ~1. Changing f gives a
different induced map, but it gives the same induced map on Aut(P)q, — Aut(Q)ap:
this is a consequence of the formula

faf=h = (fg7 ) gag ) (gf ™).
We can therefore construct a functor T'(M) — Ab sending each [P] to Aut(P)qp. If
[Q] is a map from [P] to [J] then we choose an isomorphism f: P®Q — J and have
T send the map [Q] to the composite Aut(P).p — Aut(P ® Q)ap — Aut(J)qp. The
first map is direct sum with idg and the second map is independent of the choice
of f, so this is well-defined. The upper left term in our diagram is the colimit of
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the functor T. The map from this colimit to K;¥(R) is induced by the one sending
an element o € Aut(P) to the class [P - P].

Theorem [7.7] will follow as an immediate consequence of the following stronger
result:

Theorem 7.9. All of the maps in (@ are isomorphisms.

We are almost ready to prove this theorem, but we will need one key result
first. Let E(R) C GL(R) be the subgroup generated by the elementary matrices—
matrices that have ones along the diagonal and a single nonzero, off-diagonal entry.
We likewise define F,,(R) C GL,(R), and observe that E(R) = colim,, E,(R). We
will implicitly identify matrices in E,,(R) with their image in E(R); note that this
involves adding trailing ones down the diagonal of the matrix.

Note that right multiplication by an elementary matrix amounts to performing a
column operation where a multiple of one column is added to another; similarly, left
multiplication amounts to performing the analogous row operation. One very useful
way to recognize a matrix as belonging to F(R) is to observe that it can be obtained
from the identity matrix by using these types of row and column operations. It will
be convenient to call a column or row operation of this type allowable.

Lemma 7.10.
(a) For any X € M, (R) the matric [6 )f} and its transpose belong to E(R).

(b) If A€ GLu(R) then [4 0.] € B(R).
(c) Let A be a matriz obtained from the identity by switching two columns and

multiplying one of the switched columns by —1. Then A € E(R), and similarly
for the transpose of A.

Proof. For part (a) just note that [6 X ] can be obtained from the identity matrix

by a sequence of allowable column operations. Same for the transpose.
For (b) consider the following chain of matrices:

I 0 I A 1 A A 0 A 0
0 I 0 I A72 A7t A7t A2 — A7 AT 0 A7Y”

Passage from each matrix to the next can be done by allowable row and column
operations. Alternatively, each matrix can be obtained from its predecessor by left

multiplication by a matrix of the type considered in (a): use the matrices [} 4],

1 0. I —A?%|. . I 0
|:A’27A71 I:| 5 |:O I },and |:A727A"5 :|

Finally, for (¢) we argue directly in terms of column operations. If v and w are
two columns consider the following chain

v,Ww = VW —U — W,wW—U W, —.

Each link involves adding a multiple of one column to another, and is therefore
allowable; therefore the composite operation is allowable. The argument is similar
for v, w + —w, v, or one could use the fact that [ ;" % | € E(R) by part (b). O

The following is the key lemma that we will need in our proof of Theorem [7.9}
Lemma 7.11 (Whitehead Lemma). F(R) = [GL(R), GL(R)]
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Proof. For the C direction we consider three columns u,v,w, and the following
chain of operations (where r, s € R):

1 2 3
U, V, W —>= U,V + U, W —> U,V + U, W + SV + Sru —— U, V, W + SU + Sru

i4
U, V, W + STU.

It should be clear what column operation is being used in each step. Note that the
third and fourth operations are the inverses of the first and second, so the composite
it a commutator. This shows that any column operation of the type “add a multiple
of one column to another” is a commutator, and therefore E(R) C [GL(R), GL(R)].
(We have actually shown E,(R) C [GL,(R), GL,(R)] for n > 3).
For the other subset direction, let A, B € GL,(R). Consider the following

identity:

ABA~'B=1 0] [B 0 A 0| |AB 0

[ 0 I} ' [0 B—l} ' {0 A—l} B [ 0 B—lA—l}
The first matrix is identified with the commutator of A and B inside GL(R), and
all of the other matrices are in E(R) by Lemma [7.10(b). So [A,B] € E(R) as
well. O

Corollary 7.12. For any A € GL,(R), B € GLk(R), and X € Myxix(R),
[’gfé} = [6‘ ]03] in GL(R)q. If n = k then this matriz also equals [AOB?] in
GL(R)u
Proof. For the first claim simply observe that

[A X] B {A O} . {I A‘lX}

0 B 0 B 0 1 '
The second matrix in the product is in E(R) by Lemma [7.10[a), and hence in

[GL(R), GL(R)] by the Whitehead Lemma.

For the second claim notice that {6‘]03} . {g Bgl}

Lemma b) together with the Whitehead Lemma.

_ | 4Bo
= {0 1] and use

We are now ready to prove that all of our descriptions of K;(R) give the same

group:
Proof of Theorem[7.9 Let a: P — P be an automorphism of a finitely-generated
projective, and let @) be a free complement to P: that is, P ® @ = R" for some n.
Then
a a®idg
[P— Pl=[P®Q — PoQ]
in K$P(R), which shows that K:7/"(R) — K:*(R) is surjective. The same proof
works for all of the vertical maps in diagram .

The fact that colim,, GL, (R)a — colimp Aut(P),, is an isomorphism is very
easy: it is just because the subcategory of T'(M) consisting of the free modules is
final in T'(M) (see [MLL IX.3] for the notion of final functors).

Define a map K" (R) — GL(R)qp by sending [R" N R™] to the matrix A. To
see that this is well-defined we need to verify that it respects relations (a) and (b)
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from Definition Relation (b) is self-evident. For (a), suppose that

0 F’ F F” 0
0 F’ F F 0

is a short exact sequence of automorphisms between free modules. Then there
is a basis for F' with respect to which the matrix for o has the form [“/ a*,,}.

0
Corollary m verifies that this matrix equals [06' ao,,] in GL(R)ap.

Now that we have the map K{"(R) — GL(R)ap, it is trivial to check that this
is a two-sided inverse for the map from . It follows that all the maps in the
bottom row of that diagram are isomorphisms.

The proof for the maps along the top row proceeds in a similar manner. Define a
map K (R) — colimp Aut(P),s by sending [P =+ P] to the element o € Aut(P) .
One has to check that this respects relations (a) and (b) in the definition of K;(R),
and relation (b) is again trivial. Suppose that

0 P’ P P 0
0 P’ P P 0

is a short exact sequence of automorphisms between finitely-generated projectives.
Choose free complements Q' for P’, and Q" for P”. Consider the new short exact
sequence

O P/ @ Q/ P @ Q/ @ Q// PI/ @ Q// 0
ia/@idQ/ \L(X@idQ/ D idQH \LOL”@idQ//
O P/ 69 Q/ P @ Q/ @ Q// P// @ Q// O.

All of the modules in this diagram are free (recall that P = P’ @ P”), and so this
diagram gives a relation in K{T(R). Using the map K{T(R) — GL(R)gp already
constructed, we find that
a®d idQ/ © idQ// = (a' S¥) idQ/) + (O// &) idQN)

in GL(R)qp and hence also in colimp Aut(P),,. But this says precisely that a =
o’ + ' as elements in colimp Aut(P),p, and this is what we needed to check. We
have now constructed our map Ki(R) — colimp Aut(P)qp, and it readily follows
that it is an inverse for the map in the other direction from . So all the maps
in the top horizontal row of are isomorphisms.

We have shown that all horizontal maps in are isomorphisms, and that the
left vertical map is an isomorphism. So all the maps are isomorphisms. (]

We now work towards computing a few examples of K7 (R) in some easy cases.
The defining relations we used to construct K;(R) captured familiar properties of
the determinant, so it should not be surprising that the determinant plays a large
role here.

Observe that det: GL(R) — R* factors through the abelianization and therefore
yields an induced map det: K7 (R) — R*. This map is split, since we can send any
r € R* to the class of the automorphism R — R (this is a group homomorphism
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using relation (b) of Definition [7.4)). So we always have K;(R) = R* @ (???). The
mystery factor is usually called SK;(R).

We will not calculate K7 for many rings, but in the easiest examples SK;(R)
always vanishes. We explain this next.

Lemma 7.13. If A is a diagonal matriz of determinant 1 then A lies in E(R).

Proof. This can be proven directly by using row and column operations, but the
following argument is a bit easier to write. We use that GL(R)/E(R) = K;(R).
Let dy,...,d, be the diagonal entries of A. Working in K;(R) we write

R LR =R R+ + R R =R R =R R =0

where the first equality is by relation (a) in Definition and the second equality
is by relation (b). O

Proposition 7.14. If F' is a field then K{(F) = F*.

Proof. One must show that if A € GL(F) satisfies det(A) = 1 then A €
[GL(F),GL(F)] = E(F). Lemma verifies this in the case where A is diag-
onal. The proof proceeds by using row and column operations to reduce to this
case.

We will use two types of column and row operations: adding a multiple of
one column/row to another, and switching two columns (or rows) together with
a sign change of one of them. Both types of operation are allowable, the latter
by Lemma (c) Pick any nonzero entry in the matrix, move it into the (1,1)
position, and then use it to clear out the rest of its row and column. Proceeding
inductively, this transforms A into a diagonal matrix. That is, there exist matrices
E1, E5 € E(F) such that £y AF, is diagonal. But by the preceding paragraph we
then have F1AE; € E(F), and so A € E(F). O

Essentially the same proof as above also shows the following:

Proposition 7.15. Let R be a Euclidean domain. Then det: Ki(R) — R* is
an isomorphism. In particular, K1(Z) = {1,—-1} = Z/2 and when F is a field
K, (F[t]) & F*. The conclusion also holds when R is a local ring.

Proof. We must again show that if A € GL,(R) has det(A) = 1 then A € E(R).
For any fixed row of A, the ideal generated by the elements in that row contains
det(A) and is therefore the unit ideal. Pick an element x of smallest degree in
this row and then use column operations (and the Euclidean division property) to
arrange all other elements in this row to be either zero or have degree smaller than
x. By repeating this process, eventually the row will contain a unit and all other
entries will be zero. Do a signed transposition to switch this unit into position (1, 1),
and then do row operations to clear out all other terms in the first column. Repeat
this process for the submatrix obtained by deleting the first row and column, and
so forth. Eventually the matrix will be reduced to a diagonal matrix, necessarily of
determinant 1. Such a diagonal matrix lies in E(R) by Lemma so this proves
A also lies in E(R).

Essentially the same proof works for local rings, by finding units in the matrix
and then using them to clear out their row and column. O

It is somewhat of a challenge to come up with an easy ring R for which one can
prove by elementary means that SK;(R) # 0, or equivalently that det: K;(R) —
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R* is not an isomorphism. We have just seen that there are no examples amongst
fields or Euclidean domains or local rings, and Milnor [Mi2l, Corollary 16.3] proves
that one also cannot find examples amongst rings of integers in number fields. There
do exist examples where R is a PID, but they are a bit exotic—see Example
below. In some sense the “easiest” example of such a ring (though not a PID)
involves some topology. We outline this in the next example, but skim over the
details.

Example 7.16. Let R be a commutative ring.

(a)

If a,b € R are such that (a,b)R = R, choose ¢,d € R such that ad — bc = 1.
The matrix [2 4] lies in SLy(R) and therefore gives us an element in K (R)
via the inclusions SL2(R) < SL(R) < GL(R). It turns out this element does
not depend on the choice of ¢ and d, for if ag — bp = 1 one computes that

R A A R S et

Write [a, b] for the element in K;(R) represented in this way, and note that in
fact we have [a,b] € SK;(R). This is called the Mennicke symbol represented
by a and b.

With some trouble one can prove that for any A € R one has

[a,b] = [a+ A\b,b] = [a,b+ Ad] and [a,b] = [b,d]

(see [Mi2, Lemma 13.2]). We will not need these facts, we just list them to
spark the reader’s interest.

Let R = R[z,y]/(z? + y?> — 1), which we regard as the ring of polynomial
functions on the circle S'. We will argue that the Mennicke symbol [z,y] is
nonzero, so that SK;(R) # 0.

Note that we get maps GL,(R) — [S!,GL,(R)] (unpointed homotopy
classes) in the evident way: if A € GL,(R) then we get a map S — GL,(R)
by sending the point (a,b) € S! to the matrix obtained by plugging in = a
and y = b into A. This is a map of groups when we give [S!, GL,(R)] the
operation coming from pointwise multiplication. Elementary matrices all go
to the identity under this map: if £ = I + N where N has a single nonzero
entry off the diagonal, then ¢ — I +¢N gives a homotopy (of course elements of
E(R) might be products of such matrices, but then one does the homotopy in
each factor simultaneously). In this way one gets a map K;(R) — [S*, GL(R)],
and likewise a map SK;(R) — [S!, SL(R)]. Since SL(R) is a path-connected
topological group, unpointed homotopy classes of maps from S agree with the
pointed version; that is to say, [S*, SL(R)] 2 1 (SL(R))) = 71 (SO) (the latter
because SO,, — SL,(R) is a deformation retract for all n). It is known that
this homotopy group is Z/2 and is generated by the image of the standard
generator in m150(2) (see Section below for this fact).

The Mennicke symbol [z, y] denotes the matrix [ *, %] € SLa(R), and there-
fore gives the map S' — SO(2) sending (a,b) € S* to [ % °]. Said differently,
this sends e € S to the 2 x 2 matrix for (clockwise) rotation by 6, and so is
a generator for m150. In particular, this proves that [z,y] # 0.

In fact Bass [B1l, XIII.2, p. 714] proves that SK;(R) & Z/2, but we will not do
this much. Let us at least prove that SK;(R) is 2-torsion, as this is easy. Let
T = C®g R = Clz,y]/(2? +y* — 1) and note that as an R-module T is just R
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So there is an induced map 7: K1(T) — K;(R) sending [T™ N T € K1(T)

to [T N T™] € K1(R) where in the latter case we regard T as an R-module.
Consider the diagram

Ki(R) —— K{(T) —=> K\ (R)

SK)(R) — SK,(T)

where i is induced by the inclusion R < T. Then 7 o sends [R" —%» R"]

to [R™ @ R" 9% Rr @ R™] and is therefore multiplication by 2. But if we set
z =2 +iy and w = x — iy then T = Clz,w]/(2w — 1) = C[z,271]. This is a
localization of the Euclidean domain C|[z], and essentially the same proof as for
Proposition [7.15|shows that SK;(T') = 0 (see also Exercise[7.20] below). Hence,
SK;(R) is 2-torsion.

Example 7.17. Here we describe an example due to Grayson [Grl] of a PID R
with SK7(R) # 0. Let T = Z[x] and let S be the multiplicative system generated
by = and all polynomials 2™ — 1 where m > 1. Let R = S~!'T. Observe that
dimT = 2 and that T is a UFD. The latter implies that all height one primes
are principal, and the former gives that the height two primes are maximal. But
quotienting out by a maximal ideal will yield a finite field, which means that x will
map to either zero or a root of unity. Consequently, every maximal ideal of T" must
intersect S. Since the primes in R are all extended from the primes in 7" that do
not intersect S, we conclude that all of the primes in R are principal. So R is a
PID.

The computation of SK;(R) is a combination of results from [Grl], [Le], and
[Sc]. This computation is far too complex for us to include here, but the upshot is

that
SE\(R) = Pzmz= P P>
n>2 p prime >1
So this group is quite big. See [Grl] for details.
Other examples of PIDs with SK; # 0 had previously been given by Bass [B2]
and Ischebeck [I].

o Exercises o

Exercise 7.18. Let R be a commutative ring. Prove that if D is an invertible
diagonal matrix and N is strictly lower triangular then [D + N] = [D] in K;(R).

Exercise 7.19. Prove that the following are equivalent:

(1) SKi(R) =0,

(2) Ki(R) is generated by the classes [R — R] for r € R*,

(3) Every invertible matrix over R can be transformed via allowable column oper-
ations into a diagonal matrix,

(4) Every invertible matrix over R can be transformed via allowable column oper-
ations into a diagonal matrix with exactly one entry that is not a 1.
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Exercise 7.20. Let R be a Euclidean domain.

(a) Prove that every matrix can be transformed to a lower triangular matrix using
allowable column operations. Use this together with the previous two exercises
to give a (slightly) different proof that SKi(R) = 0.

(b) For every f € R — {0} prove that SK;(f 'R) = 0.

Exercise 7.21. Prove that GL,,(RxS) = GL,(R) xGL,(S) and that K;(RxS) =
Ki(R) @ K1(S).

Exercise 7.22. Calculate K(Z/360).

Exercise 7.23. Attempt to prove that if R is a PID then SK;(R) = 0 and get a
sense of what goes wrong.

7.24. Longer localization sequences. We next work on extending the localiza-
tion sequence from Proposition to the left using K; terms. See Theorem [7.27]
below.

Proposition 7.25. Let S C R be a multiplicative system.

(a) The group Ki(ST'R) is generated by classes [S™'R" § g STIR™ where

a: R™ = R" is such that S~ 'a is an isomorphism.
(b) There is a unique map 9: Ki(S™'R) — Ky(R,S) having the property that if

-1
a: R™ — R™ is such that S~1a is an isomorphism, then 0 sends [S™!R" g
S~1R"] to the class of the chain complex 0 — R™ -+ R™ — 0 (concentrated in
degrees 0 and 1).

Proof. First let : (ST1R)™ — (S7!R)™ be an automorphism. Let A be the matrix
for S with respect to the standard basis, and let u € S be an element such that uA
has entries in R (e.g., take u to be the product of all the denominators of the entries
in A). Then uA represents a map 5': R — R", and we have the commutative
diagram

uly
—

(S—lR)n L (S—IR)n (S—lR)n

RTTL B/ }jﬂ
where the vertical maps are localization. This diagram gives ul,, o 8 = S~'3’, and
so [ul,] + [8] = [S718] in K1(S7!R). Note that [ul,] = n[uli], and ul; is itself
the localization of the multiplication-by-u map on R; so we can write
(7.26) (8] = [S™B'] — n[S™u].
This shows that K;(S~!R) is generated by classes [S~!a] for a: R® — R"™, and we
have thereby proven (a) and the uniqueness part of (b).

For the existence part of (b), we will define a map 9: K:7/"(S~1R) — Ky(R, S)
and then appeal to Theorem Given an automorphism 3: (S™1R)" — (S7IR)",
choose a u € S such that the standard matrix representing uf has entries in R.
Consider the assignment

B F(B,u) = [R" % R"] — n[R - R € Ko(R, S).

Note that this expression doesn’t come out of thin air: the expected homomorphism
0, if it exists, must have this form by (7.26]). It remains to show that the above
formula does indeed define a homomorphism.
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We first show that F(3,u) does not depend on the choice of u. It suffices to
prove that F(f,tu) = F(B,u) for any t € S; for if u’ is another choice for u then
we would have F(8,u) = F(8,u'u) = F(8,u). But now we just compute that

F(B,tu) = [R" ™2 R"] — n[R 2 R]
= [R" -5 R" + [R" % R —n[[R S R +[R-% R]}
= [R" % R" — n[R - R]

(the second equality is by Lemma applied twice).

Let us now write F'() instead of F(5,u). The last things that must be checked
are that F(8 @ ') = F(B8) + F(B') and F(B8y) = F(B)F(v), but these are both
immediate (the latter using Lemma . So we have established the existence of
9: K1(S7'R) — Ko(R, S) having the desired properties. O

Theorem 7.27 (Localization sequence for K-theory). Let R be a commutative ring
and S C R a multiplicative system. The following sequence is exact:

Ki(R) — K1(S7'R) -% Ko(R, S) — Ko(R) — Ko(S7'R).

Proof. We will not prove exactness at K1(S™!R), as this is a bit difficult and would
take us too far afield. Exactness at Ky(R) was already proven in Proposition
so it only remains to verify exactness at Ko(R, S).

Let € Ko(R,S). We know by Theorem that x can be written in the
form x = [Py — Py] — [Q1 — Qo] for finitely-generated projectives Py, Py, Qo, Q1
over R and maps a: P; — Py, B: Q1 — Qo that become isomorphisms after S-
localization. Consider the isomorphism S™'Qy — S~!'Q; that is the inverse to
S~13. By Corollary b) there is a map v: Q9 — @1 whose localization is
isomorphic to this map. Notice that

2 =[P -5 Pl +[Qo -5 Q1] — ([Qo -5 Qi) + (@1 - Qo))
:[Pl@Qoﬂpo@Ql]_[QO@Q1E>3Q1®Q0]~

So by replacing our original P’s and @’s we can assume that Qo = Q1.
Let G be a projective such that Qy @ G is free, and observe that

x:x—[GgG]z [P1 = Pyl — [Qo® G — Qo @ Gl.
So again, by replacing our chosen Qg = ()1 we can actually assume that Qo = Q1
is free. That is, x = [P} = Py] — [R" 2, R".
Now assume that = maps to zero in Ky(R). This just says that [Py] = [P1] in
KO(Iiand so there exists a free module G such that Py @ G = P; & G (Proposi-
2.9)

tion [2.9). Since © =z + [G SLN G] we see that we can write z as

z = [RF - R*] - [R" 25 R
where o and 3 become isomorphisms after S-localization. It is now immediate that
x is in the image of 9; to be completely specific,

r=0(|STRY 28 57 RN — [T R T 57U RY).
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Example 7.28. This example will be a “reality check”. We won’t learn anything
new, but we will see that the localization sequence is doing something sensible.
Let R be a discrete valuation ring (a regular local ring whose maximal ideal is
principal), and let F' be the quotient field. Let = be a generator for the maximal
ideal, and let S = {1,z,2%,...}. Note that ST'R = F. The localization sequence
for K-theory takes on the form

R = F* L KR, S) =7 =7

where we are using K;(R) = R*, K1 (F) = F*, Ko(R) = Z (because R is a PID),
and the map Ko(R) — Ko(F') = Z sends [R] to [F] and is therefore an isomorphism.
So the localization sequence distills into a single isomorphism

F*/R* % Ko(R, S).

The group F*/R* is readily checked to be Z, where the isomorphism Z = F*/R*
sends n to [z"]. On the other hand, we also know by Theorem [5.20|that Ko (R, S) =
G(M|S™M = 0). A finitely-generated module M satisfies S~ M = 0 if and only
if M is killed by a power of z, or equivalently if M has finite length over R. The
length map ¢: G(M | S™'M = 0) — Z is easily checked to be an isomorphism.

Finally, let us analyze the map 9. Given an element a € F*, we write a =
r/a™ for some r € R* and n > 0. The description of @ given in the proof of
Proposition [7.25] shows that

8(a) =[R - R - [R5 R = [R - R — n[R - R).

The isomorphism Ko(R,S) — G(M | S™*M = 0) sends a complex P, to the alter-
nating sum of its homology modules, so under this isomorphism we would write

d(a) = [R/rR] — n[R/xR].

Note that ¢(R/zR) = 1. We can write r = ux® for some unit v € R and k > 0, in
which case R/rR = R/x*R and so /(R/rR) = k. It follows that the composite

F* % Ko(R,S) = G(M|S™'M =0) = 7
sends “wi: to k — n and so is just the usual z-adic valuation on F™*.

Exercise 7.29. Let R = Z and S = {2¢|i > 0}. Compute all the groups and maps
in the K-theory localization sequence, and also compare with the isomorphism
K(R,S)=G(M|S™'M =0).

The following example generalizes the previous one, but is a bit more interesting.

Example 7.30. Let D be a Dedekind domain—a regular ring of dimension one.
In such a ring all nonzero primes are maximal ideals. Let S = D — {0} and let
F = S7!D be the quotient field. Our localization sequence looks like

Ky(D) = F* — Ko(D, S) —» Ko(D) — Z.
Although we have not calculated K; (D), the commutative diagram
K,(D) —— Ky (F)

det J/ det \L =

D*% F*
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shows that the image of K (D) in F* is just D*. The map Ko(D) — Z is just the
usual rank map, so its kernel is Ko(D). So we get a short exact sequence

0— F*/D* -% Ko(D, S) — Ko(D) — 0.

We know Ko(D,S) =2 G(M |S~'M = 0) by Theorem The condition S~1M =
0 just says that M is a torsion module. Consider the evident map

j: @ Go(D/P) — G(M|S™'M = 0)
P#0

where the direct sum is over all nonzero prime ideals and where the map just forgets
that a module is defined over D/P and instead regards it as a D-module. This map
is clearly surjective: a torsion D-module M will have a prime filtration in which the
primes appearing are all maximal, and [M] will be the sum of the corresponding
[D/P]’s by the usual argument (see Theorem and its proof).

Note that each D/P is a field, and so Go(D/P) =2 Z. If M is a torsion D-module
then Mp is a torsion Dp-module. Since Dp is a discrete valuation ring, this means
that Mp has finite length. Define

x: G(M|S™'M =0) — €D Go(D/P)
P#0

by sending [M] to the tuple of integers ¢, (Mp), as P runs over all maximal ideals
of D (the only ones that give nonzero lengths are the ones containing Ann M, and
there are only finitely-many of these since they are precisely the minimal primes
of Ann M). It is easy to check that y o j = id. Since j was already known to be
surjective this means they are inverse isomorphisms. So we can rewrite our short
exact sequence as

0 F*/D* % @D Z — Ko(D) — 0.

P#0

It will be convenient to write ep for the basis element of the free abelian group in
the middle corresponding to the maximal ideal P. Note that these basis elements
correspond to the closed points of Spec D, and so we are looking at a group of
0-cycles.

It remains to analyze the map 0. By Proposition if - € D — {0} then
d(r) = [D - D] € Ko(D,S). Under the isomorphisms described above this
corresponds to the tuple of integers ¢p,(Dp/rDp). This is usually called the
divisor class of r, and written

div(r) = > ¢p,(Dp/rDp)ep.

It should be thought of as listing all the zeros of the “function” r, together with
their orders of vanishing (see below for an example). For a general element 2 € F™*
we would just write = r/s for r,s € D — {0}, and then d(z) = div(r) — div(s);
this gives the zeros and poles of =, with multiplicities.

The quotient of P p_,Z by the classes div(x) for € F* is called the divisor
class group of D; it is isomorphic to the ideal class group from algebraic number
theory. Our short exact sequence shows that I?O(D) is also isomorphic to this
group.

To demonstrate the geometric intuition behind div(r), consider the case D =
F[t] where F is algebraically closed. If r = p(t) is nonzero then the maximal
ideals containing r are the ones (¢ — a;) where a; is a root of p(t). If we write



A GEOMETRIC INTRODUCTION TO K-THEORY 65

r=u[[(t —a;)™ where u € F* and we localize at P = (t — a;), then r becomes a
unit multiple of (¢ — a;)™ and the number ¢p,(Dp/rDp) is precisely m;. So

div(r) = Zmi “€(t—ay)s

as expected. Note that the divisor class group is not very interesting in this case:
clearly div is surjective, and so the group is zero. We already knew this for another
reason, because Ko(D) = 0 whenever D is a PID.

Example 7.31. As one more example, let us return to the ring R = Z[/—5| and
S = {2%|i > 0}. Some of the computations here are a little difficult, but one can
determine that K;(R) — R* is an isomorphism because [Mi2, Corollary 16.3] tells
us this holds for all rings of integers in number fields. One can also compute that
R* = {1,—1} by using the fact that the norm map N(a + by/=5) = a? + 5b? is
multiplicative. The localization sequence takes the following form:

Ki(R) Ki(S7'R)

:i :l

7)2 ——=SK1(ST'R) 0 Z > Z/2

Ko(R, S) E—— K()(R) E—— Ko(S_IR)

T

z ZOL)2—> 7

IR
IR

) b

Let us recall how these isomorphisms work, identify generators for the groups, and
see what the maps do. Since S™!R is a PID one has that Ko(S™!R) is Z, generated
by [ST'R]. We have seen in Exampletha‘u Ky (R) is generated by [R] and [R]—[I]
where I = (2,1 + v/=5) (recall that I is projective), with the former generating
the Z summand and the latter the Z/2. The map a is S-localization and therefore
sends [R] to [ST'R] and [R] — [I] to zero.

Since R is regular we have isomorphisms Ko(R,S) = G(M | S™'M = 0) =
Go(R/(2)) where the first is the Euler characteristic and the second is devissage
(Theorem [4.17). Note that R/(2) = Z/2[z]/(z* + 1) = Z/2[z]/((z + 1)?) =
Z/2[u]/(u?) and so Go(R/(2)) is Z generated by Z/2[u]/(u) = R/(2,1 ++/=5) =
R/I. Tracing this back into Ky(R,S), we see that the group is generated by the
chain complex [0 — I — R — 0]. The map b sends this to [R] — [I], which is the
generator of the Z/2. So it must be that 2[I — R] is in the image of 9, but let us
check this.

Recall that K1 (S7'R) = SK1(S7'R)®(S™'R)*. The second summand is clearly
Z@Z/2 with generators 2 and —1. Under 0 these map to [R 2, R] and [R =4 R],
the latter of which is zero (being acyclic). Under the isomorphism Ky(R,S) =

Go(R/(2)) the complex [R 2 R] maps to R/(2), and this is twice the generator
(look at the dimension over Z/2). So 9(2) = 2[I < R], as expected. The long
exact sequence now shows that SK;(S~!R) must be zero.

Remark 7.32. The localization sequence of Theorem [7.27) can be extended further
to the left, by definining K-groups K, (R) and K, (R, S) for all n > 1. This is the
subject of higher algebraic K-theory, a deep field with intricate connections to many
area of mathematics. It does not really do justice to the subject for us to give just
a few references, but some places to get started learning about it are [B1], [Mi2],

[Q3], [Rol, and [W2].
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Part 2. K-theory in topology

Let’s take as our starting point that we understand finite-dimensional linear
algebra extremely well. There aren’t that many isomorphism types of objects (one
for each dimension), and we have a pretty good understanding of the maps between
them. Our next goal in these notes is to explore the idea of doing linear algebra
continuously over a fixed parameter space X. What this means is that rather than
have only one vector space we will have a continuously varying family of vector
spaces, parameterized by the points of X.

The way to talk about such “continuously varying families” is to bundle the
objects together into a single topological space E together with a map p: £ — X,
so that the members of our family appear as the fibers of p. A map from the family
p: E — X to the family p’: B/ — X will then be a continuous map F: E — E’,
commuting with the maps down to X, such that F'is a linear transformation on each
fiber. It turns out that much of linear algebra carries over easily to this enhanced
setting. But there are more isomorphism types of objects here, because the topology
of X allows for some twisting in the vector space structure of the fibers. The surprise
is that studying these ‘twisted vector spaces’ over a base space X quickly leads to
interesting homotopy invariants of X! From a topological viewpoint, K-theory is a
cohomology theory for topological spaces that arises out of this study of fiberwise
linear algebra.

8. VECTOR BUNDLES

The point of this section and the next one is to establish all of the founda-
tional results we will require for working with vector bundles. Unfortunately, going
through all of this carefully ends up being somewhat tedious. The reader might
do well to skim these two sections for the basic ideas but not get bogged down in
details, referring back for those only as needed.

A (real) vector space is a set V together with operations +: V x V — V and
-t RxV — V satisfying a familiar (but long) list of properties. If X is a topological
space, a family of vector spaces over X will be a continuous map p: E — X together
with extra data making each fiber p~!(z) into a vector space, with the operations
varying in a continuous manner. The easiest way to say this is as follows:

Definition 8.1. A family of (real) vector spaces is a map p: E — X together
with operations +: E xx F — FE and o: R X E — E making the two diagrams

E'XXE4>E RxE—2> - F

N N

commute, together with a map (: X — E called the “zero section”, such that the
operations make each fiber p~t(z) into a real vector space with zero element ((x).

One could write down the above definition completely category-theoretically, in
terms of maps and commutative diagrams. Essentially one is defining a “vector
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space object” in the category of topological spaces over X. In the case where X is
a point, F is simply called a topological vector space.

The space X is called the base of the family. If x € X we will write F, for the
fiber p~!(z) regarded with its vector space structure. The dimension of E, is called
the rank of the family at z, and denoted rank, (E). The rank of E is defined to be

rank(E) = sup{rank,(E) |z € X},

where we include the possibility that rank(F) is infinite (though we will need this
case only rarely).

A section of p: £ — X is a map s: X — FE such that ps = idx. The condition
is equivalent to saying s(x) € E, for each € X. So a section is a continuous choice
of element in each fiber. This explains the term “zero-section” for . By abuse of
terminology the image of { is also sometimes referred to as the zero-section.

Remark 8.2. The additive inverse map £ — F is continuous, as it can be expressed
as the composite £ = {—1} x E < R x F — E. Similarly, the zero-section can
be recoved set-theoretically from the scalar multiplication as the image of

{0} x E—SRxE— E,

and this determines a set-theoretic section X — FE. However, continuity of this
section is not automatic from the other axioms; this is why it is included as part of
Definition 811

Definition 8.3. Given two familes of vector spaces p: E — X and p': B/ — X,
a map of families is a continuous map f: E — E’ such that p'f = p and such
that f restricts to a linear map on each fiber. Write FamVS(X) for the category of
families of vector spaces over X.

A subfamily of E is a topological subspace J — E that contains the zero section
and is closed under the operations of addition and scalar multiplication.

Given a map of families f: E — E’, the usual image of f (denoted im f) is a
subfamily of E’. Let us define the kernel of f, denoted ker f, to be the subspace
of E consisting of all elements mapped to zero in E’. Equivalently, ker f is defined
to be the pullback

ker f ——F

Lk

X—S o F

Exercise 8.4. Review the categorlcal notions of kernels and cokernels from Appen-

le Verify that the family X 29y X is the zero object of the category FamVS(X)
and that the kernel of a map, as defined above, is a kernel in the categorical sense.

Note that kernels in FamVS(X) are also fiberwise kernels, in the sense that
(ker f), = ker(f;) for all x € X. Be warned that this property will turn out not to
hold for cokernels, though. REF?7?7

We next explore a few examples of these basic concepts:

Example 8.5.
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(a) The simplest example of a family of vector spaces is F = X x R", with the
projection map X xR™ — X (here R" is equipped with the standard topology).
This is called the trivial family of rank n, and it is often denoted simply by
nyx. It is also denoted by just n, with the space X understood. Note that 0y
is the family X -9 X.

(b) Let E = {(z,v)|z € R* v € R{z)} C R? x R?, and let p: E — R? be
projection onto the first coordinate. Define (x,v) + (z,v") = (z,v + v') and
r.(x,v) = (z,rv). This makes E — R? into a family of vector spaces, in fact a
subfamily of the trivial family 2. Note that the fiber p~!(x) is one-dimensional
for x # 0, but 0-dimensional when x = 0.

(c) Let X = R and E = X X R be the trivial family of rank 1. Consider the
map of familes E — FE given by (t,v) — (¢,tv). This is multiplication-by-¢
on the fiber over t. The kernel of this map is the subfamily K — FE given by
K = (X x {0}) U ({0} x R). Note that most of the fibers are 0-dimensional,
but the fiber over 0 is one-dimensional.

(d) Let X = R. Let ey, ez be the standard basis for R2. Let E C X x R? be the
union of {(z,re1) |z € Q,r € R} and {(x,rez) |z € X\Q,r € R}. Recall from
(a) that X x R? — X is a family of vector spaces, and note that E becomes a
sub-family of vector spaces under the same operations.

Let m: R? — R be the linear transformation such that m(e;) = m(e2) = 1.
Define a map E — 1y by (z,v) — (z,7m(v)). This is a map of families that is
an isomorphism on each fiber, but is not an isomorphism of families.

(e) Let R? , denote the vector space R™ but with the indiscrete topology, so that
the only open sets are ) and R™. Check that R? , is a topological vector space,

n
i.e. that R? , —  is a family of vector spaces.

Part (d) of the previous example shows that the concept of “family of vector
spaces” admits some unpleasant pathology. Even the examples in (b) and (c) show
that families can have jumps in the fibers, which doesn’t give the feeling of a
“continuously varying” family. Part (e) gives the warning that the topology on the
fibers might not be what one expects. Very shortly we will start imposing some
conditions that eliminate these kind of phenomena.

If p: E — X is a family of vector spaces and A < X is a subspace, then
p~1(A) — A is also a family of vector spaces. We will usually write this restriction
as E|a.

More generally, suppose that p: E — X is a family of vector spaces and f: Y —
X is a map. One may form the pullback Y X x F, more commonly denoted f*F in
this context:

fE—Y xx E——F

L, )

Y —X.

A point in f*F is a pair (y,e) such that f(y) = p(e), and one defines addition and
scalar multiplication on f*E by (y,e) + (y,€') = (y,e +¢') and r - (y,e) = (y,re).
This makes f*E — Y into a family of vector spaces, called the pullback family.
If y € Y then there is an evident map of vector spaces (f*E), — Ej(, which
one readily checks is an isomorphism. Note that if f is a subspace inclusion then
[*E = Ely.
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Exercise 8.6. Check carefully that f*FE is a family of vector spaces.

We will need to develop some tools for dealing with maps in FamVS(X). The
following proposition is easy but will be used very often:

Proposition 8.7. Giving a map of trivial families X x RF — X x R™ is equivalent
to giving a continuous map X — Hom(RF ,R") = R*" where the target has the
standard Euclidean topology.

Proof. Let F: X x RF — X x R™ be a map of families. Define F;: X — R" by
Fi(z) = moF(x,e;). These maps are continuous, and so they induce a continuous
map ¢: X = R" x --- x R" (k factors) by ¢(x) = (F1(z),..., Fr(z)).

In the other direction, given ¢: X — R¥?* = R x ... x R" (k factors) define Fy
to be the composite

X x RF 2 Rn L R x RE LG R
where LC is the “linear combination map” sending (v1, ..., vk, 1) — riv1+- - - +7EVk.
Both maps are continuous, so their composite is as well. Then define F': X x RF —
X xR™ by F(z,r) = (z, Fa(z,1)).
It is now routine to check that the two assignments given above are inverses to
each other. (Il

Here is one more example showing the oddities of the category FamVS(X):

Exercise 8.8. Let X = [-1,1] and let f: 1y — 1y be the map that is
multiplication-by-¢ on the fiber over ¢. Prove that the zero bundle 0 is the coker-
nel of f (see Appendix |G| for the definition). In particular, note that in this case
the cokernel is not the fiberwise cokernel.

Sometimes we will have to deal with families of vector spaces where the fibers
are infinite-dimensional. Mostly we will only need trivial families, but even here
there are some subtleties. We describe these next.

If S is any set, write R(S) for the vector space with basis S (occasionally we will
abbreviate this to RS). There is a natural isomorphism of vector spaces

colim R(F) — R(S)
FfiniteC

where the colimit is over the finite subsets of S. If we give each R({F) the standard
Euclidean topology then the colimit inherits an induced topology, giving a topology
on R(S). This is also called the “finite” topology in some of the literature on
topological vector spaces, but we will call it the colimit topology. When S is
infinite this topology is different than the subspace topology induced from the
evident embedding R(S) C [[¢ R, where the product is given the product topology.
In fact, the colimit topology is the subspace topology induced by the box topology.
See Appendix [B:5] for a complete discussion.

A theorem of Kakutani-Klee [KK| says that when R(S) is given the colimit
topology, addition is continuous only when S is countable. We will only ever work
with R(S) in this case, and from now on we only ever consider families of vector
spaces where the rank is countable.

Note that there are at least three distinct topologies that make R into a topo-
logical vector space: these are the colimit, product, and metric topologies, described
in detail in Appendix So when talking about trivial families with fiber R*® one
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needs to be careful about specifying which topology is being used. The product
and metric topologies have certain algebraic deficiencies—e.g., linear functionals
are not always continuous (see 77?)—and so we will only use R> with the colimit
topology in our applications.

The background category for families of vector spaces is the overcategory Jop | X
of spaces over X. The terminal object of this category is X itself (or more precisely,
the identity map X — X). A “vector” in a family of vector spaces F should be a
map in Jop | X from X to E, which is the same thing as a section of £ — X.
Given a collection of such “vectors” s,: X — F, for « in an indexing set A, say
that these are linearly independent (resp. spanning) if for every € X the
vectors {sq(2)}aca are linearly independent (resp. spanning) in E,. Say that the
collection is a weak basis for F if it is both linearly independent and spanning,
i.e. for every z € X the collection {sq(x)}aca is a basis for the vector space E,.
When A is finite a weak basis gives a map of families X x R(A) — E which is a
bijection (see Exercisefor the case when A is infinite). However, it need not be
an isomorphism! The inverse map need not be continuous: as an example consider
a basis b1,...,b, in R , and the associated map R™ — R? , sending e; — b;.

Define a strong basis for a family E to be a collection of sections s, with the
property that the induced map X x R(A) — E is an isomorphism. So a family is
trivial if and only if it has a strong basis.

Remark 8.9. If s1,..., s, is a weak basis for E, then let ¢;: £ — X xR be the ith
coordinate function: it is the map that sends a vector v € E, to the pair (z,t) where
t is the th coordinate of v with respect to the basis s1(x), ..., s,(z). The condition
that s1,...,s, be a strong basis is equivalent to the coordinate functions ¢1, ..., ¢,
all being continuous. (Note that the case of an infinite basis is more subtle, though,

essentially because of the difference between the colimit and product topologies on
R>—see 777).

Most families of vector spaces will have neither a weak nor a strong basis, as
the topology of X gets in the way. The families in Example [8.5(b,c,d) do not have
any nonvanishing sections at alll However, demanding that we have strong bases
locally turns out to be a reasonable thing to require. To this end, if p: F — X is a
family of vector spaces and U C X recall that E|y denotes the family p=*(U) — U
(equipped with the subspace topology from F). If z € X say that a local weak
(resp. strong) basis at z is a neighborhood U of = together with a weak (resp.
strong) basis for E|y.

Definition 8.10. A vector bundle is a family of finite rank vector spaces p: E —
X that has a local strong basis at every point of X. In other words, for each x € X
there is a neighborhood x € U C X, an n € Z>o, and an isomorphism of families
of vector spaces

o

p~H(U) U x R®
\U./

The isomorphism in the above diagram is called a “local trivialization”. Usually one
simply says that a vector bundle is a family of finite rank vector spaces that is locally
trivial.
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A map of vector bundles is just a map of the underlying families, and Vect(X)
will denote the category of vector bundles over X.

Remark 8.11. Note that the n appearing in Definition is rank, (E), and it
depends on the point x. It is easy to prove, though, that this number is constant
on each connected component of X. Vector bundles of constant rank 1 are called
line bundles, and bundles of constant rank 2 are called plane bundles.

Remark 8.12. Definition [8.10] defines real vector bundles, but one could do the
same with C or H replacing R to define complex and quaternionic bundles.

Remark 8.13. Some authors allow vector bundles to have countably-infinite rank.
There is nothing wrong with that, though one has to specify the topology one
uses for R*. But if we take this approach then we end up having to add “finite
rank” hypotheses in an annoying number of places. In our approach, we will on
occasion abuse terminology and use the phrase “vector bundle of infinite rank” for
this concept, even though such an object is not a vector bundle according to our
definition.

Exercise 8.14. Let f: Fy — FE5 be a map of vector bundles on X that is an
isomorphism on each fiber. Prove that f is an isomorphism in Vect(X).

Of the families of vector spaces we considered in Example [8.5] only the trivial
family from (a) is a vector bundle. Before discussing more interesting examples,
though, we need some general remarks. Establishing that a given family of vector
spaces is a vector bundle requires producing weak local bases and proving that the
associated coordinate functions are continuous—oftentimes one forgets the latter
part, but it is important. This second part can be somewhat annoying, though, so
it is useful to know that in many situations one can avoid it. In order to discuss
these situations, we start with the following definition:

Definition 8.15. A family of vector spaces E — X is said to be tame if for every
point © € X and every local weak basis {s,} defined on an open neigborhood U of
x, there is an open set x € V. C U such that the set {sq|v} is a local strong basis.
That is to say, every local weak basis near a point can be restricted to a local strong
basis.

Proposition 8.16. Let E — X be a tame family of vector spaces. Then E is a
vector bundle if and only if for every x € X there exists a local weak basis on a
neighborhood of x.

Proof. Immediate. U

Of course every vector bundle is tame. The families from Example b,c,d) are
also tame, essentially because these families do not have any local weak bases at
the “exotic” points. The family R}, , from Example e) is not tame. The concept
of tameness is not particularly natural or important, but it is useful to us because

of the following result which guarantees tameness in many common situations:
Proposition 8.17. Let E — X be a family of vector spaces of finite rank. Then
E is tame if either of the following conditions is satisfied:

(a) E is a subfamily of a trivial family (perhaps of countably infinite rank).
(b) X is locally compact and E is Hausdorff.
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Recall that a CW-complex is locally compact if it is locally finite, in the sense
that every point lies in the closures of only finitely-many open cells. So Propo-
sition (b) applies in a large percentage of the cases one naturally encounters.
But as just one example note that the CW-complex S is not locally compact; so
Proposition [B.17(b) is not a universal panacea.

The proof of Proposition is technical and a distraction from our goals at the
moment; it can be found in Appendix[B] However, from now on we will use Propo-
sition [8.17] often and—except for the first few times—mostly without comment.

Example 8.18.

(a) Let ¢: R™ — R™ be a vector space isomorphism. Let £’ = [0, 1] x R™ and let E
be the quotient of E’ by the relation (0,v) ~ (1,¢(v)). Identifying S* with the
quotient of [0,1] by 0 ~ 1, we obtain a map E — S! that is clearly a family of
vector spaces. We claim this is a vector bundle. If « € (0,1) then it is evident
that E is locally trivial at x, so the only point of concernis z =0 =1 € S'.
Let ey,...,e, be the standard basis for R™, and let s;: [0, i) — E’ be the
constant section whose value is e;. Likewise, let s/: (2,1] — E’ be the constant
section whose value is ¢(e;). Projecting into E we obtain s;(0) = s5(1), and
so the sections s; and s} patch together to give a section S;: U — E, where
U =0, %) U (%, 1]. The sections Si,...,S, are independent and therefore give
a local trivialization of E over U.

When n = 1 and ¢(z) = —z the resulting bundle is the Mébius bundle M,

depicted below:

|

We further discuss the case of general n and ¢ in Example
(b) Let X = RP", regarded as the space of lines in R**!. Let L C X x R"*! be
the set

L={(l,v)|leRP", z €l}.

Then L is a subfamily of the trivial family, and we claim that it is a line bundle
over X. To see this, for any [ € X we must produce a local trivialization. By
Propositions a) and it suffices to just produce a local weak basis at
every point. By symmetry it suffices to do this at the point [ = (eg). Let
U C RP™ be the set of lines whose orthogonal projection to (eg) is nonzero.
Then R™ 2 U via the homeomorphism z — (eg + z), where here we regard R™
as having basis e, ...,e,. Define s: U — L by sending [ to (I,eq + u) where
ep~+u is the unique point on [ with v € R™. Via the homeomorphism R" = U we
verify at once that s is continuous. This section is clearly nonzero everywhere,
so it gives the desired weak basis of L|y. Thus, L is a vector bundle.

To be clear, it is not hard to prove that s induces a local trivialization of
L without referencing Propositions [8.16 and .17 But the point is that those
results allow us to avoid having to think about the extra steps that would be
involved for that.
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The bundle L is called the tautological line bundle over RP™. Do not
confuse this with the canonical line bundle over RP"™ that we will define shortly
(they are duals of each other). Note that when n = 1 the bundle L is isomorphic
to the Mdbius bundle on S!. (Exercise: Check this!)

(c) One may generalize the previous example as follows. Let V' be a vector space
and fix an integer k > 0. Consider the Grassmannian Gry (V') of k-planes in V.
Let

n={W,z)|W € Gri(V),z € W}.

Projection to the first coordinate 7: 7 — Gri (V') makes n into a rank k vector
bundle, called the tautological bundle over Gry (V). To see that it is indeed
a bundle, let W € Gry (V) be an arbitrary k-plane. By choosing an appropriate
basis for V we can just assume W = (eq,...,ex). Equip V with the standard
dot product with respect to the e-basis, and let U C Grg (V') be the collection
of all k-planes whose orthogonal projection onto W is surjective (equivalently,
an isomorphism). One readily checks that this is an open set of W. For each
JeUletsi(J),...,sk(J) be the unique vectors in J that orthogonally project
onto ey, ...,ex. One checks that these are continuous sections of 75|y, and of
course they are clearly independent and hence give a local trivialization.

(d) Let M be a smooth manifold, and let TM — M be its tangent bundle. So the
fiber over each x € M is the tangent space at x. Let x € M and let U be a
local coordinate patch about x. Let z1,...,z, be local coordinates in U, and
let 01, ..., 0, be the associated vector fields (giving the tangent vectors to the
coordinate curves in this system). Then 04, ..., 0, are independent sections of
T M, and hence give a local trivialization.

Note that if f: E — F is a map of vector bundles over X then neither ker f nor
coker f will necessarily be a vector bundle. For an example, let X = [—1,1] and
let E =1. Define f: E — E by letting it be multiplication-by-¢ on the fiber over
t € X. We will give a thorough discussion of kernels and cokernels in Section [9}

8.19. Pullback bundles. If £ — X is a vector bundle and f:Y — X then
it is easy to check that f*F is also a vector bundle. Given composable maps
7z %y L X, there is an evident natural isomorphism (fg)*E = ¢*(f*E). For
each topological space X and each integer k£ > 0, let Vecty(X) denote the set of
isomorphism classes of vector bundles of rank & on X. The pullback construction
then makes Vecty(—) into a contravariant functor from Top into Set.

Example 8.20. Pullback bundles can be slightly non-intuitive. Let M — S be
the M&bius bundle, and let f: S' — S! be the map z + 22. We claim that
f*M = 1. This is easiest to see if one uses the following model for M:

M = {(ew,rei%) ‘9 € [0,2nx],r € R}.

The bundle map is projection onto the first coordinate 7: M — S'. Then f*M =
{(e®,re?) |0 € [0,27],7 € R}. This is clearly isomorphic to 1gi, via the map
St xR — f*M given by (e%,7) s (9 re?).

We can also demonstrate the isomorphism f*M 2 1 by the following picture:
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M A M
| f |

a b a x T

Here f is the evident map that wraps the circle around itself twice, so that f~!(z) =
{a,b}. We see that f*M can be thought of as two copies of M that are cut open
and then sewn together as shown, thereby producing a cylinder.

8.21. Constructing new vector bundles out of old ones. Let p: £ — X
and p': ' — X be two vector bundles. We may form a new bundle E & F’,
whose underlying topological space is just the pullback E xy E’. So a point in
E® E' is a pair (e, e’) where p(e) = p’(e’). The rules for vector addition and scalar
multiplication are the evident ones. Note that the fiber of £ & E’ over a point
x is simply F, & E/. The local trivializations of E and E’ combine to give local
trivializations of F @ E’, showing that this is indeed a vector bundle.

More generally, any canonical construction that one can apply to vector spaces
may be extended to apply to vector bundles. So one can talk about the bundle
E ® FE’, the dual bundle E*, the hom-bundle Hom(E, E’), the exterior product
bundle A\"E, and so on. We will only carefully define E ® E’, and leave the other
definitions to the reader.

Set-theoretically define

E®FE ={(z,v)|z € X,ve E, ® E.}.

This is clear enough, and it is clear how to define addition and scalar multiplication
in the fibers. The only thing that takes thought is how to define the topology
on ¥ ® E’, and to check that the operations are continuous. But it is enough to
define the topology locally, and to check continuity locally. If x € X, let U be a
neighborhood of = over with both E and E’ are trivializable. Choose isomorphisms
¢: U xRF — E|y and ¢/: U x Rl — E'|y. Then one gets a bijection of sets
Ux (RFE@R!) — (E® E")|y which is a linear isomorphism on each fiber: one sends
(u, v @w) to (u, d(u,v) ® ¢'(u,w)) and then extends linearly. Finally, one uses this
bijection to transplant the topology from U x (R* @ R!) to (E ® E')|yr. We leave
the reader to fill in all the details here.

A brief summary of this technique is “define the new bundle set-theoretically and
then use the local trivializations to induce the topology”. Technically one should
check that different choices of local trivialization yield the same topology, but this
is usually routine and left implicit.

Remark 8.22 (External sums and products). Let £ — X and F — Y be two
vector bundles, but this time over possibly different base spaces. One may construct
an external direct sum EGF — X x Y whose fiber over (z,y) is E, & F,. The
underlying topological space of EGF is just Ex F, and it has the evident operations.
Note that EGF can also be constructed as 7} (E) @73 (F), where 71 and 75 are the
projections from X x Y onto the two factors.
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In the case X =Y we can construct the (internal) direct sum from the external
one: namely E® F = A*(EQF) where A: X — X x X is the diagonal map. Thus,
the internal and external direct sums determine each other.

One can tell a similar story about external tensor products, or external hom-
bundles.

Exercise 8.23. Given two vector bundles £y — X and E; — X construct the
bundle Hom(E1, Es) whose fiber over z € X is Hom((E1)s, (E2)z). Prove an ad-
jointness formula

Vect(X)(E1 X EQ, Eg) = Vect(X)(El, HOIH(EQ, Eg))
Even better, establish an isomorphism of bundles

HOIH(El & EQ, Eg) = HOHl(El, HOI’II(EQ, E3))

8.24. Constructing vector bundles by patching. Let X be a space and let
A and B be subspaces such that AU B = X. Recall that if f4: A — Y and
fB: B — Y are continuous maps that agree on A N B then we may patch these
together to get a continuous map f: X — Y provided that either (i) A and B are
both closed, or (ii) A and B are both open. This is a basic fact about topological
spaces. The analogous facts for vector bundles are very similar in the case of an
open cover, but a little more subtle for closed covers.

Proposition 8.25. Let E — X be a family of vector spaces.

(a) If {Uy} is an open cover of X and each E|y,, is a vector bundle, then E is a
vector bundle.
(b) Let {A, B} be a cover of X by closed subspaces. Suppose that either
(i) B is regular and has a countable basis, or
(ii) For every x € AN B and every neighborhood © € U C X there exists a
neighborhood x € V.C U such that VNN AN B — V N B has a retraction.
Then if E|a and E|g are both vector bundles, so is E.

Proof. Part (a) is trivial, so we focus on (b). The main issue is producing local
trivializations around points £ € AN B: one can do so in the “A-part” of a neigh-
borhood and in the “B-part” of the neighborhood, but then some care is required
in doing the two simultaneously in a compatible way.

Let x € X, with the goal of producing a local trivialization around x. There are
three cases: t € X — A, x € X — B,and z € ANB. If x € X — B then we have
x € (X —B)°Pe™ C A. Since E|4 is a vector bundle there is a subset z € U C X — B
such that U is open in A and E|y is trivializable. But then U is open in X — B and
hence also open in X, so E — X has a local trivialization at x. A similar argument
works if x € X — A.

We have left to analyze the case x € AN B. The fact that F|4 is a vector bundle
implies that there exists an open set x € U; C X such that E is trivializable over
U; N A. Similarly, there exists an open set € Uy C X such that F is trivializable
over Uy N B. Let U = Uy NUs. Then E|yna and E|ynp is a closed cover of E|y,
and so F|y is the pushout of the diagram

Elvna <— Elvnans — Eluns-
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Choose a trivializaion Flyna = (U N A) x R™, which induces a trivializaion of
E|vnanp- So we have the following diagram

Eluna Elunans Elunp
A
fATu fAmBTm fB

(UNA)xR"<— (UNANB)xR" —— (UN B) x R".

and the question is whether we can find an isomorphism fg that makes the diagram
commute.

Let j denote the various horizontal maps in the above diagram, which are all
subspace inclusions. Choose an isomorphism h: E|ynp — (U N B) x R™. Then
the composite hjfanp may be represented by a map U N AN B — GL,(R) (via
adjointness, essentially). The construction of fp is the question of extending this
over U N B.

Under hypothesis (ii), by passing to a smaller neighborhood z € U’ C U we can
find a retraction U'NB — U'NANB, in which case the required extension is evident.
Under hypothesis (i) we know that all subspaces of B are normal [Mul, Theorems
31.2 and 32.1], and hence we can apply the Tietze extension theorem: the composite
map UNANB — GL,(R) < M,(R) = R" extends to UNB. By continuity we can
land in the open set GL,(R) after passing to a smaller neighborhood x € U’ C U.
Thus, we have produced the localization trivialization of E at z. ([

Remark 8.26. A good example of Proposition [8.25(b) is the covering of a sphere
S™ by its upper and lower hemispheres, intersecting in the equator. In this situation
both hypotheses (i) and (ii) happen to be satisfied.

Corollary 8.27 (Patching vector bundles). Let {A, B} be a cover of the space X .
Suppose given vector bundles E4 — A and Ep — B, together with a vector bundle
isomorphism ¢: Ealans — EBlans. Then there exists a vector bundle E — X
such that E|4 is isomorphic to E4 and E|p is isomorphic to Ep provided that one
of the following conditions holds:

(i) A and B are both open, or

(ii) A and B is a closed cover satisfying either of the hypotheses in part (b) of
Proposition [8-25

Proof. Define E to be the pushout of the following diagram:

[}
Ealang — Eplang>— E5

| v

Ea > F.

The composite maps £E4 -+ A — X and Eg — B — X yield a map F — X,
and one readily checks that this inherits the structure of a family of vector spaces
(see Exercise . It is also evident that E|s & E4 and E|p = FEp. It only
remains to verify that F is a vector bundle, and this is a direct application of
Proposition [8.25 (]

Corollary a) admits a generalization to arbitrary open coverings. Suppose
{Uy} is an open cover of X, and assume given a collection of vector bundles E, —
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U,. For each o and /8 further assume given an isomorphism

$p.0: Ealv.nvs, — Eslu.nv,-
Je e

Let E be the quotient of II,E, by the equivalence relation generated by saying
(@,va) ~ (B, ¢p,a(va)) for every o, f, and vy € Eulu,nu,. Here we are writing
(a, vo) for the element v, in II, E, that lies in the summand indexed by a.

It is easy to see that in this generality F is a family of vector spaces. It is not
necessarily the case, however, that E|y, = E,. If this were true for all « then of
course E would be a vector bundle and we would be done. Here is the trouble,
though. Suppose aq,aq,...,q, are a sequence of indices such that oy = @, =
a. If v € E, then we identify v with ¢, a,(v), which is in turn identified with
Barg.a1 (Day a0 (V)), and so forth—so that v ends up being identified with

(8:28) (Ganin s © G sian 0+ 0 Barag ) ()

Note that, like v, this expression is an element of . So identifications are possibly
being made within individual summands of 11, F,, rather than just between differ-
ent summands. The fibers of E|y_ are quotients of those in E,,, but they might not
be identical. To prohibit this from happening we impose some extra conditions: for
any indices «, 8, v we require that

(1) (ba,a =id,

(i) The two isomorphisms ¢~ o and ¢~ g0 @3, agree on their common domain of

definition, which is Eq |v,nvsnu, -

We leave it to the reader to check that these conditions force any expression as
in , with ap = v, to just be equal to v (in particular, note that they force
Pa,p = qbgla) So the fibers of E coincide with the fibers of the E,’s, we get
isomorphisms E|y, & E,, and hence E is a vector bundle.

Condition (ii) above is usually called the cocycle condition. To see why, con-
sider the case where all of the E,’s are trivial bundles of rank n. Then the data
in the ¢, g maps is really just the data of a map go,3: Uy NUg — GL,(R). These
Ja,s maps are called transition functions. Condition (ii) is the requirement that
the transition functions assemble to give a Cech 1-cocycle with values in the group
GL,(R). Condition (i) is just a normalization condition, so that we are dealing
with ‘normalized’ Cech 1-cocycles. Elements of the (continuous) Cech cohomol-
ogy group HY,(Us; GL,(R)) can be seen to be in bijective correspondence with
isomorphism classes of vector bundles on X that are trivializable over the U,’s; if
we take the direct limit over all open coverings then we obtain a bijection between
isomorphism classes of vector bundles on X and elements of the Cech cohomolog
group HY (X;GL,(R)). But we are getting ahead of ourselves here; see Section

cts
for related discussion.

8.29. Dual bundles. Let £ — X be a vector bundle of rank n. Using the
method of Section we can define the dual bundle E*, which set-theoretically
is {(z,v) |2z € X,v € EX}. One can examine this construction in terms of patching
trivial bundles. Choose an open cover {U,} of X with respect to which E is triv-
ializable; a choice of trivialization over each U, then yields a collection of gluing
maps ¢q,3. We think of E as being built from the trivial bundles E, = U, x R"
via these gluing maps. Then the dual bundle E* is built from the trivial bundles
Uy x (R™)* via the duals of the gluing maps: that is, (¢ )g.0 = ( aEﬁ)*
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We will see in a moment (Corollary that for real vector bundles over para-
compact Hausdorff spaces one always has E = E*, although the isomorphism is
not canonical. This is not true for complex bundles, however (see Example .

Let L — CP"™ be the tautological complex line bundle over CP". Its (complex)
dual L* is called the canonical line bundle over CP". Whereas from a topological
standpoint neither L nor L* holds a preferential position over the other, in algebraic
geometry there is an important difference between the two. The difference comes
from the fact that L* has certain “naturally defined” sections, whereas L does not.
For a point z = [29 : ++- : 2,] € CP", L, is the complex line in C"*! spanned
by (20,...,2,). Given only z € CP™ there is no evident way of writing down a
point on L, without making some kind of arbitrary choice; said differently, the
bundle L does not have any easily-described sections. In contrast, it is much easier
to write down a functional on L,. For example, let ¢; be the unique functional
on L, that sends the point (zg,...,2,) to z;. Notice that this description depends
only on z € CP"™, not the point (2o, ..., 2,) € C"*! that represents it; that is, the
functional sending (Azo, ..., Az,) to Az; is the same as ¢;. In this way we obtain an
entire C"*1’s worth of sections for L*, by taking linear combinations of the ¢;’s.

To be clear, it is important to realize that L has plenty of sections—it is just that
one cannot describe them by simple formulas. The slogan to remember is that the
bundle L* has algebraic sections, whereas L does not. In algebraic geometry the
bundle L* is usually denoted O(1), whereas L is denoted O(—1). More generally,
O(n) denotes (L*)®" when n > 0 (so that O(0) is the trivial line bundle), and
denotes L®(=") when n < 0.

8.30. Inner products on bundles. It is nearly possible to develop everything
we need from bundle theory without using inner products, and in the rest of the
text we do try to minimize our use of them. But for some results the use of inner
products provides significant simplifications of proofs, and so it is good to know
about them.

Definition 8.31. Let E — X be a real vector bundle. An inner product on E is
a map of vector bundles E ® E — 1x that induces a positive-definite, symmetric,
bilinear form on each fiber E,. A wvector bundle with an inner product is usually
called an orthogonal vector bundle.

There is a similar notion for Hermitian inner products on complex vector bun-
dles, but here we cannot phrase things in terms of the tensor product because of
conjugate-linearity in one variable. So perhaps the simplest thing is just to say that
if F — X is a complex bundle then a Hermitian inner product isamap Exx F — 1
(over X)) which induces a Hermitian inner product on each fiber of E.

The next result is the first of several places where we will need to use partitions
of unity, so let us take a moment to review this concept.

Definition 8.32. Let U = {U,} be an open cover of a space X. A partition of
unity subordinate to U is a collection of continuous functions ¢o: X — [0,1] such
that

(1) [Support condition] For each o, Supp ¢o C U, where Supp ¢ = ¢ (R — 0).
(2) [Local finiteness| For each x € X there is a neighborhood x € V' such that V

has nonempty intersection with Supp ¢, for only finitely many indices c.
(3) [Partition of 1] For each x € X, Y ¢a(x) =1 (note that this is a finite sum

by (2)).
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The basic theory of partitions of unity is discussed in [Mul, Section 41], though
note that Munkres’s terminology is slightly different from ours: he defines the
support of ¢, to be the closure of ¢ (R — 0). The main result we will need is
that on a paracompact Hausdorff space any open cover has a partition of unity
subordinate to it [Mul Theorem 41.7].

Proposition 8.33. Assume that X is paracompact and Hausdorff. Then any real
bundle on X admits an inner product, and any complexr bundle on X admits a
Hermitian inner product.

Proof. The idea is to produce the necessary inner products locally, and then use a
partition of unity to average the results into a global inner product. We may as
well assume X is connected, and then F has a constant rank n.

Let E — X be a real vector bundle, and let {U,} be an open cover over which
the bundle is trivial. Choose bundle isomorphisms f,: E|y, = U, x R™, for each
a. Equip R™ with the standard Euclidean inner product, and let (—, —), be the
inner product on E|y, obtained by transplanting the Euclidean product across the
isomorphisms f.

Let {¢o} be a partition of unity subordinate to the cover {U,}. For z € X and
v,w € B, define

<U7w> = Zgba(l‘) : <U7w>a'

It is clear that this is continuous in v and w, bilinear, symmetric, and positive-

definite—these follow from the corresponding properties of the forms (—, —), (note

that continuity uses the local finiteness property of the partition). So this completes
the construction.

The proof for Hermitian inner products on a complex bundle is basically identical.

O

Corollary 8.34. Let E — X be a real vector bundle on a paracompact Hausdorff
space X. Then E is isomorphic to its dual E*.

Proof. Start by equipping F with an inner product £ ® E — 1, and note that the
fiberwise forms are nondegenerate (since they are positive-definite). The adjoint of
the above bundle map is a map £ — E*, and nondegeneracy of the fiberwise forms
shows that this is a fiberwise isomorphism. So it is an isomorphism of bundles. [

Exercise 8.35. Here is an illuminating problem to think through. Every com-
plex vector space may be equipped with a nondegenerate, symmetric bilinear form.
Check that the proof of Proposition [8:33] does not generalize to show that every
complex vector bundle may be equipped with a symmetric bilinear form that is non-
degenerate on the fibers—in particular, find the point where the proof breaks down.
Note that if the proof did generalize, one could show just as in Corollary that
every complex bundle was isomorphic to its own dual. This is false, as we will see in
Example B:37] below. The complex version of Corollary [8:34] says that if £ — X is
a complex bundle over a paracompact Hausdorff space then E is isomorphic to the
conjugate of E* (the bundle obtained from E* by changing the complex structure
so that z € C acts as Z).

Consider a trivial bundle X x R" — X and equip it with the standard inner
product. This bundle may be considered as trivial in two different ways: the vector



A GEOMETRIC INTRODUCTION TO K-THEORY 81

bundle structure is trivial, and the inner product structure is also trivial. It is not
clear a priori that the former property implies the latter, but in fact it does:

Proposition 8.36. Let X be a space and let n € Z.. Every inner product on ny is
isomorphic (in the category of vector bundles with inner product) to the ‘constant’
inner product provided by the standard Euclidean metric.

Proof. Consider R™ with its standard basis eq, ..., e,. Inner products on R™ are in
bijective correspondence with symmetric, positive-definite matrices A € M, x,(R),
by sending an inner product (—, —) to the matrix a;; = (e;, ;). Let M*¥™* denote
the space of such matrices. To give an inner product on the trivial bundle ny is
therefore equivalent to giving a map X — M5V,

Given an isomorphism R"™ — R"™ we may transplant an inner product from the
target onto the domain; this gives rise to an action of GL,,(R) on the space of inner
products. If P € GL,(R) and A € M*¥™7% then the action is P.A = PAPT. The
fact that every inner product on R™ has an orthonormal basis shows that My +
equals the orbit of the identity matrix I,, under this action. The stabilizer of the
identity is of course the orthogonal group O,,, and so we obtain the homeomorphism
GL,(R)/O,, = Msy™+,

Since Oy, is a compact Lie group the quotient GL,(R) = GL,(R)/0, is a fiber
bundle and hence a fibration (cf. [Pal, Section 4.1]). So we have the fibration
sequence O, < GL,(R) — M*¥™* where the projection map sends a matrix P
to PI,PT = PPT. The inclusion O, < GL,(R) is a homotopy equivalence by
Gram-Schmidt, and so M*$Y">* is weakly contractible. But actually it is not hard
to show directly that there is a homeomorphism M$vy™+ =~ R("3"). For this, recall
from linear algebra that a real symmetric matrix A is positive definite if and only
if the minors A[l---k|1--- k] are positive, for every 1 < k < n. When n = 2, for
example, we can use this to write down a homeomorphism

(0,00) x R x (0,00) — Mz"™* (a,b,¢) = { ;! ]
b o +c
So M;¥™™* = R3. For the general case one works inductively to show M™+ =
MY R™1 % (0, 00). The idea is that after specifying the upper (n—1) x (n—1)
submatrix and the top n — 1 entries of the last column, we rearrange the cofactor
expansion of the determinant about the last column to obtain a lower bound for
the final diagonal entry.
Since M¥™™T is a Euclidean space, it can be given the structure of a CW-
complex. So the commutative square

{In}

o~ e i[PHPPT]

GLn(R)

MsymA- id Mgymi+

has a lift as indicated.

As we have discussed, our given inner product on ny is represented by a map
X — Mz¥™*. Compose with r to obtain X — GL,(R). This map specifies
a bundle isomorphism ny — ny. If we equip the domain with our given inner
product and the codomain with the standard inner product, this map preserves the
inner products and therefore proves the proposition. ([
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Suppose that £ — X is a rank n real vector bundle with an inner prod-
uct. Choose a trivializing open cover {U,}, and for each « fix an inner-product-
preserving trivialization f,: E|y, — U, X R™ where the codomain has the stan-
dard inner product (this is possible by Proposition . The transition functions
9,8 Ua NUg — GL,(R) therefore factor through O,,, as they must preserve the
inner product. This process is usually referred to as reduction of the structure
group.

We may use these ideas to give another proof of Corollary [8:34] one that is
perhaps more down-to-earth. Let ' — X be a real vector bundle on a compact
space, and choose a trivializing cover {U,} with respect to which there exist local
trivializations where the transition functions are maps go,5: Uy NUg = O,,. So we
obtain I by gluing together the spaces F, = U, X R™ via the maps g, 5. But then
we obtain E* by gluing together the spaces U, x (R™)* via the maps

hg.o = Gap-
Recall that in terms of matrices the dual is represented by the transpose. Since
each g, 5(z) is in O,, we can write hg o (z) = gog(z)~!, or

ha,s(®) = hg,a(@) ™ = ga,p(@).
In other words, the transition functions for £ and E* are exactly the same, and
that is why the bundles are isomorphic.

We close this section with the promised example of a complex bundle that is not
isomorphic to its dual:

Example 8.37. Let D, and D_ denote the upper and lower hemispheres of S2.
Let S' be the equator, which we identify with the unit complex numbers. Given
amap f: S' — GL,(C) we may construct a complex bundle on S? by taking two
trivial bundles np,, and np_ and gluing them together using the map f: precisely,
for 2 € S1 an element v € (@D+)Z is glued to f(z)-v € (@D_)Z. Here we are using
Corollary [8:27|b). Let E(f) denote the resulting bundle.

Observe that giving an isomorphism E(f) — FE(g) is equivalent to giving two
maps A: Dy — GL,(C) and B: D_ — GL,(C) such that g(z) - A(z) = B(z) -
f(z) for all z € S'. Let us rewrite this as A(z) = g(2)"'B(2)f(z). Now, the
map Blgi: S' — GL,(C) is null-homotopic because it extends over D_; so it is
(unbased) homotopic to the constant map at I,, (this uses connectivity of GL,(C)).
Therefore the map z — g(z) "' B(z)f(z) is homotopic to g(z)~!f(z). But A|s: is
also (unbased) homotopic to the constant map at I,,, because it extends over D.
So we have proven that if E(f) =2 E(g) then z — g(2)~1f(z) is unbased homotopic
to a constant map.

Next, observe that the dual of E(f) is E(f’), where f'(z) = [f(z)T}_l. So if
E(f) is isomorphic to its dual then the map z — f(z)T - f(z) is null-homotopic.

Consider the case where n = 1 and f(z) = z. Since z + 22 is not null-homotopic,
we see that F(f) is not isomorphic to its dual.

Exercise 8.38. Check that E(f) from the end of the above example is isomorphic
to the tautological line bundle L — CP!.

The above example starts to give an indication that the classification of vector
bundles on spheres reduces to a problem in homotopy theory. We will explore this
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in detail in Section and in Section [I3] we will see that this is true not only for
spheres but for vector bundles on any paracompact Hausdorff space X.

o Exercises o

Exercise 8.39. Let E4 — A, Ex — X, and Fy — Y be families of vector spaces
and assume given maps of families

EX < EA I Ey
that lie over subset inclusions X D A C Y. Assume either that

(i) A is open in X and Y, and the maps E4 — Ex and E4 — FEy are open
injections, or
(ii) A is closed in X and Y, and the maps E4 — Ex and E4 — Fy are closed
injections.
Prove that the pushout £ = Ex llg, Ey is a family of vector spaces over {) =
XII,Y.
[Hint: The difficult part is producing the addition E xq E — E. Show that the
domain is covered by Fx Xx Ex and Fy Xy Ey and that these are open (resp.
closed).]

Exercise 8.40. Let £ — X be a family of vector spaces and let s1, so, ... be a weak
basis for E. If X is locally compact and Hausdorff prove that there is an associated
map of families X x R> — F that is a bijection, where R* is given the colimit
topology. [Hint: First show that the natural map colim,, (X xR™) — X x colim,, R"
is a homeomorphism. Consult [Mu, Theorem 46.11].]

Exercise 8.41. Given a vector bundle £ — X, explain how to construct an asso-
ciated projective bundle P(E) — X that is a fiber bundle whose fiber over a point
x € X is the projective space P(E,). Verify that your construction admits a natural
map of fiber bundles E — P(F @ 1) that sends a point e € F, to the line spanned
by (e,1) in E, ® R.

Exercise 8.42. Let E — X be a rank n vector bundle and Y C X a closed set.
Suppose given a trivialization u: E|y — ny. Define E’ to be the pushout of the

top row in this diagram:

ou
Rm <22 E|y>—> E

RN

* Y X.
In words, E’ is made by gluing all of the fibers of El|y together according to the
isomorphism u. Prove that E/ — X/Y is a vector bundle IF there exists an open
subset Y C U and an extension of « to an isomorphism E|y = ny;.

Exercise 8.43. Let E — X be a vector bundle and let Y C X be a closed subset.

(a) Prove that every section s: Y — FE extends to a section defined on all of X in
each of the following two cases:
(i) Y < X is a cofibration, or
(ii) X is locally compact and paracompact and Hausdorff.
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[Note: This demonstrates a common theme in bundle theory, which is that
certain results work either in the presence of sufficient cofibration hypotheses
or in the presence of technical point-set topology hypotheses. For (ii), use the
Tietze extension theorem locally and then patch the results together using a
partition of unity.]

(b) Again under hypotheses (i) or (ii), prove that a nonvanishing section s: ¥ — F
extends to a nonvanishing section on some neighborhood of Y.

(¢) Suppose that F' — X is another bundle and u: E|y — F|y is an isomorphism.
Under hypotheses (i) or (ii) prove that u extends to an isomorphism E|y — F|y
for some neighborhood U of Y.

9. SOME RESULTS FROM FIBERWISE LINEAR ALGEBRA

Recall that our basic goal is to learn to do linear algebra “over a base space”.
The fundamental objects in this setting are the vector bundles, and the maps are
the bundle maps. This section contains a miscellany of foundational results that
are frequently useful. This material can be safely skipped the first time through
and referred back to as needed.

Lemma 9.1. Let X be any space, and let f: n — k be a surjective map of bundles.
Then f has a splitting.

Note that the result is not immediately obvious. Of course one can choose a
splitting in each fiber, but what guarantees that these can be chosen in a continuous
manner?

Proof. Let W = {A € My« | rank A = k}, which is the space of surjective maps
R™ — R* (our matrices act on the left). Let Z be the space

Z = {(A7B) |A e Mana B E Mnxk;7 AB :I},

which is the space of surjective maps with a chosen splitting. We claim that the
projection map p;: Z — W is a fiber bundle with fiber R¥("=*) but defer the proof
for just a moment. The fact that the fiber is contractible then shows that p; is
weak homotopy equivalence.
Consider the diagram
Z

p1 iN
W=—=W.
The space W is an open set of My, = R*?; indeed, it is the union of the (Z) open
sets defined by one of the k x k minors being nonzero. Any open set of Euclidean
space may be given a CW-structure (ref???), so the standard lifting theorems now
show that there is a lifting r: W — Z in the above diagram.

Our surjective bundle map f: n — k is determined by a map X — W. Com-
posing with W — Z, and then projecting to the second coordinate of Z, gives the
desired splitting for f.

It remains to prove the claim about p; being a fiber bundle. Let A € W. Since
rank(A) = k there is a k x k minor of A that is nonzero; without loss of generality
let us assume that it is the minor made up of the first & columns of the matrix.
Let U C W be the subspace consisting of all matrices where this same minor is
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nonzero, which is an open neighborhood of A in W. Writing matrices in block form,
U consists of matrices [X|Y] where det(X) # 0. Then p; }(U) consists of pairs

ccrsc=( 1 [2)

having the property that det(X) # 0 and XJ + YK = I;. We obtain an iso-
morphism U x M, _;x(R) = p;*(U) by sending ([X|Y],K) to axy. x with
J=X"1I; - YK). O

Note the significance of the map W — Z that is produced in the above proof.
This assigns to every surjection R — R* a splitting, and it does so in a continuous
manner. Of course there is no claim that there is a nice formula for how to do this,
and in fact there almost certainly is not—but the proof shows that there does exist
some way of doing so.

The previous result implies that every surjection of vector bundles is locally split.
The following is a global version of this:

Proposition 9.2. Let X be a paracompact Hausdorff space. Then any surjection
of bundles E — F has a splitting.

Proof. Briefly, we choose local splittings and then use a partition of unity to patch
them together.

Choose an open cover {U,} such that both E and F are trivializable over each
U,. Lemma shows that there are splittings xo: Flv, — E|v.,. Now choose a
partition of unity {¢,} subordinate to our open cover (cf. Definition . Set
X = 2 PaXa- This sum makes sense and is continuous because the partition of
unity is locally finite, and one readily checks that it is a splitting for f. (]

Given a map of vector bundles f: E — F over a space X, we would like to
construct kernels, images, and cokernels—bundle operations that reflect the usual
constructions of linear algebra. But we have already seen a good example that
shows the subtleties here: take X = [—1,1] and let f: 1 — 1 be multiplication by ¢
on the fiber over ¢t € X. Taking fiberwise kernels or images does not give a vector
bundle. To avoid these issues we will require that f have constant rank on the
fibers (actually locally constant is enough, as this is equivalent to constant rank
on each connected component) . Under this assumption the construction of kernel
and image bundles is faily straightforward, as these can be realized as subobjects of
bundles we already have. The construction of cokernels is a little more challenging,
but also works.

We start by looking at kernels and images. If f: E — F is a map of bundles
and x € X, write rank, (f) for the rank of f,: E, — F,. If these fiberwise ranks
are independent of x then we will also write rank(f) for the common value.

Proposition 9.3. Let X be any space, and let f: E — F be a map of vector
bundles over X. If f has constant rank then ker f and im f are vector bundles.

Proof. Let © € X, let n = rank,(E), let k = rank, (F'), and let r = rank(f). It will
suffice to produce a neighborhood U of = together with n — r independent sections
of ker f over U and r independent sections of im f over U. In particular, this makes

it clear that we might as well assume that E' and F' are both trivial bundles; in this
case f is specified by a map X — W, where W, = {A € M x,, | rank(A) = r}.
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Let Z, be the space
Z. ={(A,v1,...,vn—r)| A € W, and vy,...,v,_, span the kernel of A}.

One can check that the projection Z, — W, is a fiber bundle with fiber GL,,_.(R),
but this is stronger than what we actually need. We only need that the map is
locally split: any point in W, has a neighborhood over which there exists a section.
Given a map X — W,., it will then follow that every point in = has a neighborhood
over which there exists a lifting into Z,, and this will give the n — r independent
local sections of ker f.

So let A be a point in W,.. Since rank(A) = r, some 7 x r minor of A is nonzero.
Without loss of generality we might as well assume it is the upper left r x r minor.
Since rank(A) = r, then for j > r the jth column of A is a linear combination of
the first r columns in a unique way; said differently, there is a unique vector of the
form

Vj = €5 — S51€1 — S2€2 — ++* — Sp€p
that is in the kernel of A. Here the s;’s are certain rational expressions in the
matrix entries of A that can be determined using Cramer’s Rule. These formulas
define sections on the neighborhood U of A consisting of all k£ x n matrices of rank
r whose upper left 7 X r minor is nonzero. This finishes the proof of our claim.

We have established that ker f is a vector bundle. The proof for im f is entirely
similar but a little easier. Let Y, be the space

Y, ={(A,v1,...,v.) | A € W, and vy,...,v, span the image of A}.

Again, it suffices to show that Y, — W, is locally split. For A € W, there is some
non-vanishing r X r minor, and the subset U C W,. consisting of all matrices with
that minor nonzero is a neighborhood of A. We get a section U — Y,. be sending
each B € U to the pair consisting of B and the r columns of B that are chosen by
that minor. (]

Next we turn to the construction of cokernels. Let us begin with a precise
definition:

Definition 9.4. Let f: E — F be a map of vector bundles over a space X. A
fiberwise cokernel for f is a vector bundle QQ together with a map of bundles
F — @ with the property that for every x € X the map F, — Q, makes Q, a
cokernel for f,.

The following result says that fiberwise cokernels are also cokernels in the cate-
gorical sense (see Appendix [G]).

Proposition 9.5. Suppose that Q is a fiberwise cokernel for the bundle map
f+ E — F. Then for any map of bundles g: F — G such that gf = 0, there
is a unique map of bundles Q — G making the diagram

commute.
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Proof. Each fiber @, is a cokernel for f,, so there is a unique map of vector spaces
@, — G, making the evident triangle commute. This defines a map of sets Q — G,
but we need to check continuity. However, continuity is a local condition and so we
can assume that all of the bundles are trivial. In this case the map p: F — @ has
a splitting x by Lemma Then p(id —xp) = 0, therefore id —xp factors through
the kernel of p, which is the image of f. Since gf = 0 it follows that g(id —xp) =0
(note that this identity can be checked on fibers). So g = gxp, and therefore gy is
the set map Q — G constructed in the first line. As both g and x are continuous,
we are done. (]

Exercise 9.6. Explain why categorical cokernels in the category of vector bundles
over X are not always fiberwise cokernels.

Our aim is to prove that fiberwise cokernels for bundle maps f: F — F' exist
when f has locally constant rank. Let us start with the case where FE is a subbundle
of F. Define an equivalence relation on F' by saying that v; ~ vs if v; and vy are
in the same fiber and v; — vy € E. Let Q be the quotient space of F' under this
relation, and let 7: F — @ be the quotient map. Note that the bundle projection
F — X respects the equivalence relation and so induces @Q — X.

Proposition 9.7. Under the above setup we have

(a) For the standard inclusion E = X x R¥F <5 X x R" = F, then Q = X x Rk
with the map F — @ induced by projection onto the last n — k coordinates
R” — R*F,

(b) For any open set U C X, the map F|y — Q|u is a quotient map.

(¢) m: F = Q is an open map;

(d) The map F xx F — Q Xx Q is a quotient map;

(e) There is a unique structure of addition and scalar multiplication that makes Q
into a family of vector spaces and F' — @ a map of families.

(f) Q is a vector bundle.

Proof. The projection onto the final n—k coordinates X x R™ — X x R"~* respects
the equivalence relation and so induces a map Q@ — X x R®*. But we also have the
inclusion R % < R™ and so can consider the composition X x R*~* < X x R"* —
Q. One readily verifies that the two maps are inverses, and so Q = X x R**,

Part (b) is trivial: for any quotient map f: A — B, when W C B is open then
fY(W) — W is a quotient map. Apply this to W = Q| .

By (b) it is enough to prove (c) locally on X, so we immediately reduced to the
case where E and F are trivial. The inclusion f: X x R¥ — X x R" is represented
by a map X — LE(R* R") where LE denotes the space of linear embeddings.
Consider the restriction map LE(R",R") — LE(R*,R"™). We claim this is locally
split. Given a linear embedding f: R¥ — R™, the associated n x k matrix has a
non-vanishing k£ x & minor—without loss of generality assume it is the initial k x k
minor. Then on the open subset of LE(R* R™) where this minor is nonzero, the

assignment
A . A 0
B B I,
gives a continuous splitting.

Since LE(R", R") — LE(R¥,R") is locally split, by passing to smaller open sets
in X we can assume that X — LE(R* R") lifts to LE(R",R") (via composition
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with a splitting). This says that there is a bundle isomorphism X x R"® — X x R"
making the following diagram commute:

X xRF > X xR" o)

”l V

X xRF 5 X x R" — > X x R* %,

Here i is the standard inclusion. The diagram shows that we can get an induced
isomorphism @ — X x R"™*. So verifying that X x R" — @Q is open is equivalent
to the same statement for X x R® — X x R”*_ which is true because the standard
projection R™ — R™ ¥ is open.

Now we turn to (d). Let 7 be the map Fxx F — Q x x Q. Suppose U C Q Xx Q
is such that 7=1(U) is open in Fx x F. Let (q1,q2) € U, and choose preimages v; for
q1 and vy for go. Since 7~1(U) is open in F x x F, there exist open neighborhoods
vy € V4 € F and vy € Vo C F such that V) xx Vo C 7= 1(U). But then (q1,¢2) €
m(Vi xx Vo) C U. But observe that n(V; xx Vo) = (7V1) xx (7V3), and by (c)
both V7 and 7V5, are open in (. This proves that U contains a neighborhood of

(91, G2)-
For (e) we refer to the diagram

FxxF—sF

|

QXxQ>Q

and observe that the composition F' x x F' +r— Q respects the equivalence
relation on F' and so induces the map Q x x @ — Q using (b). A similar argument
works for scalar multiplication, using that R x F' — R x Q is a quotient map [Mul
Section 46, Exercise 9]. One readily checks that this structure makes @ into a
family of vector spaces with the correct properties.

Finally we prove (f). Since we are verifying a local condition, it is enough to do
so under the assumption that E and F' are trivial. Just as in the proof of (c), we
can reduce to the case where E < F is the standard inclusion X x R¥ — X x R™,
and here we know by (a) that Q is X x R*~*. O

Corollary 9.8. Let f: E — F be a map of vector bundles of constant rank. Then
a fiberwise cokernel for f exists.

Proof. By Proposition we know that im f is a vector bundle. Now apply Propo-
sition [0.7] to the inclusion im f — F. O

The result below is an easy variation on Proposition [9.2} it will be used often,
so it is useful to have it stated explicitly.

Corollary 9.9. Let X be a paracompact Hausdorff space. Then any injection of
bundles EE — F' has a splitting.

Proof. We can assume X is connected. Let @ be the cokernel, which is a vector
bundle by Corollary 9.8 By Proposition [9.2] the map F' — @ has a splitting, which

then induces an isomorphism F = FE @ ). The composition F = Eo QS E
gives the required splitting of £ < F'. ([
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The next result is of a somewhat different nature:

Proposition 9.10. Suppose that X is compact and Hausdorff. Then every bundle
is a subbundle of some finite-rank trivial bundle.

Proof. Let m: E — X be a vector bundle on X. Choose a finite cover Uy, ..., Us
over which F is trivializable, which exists because of compactness. For each i choose
a trivialization f;: Fly, =, U; x R™. Write F; = w0 f;.
Let {¢;} be a partition of unity subordinate to the open cover (Definition [8.32).
Define a map
B:F—XxR"xR"x---xR"
(where there are s copies of R™) by the formula

(%) Bv) = (m;, 61 (T0)Fy (v), . .., ¢S(m)Fs(v)).

We have written 7o instead of 7(v) here, to avoid being overwhelmed by parenthe-
ses. Note that if v is not in E|y, then F;(v) is undefined, but in this case ¢;(mv)
equals 0 and so the formula still makes sense. More rigorously, we can interpret
the formula ¢;(mv)F;(v) as specifying continuous functions on the two closed sets
71 (Supp ¢;) (which is contained in E|y,) and on E\7~*(Supp ¢;) (in this case the
zero function), which agree on the overlap—so these patch to give a continuous
function on all of X. It is routine to check that formula (*) gives an embedding of
bundles. d

We can generalize Proposition [0.10] to paracompact Hausdorff spaces at the ex-
pense of passing to trivial bundles of countably-infinite rank. The proof is essentially
the same once we have established the following lemma and its corollary:

Lemma 9.11. Let X be a paracompact Hausdorff space. Let P be a property of
open subsets of X such that (1) if U has P and V C U then V also has P, (2) if
{Ua} are disjoint open subsets that all have P then so does |J, U, and (3) X can
be covered by open sets with property P. Then X can be covered by countably many
open subsets with property P.

Proof. We take the argument from [MS| Lemma 5.9]. First choose an open cover
{V.} by sets with property P, indexed by some set I. Then choose a partition of
unity {¢,} subordinate to this cover. For each finite subset S C I, define

W(S)={z € X | ¢pal(z) > ¢p(z) for alla € S and g € I — S}.

Said in words, W(S) is the collection of points for which the ¢’s from S are all
larger than the ¢’s from outside of S. This is an open set. One sees readily that if
W (S)NW(S") # B then either S C S’ or S’ C S. Soif S and S’ have the same size
then W (S) and W (S’) are disjoint.

Let W, = Uyg—,, W(S). Note that this is a disjoint union. If z € X then let
Sy be the (necessarily finite) collection of all o € I for which ¢, (x) is maximal.
Then « € W(S;), which shows that J,, W,, = X. Finally, for each S C I note
that if &« € S then W(S) C Supp ¢po C V,. So each W(S) has property P, and
therefore each W, has property P. O

Corollary 9.12. Let E — X be a vector bundle, where X is paracompact and
Hausdorff. Then there is a countable open cover {U;} for X such that each E|y, is
trivializable.
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Proof. Apply the lemma where a subset U has P if F is trivializable over U. O

Proposition 9.13. Let X be paracompact and Hausdorff, and let E — X be a
vector bundle. Then there is an embedding of bundles E — X x R*>, where R>®
denotes the vector space of countably-infinite dimension topologized as the colimit
of its finite-dimensional subspaces (see Appendiz .

Proof. One chooses a countable trivializing cover as in Corollary [0.12] and then the
proof is essentially identical to that for Proposition [0.10] except for one subtlety.
The construction from that proof gives a collection of continuous maps £ — R"
which can be assembled to give an embedding

g:E— X xR"xR"xR"--- = X x [[R.
=1

The image of each point is a tuple where only finitely many entries are nonzero, so g
factors through X x R*°. But the topology on R here is the product topology—or
more precisely, the subspace topology induced by the product topology on [];-, R—
and this is different from the colimit topology (see Appendix for discussion of
this). So an extra argument is required to see that the map is still continuous when
R has the colimit topology.

Since continuity is a local condition, it is sufficient to prove that every v € E has
a neighborhood on which the function is continuous. But by the local finiteness of
the partition of unity, there is a neighborhood 7(v) € W with the property that
W only intersects finitely-many of the Supp ¢; spaces—i = 1 through ¢ = N, say.
So the coordinates of g(v') past the Nth all vanish, for all ' € 7='(W). Then g
maps 7~ (W) into X x RV and is continuous as such a map. Therefore g is also
continuous as a map g: 7 H(W) — X x R® O

colim*

Finally, we close this section with a few useful results related to ranks and ex-
actness:

Proposition 9.14. Let a: E — F be a map of vector bundles over X. Then for
any n € Z>g, the set R,, = {x € X | rank(ay) > n} is an open subset of X.

Proof. Let k = rank(F) and | = rank(F). Let z € R,,. We can choose a neighbor-
hood V of x over which both E and F' are trivial. The map « is then specified by
a continuous function a: V — Hom(R¥ RY) = M, (R). Since rank(a) > n, some
n x n minor of a(x) is nonzero. If U C M;.;(R) is the subspace of all matrices
for which the corresponding minor is nonzero, this is an open subset of M;yx(R).
Then ¢~1(U) is a neighborhood of x that is completely contained in R,,. O

Remark 9.15. Let Z,, denote the set Z equipped with the topology where the
open sets are the intervals (n, 0o) for n € Z. Note that since (n,00) = [n+1, 00), the
open sets can also be described as half-open intervals. The following two conditions
on a function f: X — Z are readily seen to be equivalent:

(a) f is continuous when Z is given the topology Z o,
(b) for any convergent net z: I — X, there exists a € I such that f(lim; z) < f(z;)
for all « > a.

(Recall that a net is simply a function whose domain is a directed set, and the notion
of convergent net is the evident one; a standard result of point-set topology is that a
function is continuous if and only if it sends convergent nets to convergent nets [Mul,
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Section 29, Supplementary Exercise 7]). When these properties are satisfied the
function f is said to be lower semi-continuous. Briefly, in a lower semi-continous
function the value on the limit of a convergent sequence can jump down—but not
up—from the limiting values in the sequence. Proposition [9.14] says that the map
x +— rank(ay) is lower semi-continuous. We leave the reader to think about the
inverted notion of upper semi-continuity, and the fact that the map = — nullity ()
is upper semi-continuous.

Proposition 9.16. Let E = F LN G be an exact sequence of vector bundles.
Then im « (which equals ker B) is a vector bundle.

Proof. Using Proposition [9.3] it suffices to prove that « has constant rank on each
connected component of X. Without loss of generality we can assume that X is
connected. Since the question is local on X, we can assume that FE, F', and G are
all trivial bundles. Let n = rank(F).

Pick an € X and let p = rank(a;). Then rank(8,;) = n — p by exactness. Let
U={z¢€ X|rank(a,) > p} and V = {z € X | rank(8;) > n — p + 1}. Note that
exactness implies that U = X —V. But both U and V are open by Proposition
which means they are also both closed. By connectedness, U is either empty or the
whole of X. Since z € U, we must have U = X.

A similar argument proves that {z € X | rank(a,) < p} = X. So for every z € X
we have p < rank(a,) < p; that is, the rank of « is constant on X. O

If E, is a chain complex of vector bundles on X and = € X, write (E,), for the
chain complex of vector spaces formed by the fibers over z. Define the support
of E,, denoted Supp E,, to be the subspace {x € X | (E,), is not exact} C X. We
will occasionally write Supp; E, for {x € X | H;((E;),) # 0}. Note that Supp E, =

U, Supp; E..

Proposition 9.17. Let E, be a chain complex of vector bundles on X. Then for
any 1 € Z, the subspace Supp, E, is closed in X. If E, is a bounded chain complex
then Supp E, is closed.

Proof. We will prove that X — Supp, F, is open, so assume x belongs to this set.
Write the maps in the chain complex as

B -5 B -2 B
Let n = rank,(E;), a = rank,(«), and b = rank,(3). Since the complex is exact at
x in the ith spot we have a + b = n. By Proposition [0.14] applied twice, there is an

open neighborhood U of x such that rank,(a) > a and rank,(8) > b for all y € U.
Then we can write

a < rank,(a) <n —rank,(8) <n-—">

where the middle inequality follows from the fact that (E,). is a chain complex.
Since a = n — b all the inequalities are in fact equalities, and so we have exactness
at y for all y € U. That is, U C X — Supp, E,.

The final statement follows from the fact that Supp F, is a finite union of the
Supp, E. spaces. O

o Exercises o
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10. SWAN’S THEOREM

In this section we explore our first connection between topology and algebra. We
will see that vector bundles are closely related to projective modules.

When X is a space let C'(X) denote the ring of continuous functions from X to
R, where the addition and multiplication are pointwise. Recall that if £ — X is a
family of vector spaces, then I'(E) denotes the vector space of sections. In addition
to being a vector space, it is easy to see that this is actually a module over C(X):
if f e C(X) and s € T'(E) then fs is the section z — f(x)s(xz). The assignment
E — T'(F) gives a functor from the category FamVS(X) to C(X)-modules.

7

Proposition 10.1. Suppose that E' — E 5 E” are maps in FamVS(X) where
i is the kernel of p. Then 0 — T'(E') — I'(E) — T'(E") is exact.

Proof. We have the pullback diagram

B_t.oF

b

0x —= E".

This is a pullback both in FamVS(X) and in Jop, since the limits in these categories
are the same. The conclusions about I'(—) follow immediately from categorical
diagram chasing. O

Remark 10.2. Note in particular that Proposition applies when 0 — E’ —
E — E” — 0 is a fiberwise exact sequence of vector bundles over X, by 7777,

If E — X is a vector bundle then of course the modules of the form I'(E) are not
just arbitrary C'(X)-modules; there is something special about them. It is easiest
to say what this is under some assumptions on X:

Proposition 10.3. If X is compact and Hausdorff, and E is a vector bundle over
X, then T'(E) is a finitely-generated, projective module over C(X).

Proof. By Proposition [0.10| we can embed E into a trivial bundle N. This embed-
ding has constant rank on each connected component, so by Proposition [9.3] the
quotient @ is also a vector bundle. So we have the exact sequence 0 — F — N —»
@ — 0 of vector bundles on X. Now apply I'(—), which yields the exact sequence

0—-T(E)>T(N) - T(Q)
of C(X)-modules. This much is for free. But by Proposition the map N — @
has a splitting, and this splitting shows that I'(N) — I'(Q) is split-surjective. So
[(E) e T'(Q) =T(N) = C(X)"™
That is, I'(E) is a direct summand of a free module; hence it is projective. O

For the rest of this section we will assume that our base spaces are compact
and Hausdorff. Let Vect(X) denote the category of vector bundles over X, and
let C(X)-Mod denote the category of modules over the ring C'(X). Let C'(X)-proj
denote the full subcategory of finitely-generated, projective modules. Then IT" is
a functor Vect(X) — C(X)-proj. It is proven in [Sw| that this is actually an
equivalence:
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Theorem 10.4 (Swan’s Theorem). Let X be a compact, Hausdorff space. Then
I': Vect(X) — C(X)-proj
is an equivalence of categories.

Remark 10.5. Theorem is also known as the “Serre-Swan theorem”, as Serre
had earlier proven the analogous result in algebraic geometry. The content of Swan’s
paper was to demonstrate that the basic framework provided by Serre could also be
made to work in the purely topological context. For more on the algebraic geometry
side of things, see Section [19] below.

To prove Swan’s theorem we need to verify two things:

e Every finitely-generated projective over C(X) is isomorphic to I'(E) for
some vector bundle FE.
e For every two vector bundles E and F', the induced map

I Homvect(X) (.E7 F) — HOmc(X) (PE, FF)
is a bijection.
That is to say, we need to prove that I' is surjective on isomorphism classes, and is
fully faithful. Here is the first part:

Proposition 10.6. If X is paracompact Hausdorff and P is a finitely-generated
projective module over C(X), then P = T'(E) for some vector bundle E — X.

Proof. Choose a surjection p: C(X)™ — P. Since P is projective, there is a splitting
X- Then e = xp satisfies e? = e, and P is isomorphic to im(e).

Since e: C(X)™ — C(X)™ we can represent e by an n x n matrix whose elememts
are in C'(X). Denote the entries of this matrix as e;;. Note that for any x € X we
can evaluate all these functions at = to get an element e(z) € My,xn(R). In this
way we can regard e as a continuous map X — M, «,(R).

Define a map of vector bundles a: X x R™ — X x R™ by the formula a(z,v) =
e(z) - v. Then the sequence

n-"n"%n
is exact in the middle. Let E = im(«), which by Propositionis a vector bundle

on X; the proof of that lemma also shows that « has locally constant rank. We
claim that T'(E) & P. To see this, consider the following diagram of vector bundles:

[e%

N

im a.

ker n

The map n — im « is split by Proposition[9.2] because X is paracompact. Applying
T" to the above diagram gives

I'(ker o)>— C(X)" < cx)m

I

[(im «).

The sequence 0 — T'(kera) — C(X)" — I'(ima) — 0 is exact because it was
split-exact before applying I', and the identification I'(ker o) = ker(T'«) shows that
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I'(ker c) is the kernel of e. It now follows that I'(im «) is isomorphic to the image
of e, which is P. ([

Our next goal is to prove that I' is fully faithful. To do this, it is useful to relate
the fibers E, of our bundle to an algebraic construction based on the module I'(E).
For each x € X consider the evaluation map ev,: C(X) — R, and let m, be the
kernel. The ideal m, C C(X) is maximal, since the quotient is a field.

Note that we have the evaluation map ev,: I'(E) — E,. This map clearly sends
the submodule m,I'(E) to zero so that we get the induced map I'(E)/m,I'(F) —
E,. In reasonable cases this map is an isomorphism:

Lemma 10.7. Assume that X is paracompact Hausdorff. Then for any vector
bundle E — X and any z € X, the map evy: T'(E)/m,T(E) — E, is an isomor-
phism.

Proof. We first record the following important fact, which we label (*): if s is a
section of E defined on some neighborhood U of z, then there exists a section s’
defined on all of X such that s and s’ agree on some (potentially smaller) neighbor-
hood of x. To see this, first choose a neighborhood V' of z such that V C U (this
exists because X is normal). By Urysohn’s Lemma there is a continuous function
f: X — R such that f|[V =1 and f|x_y = 0. The assignment z — f(z) - s(2) is
readily checked to be a continuous section of E that agrees with s on V.

To prove surjectivity of ev;, let v € E,. Since F is locally trivial, one can find
a section s defined locally about z such that s(z) = v. By principle (*) there is a
section s’ defined on all of X that agrees with s near x; in particular, s'(x) = v.

For injectivity we must work a little harder. Suppose that s € T'(E) and s(z) = 0.
We must prove that s € m,I'(E). Choose independent sections ey, . . ., e, defined on
a neighborhood U of . Fact (*) says that by replacing U by a smaller neighborhood
of © we can assume that the sections are defined on all of X (but only independent
on U).

Using that e1(y),...,en(y) is a basis for E, when y € U, we can write s(y) =
a1(y)e1(y) + -+ + an(y)en(y) for uniquely defined numbers aq(y),...,a,(y) € R.
The functions a; are continuous (under the local trivialization given by the e;’s the
a; are just compositions of s with projection operators). Regarding the a;’s as local
sections of the trivial bundle X x R, (*) shows we may assume the a;’s are defined
on all of X (again, we might need to replace U with a smaller neighborhood here).
Since s(x) = 0 note that 0 = a1 (x) = az(z) = -+ = an(x).

Let t = s —aje; — -+ —ane, € 'E. Note that t vanishes throughout the
neighborhood U of z. Again using the Urysohn Lemma, choose a continuous
function b: X — R such that b(z) = 0 and b|x_y = 1. So t = bt. Then
s=t+> ae; =bt+ > ae; € m,I'(E), since b and all the a; are in m,. |

Remark 10.8. Lemma [10.7]should be thought of as giving an algebraic construc-
tion of the geometric fiber E,. We already encountered this idea back in Section [3]
and will develop it in more detail in Section

Proposition 10.9. Assume that X is paracompact Hausdorff. Then for any vector
bundles £ and F over X, the map T': Homyeee(x)(E, F) — Home(x)(TE,T'F) is
a bijection.

Proof. First of all, it is easy to check this when F and F' are both trivial. A map
of vector bundles X x R¥ — X x R is uniquely specified by a map X — My (R),
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and likewise a map of C(X)-modules C(X)¥ — C(X)! is specified by an [ x k
matrix with entries in C(X). One observes that continuous maps X — M« (R)
bijectively correspond with ! x k matrices with entries in C'(X).

For the general case, consider the following diagram:

T
HomVect(X) (Ea F)

HomC(X) (FE‘7 FF)

|

[1,cx Hom(E,, F,) — [I,. x Hom(TE/m,TE,TF/m,Tp).

The bottom horizontal map is an isomorphism by Lemma [I0.7] The left vertical
arrow sends a bundle map a: E — F to the collection of its restrictions to each
fiber; surely this map is an injection. It follows at once that I' is also an injection.

Next we show that the right vertical map is injective. = Suppose [ €
Home(x)(T'E,T'F) is sent to zero. If 3 # 0 then there is an s € I'E such that
B(s) # 0. Then (8s)(z) # 0 for some x € X. The square

B

e ——TI'F

evy \L \Levm

TE/m,TE —>TF/m,T F

immediately shows that 3(s(z)) cannot be zero, which is a contradiction. So indeed
the right vertical map is injective.

It remains to show that the top horizontal map (labelled T') in our diagram is
a surjection, so let # € Homg(x)(I'E,T'F). We can apply the right vertical arrow
to (8, and then find a unique preimage in [[, Hom(E,, F,;) using that the bottom
map is an isomorphism. This gives us a map of sets a: E — F', by defining it on
each of the fibers. We need to prove that « is continuous. However, this is a local
question: so it suffices to do so in the case that E and F are trivial, and this case
has already been verified. So we have produced a bundle map «: F — F whose
restriction to each fiber agrees with the map 5. Then I'a and [ are sent to the
same object under the right vertical map, therefore they must be equal. O

Note that we have now completed the proof of Swan’s Theorem, via Proposi-

tions [10.6] and [10.91

10.10. Variants of Swan’s Theorem. While Swan’s theorem is very pretty, it is
unfortunate that the rings C(X) are quite large and unwieldy from an algebraic
perspective. For example, these are typically non-Noetherian: choose an infinite
descending sequence of sets X D Ay D Ay DO Ay DO --- and look at the ideals
of functions vanishing on each A;. In many cases, however, a projective coming
from Swan’s Theorem can be seen to be extended from a projective over a smaller,
more manageable ring. As one example, let us consider the ring R of polynomial
functions on the 2-sphere: R = Rz, y, 2]/(z? +y* + 2% — 1) C C(S?). Let T be the
module appearing as the kernel in the following short exact sequence:

0 T rrdpn 0.
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Note that the map R — R is split by the map 1 — (x,v, 2), so T is projective. By
applying the functor (=) ®x C(S?) one sees that T ®g C(S?) is the C(5%)-module
corresponding to the tangent bundle of S? under Swan’s Theorem.

It is reasonable to regard the finitely-generated projective modules over R as
the “algebraic” vector bundles over S2, and this is exactly what happens in the
context of algebraic geometry. Given an affine scheme X = Spec S, the category
of algebraic vector bundles over X is defined in such a way that it is equivalent (in
some sense tautologically) to the category of finitely-generated S-projectives.

As a slight generalization of the previous example, let R be a finitely-generated
C-algebra that is an integral domain and let X = Spec R. We can consider the
topological space X¢ of C-valued points in X with its analytic topology, and we
get an inclusion R — C(X¢). From this we get a functor P — Pr = P ®p C(X¢)
from the category of finitely-generated projective R-modules into the category of
finitely-generated projective C'(X¢)-modules, the latter of which is equivalent to the
category of complex vector bundles on X¢ by Swan’s Theorem. For example, when
R =CJxy,...,x,) then every finitely-generated R-projective gives us an associated
complex vector bundle on C™. This technique of passing from algebra into topology
will be used often.

Exercise 10.11. Keeping the above discussion in mind, revisit the examples of
Section [3| and think about how they fit into this perspective.

Exercise 10.12. Check that Swan’s Theorem holds for any paracompact Hausdorff
space having the property that every vector bundle is trivializable on a finite open
cover. Using the results of the next section, check that this property holds for
all paracompact Hausdorff spaces that are homotopy equivalent to a finite CW-
complex. [By 7?7 this includes all algebraic varieties over C.]

11. HOMOTOPY INVARIANCE OF VECTOR BUNDLES

For a fixed n, let Vect,(X) denote the set of isomorphism classes of vector
bundles on X. It turns out that when X is a finite complex this set is always
countable, and often finite. It actually gives a homotopy invariant of the space X.
In this section we prove the homotopy invariance property, and in the next section
we will start to compute Vect,, (X) for some simple spaces X.

Write ig and 47 for the two inclusions X < X x I coming from the boundary
points of the interval. The key to homotopy invariance is the following result.

Proposition 11.1. Let X be paracompact Hausdorff, and let E — X x I be a
vector bundle. Then there is an isomorphism i§(E) = i} (E).

Before proving this let us give the evident corollaries:

Corollary 11.2. Let X be paracompact Hausdorff.

(a) If f,g: X — Y are homotopic then f* and g* give the same map Vect,(Y) —
Vect,, (X), for any n > 0.

(b) If Y is also paracompact Hausdorff and f: X — Y is a homotopy equivalence
then f*: Vect,(Y) — Vect,,(X) is a bijection, for all n > 0.

(c) If X is contractible then all vector bundles on X are trivializable.
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Proof. For (a), let H: X x I =Y be a homotopy and consider the diagram

-

1 *
Vect, (X) — Vecty, (X x I) <L Vect,, (Y).
i
One of the compositions is f*, the other is g*, and Proposition says that the
two compositions are the same.

Parts (b) and (c) are simple consequences of (a). O

Example 11.3. To give an idea of how we will apply these results, let us think
about vector bundles on S!. Divide S! into an upper hemisphere D, and a lower
hemisphere D_, intersecting in two points. Each of D, and D_ are contractible,
so any vector bundle will be trivializable when restricted to these subspaces.

Given two elements a, 3 € GL,(R), let E,(a, ) be the vector bundle on S!
obtained by taking np and np  and gluing them together via o and 8 at the
two points on the equator. The considerations of the previous paragraph tell us
that every vector bundle on S! is of this form (up to isomorphism). The following
picture depicts the construction of E, («, 5):

-
o)
\

Note that E,(id,id) = n, and F;(id,—1) = M (the Md&bius bundle). It is easy
to check the following:
(1) B, B) = By (id,a 1)
(2) E,(d,5) = E,(id, ') if and only if 8 and 8’ are in the same path component

of GL,(R) (or equivalently, if det(S) and det(3’) have the same sign).

In (2) we have used the fact that m7o(GL,(R)) = Z/2, with the isomorphism being
given by the sign of the determinant.

Let us explain the above facts. The isomorphism in (1) can be depicted as

g T

«@ - B id N a”lp
[ C—T
Here f and g are maps Dy — GL,(R) and D_ — GL,(R) giving the isomorphisms
on each fiber; compatibility with the gluing requires that we have g(—1)a = f(—1)

and a~1Bf(1) = g(1)B. This can be achieved by letting f(¢) = I,, and g(t) = o™},
for all ¢t.
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The proof of (2) is a little more subtle. To give an isomorphism E(id, 3) =
E(id, 8’) we must again specify maps f and g as above, but this time satisfying
g(—1) = f(-1) and B'f(1) = ¢g(1)8. If we paste D, and D_ together at —1
and identify the resulting interval with [0, 1], then we are just asking for a map
h:[0,1] = GL,(R) such that 5'h(1) = h(0)5.

If 8 and B’ are in the same path component then choose a path h: I — GL,(R)
such that h(0) = 8’ and h(1) = 8. Since we then have 8’h(1) = h(0)g, this yields
the desired isomorphism. Conversely, if we have a map h satisfying 8'h(1) = h(0)3
then we can rearrange this as 8/ = h(0)Bh(1)~!. The term on the right is path-
connected to h(0)Bh(0)~1, using the homotopy ¢ — h(0)Bh(t)~L. But h(0)Bh(0)~?
has the same determinant as (3, so these are also in the same path-component.
Hence, 8’ and (8 are themselves path-connected and this proves (2).

To summarize, from (1) and (2) it follows that isomorphism types for rank n bun-
dles over S! are in bijective correspondence with the path components of GL,,(R).
We know that for n > 0 there are two such path components, given by the sign of
the determinant. They can be represented by the identity matrix and the diago-
nal matrix J whose diagonal entries are —1,1,1,...,1. The corresponding bundles
E,(id,B) are n and M @ (n — 1).

Most of the basics of this discussion generalize readily from S* to S¥. We discuss
this in Proposition [12.3]

The methods of the above example apply in much greater generality, and with
little change allow one to get control over vector bundles on any suspension. We
will return to this topic in Section

At this point let us now give the proof of Proposition [I1.1} starting with an
overview of the basic approach. For a bundle on £ — X X I one can look at the
slices E|x s and try to track potential “twisting” that develops as t increases.
We need to differentiate between the twisting that was already present in E|x (0}
and twisting that is getting added (or subtracted) as the time variable progresses.
To this end, it is useful if we can arrange things so that the new twists only occur
in sectors of Ey, (o} where the bundle was already trivial. The heart of the proof
is reducing to this situation, which will then be handled by the following technical
lemma:

Lemma 11.4. Let X be a Hausdorff space and suppose given maps f,g: X — X xI
that are sections of the projection map X xI — X. Let A={zx € X | f(z) = g(x)}.
Suppose there exists an open subset V' of X such that (X —A) C V. PFinally,
assume that E — X x I is a vector bundle that is trivializable on V x I. Then

f*E =~ ¢*F.

The statement of the lemma is a mouthful, so let us explain a bit. The following
picture shows the two images f(X) and g(X) inside X x I, with the intersection
f(A) = g(A) drawn in bold. The region where the two sections disagree is contained
inside of V' x I, where we assume the bundle E is trivializable. The proof will
construct a fiberwise isomorphism E|;x) — E|4(x) that equals the identity on the
portion of the bundles over the bold region.
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;V :

Proof of Lemma[I1.4} Let Xy = f(X) and X, = g(X). The maps f: X — X and
X — X, are homeomorphisms, and we have isomorphisms of bundles f*FE = E|x,
and g*E = E|x,. Write B: X; — X, for the homeomorphism g o fL

Note that our hypotheses say that the points where X ¢ and X, differ are con-
centrated in the region V' x I, where E is trivializable.

The subset A is closed because X is Hausdorff. Let C = f(A) = g(A4), Dy =
f(XfA), and D, = g(XfA). We have Xy = CU Dy and X, = C'U Dy,
and the subsets appearing in the unions are all closed. Observe that B maps Dy
homeomorphically to Dy. Also note that Dy N.Dy, C C.

For S C X x I write Eg = E|g for brevity. Then Ex, = Ec U Ep, and
Ex, = Ec U Ep, are again decompositions into closed sets. We will define a map
of bundles ¢: Ex, = Ex, that covers B:

@
Ex, — FEx,

|,

X;—25X,.

Note that Dy C V x I and D, CV x I. Choose a trivialization o: Ey = n.
This gives the diagram

EDf o >EDg

alg gla

Dy xR* ZXS p o« Re
and we define ¢ to be the indicated fill-in. This is clearly an isomorphism of
bundles. Moreover, for x € Dy N D, one has B(x) = = and therefore ¢; is the
identity on the fiber over x.

We now have a continuous map ¢q: EDf — Ep, — FEx,, and we define
¢o: Fc < Ec U Ep, = Ex, to be the inclusion. We have just seen that ¢
and ¢, agree on the overlap, and so they patch together to define a continuous map
¢: Ex, — Ex,. This is an isomorphism on each fiber by construction, and hence
an isomorphism of vector bundles. (I

Proof of Proposition[11.1l This proof is taken from [Ha2]. Pick an z € X. Using
the compactness of I and the definition of vector bundle, we may find a neighbor-
hood U C X of z and values 0 = a9 < a1 < ... < an_1 < a, = 1 such that FE is
trivial over each U X [a;, a;41]. Patching these together gives a trivialization of the
vector bundle over U x I.
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Now assume for a moment that X is compact. Then we can cover X by open
sets Uy, ..., U, such that F is trivial over each U; x I. Choose a partition of unity
¢1, ..., ¢, subordinate to this cover, and set Sy = 0, B; = ¢1 + ... + ¢;. Define
X; to be the graph of 8; in X x I. If f;: X — X x [ is fi(z) = (z, Bi(x)), then
X = fi(X).

Observe that 3, = 1 and thus X,, = X x {1}, Xo = X x {0}. Also, ,—1 and
B; agree except on the support of ¢;, whose closure is inside of U;. Because of this,
the pair of maps f;_1, f; satisfies the hypotheses of Lemma for each 7. The
following picture gives an example of the first four sections X;; each section agrees
with the previous one except for a new “bubble” that appears in a region over the
set Ui~

Xo

Define B; = f;_1 0 f[l. These are homeomorphisms X; — X;_ 1 that in terms
of the picture can be described as“push down until you hit the next graph".
Lemma, yields fiberwise isomorphisms ¢; making the diagram

i
E|Xi - E|X7‘,—1

| .

X, — =X, 4

commute. Here we have used that X; and X;_; coincide except over the open set
Ui, and that E|U,-><I is trivial.

Via the identifications X = X, each Elx, is a vector bundle on X and we have
isomorphisms

o

i(E) = Elx, —» Elx, , —> Elx,_, —+ - — Elx, — Elx, = i(E).

n—2
This gives us what we wanted.

The paracompact case is similar, except for a few details. Let P be the prop-
erty that an open subset U C X is such that F is trivializable on U x I. By
Lemma there is a countable cover {U;} of X where each U; has this property.
Choose a partition of unity ¢; and work as previously to produce fiberwise bundle
isomorphisms

.= Ex, — FEx, , — - — Ex, — Ex,.

For any particular x € X the maps on the fiber over x are eventually identities
as one moves to the left, and after a finite number of steps one has (Ex, ), =
(Exx{1})e (equality, not just isomorphism). So we have a fiberwise isomorphism
of sets E|x (1} — E|x,, and it only remains to check continuity. But continuity is
a local condition, and by local finiteness of the partition of unity one knows that
each z € X has a neigborhood where the above sequence stabilizes after a finite
number of steps. Continuity is then immediate. O
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Remark 11.5. The isomorphism if(F) 2 i} (E) is not canonical, as is clear from
the proof of the theorem.

Remark 11.6. We have seen that all bundles on contractible spaces are trivial,
and that there is a close connection between vector bundles and projective modules.
Recall that when k is a field then k[x1, ..., x,] is the algebraic analog of affine space
A" and that projectives over this ring correspond to algebraic vector bundles. The
analogy with topology is what led Serre to conjecture that all finitely-generated
projectives over k[x1,...,x,] are free, as we discussed in Example

We have proven that if E is a vector bundle on X x I then i§(E) = ij(E).
It is natural to wonder if this result has a converse, but stating such a thing is
somewhat tricky. Here is one possibility: if F' and F’ are isomorphic vector bundles
on X, is there a vector bundle E on X x I such that ij(E) = F and i} (E) = F'?
Unfortunately, this has a trivial answer: yes, just take E = 7*(F') where m: X xI —
X is the projection. So this phrasing of the question was not very informative.

Here is another possibility: if F' and F’ are isomorphic vector bundles on X, is
there a vector bundle F on X x I such that i§(F) = F and i (F) = F'? Note the
presence of equalities here, as opposed to isomorphisms. This question does not
have an obvious answer, but it is also the kind of question that one really doesn’t
want to be asking: saying that two abstract gadgets are equal, rather than just
isomorphic, is going to force us down a path that requires us to keep track of too
much data.

So we find ourselves in somewhat of a muddle. Perhaps there is an interesting
question here, but we don’t quite know how to ask it. One approach is to restrict to
a class of bundles where “equality” is something we can better control. For example,
one can restrict to bundles on X that sit inside of X x R*°. Here, finally, we have
an interesting question: if F' and F’ are two such bundles, which are abstractly
isomorphic, is there a bundle F inside of (X x I) x R* that restricts to F' and F”
at times 0 and 1?7 The answer is yes, and we will discuss this further in Section [I3]

11.7. Isomorphisms and homotopy invariance. Let E and F' be two vector
bundles on a space X, and let u,v: E — F be two bundle maps. Let 7: X xI — X
be the projection. Define a homotopy from u to v to be a bundle map 7*E — 7*F
that restricts to uw on X x 0 and to v on X x 1. Intuitively, this is the same as
deforming w to v through bundle maps (we will make this precise in a moment).

For arbitrary bundle maps the set of homotopy classes isn’t very interesting,
since via scalar multiplication we find that every bundle map is homotopic to the
zero map. It is more interesting to put restrictions on the maps, and to require that
the homotopies respect these restrictions. For example, we can require v and v to
be isomorphisms and then that the homotopy 7n*E — 7* F also be an isomorphism.
When we talk about homotopies between bundle isomorphisms this is always what
we will mean.

The following result is a bit silly but will be useful later on. We will also outline
a massive generalization in the exercises.

Proposition 11.8. Let X be a paracompact Hausdorff space, and let E and F' be
bundles on X x I. Any bundle isomorphism ug: E|xxo — F|xxo0 may be extended
to a bundle isomorphism u: E — F, and given any two such extensions their
restrictions to X X 1 are homotopic (through isomorphisms).
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Proof. Note that the second statement is trivial, because by definition an extension
is a homotopy from u|xx1 to u|xxo. Given two such extensions u and v/, we simply
glue them together at u|x o to obtain a homotopy from u|x«1 to u/|xx1.

For the first statement, by Corollary [IL1.2(b) the map 7*: Vect,(X) —
Vect,, (X x I) is a bijection. So there exist bundles E' and F’ on X together with
isomorphisms F = 7*E’ and F = 7*F’, and therefore it is enough to prove the
result for 7*E’ and 7#*F’. In this case, the first statement simply claims that any
bundle map E' — F' extends to a bundle map 7*E’ — 7*F”, which is obvious. [

o Exercises o

Exercise 11.9. Let £ and F be rank n bundles on X, and recall the bun-
dle Hom(E, F) — X whose fiber over a point * € X is Hom(E,, F;). Define
Iso(E, F) C Hom(E, F) to be the subspace whose fibers over x are Iso(E,, F.).
Finally, define Isox (E, F') to be the space of sections of Iso(F, F) — X, equipped
with the compact-open topology. Said differently, Isox (F, F') is defined by the
pullback diagram

Iso(E, F) — Iso(E, F)X

|

* XX

where the function spaces have the usual compact-open topology.

For the following exercises assume that X is locally compact and Hausdorff, so
that one has the natural adjunction isomorphism Top(Z,Y*X) = Top(Z x X,Y).
(a) If E =n = F verify that Isox(E, F) = GL,(R)X.

(b) If Z is a space verify that Isox (F, F)Z 2 Isozx x (7*E, 7*F) where 7: Zx X —
X is the projection.

(c) Let u,v: E — F be bundle isomorphisms. Prove that v and v are homotopic in
the sense defined in Section if and only if there is a path I — Isox (F, F)
from u to v.

(d) Given a map ¢g: Y — X explain how to get an induced map of spaces
Isox (F, F) — Isoy (¢*F, g*F) that has the evident behavior on points.

(e) Let J and M be bundles on X xI, and assume that X is paracompact Hausdorff.
Prove that the restriction maps

res;: Isoxxr(J, M) = Isox iy (I xx iy, M| x < (i)
(induced by the inclusions X x {i} < X x I as in (d)) are acyclic fibrations,
for i € {0,1}. [Hint: It suffices to prove this when J = 7*E and M = 7*F
for some bundles E and F' on X. Relate the restriction maps to the evaluation
maps ev;: W1 — W for a certain space W.]
(f) Tt follows from (e) that the restriction maps are surjective and induce bijections
on path components. Relate this statement to Proposition [11.8

12. VECTOR BUNDLES ON SPHERES

In this section we explore the set of isomorphism classes Vect,,(S*) for various
values of k£ and n. Our goal is to compute as much as we can by elementary means
and see how far this gets us.
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In the end there are two important points to keep in mind. First, for a fixed
k these sets stabilize for n > 0. Secondly, Bott was able to compute these stable
values completely and found an 8-fold periodicity (with respect to k) in the case of
real vector bundles, and a 2-fold periodicity in the case of complex bundles. Bott’s
periodicity theorems are of paramount importance in modern algebraic topology
and will be discussed at length later in the book.

12.1. The clutching construction. Let X be a pointed space, and let C'y and C
be the positive and negative cones in ¥X. Fix n > 0. For amap f: X — GL,(R),
let E,(f) be the vector bundle obtained by gluing n|c, and n|c_ via the map f
(we use Corollary [B.27(b) here). Precisely, if z € X and v belongs to the fiber of
ne, over x then we glue v to f(x)-v in the fiber of ne_ over x. This procedure for
constructing vector bundles on ¥ X is called clutching, and when X is paracompact
Hausdroff every bundle on X arises in this way (use Corollary [11.2]c) to see that
the bundle is trivial on the two cones). By changing basis in one of the trivial
bundles we can always require f(x) = I,,; that is, we can require f to be a based
map.

Proposition 12.2. Let X be a paracompact Hausdorff space with a chosen base-
point. If f, f': X — GL,(R) are homotopic relative to the basepoint, then E,(f) =
E.(f"). Therefore we have a well-defined map E,: [X,GL,(R)]. — Vect,(XX),
and in addition this map is surjective.

Proof. Given a homotopy H between f and f’, we use H to make a bundle F on
(3X) x I by gluing together trivial bundles on Cy x I and C_ x I via H. Then
Elxxqoy = En(f) and E|x {1} = En(f’) by construction, so E,(f) = E,(f’) by
Proposition [I1.1]

To see that the map F,, is surjective, just note that a given vector bundle &
on ©X can be trivialized on C; X and C_X by Corollary [I1.2c). Choose such
isomorphisms ¢ : €|c, x = (C4+X) xR™ and ¢_: E|c_x — (C-X) x R", then let
F' be the composite isomorphism

-1
X xR e P L x xR
By Proposition [8.7] this has the form F(z,v) = (z, f;(v)) for a unique map f: X —
GL,(R).

The maps ¢4 and ¢_ can be regarded as vector bundle maps E|c, x —
E,(f)lc.x and €|c_x — En(g)lc_x, and by our construction of f they agree
on &|x. So they induce a vector bundle map ¢: &€ — E,(f) that is a fiberwise
isomorphism, and therefore an isomorphism of vector bundles by Exercise[8.14 [

It is natural to guess that F,: [X,GL,(R)]. — Vect,(XX) is an isomorphism,
but this is not quite true. It does turn out to be true when R is replaced by C and
we are dealing with complex vector bundles, but over the reals there is an issue. To
see this, observe that GL,(R) acts on [X, GL,(R)]. by pointwise conjugation: if
A€ GL,(R) and f: X — GL,(R) then define A.f by (A.f)(z) = A-f(z)-A"L. If A
and B in GL,,(R) are connected by a path then A.f and B.f are based homotopic,
and so the action factors through moGL,(R) = Z/2. For the analogous story over
the complex numbers note that the action factors through moGL,,(C) = %, and so
the action is trivial.
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Notice that E,(f) & E,(A.f) for all A and f; the isomorphism from the former
to the latter just consists of left multiplication by A on the trivial bundles C X xR"
and C_ X x R", which are readily checked to be compatible with the gluing maps.
So our E, map factors as

[X,GL,(R)]./(Z/2) — Vect, (LX)
where in the domain we factor out by the group action of Z/2.
Proposition 12.3. The above maps EX: [X,GL,(R)]./(Z/2) — Vect,(XX) and

EC: [X,GL,(C)], — VectS (LX) are bijections. Moreover, whenn is odd the action
of Z/2 on [X,GL,(R)]. is trivial.

Proof. Let f,g: X — GL,(R) be based maps with E,(f) = E,(g). A choice of
isomorphism « amounts to giving maps a4: CyX — GL,(R) and a_: C_X —
GL,(R) such that

() g-(atlx) = (a-|x)- f.
Evaluating at the basepoint gives ay(x¥) = a_(*). Let A denote this element of
GL,(R).

Since a4 |x has an extension to C1 X there is a homotopy relative to the base-
point between | x and the constant map with value A. The same holds for a_ | X.
Then (*) gives that g- A~ A- f, or g~ A- f- A=, This verifies that FE,, is an
injection when we mod out by the Z/2 conjugation action on the domain.

Finally, we need to prove that the Z/2 action is trivial when n is odd. But in this
case the two components of GL,,(R) are represented by I and —I, and conjugation
by both of these elements is trivial. (Il

Example 12.4. To see the importance of the Z/2-action in the above result, con-
sider the case where X = S! and n = 2. Here we are dealing with

FEy: [SY, GLy(R)]. — Vecty(S?).

We can replace GL2(R) by its homotopy-equivalent subgroup O(2), and then by
SO(2) since any pointed map S!' — O(2) must land entirely inside SO(2). Let
us also identify S' = SO(2) via e — [56 —smf] We of course know that
[S1, S, = Z via the degree map. So [S!,SO(2)], = Z with n € Z corresponding
to the map
fa: 81 = 80(2), € [Grng SN ]

The nontrivial path component of GLs(R) is represented by A = [ 9]. Con-

jugating f,, by A gives

e I Y R B st I B S e er

and this is precisely f_,. So we see that the Z/2-action is nontrivial here, and the
map F» is not injective before we quotient out by this action.

Exercise 12.5. Think through the isomorphism E(f;) = E(f_1) (or more gener-
ally, E(f,) = E(f_,)) for bundles on S? until it feels second nature to you.

Our next goal is to apply Proposition when X is a sphere S*~1, in order
to obtain a classification of bundles on S*. For rank 2 bundles on S? this was the
content of Example but we want to see how much further we can push those
ideas. The proposition gives a bijection Vect,,(S*) ~ [m,_1GL,(R)]/(Z/2). Tt will
be convenient to replace GL,,(R) with its subgroup O,,. Recall that O,, — GL,(R)
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is a deformation retract, as a consequence of the Gram-Schmidt process. When
k > 2 any based map S*' — O, must actually factor through the connected
component of the identity, which is SO,,. So we have

Vect,, (S*) 2 [1p_1G L, (R)]/(Z/2) = [7-10,]/(Z/)2) = 11150, /(Z./2)
(where the last isomorphism needs k > 2).

12.6. Vector bundles on S*. For k = 1 and n > 0 we need to look at moyGL,,(R) =
Z/2. The conjugation action is trivial here (it is literally the conjugation on the
group Z/2, which is trivial since the group is abelian). So we find that Vect,, (S!) =
Z/2, and we have previously seen in Examplethat the two isomorphism classes
are represented by n and M @ (n — 1) where M is the M6bius bundle.

12.7. Vector bundles on S?. Here we have Vect,,(S?) 2 [7150,]/(Z/2). When
n =1 we have SO; = Z/2 and 7150, = *, so all line bundles on S? are trivial.
We analyzed n = 2 in Example and found a bijection Vecty(S?) & Zxo. We
claim that for n > 2 one has 7150,, & Z/2 and the action of Z/2 is trivial, so that
we have the following:

* ifn=1,
Proposition 12.8. Vect,(S?) =< Zso  ifn =2,
ZJ2Z ifn> 3.

Proof. For n = 3 recall that SO3 = RP? so that m1(SO3) = Z/2. To see the
homeomorphism use the model RP? = D3/~ where the equivalence relation has
x ~ —z for x € OD3. Map D? — SO3 by sending a vector v to the rotation of R3
with axis (v), through |v| - 7 radians, in the direction given by a right-hand-rule
with the thumb pointed along v. Note that this makes sense even for v = 0, since
the corresponding rotation is through 0 radians. For z € 9D? this map sends x
and —z to the same rotation, and so induces a map RP? — SOs. This is clearly a
continuous bijection, and therefore a homeomorphism since the spaces are compact
and Hausdorff.

For n > 4 one can use the long exact sequence associated to the fibration
SO,_1 = SO,, - 8™ ! to deduce that SO,,_; — SO,, induces an isomorphism on
.

To deduce that the conjugation action is trivial, we recall that the nonzero
element of myO,, is represented by any orthogonal matrix of determinant —1. A
convenient choice is the diagonal reflection matrix A, = diag(—1,1,1,...,1). We
know that conjugation by A, acts trivially on 7150,, when n > 1 is odd (see the
last sentence of Proposition , and the same statement for even numbers n > 4
follows from lifting the generator of 7150, back to m1.50,,_1. [l

Definition 12.9. Let O(n) € Vect2(S?) be the vector bundle Ey, where f,: ST —
SO is a map of degree n. Note that O(0) = 2.

The bundles O(n), n € Zx, give a complete list of the rank 2 bundles on S2.
To get to higher ranks we consider the operation of adding on a trivial line bundle,
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and note that we have commutative diagrams

Vecto(S?) ol Vect3(S?) Vect,,_1(5?%) L Vect,, (5?)
T ig)* T T (in—l)* _T
11(505)/(Z/2) 5 7,(S0) 1 (S0n_1) 2 1 (50,)

where in the second diagram n > 4, the bottom maps are induced by the inclusions
in—1: SOn_1 — SO,, and we are using the fact that the conjugation action on
m1(S0,,) is trivial when n > 3. We saw in the proof of Proposition that
(4n—1)« is an isomorphism for n > 4 and surjective for n = 3, and so the same is
true for the top maps in the two squares. That is, bundles of rank at least 3 on S?
all come from bundles of rank 2 by adding on trivial bundles.

The map 71 (S032) — 11 (S0s3) is readily seen to be the projection Z — Z/2 (use
the fibration sequence SOy — SO3 — S?). This shows that O(j) @1 is trivial when
j is even, and is isomorphic to the nontrivial bundle O(1) @ 1 when j is odd.

Putting all of this information together, the following table shows all the vector
bundles on S?:

n 1 2 3 4 5 6
Vectn(S?) || 1| O(n), n € Zoo | 3, 0(1) &1 | 4, O(1) &2 | 5, O(1) &3

The operation (—) @ 1 moves us from one column of the table to the next, and is
completely clear except from column 2 to column 3; as we saw above, there it is
given by O(j) @13 if jis even, and O(j) @1 = O(1) ¢ 1 if j is odd.

To complete our study of these bundles there is one final question that we should
answer, namely what happens when one adds two rank 2 bundles (all other sums
can be figured out once one knows how to do these):

Theorem 12.10. O(j) ® O(k) = {4 Zf] Tk z.s et

O)®2 ifj+k is odd.
Proof. Let f;: S' = SO and fi: S — SO, be the clutching functions for O(j)
and O(k), respectively. The clutching function for the bundle O(j)®O(k) is the map
J; @ fr: ST — SOy, where @ is the (pointwise) block diagonal sum SOy x SOy —
S0y, given by

0 B

We can factor f; @ fr = (f; © fo) - (fo ® fr) where - is pointwise multiplication
and fy is the constant map at the identity. It is a standard fact in topology that
the group structure on [S*, SO,]. given by pointwise multiplication agrees with the
group structure given by concatenation of loops (this is true with SOy replaced by
any topological group). Note that the homotopy classes of fo @ fr and f ® fo are
the same, since these clutching functions give rise to isomorphic bundles. So we
have

(4, B) — {A O} .

[fi @ fi]l = [f5 @ fo] + [fx @ fol
where this is a statement abouts sums of homotopy classes in 71 (SO4).
But m1(5S04) = Z/2. The function f; @ fo is the nontrivial element of 7150,
precisely when j is odd, and similarly for fr & fo. It follows that the sum of these
elements is trivial/non-trivial when j + k is even/odd. O
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The core argument used in the above proof actually works verbatim in other
dimensions, so we record the result below for later use:

Proposition 12.11. For any n and k, the following diagram commutes:

Vect,, (S*) x Vect,,(S*) & Vecta, (S%)

| ]

(1r-1500)/(Z2/2) X (m-150,)/(Z/2) (r-15020)/(2/2)

T M o

761580, X Th_150,, 75180, —— > 7. _1504,.

Here pu is the group operation on mwg_150,,.

Exercise 12.12. Think through the proof of Proposition [12.11

12.13. Vector bundles on S3. Now we have to calculate 7m350,,. This is trivial
for n < 2 (easy), and for n = 3 it also trivial: use SO3 = RP* and the fibration
sequence Z/2 < S3 — RP3. Finally, the fibration sequences SO,,_; < SO,, —»
S"~! now show that 7m550,, = 0 for all n. We have proven

Proposition 12.14. Vect,, (S?) = m(S0,,) =2 0. That is, every vector bundle on
S3 is trivializable.

12.15. Vector bundles on S%. Once again, the first step is to calculate 7350,,.
Eventually one expects to get stuck here, but so far we have been fortunate. The
group is trivial for n < 2, and for n = 3 it is Z using SO3 = RP? and Z/2 —
53 — RP3. Next look at the long exact homotopy sequence for the fibration
SO3 — S04 — 53
s — Z/2 = 7T4(SS) — 7 — 7T3504 — 7 — 7'('2(503) =0.
It follows that 7350, = Z2. Next do the same thing for SO, — SO5 — S*:
= L= St — 13504 — 13505 — 0.

Unfortunately we cannot go further without calculating the map m,$* — 7350y,
which is Z — Z2. So now we are indeed stuck, unless we can resolve this issue. Note,
however, that the fibrations SO,,_; < SO,, — S™~! show that 73505 = 7350,
for n > 5, so once we’ve figured this one out we know everything. It will take us

a moment, but we will show that the map Z — Z? is a split inclusion. So we get
that

1 n <2
Z p—

Proposition 12.16. 713(S0,,) = 72 " i
n f—

Z n>5.

Moreover, the maps m350,, = m350,,+1 are isomorphisms for n > 5, and a surjec-
tion when n = 4.

The way we “get lucky” here is that we can think of S as the unit quaternions,
and then use quaternionic arithmetic to get our hands on both 73503 and 73.50;.
This gets a bit gnarly and takes a couple of pages, but is worth sketching. For
each ¢ € S® the conjugation map vq: H — H given by x + gzq is orthogonal and
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fixes 1. So it induces an orthogonal transformation of (1)* = (i, j, k), which we
may identify with an element of SOs. The resulting map C;: S® — SO3 given by
q = Yql(i,5,k) has the property that C1(q) = C1(—q) for all ¢ € S3, and the induced
map RP? — SOs is readily seen to be a homeomorphism. Since elements of 73503
are classified by their degree (use SO3 = RP® and Z/2 — S° — RP?), C} is a
generator. Write C,, for ¢ — 4 = (74)", which is the n-fold multiple of C in
7T3SO3.

Let f be the image of C; in m350,4. Here we think of SO, as acting on the
quaternions H by taking 1,1, j, k as the standard basis, so that the inclusion SO35 <
SO4is X — [} %]. Then f(q) is still conjugation by ¢, since that operation fixes
1. Things are about to become slightly awkward in that we will want to use both
additive and multiplicative notation for the group operation in w350, the latter
mostly when we are using matrix multiplication. We will write f or nf when using
additive notation, and Cy or (), when using multiplicative notation.

The element f (or C7) gives us the generator of w350, that comes from 7350s3.
Using the long exact sequence for SO3 — SO, 1, 83 where p; is projection onto
the first column, for the second generator we can take any map g: S® — SO, having
the property that the composite

s* %5 50, 2 S°
has degree 1. Consider the maps L, : S3 — SO, sending q € S3 to left multiplica-
tion by ¢™ (so L,, = (L1)™). The fact that [L1(q)](1) = ¢ shows p; o L; = id, and
so Ly is a choice for the second generator for mw3504. The elements of 7350, can
therefore be written as CyL, = L,Cy for k,n € Z. When working additively we
will write Ly as g, so that f and g form our additive basis for 7350, = Z2.

The next step is to think about the conjugation action on 7350,,_1 that comes
into our bijection Vect,,(S*) = (7350,,_1)/(Z/2). We know the action on 7350,
is trivial when n is odd, and then the isomorphisms 7350,, = 1350,,11 for n > 5
show that the action is trivial in that range. So the only place it has to be analyzed
is for n = 4.

For conjugation in SO; we use the matrix B = diag(1l,—1,—1,—1), which as
a transformation of H is B(z) = & (we could use A = diag(—1,1,1,1) instead to
match our previous work, but that introduces an unwelcome and unhelpful minus
sign into the formulas on H). Then we readily compute that BC3; B! sends q € S?
to the map

z + (g2q) = qzq = C1(),
or BC1B~! = C,. Likewise, BL;B~! sends q € S3 to the map
= (qz) = 2q = q(¢"'2)q = [C1(q)L-1(q)](2).

This is, BL1B~' = C1L_;. So in additive notation the conjugation action on
13504 = Z(f,g) is f — f, g — f —g, or (a,b) — (a + b,—b). Each orbit
has a unique element with non-negative second coordinate, therefore the quotient
(73504)/(Z/2) can be identified with Z x Zx>g.

What is left to do is to understand the connecting homomorphism for the long
exact homotopy sequence for the fibration SO < SO5 — S*

7 24 1380, <5 13505 — 0.
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But this is the same as understanding the kernel of i,, which by the long exact
sequence can have rank at most 1. We identify 7350, with Z?2 via the basis f, g,
and recall that the conjugation action is (a,b) — (a + b, —b). Since the conjugation
action on 73S0;5 is trivial, we know that (0,1) and (1,—1) will both map to the
same element. So (1,—2) is in the kernel of i,. But the only subgroup of Z? that
contains (1, —2) and has rank at most 1 is ((1, —2)), and so this must be ker(i.).
Therefore the image of 0 is this subgroup, and this completes our analysis.

The following table summarizes some of what we now know about vector bundles
on S*:

n 1123 4 5161 7
Vect,,(SH [ * [ * |Z | ZxZ>0 |Z | Z

All of the bundles of rank 5 and higher come from adding trivial bundles to rank 4
bundles. Let us give names to some of the bundles and thereby give a more precise
description. Let &,, be the rank 3 bundle whose clutching function is nf (or C,).
Let G, 1 be the rank 4 bundle whose clutching function is nf + kg, where n,k € Z
and k > 0. Note that G, 0 = F,, ® 1. We have shown that G, 1= Gor1,6—2 B 1,
and so for a complete list of rank 5 bundles we can use G,0 ® 1 = F, ® 2 and
Gp,1®1, for n € Z. In our basis the map 73504 — 73505 is the map Z? — Z given
by (a,b) = 2a + b, and so in our bijection Vects(S*) = Z we have F,, © 2 +— 2n and
Gn1 @1l 2n+1.
The following table compactly summarizes all of the vector bundles on S*:

n 112 3 4 5 6
Vectn(54) X | ok ?n (nEZ) Sn,k (nEZ,kEZZO) ?n @2, 9n,1 @l (nGZ)

The direct sum relations are all deduced from F, 83, = 3&F,, 4, and G4 5P Ga pr =
4@ Ggta ptor- These follow directly from Proposition [12.11

Exercise 12.17 (Challenge). Show that the tangent bundle T'S* is isomorphic to

G_1,2 (or equivalently, §1,_2). One way is to follow the steps below:

(1) First check that T'S* @ 1 is trivial, and deduce that T'S* = G_q,2q for some
a > 0.

(2) Regard S* as the sphere inside R(ey) @ H, where ey is the “north pole”. The
equator of S* is then the unit quaternions, and the tangent space of S* at ey
is identified with H by projection. Orient S* by having 1,4, j, k be an oriented
basis of T, S*, and then verify that —1,4, j, k is an oriented basis of T_,, S*.

(3) Let (z,q) = Re(zq) be the standard inner product on H. For each ¢ € S?
consider the transformation Ry, of R @ H that rotates the plane Span{en, ¢}
by 6 radians and is the identity on Span{ey,q}*. We rotate according to the
orientation that when 6 = 7 the vector ey rotates to ¢, and ¢ to —en. Prove
that for » € H = T,,, S* we have

Ry q(2) = —(sinb)(z, gen + (cosf — 1)(z, q)q + .

Conclude that R, ,(x) =  — 2(x, ¢)¢, which is the reflection of x in the hyper-
plane () of H.

(4) Verify that to get the clutching function for 7'S* we can use q — R, , but with
one caveat. The way we have set things up, this maps S® into the determinant
—1 component of O4. To instead get into SO4 we need to compose this with a
fixed orthogonal transformation of determinant —1; choose the transformation
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A(r) = —Z. In this way we get the clutching function h: S — SO, given by

g [v = —(z = 2(z, 9)q)].
(5) We know that h = (—a,2a) for some a in our basis for m3504 = Z2, so to de-

termine a it suffices to compute the image of h under the map (p1).: 73504 —
7393, This image is p; o h, which is

qr— Rw,q(l) = 2<17Q>q_ 1.

Verify that this map has degree —2 as a map S® — S3, for example by using
the local degree theorem.

(6) The previous part completes the problem, but for good measure let us compute
just a little more. The element 2g+ h will have (p1).(29+h) = 0, and so 2g+h
will be a multiple of f. We already know what multiple this must be, but let
us find it by brute force. The element 2g + h is represented by

g [z —¢*(z = 2(2,9)q) = —¢*7 + 2(z, g)q].
Verify that restricting to x = 1 gives the map ¢ — 1, i.e. the trivial map

S$3 — §3. If we instead restrict to (z,1) = 0 (i.e. = € (i,7,k)) show that the
above formula reduces to

q+— [z qzq) = Ci(q).

This confirms that 2g+h is represented by the image of the element C € w3503
under i, : 713503 — 1350y, i.e. that 29+ h = f. So h = —f + 2g.

12.18. Vector bundles on S*. Although we cannot readily do the calculations for
k > 4, at this point one sees the general pattern. One must calculate m;_150,, for
each n, and these groups vary for a while but eventually stabilize. In fact, 7;50,, =
m;SOp4+1 for n > i + 1. The calculation of these stable groups was an important
problem back in the 1950s, that was eventually solved by Bott. (There is again
the conjugation action that must be dealt with, but because of the stabilization
isomorphisms this action is trivial when n is large enough.)
Let us phrase things as follows. Consider the inclusions

01— 03 — O3 — ---

that send a matrix A to {‘3 ﬂ The colimit of this sequence is denoted O and
called the stable orthogonal group. The homotopy groups of O are the stable
values that we encountered above. We computed the first few: 70O = Z/2, 710 =

72, w0 = 0, and w30 = Z. Bott’s calculation showed the following:

i 0 | 1 |2|3|4|5|6|T7] 8 9 |10 |11]12]13 |14 |15

O | Z/2[Z/2[0[Z[0|0|0[Z[Z/2|Z/2[ 0 |Z|0|0]| 0| Z

The pattern is 8-fold periodic: m;180 = ;O for all i« > 0. One is supposed to
remember the pattern of groups to the tune of “Twinkle, Twinkle, Little Star”:

zee - two - zee - tWo - ze -TO-7€e ZzZe - TO- Ze - TO - Ze - TO - Zee.

We will eventually have to understand Bott’s computations at a deeper level; in
particular, we will need to get our hands on explicit generators. See Part [] for an
extensive treatment. But for now we will just accept that the values are as given
above.
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Exercise 12.19. Using the methods we have demonstrated for S”, n < 4, attempt
to understand all vector bundles on S°. Look up whatever homotopy groups of
spheres you need to do the calculations. Establishing a complete classification is
challenging and perhaps requires more tools than we have developed, but you should
be able to at least determine the following:

e All bundles of rank 1 and 2 are trivial.

e There is exactly one nontrivial bundle of rank 3. Describe the clutching

function as concretely as you can.

e There are at most four different isomorphism types of rank 4 bundles.

e All bundles of rank 5 or more are obtained by adding trivial bundles to
rank 4 bundles, and therefore there are at most four isomorphism classes
in each rank.

[Accepting the Bott results] All bundles of rank 6 or higher are trivial.

12.20. Complex vector bundles on spheres. One can repeat the above analysis
for complex vector bundles on a sphere. One finds that

VectE(S*) 2 mp_1 (GL,(C)) = mp_1(Uy),

where U,, — GL,(C) is the unitary group. Analogously to the real case, one has
fiber bundles U,,_; — U,, - S?"~! coming from the fact that when U,, acts on C"
the orbit of e; is $2*~! and the stabilizer is U,_;. Using that U; = S! one can
again compute Vectg(Sk) for small values of k. Here is what you get:

n 1] 2 3 4 5 6
VectS(SH 0] 0 0 0 0 0
VectS(S?) 2] z Z Z Z Z
Vect5(S3) [[ 0| 0 0 0 0 0
Vect5(SH) [[ 0] z Z Z Z Z
VectS(S%) [0 Z/2[00rZ/2|00rZ/2]00r Z/2 |0 or Z/2

The stable value in the last row turns out to be 0, although one cannot figure this
out without computing a connecting homomorphism in the long exact homotopy
sequence.

Exercise 12.21. Verify all of the computations in the above table.

The fiber bundles U,, < U, 41 — S?"*! again imply that 7;U,, stabilizes as n
grows. In fact, mU, = mU, 1 for n > 5. We can write the stable value as m;U
where U is the infinite unitary group defined as the colimit of

Ui —-U;—>U3—---
Bott computed the homotopy groups of U to be 2-fold periodic, with
U = Z 1fz %s odd
0 if 7 is even.

Again, for now we will just accept this result; but eventually we will have to un-
derstand the computation in more detail, and in particular we will need to get our
hands on specific generators.
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13. CLASSIFYING SPACES

Consider the functor sending a paracompact Hausdorff space X to the set
Vecty, (X). This is contravariant and homotopy invariant, so it has the feel of a
functor [—,Y] for some space Y—that is, a functor that is representable in the
homotopy category. In this section we prove that the functor Vect,(—) is indeed
representable. A representing space Y is called a classifying space for rank n
vector bundles. There are different methods for constructing such a space, some
more homotopical and some more geometric.

Before embarking on the construction, let us give an overview of some of the
key ideas. Suppose given a space VB, and a rank n vector bundle v, — VB,,.
To every map f: X — VB, we can associate the pullback bundle f*~,, and by
Proposition a) this gives a natural transformation [X, VB,,] — Vect, (X) for
paracompact Hausdorff spaces X. It will then be a matter of proving surjectivity
and injectivity of this natural map, and our construction of VB, will give sur-
jectivity almost automatically: that is, for any vector bundle £ — X there is a
map f: X — VB, and an isomorphism E = f*v,. The bundle v, — VB, is
called a “universal bundle”, since every other rank n bundle is pulled back from it.
Injectivity of our natural transformation is the slightly subtle part.

For injectivity we will produce an analogous classifying space for isomorphisms
between bundles of rank n. This will be a space VBI,, together with two canonical
maps 7, m2: VBIL, — VB, and an isomorphism ¢: 777y, — m37,. For any two
maps f,g: X — VB, and an isomorphism f*v, = g*v, there will exist a map
u: X — VBI, such that m ou ~ f and 7wy ou ~ ¢g. This is the analog of the
surjectivity part of the previous paragraph, and is again fairly easy.

Finally, we will construct a map VBI, — (VB,)! sitting in a homotopy-
commutative diagram

VB,

€evo

VB, .

As an exercise, check that injectivity of [X, VB,,] — Vect,, (X)) follows formally from
these considerations. So the work ahead of us comes down to constructing VB,
and VBI,, with the properties outlined above.

One may view a vector bundle as a family of vector spaces indexed by the base
space. In general, it is often useful to view a map E — B as a family of ___ if each
fiberisa . Taking our cue from the subject of moduli spaces, one could naively
hope that families of some mathematical object over B are in bijection with maps
from B to some space, called the moduli space corresponding to that mathematical
object. With this naive idea, we would have that families over x are in bijective
correspondence with points of our moduli space. But for rank n vector bundles this
would mean that the moduli space has only one point, since there is only one real
vector space of rank n. So this can’t work.

What turns out to work instead is a homotopical version of the theory, where
rank n vector bundles over B are in bijective correspondence with homotopy classes
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of maps from B to a ‘homotopical moduli space’. Our goal in this section is to
construct this space—called the classifying space of rank n vector bundles—and
prove the bijective correspondence.

There are several different approaches to the construction of classifying spaces,
but we will only focus on the most geometric of these. Instead of just one rank n
vector space we look at all of the rank n subspaces of some fixed infinite-dimensional
vector space. This gets somewhat technical because of the ins-and-outs of dealing
with R,

13.1. Grassmannians. We start by developing the basic theory of Grassmannians
for topological vector spaces. We include the case where the vector space is infinite-
dimensional, though one is free to think mostly about the finite-dimensional case.
To this end, let W be a topological vector space. Let VI,(WW) C W™ be the subset
of tuples (w1,...,w,) that are linearly independent, equipped with the subspace
topology (the ‘V’ is the usual notation for Stiefel manifolds, and here ‘I’ stands for
‘independent’). Define Gr,, (W) to be the quotient space of VI,(W) with respect
to the relation where (wy,...,w,) ~ (w},...,w)) if the vectors span the same
subspace. As usual, we identify points of Gr, (W) with n-dimensional subspaces of
w.

From another perspective, change-of-basis gives a continuous group action of
GL,(R) on VI,(W), and VI,(W) — Gr,(W) is just quotienting by this action.
Let us construct the action carefully. If w = (wy, ..., w,) is a tuple of vectors in W
and P € GL,(R), define [w - P]; = 3", w; P;;. Note that if W = R* and we regard
each w; as a column vector then w is a k x n matrix and this definition is just matrix
multiplication. Our definition clearly gives a map of sets VI,(W) x GL,(R) —
VI,(W). To see continuity start with the “linear combination map” LC: W™ x
R™ — W, (w,r) = >, ryw;. This is continuous because W is a topological vector
space. Next consider the diagram

VI, (W) x GLp(R) > VI, (W)

W" x GLy(R)

|

Wn x (R)" W

The map GL,(R) < (R™)" sends a matrix to the n-tuple of its columns, and the
bottom horizontal map is a product of n copies of LC and so is continuous. The
down-bottom composite factors through the subspace VI, (W), thereby giving the
upper horizontal map.

Let W’ be another topological vector space. If f: W — W’ is a continuous
linear embedding then the map W™ — (W')" restricts to VI,(W) — VI,(W') and
therefore induces a map Gr,, (W) — Gr,(W’). We will generally denote all of these
maps by f as well. The following result just says that homotopies among the maps
W — W’ descend to homotopies among the induced maps of Grassmannians.
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Lemma 13.2. Suppose that H: W x I — W' is a homotopy such that each Hy is a
linear embedding. Then there is a homotopy Gr, (W) x I — Gr,(W') that at each
time t is the map induced by H;.

Proof. Let H be the composite
W x I 2By e AT pryn
which sends (w1, ..., wn,t) — (Hi(wi),...,Hy(wy)). This is continuous by con-
struction. Since each H, is a linear embedding the composite restricts to give
H:VI,(W)xI— VI,(W".
In the diagram

VI, (W) x I —=VI,(W)—— Gr, (W)

i

Cro(W) xT

the projection VI,(W) x I — Gr, (W) x I is a quotient map by [Mul, Chapter 29,
Exercise 11|, and one readily checks that the quotient relations are respected by
the horizontal map. So the indicated extension exists. O

Corollary 13.3. If k < N < oo then all linear embeddings R* — RN induce
homotopic maps on Grassmannians.

Proof. First assume N < oo. Since a linear map R* — RY is completely deter-
mined by the image of the standard basis, the space of all such embeddings is
homeomorphic to VI (RY). The usual Stiefel manifold Vj(R") of orthornormal
frames sits inside VI, (RY) as a deformation retract, by Gram-Schmidt. But the
space Vi (RY) is connected, by the usual inductive argument using the fibrations
Vi1 (RN — Vi (RY) — Vi(RYN) (this is where we need k < N). So any two
points are connected by a path, i.e. any two linear embeddings are connected by a
homotopy through linear embeddings.

For the case N = oo just use that any linear map R*¥ — R> factors through a
finite R®, and then appeal to what has already been proven. ([

Here is a useful property of the V I-spaces:

Proposition 13.4. There is a natural bijection between Top(X,VI,(W)) and the
set of fiberwise injections of families of vector spaces ny — X x W.

Proof. Start with the linear combination map LC: VI,(W) x R” — W. Given a
map f: X — VI, (W), let ¢; be the composite
X xR S v w) xR 25w

This is evidentally continuous. We then get (m1,¢5): X x R® = X x W and one
readily checks that this is a fiberwise injective map of families.

In the other direction, suppose given a fiberwise injective map of families j: X x
R™ — X x W. For each i let o; be the composite

X x{e} = X xR* L X x W 22 W,
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which is clearly continuous. These induce ao: X — W™, and the image lies in the
subspace VI, (W). So we get a continuous map X — VI,(W). This construction
is readily checked to be a two-sided inverse for the construction of the previous
paragraph. [

To prove more about VI,(W) and Gr, (W) we will have to assume that W is
a reasonable topological vector space in the sense of Definition [B.I0] This ensures
that finite-dimensionsal subspaces of W are homeomorphic to R™, and that when
W = F + W' is a direct sum decomposition with F' finite-dimensionsal then the
corresponding projections from W to F and W' are continuous. The main non-
trivial example to keep in mind is W = R* (with the colimit topology), though
the finite-dimensional spaces R™ are also examples. Note that R in the metric or
product topologies are not reasonable topological vector spaces in this sense.

Proposition 13.5. If W is a reasonable topological vector space then the quotient
map p: VI,(W) = Gr,(W) is a principal GL,(R)-bundle.

Proof. Let F C W be a subspace of dimension n. Choose a complement W’
for F and write mp: W — F and mw: W — W’ for the associated projections.
These are continuous because W is reasonable (Proposition [B.11)). Set U = {J €
Gr, (W) |np(J) = F}. We will prove that U is a neighborhood of F in Gr, (W)
that trivializes p.

Observe that

p N U) = {(wy,...,w,) € W"|7p(w1),...,7r(w,) is a basis for F}.
The set p~(U) is open in VI,,(W) because it sits in the pullback diagram

VI,(W) wn " s pn

p I (U) —————= VI (F)

and VI,(F) — F™ is open. The last statement is because F' = R™ (this uses
that W is reasonable) and for n vectors in R™ independence is determined by the
nonvanishing of the determinant. Also, note that we are using continuity of 7.
Since p~(U) is open in VI, (W), we have that U is open in Gr,, (W).
We have the continuous map
a:p N U) = (W)™ x F", w— (T (wr), ., T (W), TR (W), ..., TE(wy)).
This is continuous because both 7r and 7y are continuous, by Proposition
Note that the image of a lands in the subspace (W)™ x VI,,(F). We also have the
map [ given by the composite

(W) X VI,(F) < (W')* x F* = (W' x F)" < (W x W)" = Ww"

and the image lands in p~!(U). One readily checks that o and 3 are inverses, so
we have the homeomorphism p~!(U) = (W')" x VI, (F).
Choose a basis by,...,b, for F. Let f be the composite

(W™ = (W) x {(br,....bp)} = (W)™ x VI (F) 5 p~ (U) - U.
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This is readily seen to be a bijection, but we need to prove it is a homeomorphism.
For this consider the composite

p~1(U)

(W)™ x VI (F) —% (W) x GLp(R) —2= (W) x (R")" = (W')".

The map a comes from the identification F' = R" provided by the chosen basis.
The map b sends a matrix in GL,(R) to its tuple of rows. The map ¢ consists
of several instances of the linear combination map (W)™ x R"™ — W' given by
((w),(r)) = >_rw;. All of these maps are continuous. The composite takes a
tuple of the form (vy + wi,...,v, + w}) where (vi,...,v,) € VI,(F) and each
w; € W' and sends it to the W’-projections of the unique basis for the same span
that has the form (by +w?, ..., b, +w!) with w € W' for all i. This map respects
the quotient relation for p~1(U) — U and so descends to give a map U — (W')".
This is the inverse to the map f, thereby proving that f is a homeomorphism.

Putting everything together, at this point we have produced the homeomorphism
in the commutative triangle

pH(U) = U x GLn(R)
U.
It is routine to check that the horizontal map respects the right GL,(R) action.
This completes the proof that p is a principal GL,,(R)-bundle. O

In the course of the above proof we also established the following result, which
we record for future use:

Proposition 13.6. Every point in Gr, (W) has a neighborhood that is homeomor-
phic to (W)™ for some subspace W' C W such that dim(W/W') = n.

Define 7, (W) to be the vector bundle associated to the principal GL,, (R)-bundle
VI, (W) — Gr,(W). That is,
’}/n(W) = VIn(W) XG’L”(R) R™.
There is a continuous map ¢: v, (W) — W defined by ((w1,...,wy), (r1,...,m)) —
riwy + - -+ + rpwy,. From this we can construct v, (W) — Gr, (W) x W which is

the projection in the first coordinate and ¢ in the second. As a map of sets this is
readily checked to be an injection.

Proposition 13.7. The canonical map v, (W) — Gr,(W) x W is a homeomor-
phism onto its image (in the subspace topology).

Proof. Let f denote the canonical map in question, and let Z denote the image of
f with the subspace topology. We have the triangle
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The map Z — Gr, (W) is a rank n subfamily of the trivial family of vector spaces
Gr,, (W) x W, and f is an isomorphism on each fiber. Our approach will be to prove
that Z — Gr, (W) is a vector bundle. It will then follow that f is an isomorphism
of vector bundles and hence a homeomorphism.

For each m-dimensional subspace F' C W with chosen complement W' let
Urpw C Gr,, (W) be the subspace of n-planes J for which 7p(J) = F. In a previous
proof we showed that these are open subsets, and clearly they cover Gr,(W). (In
fact we only need one choice of W’ for each F', but that fact will not be used). We
also showed that if by,...,b, is a basis for F' then the map ¢p: (W) — Upn~
given by (wi,...,w}) — Span(b +wi,...,b, + w),) is a homeomorphism.

Given a pair (F,W'), choose a basis b for F. For convenience write Zp y+ =
7 (Upw) = Z0 (Upw: x W). Consider the diagram

(W x R* % Zp i Upywr x W

ild XTEp
id x LC

UF,W’ x F.

¢b><idiu

UF,W’ x R™

o

Here LC} is the map r +— >, 7;b;, and LC' is the map (w',r) — (¢p(w’), >, ri(bi +
w})). All of the maps are obviously continuous and the diagram is readily checked
to commute. Also, LC is clearly a set-theoretic bijection. It then follows imme-
diately that LC is a homeomorphism, as the inverse is given by going around the
other side of the diagram (using the inverses of the maps we already know are
homeomorphisms).

We have produced a homeomorphism 71'1_1(UF7W/) = Zrw = Upw x R,
namely the map (¢ x id) o LC™! in the above diagram. This is the desired lo-
cal trivialization, showing that Z — Gr,, (W) is indeed a vector bundle. O

The standard inclusions R? < R?*! < R?*2 — ... give an induced system of
maps
Gr,(R") < Gr,(R""!) < ... — Gr, (R*>)
and similarly for the V' I,, and +,, constructions.
Proposition 13.8. The canonical maps colimg VI, (R®) — VI, (R*®),
colimg Gr, (R®) — Gr,(R*>), and colimgv,(R®) — 7,(R*) are all homeomor-
phisms.

Proof. Consider the following three directed systems and their abutments:

(Rn)n . (Rn+1)n . (Rn+2)n (Roo)n

VI (R") — VI, (R") — > VI, (R"?2) — > ... — > VI, (R®)

ipn ipn+l LPTH»Q il)

Gr,(R") — Gr,,(R"") —— Gr,(R""?) —— ... —— Gr,,(R*).

It is trivial that in each case the map from the colimit to the rightmost entry is a
continuous bijection, but a little work is required to check that these are homeo-
morphisms.
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By Corollary we have that (R>)™ is the colimit of the top directed system.
The intersection of VI, (R*®) with (R¥)" is VI,(R¥), and this is open in (R¥)"
because it is the set of n x k matrices with at least one non-vanishing n xn minor. So
VI,(R*) is open in (R>°)™ and is the colimit of the middle system. Finally, suppose
U C Gr,(R*) is such that its intersection with each Gr,(R®) is open in Gr,(R®).
Then p; (U N Gr,(R?)) is open in VI,,(R®), but this set is also p~1(U) NV I,,(R?).
Therefore p~1(U) is open in VI, (R*), and hence U is open. This confirms that
Gr,, (R%) is the colimit of the bottom system.

Finally, we turn to the map colim; v, (R®) — ,,(R*°). For this consider the two
directed systems

VI (R") x R">— VI, (R"*!) x R">—> .. .>—> VI, (R®) x R"

i i i

Yn(R") ——— ’Yn(RnJrl) T Yn (R%)

Since R” is locally compact and Hausdorff the colimit of the top row is the space
on the right; this uses Exercise [A.] together with what we have already proven
about VI,. It then follows formally that the induced map VI,(R*) x R* —
colim v, (R?) is quotient map (see Exercise [A.2). The quotient relations are the
same as the ones that define v, (R*), so we deduce that colim; v, (R®) — 7, (R>)
is a homeomorphism. O

The bundle 7, (R*) — Gr,(R>) allows us to construct the natural transfor-
mation Ox: [X, Gr,(R*)] — Vect,(X) sending f — f*v, (for X paracompact
Hausdorff).

Lemma 13.9. For X paracompact Hausdorff the map ©x is a surjection.

Proof. Let m: E — X be a rank n vector bundle. By Proposition we know
that there is a fiberwise embedding of bundles j: E — X x R*. Define the function
f: X = Grp,(R*®) by f(x) = m2(j(E,)). We need to check that f is continuous.
This can be done locally on X, and so we can assume F is trivial. In that case
Proposition [I3:4] says that the map j is determined by a continuous map X —
VI, (R*). The composite of this map with the projection to Gr,,(R*°) is precisely
f, and this verifies continuity.

Consider the map (fm,mj): E — Gr,(R>) x R*. This is clearly continuous,
and its image lands in the subspace 7, (R>) (this uses ???). The diagram

Gr,, (R™)

gives us an induced map E — f*~, which is readily seen to be an isomorphism on
each fiber and hence an isomorphism of bundles. So the map f is a preimage for F
under O x. O

Remark 13.10. Note in the above proof that if X were actually compact then the
bundle embedding could be chosen to be E <— X x R?® for some s < oo, and then
f maps to the finite Grassmannian Gr,(R?).
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Proposition 13.11. Let j¢¥,j°%: R® — R>® be given by j°(x1,22,..) =
(0,21,0,29,...) and j°%(x1,9,...) = (11,0,22,0,...). Then j¢¥ ~id and j°% ~id,
via homotopies H having the property that each Hy is a linear embedding. Conse-
quently, the maps j°°, j°%: Gr,(R®) — Gr,(R>) are homotopic.

Proof. We prove the claim for j¢¥; the proof for j°% is analogous. Define a homo-
topy H: R®xI — R*® by H(z,t) = tj*(x)+(1—t)z. This is continuous using that
R x I is the colimit of the R* x I (Exercise[A.1]). This is clearly a homotopy between
7Y and id. It remains to be shown that this is a homotopy through linear embed-
dings. Let t € (0,1) and suppose that H(z,t) = 0. We need to show that z = 0.
Our assumption yields 0 = ((1 — t)z1,tzy + (1 — t)za, (1 — t)xs, txa + (1 — t)ay, ...).
Therefore (1 — t)z; = 0 for all odd ; but since ¢ # 1, this means that x; = 0 for all
odd i. Likewise, observe that tx,, + (1 — t)x2, = 0 for all n € N. So z,, = 0 implies
9, = 0. Since we have z; = 0 for all odd 7 and every natural number n can be
written in the form n = 2¢ - (odd), it follows that = = 0.

The last statement in the proposition follows from Lemma [13.2 O

Corollary 13.12. Any two linear embeddings f,g: R® — R are homotopic
through linear embeddings, and therefore induced homotopic maps on Gr, (R>).

Proof. By Proposition [13.11] the map f is homotopic to je, o f, and the map g is
homotopic t0 jogq©g. So we may assume that im(f) C RS and im(g) C R%,. Now
consider the map H: R* x I — R given by H(z,t) =tf(x) + (1 — t)g(x). O

Theorem 13.13. The map ¢: [X, Gr,(R*®] — Vect,,(X) is a bijection when X is
paracompact and Hausdorff.

Proof. Surjectivity was established in Lemma [13.9] so only injectivity remains to
be shown. Assume f,g: X — Gr,(R*) are such that f*(v,) = ¢*(y») as vector
bundles over X. We will show that f is homotopic to g. By Proposition [I3.11] we
may replace f by j¢¥ o f and ¢ by j°% o g. In doing so, we are effectively assuming
that f(z) C R and g(z) C RS, for each z € X.

Let a: f*v, — ¢*y, be a choice of isomorphism. Define a map H: X x [ —
Gr,,(R*) by the formula

H(z,t) ={tv+ (1 —t)a(v)|v e f(z)}.

It is easy to see that H(x,t) is indeed an n-dimensional subspace of R>, using that
f(z) C RS and g(x) C RSY,. Also H(z,0) = g and H(z,1) = f by definition. It
only remains to check continuity of H. This is a local issue, so we can restrict to
an open set U C X on which f*v, is trivializable.

Choose an isomorphism A: n; — f*y,|v and let B = a0 A. The composite
U xR 2, (f*vn)lu = U x R is a fiberwise embedding and so corresponds to
amap f: U — VI,(R*>) by Proposition 13.4L and the image of f actually lies in

VI,(RS). Likewise, the composite U x R RN (9*vn)|lu = U x R* corresponds
to amap g: U — VI, (R*) that factors through VI, (RS,).
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The assignment (u,t) — ¢f(u) 4+ (1 —t)§(u) gives a continuous map J: U x I —
VI, (R*). To check continuity just refer to the diagram

VI,(R2) X VI, (RS,) X [ > VI, (R®)

where the bottom map is (a,b,t) — ta + (1 — t)b and is cleary continuous. The
image of the top left corner in (R°°)™ lands in VI,,(R*°) by algebra, and so we get
the induced dotted arrow. The map J is obtained just by precomposing the dotted
arrow with (f,g).

The projection of J down to Gr, (R*°) is exactly H|y ;. This verifies continuity
of H and completes the proof. ([

13.14. Representing operations on vector bundles. If C is a category then
amap f: W — Z in € induces a map of representable functors f.: C(—, W) —
C(—,Z). The Yoneda lemma says this in fact gives a bijection between C(W, Z)
and the set of natural transformations C(—, W) — C(—, Z). In particular, this im-
plies that natural transformations Vect,,(X) — Vect,(X) correspond to homotopy
classes of maps maps Gr, (R*) — Gr,(R*).

A simple example of this is the assignment £ — E @ 1, regarded as a natural
transformation Vect,, (X) — Vect,,4+1(X). The corresponding map P; : Gr,(R*) —
Grp41(R%) (really, just a homotopy class) can be described as the composite

Grp(R™) — Grpp1 (R B R™) — Grypq (R™)

where the first map sends an n-plane W to (eg) ® W, where eg is the standard basis
for the added copy of R. The second map is the one induced by any linear homeo-
morphism R @ R>* — R*> (they all induced homotopic maps on the Grassmannisn
by Corollary . For specificity let us choose the linear homeomorphism that
sends e; — e;41 for all i. To check that P, really does induce the “@1” natural
transformation, just verify that P;"y,4+1 = 7, @ 1; this is routine.

As another example consider the direct sum operation Vect, (X) x Vecty(X) —
Vect,+1(X), sending (E, E') — E @ E’. This will be induced by a homotopy class
of maps Gry,(R*) x Gri(R*) — Grp4,(R*). Such a map can be constructed as

Grp, (R®) x Gre(R™) -2 Gryp i (R® & R®) — Grpps(R™)

where the first map sends a pair of subspaces (Ji, J2) to Ji @ J2 and the second is
induced by any linear homeomorphism R*® &R — R (they all induce homotopic
maps by Corollary [I3:12] For example, choose any bijection «: Z4 x Zy — Z and
then use the linear map that sends e; @ e; = e, ;). Again, to justify that P does
represent the direct sum map one verifies that P*v,,x = v,@7x, which is an easy
exercise.

Continuity of the @ map requires some comment. If the product Gr,(R*>) x
Gri(R*°) is given the compactly-generated topology then it may be identified with
colimg +[Gr,, (R*) x Gri(R?)] and then continuity of the map is immediate. However,
one can also verify continuity when the domain has the product topology. Start



A GEOMETRIC INTRODUCTION TO K-THEORY 121

with the composite

VIL(R®) x VI (R® ) (R®)" x (R®)F == (R x {0})" x ({0} x R=)

(ROO e Roo)n+l~c

and observe that the image lands inside VI, ;(R* @ R*>). Next consider the
diagram

VI (R®) X VIL(R®) — VI, 1(R®) — Grp,(R)

i

Gr,,(R™) x Gry(R®). .

The maps VI,(R*®) — Gr,(R*®) and VIp(R*) — Grp(R>) are fiber bundles
and therefore are open quotient maps. The product of two open quotient maps
is again an open quotient map (exercise!). The quotient relations for V'I,,(R>) x
VIL(R*>®) = Gr,(R*) x Grg(R>) are satisfied by the composite (*), so this yields
the dotted arrow in the diagram. This arrow is readily verified to by &.

For a third method of verifying the continuity of @, see ExercisdI3.17}

There are many examples similar to the previous two where one constructs ex-
plicit maps on classifying spaces representing some algebraic construction. Let us
do just one more. Given any vector space V we know how to construct the exterior
product A*V and this is functorial. An n-plane J C R> therefore gives an (})-
plane A¥J C AFR>. Choosing a linear homeomorphism A*R> 2 R> therefore
gives the map L obtained as the composite

k oy
Grn(R™) 25 Gr(py (A'R>) = Gr(py (R).
Given a rank n bundle E — X we could define its kth exterior product to be the
bundle represented by L o f, where f is any representing map for E.

Exercise 13.15. Verify continuity of the A* map in the above composite. [Hint: It
suffices to show that the map preserves convergent sequences. Use the fiber bundle
VI,(R*®) = Gr,(R>*).]

Exercise 13.16. Think about some of the pros and cons of constructing A*F in
the above manner, compared to the construction that chooses a local trivialization
of the bundle and applies A* to each patch.

Exercise 13.17. Prove that Gr,(R*>) x Gri(R>) is sequentially determined, and
then prove that the map &: Gr,,(R>)xGri(R>) — Gr,1(R*®R>) is continuous
by proving that it preserves convergent sequences. [Hint: Consult Proposition m
and Exercise g).]

13.18. Stabilization of vector bundles. Here is a simple application of classi-
fying spaces that we will occasionally find useful. Fix a space X. If £ — X is a
vector bundle of rank n, then of course £ @ 1 is a vector bundle of rank n + 1. We
get a sequence of maps

Vecto(X) = Vect (X) 5 Vecta(X) 5 -+
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Are these maps injective? Surjective? Are there more and more isomorphism
classes of vector bundles as one goes up in rank, or is it the case that all “large”
rank vector bundles actually come from smaller ones via addition of a trivial bundle?
A homotopical analysis of classifying spaces yields some partial answers here. We
handle both the case of real and complex bundles:

Proposition 13.19. Let X be a finite-dimensional CW-complex. For real vector
bundles, Vect,(X) — Vectp4+1(X) is a bijection forn > dim X +1 and a surjection
forn = dim X. For complex bundles, Vects(X) — Vects,,(X) is a bijection for
n > %dimX and a surjection for n > %(dimX —1).

Proof. The map Vect,(X) — Vect,+1(X) is represented by a map of spaces
f: Grp(R*®) = Grp41(R*). One model for this map is the one that sends a sub-
space VC R*® to RV C RPR> and then uses a fixed isomorphism RPR> = R
to obtain a point in Gr,,1(R>). To establish the proposition we must analyze when
[X, Gr,y(R™)] L5 [X, Grpsr (R™)] s injective/surjective.

Now, the inclusion Gr,(R*°) < Gry4+1(R*) is n-connected. This can be argued
in different ways, but one way is to examine the Schubert cell decompositions of
each space and observe that they are identical until one reaches dimension n + 1.
This connectivity result implies that [B, Gr,(R*)] — [B, Gr,+1(R>)] is bijective
for CW-complexes with dim B < n — 1, and surjective for CW-complexes with
dim B = n. We simply apply this to B = X.

For the complex case, Gr,(C>®) < Grp41(C*) is now (2n + 1)-connected. So
we get the analogous bijection for CW-complexes B of dimension at most 2n, and
the surjection when dim B = 2n + 1. O

o Exercises o

Exercise 13.20. Consider the natural transformation Vect;(X) x Vecty(X) —
Vecty (X) given by (L1, Ly) — L1 ® Lo. This is represented by a map m: RP™ x
RP> — RP. Prove that the induced map m* on H*(—;Z/2) sends the generator
r € HY(RP*;Z/2) to x ® 1 + 1 ® 2. |[Note that since RP™ is a K(Z/2,1) this
characterization completely determines the homotopy class of m.|

Exercise 13.21. If L — X is a real line bundle then L ® L is trivial. Give three
proofs of this fact, using the following strategies:

(i) Equip L with an inner product and then construct a nonzero section of L ® L
by patching local sections together.
(ii) Prove that if L is any line bundle then the evaluation homomorphism L&L* —
1 is an isomorphism, and then use that L = L*.
(iii) Write down a model for the map f: RP*> — RP that represents the natural
transformation Vecty (X) — Vecty(X) given by L — L ® L, and prove that f
is homotopic to the identity.

14. TOPOLOGICAL K-THEORY

For a compact and Hausdorfl space X, let KO(X) denote the Grothendieck
group of (finite rank) real vector bundles over X. Swan’s Theorem gives that
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KO(X) = Kag(C(X)), where the latter denotes the Grothendieck group of finitely-
generated projectives. We can repeat this definition for both complex and quater-
nionic bundles, to define groups KU(X) and KSp(X), respectively. The group
KU(X) is most commonly just written K (X) for brevity. In this section we start
to develop the general theory of these groups, mostly concentrating on KO(X)
because the story is very analogous in the three cases.

The main point is that KO(X) is the Oth group in a generalized cohomology
theory (and likewise for KU (X) and KSp(X)). We will sketch the construction of
this theory, though some key elements will be postponed until later.

Until we explicitly mention otherwise, all spaces in this section are assumed to
be compact and Hausdorff.

14.1. Initial observations on KO. Observe that KO(—) is a contravariant func-
tor: if f: X — Y then f*: KO(Y) — KO(X) sends [E] to [f*E]. In particular,
the squash map p: X — * yields a split-inclusion p*: KO(x) — KO(X), where the
splitting is induced by any choice of basepoint in X. One has KO(x) 2 Z,so Z is a
direct summand of KO(X). To analyze the complement we can take two different
approaches:

Definition 14.2. For x € X let I?B(X,z) = ker[KO(X) AN KO(x)] where
i: {a} — X. Further, define KO*(X) = KO(X)/p*KO(x).

The group KO (X, z) is called the reduced KO-group of the pointed space X.
We call KO*'(X) the Grothendieck group of stable vector bundles on X.
The reason for the latter terminology will be clear momentarily. These two groups
are isomorphic; algebraically, this is coming from the split-exact sequence

0 — KO(x) 25 KO(X) — KO*t — 0.

Ifi: {x} — X is the inclusion then i* is a splitting for the first map in the sequence.
One gets an isomorphism between KO (X) and keri* in the evident way, by
sending a class [E] to [E] — p*i*[E]. This isomorphism is used so frequently that it
is worth recording more visibly:

(14.3) KO*(X) = KO (X, ) via [E] — [E] — [rank, (E)].

Remark 14.4. Both KO*(X) and I?é(X, x) appear often in algebraic topology,
and topologists are somewhat cavalier about mixing them up. We give here one
example where this can cause confusion.

Tensor product of bundles makes KO(X) into a ring, via the formula [E]- [F] =
[E ® F] and extending linearly. Then KO (X, ) is an ideal of this ring. Therefore
KO%(X) may be given a product via the above isomorphism, but this product
is not [E] - [F] = [E ® F]. Indeed, it is clear that this definition would not be
invariant under E — E @ 1. The product on KO®(X) is instead [E] - [F] =
[E ® F] — (rank E)[F] — (rank F)[E] + (rank E)(rank F).

We offer the following alternative description of KO (X). Let Vect(X) be the
set of isomorphism classes of vector bundles on X, and impose the equivalence
relation £ ~ FE ® 1 for every vector bundle E. The set of equivalence classes is
obviously a monoid under direct sum, but it is actually more than a monoid: it
is a group. To see this, recall that if E is any vector bundle over X then there
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exists an embedding E — N for sufficiently large N (Proposition . If @ is the
quotient then we have the exact sequence 0 - E — N — @ — 0, which is split by
Proposition 0.2 So E® Q = N. Yet N = 0 under our equivalence relation, and
so F has an additive inverse. It is easy to see that KO®*(X) is precisely this set of
equivalence classes.

Finally, here is a third description of KO%!(X). Consider the chain of maps

Vecto(X) 25 Vecty (X) 25 Vecty(X) 25 -+

When X is path-connected the colimit is the set of equivalence classes described
in the preceding paragraph, and therefore coincides with KO®*!(X). Note that if
X were not path connected then we would only be getting the monoid of vector
bundles of constant rank on X. Recall that Vect,(X) = [X, Gr,,(R*)], and one
easily sees that the @1 map is represented by the map of spaces

Gr,(R*®) — Grp41(R ® R*) = Gry,11(R™)

that sends a subspace U C R*® to R@& U C R @& R*™®. Let Groo(R™) denote the
colimit of these maps

Gri(R®) 25 Gra(R®) 25 Grs(R®) 25 -

(we really want the homotopy colimit, if you know what that is, but in this case
the colimit has the same homotopy type and is good enough). You might recall
that Gr,,(R*) is also called BO,,, and likewise Gro,(R>°) is also called BO.

Then for compact, path-connected Hausdorff spaces X we have a bijection

colbim [X, Gr,,(R*)] — [X, Groo(R™)].

So we have learned that KO*(X) ~ [X, BO].

If X has a basepoint then we can consider [X, BO], instead of [X, BO]. There
is the evident map [X, BO]. — [X, BO]. Typically there would be no reason for
this to be a bijection, but BO is a path-connected H-space: and in that setting the
map is a bijection. So in fact we can write

KO*'(X) ~ [X, BOJ, (X path-connected).
Applying this in particular to X = S* we have that for k > 1
KO (5%) = KO®*(S*) = [S*, BO] = [S*, BO), = m,(BO) = m_1(0).

The calculations of Bott therefore give us the values of KO (S*). For k = 0 observe
that KO(S%) = KO(x U *) 2 Z ® Z, so we have KO (S°) = Z. This lets us fill out
the table:

TABLE 14.4. Reduced K O-theory of spheres

k 0] 1 | 2 [3[4]5]6]7][8] 9 | 10 |11
KO(S® |z |z |z/2|lolz|ololo|z|z/2|Z/2] 0

Now let X be an arbitrary CW-complex, not necessarily compact or connected.
We define
KO(X)=[X4+,Z x BO], =[X,Z x BO],
where X denotes X with a disjoint basepoint added. For a pointed space X we
define KO (X) = [X,Z x BO),.
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As we have seen before, Bott Periodicity shows that the homotopy groups of Z x
BO are 8-fold periodic. This is a consequence of the following stronger statement:

Theorem 14.5 (Bott Periodicity, Strong version). There is a weak equivalence of
spaces 7. x BO ~ Q¥(Z x BO).

Using Bott Periodicity we can then calculate that for every pointed space X one
has

KO(8X) = [28X,Z x BO], = [X,0%(Z x BO)], = [X,Z x BO], = KO(X).

Remark 14.6. In the complex case, Bott Periodicity gives the weak equivalence
Z x BU ~ Q?(Z x BU). Consequently one obtains K (X2X) = K (X) for all pointed
spaces X.

14.7. K-theory as a cohomology theory. When X is compact and Hausdorff we
have seen that KO(X) 2 [X1,Z x BO|,, where X is X with a disjoint basepoint
added. The point of this isomorphism is that it immediately gives us several tools
for computing KO(X) that we didn’t have before. These are tools that work for
homotopy classes of maps in reasonable generality, so let us discuss them in that
broader context.

Let X and Z be pointed spaces. Then [X, Z], is just a pointed set, but if we
suspend the space in the domain then we get a bit more structure: [2X, 7], is a
group, where XX is the reduced suspension of X. One way to see this is to collapse
the equatorial copy of X in XX, to get XX V X X; write this collapse map as

VX - XX VEX.

The operation on [£X, Z], is defined by precomposing the wedge of two homotopy
classes with V. With some trouble one checks that ¥X is a cogroup object in the
homotopy category of pointed spaces, which yields that [2X, Z]. is a group.

Here is another way to think about this, which relates it to something we already
know. Let F/(X, Z) be the set of functions from X to Z, equipped with the compact-
open topology. We can write

[2X, Z]. = [SY, F(X, 2)]. = m(F(X, 2))

where the basepoint of F'(X, Z) is the map sending all of X to the basepoint of Z.
Now just use that w1 (F(X, Z)) is a group.

When k > 2 then we have [YF X, Z], = 7, (F (X, Z)) by a similar argument, and
so [X*X, Z], is an abelian group. Alternatively, one proves that now X¥X is a
cocommutative cogroup object in the homotopy category.

Similar results are obtained by putting conditions on Z rather than X. If Z is
a loop space, say Z ~ Q7;, then [X, 7], = [X,Q7]. = [2X, Z1]., and this is a
group by the above arguments. Similarly, if Z is a k-fold loop space for k > 2, say
Z ~QFZ,, then [X, Z], = [Y*, Z1]. and this is an abelian group.

Homotopy classes of maps into a fixed space Z always give rise to exact sequences:

Proposition 14.8. Let X,Y be pointed spaces, and let f: X — Y be a pointed
map. Consider the mapping cone C'f and the natural map p: Y — Cf. For any
pointed space Z, the sequence of pointed sets [X, Z]. « Y, Z]. < [Cf, Z]. is exact
in the middle (meaning that anything in [Y, Z]. which is sent to the basepoint is in
the image of the previous map).
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Proof. Let h: Y — Z and suppose ho f is homotopic to the constant map. Choose
a pointed homotopy H: X x I — Z so that H(X x {1}) = . Then H induces a
map CX — Z. Let g: Cf — Z be given by H on CX and h on Y. Then clearly
gop=h. (]

Given f: X — Y we form the mapping cone C'f, which comes to us with an
inclusion jo: Y < Cf. Next form the mapping cone on jg, which comes with an
inclusion j;: Cf — Cjy. Keep doing this forever to get the sequence of spaces
X =Y —>Cf—Cjy— Cjp — - depicted below:

- @%@Q

Note that Cjo ~ £X and Cj; ~ XY (this is clear from the pictures). Up to sign
the map Cjg — Cj; is just X f, so that the sequence of spaces becomes periodic:

X =Y =5Cf 52X - XY = 3(Cf) - 22X — ...

This is called the Puppe sequence. Note that the composition of two subse-
quent maps is null-homotopic, and that every three successive terms form a cofiber
sequence.

Now let Z be a fixed space and apply [—, Z]. to the Puppe sequence. We obtain
the sequence of pointed sets

(X, Z] « [V, Z]. < [Cf, Z) + [2X, Z]. + [ZY, Z]. + [2(C]), Z]« +

By Proposition [I4.§ this sequence is exact at every spot where this makes sense
(everywhere except at [X, Z].). At the left end this is just an exact sequence of
pointed sets, but as one moves to the right at some point it becomes an exact
sequence of groups (namely, at [XY, Z].). As one moves further to the right, it
becomes an exact sequence of abelian groups by the time one gets to [S2Y, Z]..

If Z ~ QZ, then we can extend the above sequence a little further to the left,
by noticing that the sequences for [—, Z1], and [—, Z]. mesh together:

[)(7 Zl]* < [Y, Zl]* ~<— [Cf, Zl]* < [ZX, Zl] EY Zl <

(X,Q21], = [Y,QZ1], =< [Cf, Q2] =<

~—I[CfZ

Note that the leftmost cycle of the orlglnal sequence, which we had thought con-
sisted just of pointed sets, in fact consisted of groups! If in turn we have Z; ~ QZ,
then we can play this game again and extend the sequence one more cycle to the
left, and so forth. If we are really lucky then we can do this forever:
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Definition 14.9. An infinite loop space is a space Zy together with spaces
Zh, Loy Zs, . .. and weak homotopy equivalences Zy, ~ QZ,+1 for alln > 0.

Note that if Z is an infinite loop space then we really do get a long exact
sequence—infinite in both directions—consisting entirely of abelian groups, hav-
ing the form

R [Cf, ZiJrl]* — [X7 Zz]* — [Y, Zz}* — [Cf, Zz]* — [X, Zifl]* — -
where it is convenient to use the indexing convention Z_,, = Q"Z for n > 0.

This situation is very reminiscent of a long exact sequence in cohomology, so let
us adopt the following notation: write

[X-HZi]* i > Oa

EY(X)=[X4, 2] = {[E_i(X”’ZO]* oo

For an inclusion of subspaces j: A < X write

[Cj, Zi). i>0,
[S4(CH), Zo]s i <O0.

It is not hard to check that this is a generalized cohomology theory. So we get a
generalized cohomology theory whenever we have an infinite loop space. (You may
know that it works the other way around, too: every generalized cohomology comes
from an infinite loop space. But we won’t need that fact here.)

For us the importance of all of this is that by Bott’s theorem we have

Z x BO ~Q*Z x BO) ~ Q'%(Z x BO) ~ ....

Thus, Z x BO is an infinite loop space and the above machinery applies. We obtain
a cohomology theory KO*. Moreover, periodicity gives us that KO™8(X, A) =
KO'(X, A), for any i.

This all works in the complex case as well. There we have Zx BU ~ Q?(Zx BU),
so Z x BU is again an infinite loop space. We get a cohomology theory K* that is
2-fold periodic.

EY(X,A) =[Cj, 2], = {

14.10. Afterward. The point of this section was to construct the cohomology
theories KO and K, having the properties that when X is compact and Hausdorff
the groups KO®(X) and K°(X) coincide with the Grothendieck groups of real and
complex vector bundles over X. We have now accomplished this! We will spend
the rest of these notes exploring what one can do with such cohomology theories,
i.e., what they are good for. We have already said that one thing they are good
for is calculation; we close this section with an example demonstrating the benefits
and limitations here.

Let us try to compute KO(RP?). Recall the ubiquitous decomposition
KO(RP?) = Z ® KO(RP?) = Z ® KO*(RP%). Next use the fact that RP>
can be built by attaching a 2-cell to RP' = S, where the attaching map wraps S*

around itself twice. That is, RP? is the mapping cone for S* 25 S'. The Puppe
sequence for this map looks like

2 2
st =8l S RP?— 857 557 ...
hence we have an exact sequence

= KO(SY) « KO(S") + KO(RP?) « KO (S5%) + KO(S?) - --
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Note that this is just the long exact sequence for the pair (RPQ,RPI) in KO-
cohomology, where we are using the identification KO (S?) = KO°(S?) =
KO~1(sh).
We know KO (S*) for all k > 0, so the above sequence becomes
7)2 + 7)2 + KO (RP?) « 72 + 72

where both maps Z/2 + Z/2 are multiplication by 2, i.e. the 0 map. Hence we
have a short exact sequence

(14.11) 0 Z/2 + KO (RP?) « Z/2 « 0,

and so KO (RP?) is either (Z/2)? or Z/4. It remains to decide which one.
The short exact sequence in is really
0+ KO(SY) ¢~ KO(RP?) &~ KO(8?) +— 0.
We have previously seen that the generator of KO9(S!) = KO*!(S') corresponds
to the Mobius bundle [M], and the generator of KO (S2) = KO%(S2) is [0(1)],
the rank 2 bundle whose clutching map is the isomomorphism S — SO(2). The
image of [0(1)] in KO°(RP?) is p*O(1), where p: RP? — 2 is the projection.

We happen to know one bundle on RP?, the tautological line bundle 4. When
we restrict 7 to RP' we get M, and so [7] is a preimage for [M] under i*. We need
to decide if 2[y] = 0 in KO (RP?); if it is, then KO (RP?) = (Z/2)? and if it is
not then KO (RP?) 2 Z/4. So the question becomes: is v @ 7 stably trivial?

The answer turns out to be that v @ v is not stably trivial; this is an elemen-
tary exercise using characteristic classes (Stiefel-Whitney classes), but we have not
discussed such techniques yet—see Section below f for complete details. For
now we will just accept this fact, and conclude that KO (RP?) = Z/4. Note that
this calculation demonstrates an important principle to keep in mind: often the
machinery of cohomology theories get you a long way, but not quite to the end,
and one has to do some geometry to complete the calculation.

There is a better way to think about this calculation, and we can’t resist pointing
it out even though it won’t make complete sense yet. But it ties in to intersection
theory, which is our overarching theme in these notes. In our discussion above we
used KO (RP?) as our model for I%(RPQ), but let us change perspective and
use the model that is the kernel of KO(RP?) — KO(x), for some chosen base-
point. Recall that [E] in KO*(RP?) corresponds to [E] — rank(E) in %(RPQ);
so the class we wrote as [y] is [y] — 1 in the shifted perspective, and we need to
decide if 2([y] — 1) = 0 in KO(RP?). The element 1 — [7] should be thought of as
corresponding to a chain complex of vector bundles

0—=~v—1—=0,
and thinking of it this way one finds that it plays the role of the K-theoretic
fundamental class of the submanifold RP' < RP? Then (1 — [y])? represents
the self-intersection product of RP' inside RP?, which we know is a point by the

standard geometric argument (shown in the picture below, depicting an RP! and
a small perturbation of it)):
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In particular, the self-intersection is not empty. This translates to the statement
that (1 — [y])? # 0. But

A=hD)?*=1-20+ [l =1-2h]+1=2(1-D])
where we have used that v ® 7 = 1 (this is true for any real line bundle, over any
base); so this explains why 2(1 — [y]) # 0. Again, we understand this argument
doesn’t make much sense yet. We will come back to it in Section ?77777. For the
moment just get the idea that it is the intersection theory of submanifolds in RP?
that is ultimately forcing KO (RP?) to be Z/4 rather than (Z/2)2.

Remark 14.12. It seems worth pointing out that in fact for every n one has
KO (RP™) = 7Z,/2* for a certain value k depending on n. We will return to this
calculation (and complete it) in Section

Exercise 14.13. It is a good idea for the reader to try their hand at similar
calculations, to see how the machinery is working. Try calculating some of the
groups below, at least for small values of n:

K(CP"™) (reasonably easy)
KO(CP") (a little harder)
K(RP™) (even harder)
KO(RP"™) (hardest).

Don’t worry if you can’t completely determine some of the groups; just see how far
the machinery takes you.

14.14. K-theory for non-compact spaces. The reader will perhaps have noticed
that for arbitrary spaces X we now have two competing definitions:

KOg¢r+(X) = Grothendieck group of vector bundles over X
KO'(X) =[X,Z x BOJ.

In older literature the second group is sometimes called representable KO-
theory. When X is compact and Hausdorff we have seen that these groups are
isomorphic. What about more generally?

For X paracompact and Hausdorff we get a natural map ®: KOgp(X) —
KO°(X). To explain this we might as well assume that X is path-connected as
well. Recall from Proposition [0.2] that all short exact sequences of vector bun-
dles are split. From this it follows that KOg:(X) is the group completion of the
monoid Vect(X) of isomorphism classes of vector bundles. To a rank n vector bun-
dle E — X we assign the pair (n,jo f) where f is a classifying map X — Gr,,(R>)
and j: Gr,(R®) < Gre(R™) is the standard inclusion. The map f involves a
choice, but it is well-defined up to homotopy. So this assignment gives a map
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of monoids Vect(X) — [X,Z x BO], and since the latter is a group it induces
KOgr(X) = KO°(X).

We know that ® is an isomorphism when X is compact. We also know that
both the domain and range are homotopy invariant, and so we can generalize this
slightly.

Definition 14.15. A space is homotopically compact if it is weakly equivalent to
a finite cell complex. A pair (X, A) is homotopically compact is there is a finite
CW-complex Y and subcomplex B for which there is a zig-zag of weak equivalences
between (X, A) and (Y, B).

Proposition 14.16. If X is a homotopically compact CW-complex then ® is a
bijection.

Proof. Since X is a CW-complex, homotopically compact implies that X is homo-
topy equivalent (not just weakly equivalent) to a finite cell complex X’. Then the
map Py is isomorphic to @y, and the latter is a bijection since X’ is compact
Hausdorft. O

The map ® is in general neither injective nor surjective. Here is an example
where the latter fails:

Example 14.17. We claim that the map Kg,+(RP>) — K°(RP>) is not sur-
jective. Let L — RP™ be the tautological bundle, and let J = cL be its com-
plexification. With some trouble one can completely analyze VectS(RPDO) =
[RP*°,BU(n)], and one finds that it consists of the bundles rJ & (n —r) for
0 <7 < n. Conseqeuntly, Kg+(RP>) =Z @ Z, with the summands generated by
1 and [J]. In contrast, K°(RP*) = Z ¢ Z, where the second summand denotes
the 2-adic integers. The completion is a phenomenon that often arises when deal-
ing with homotopy classes of maps out of infinite complexes. Using the standard
skeletal filtration of RP°° by finite projective spaces, one has an associated Milnor
exact sequence of the form

0 — lim'K~}(RP") — K°(RP*) — lim K°(RP") — 0.

In this case the lim' term turns out to vanish, the K°(RP™) groups are all of the
form Z ® 7/ 277 with the exponents increasing with n, and so one obtains Z @ 7y
for the inverse limit.

Elements of this example can be generalized to BG, for any finite group G.
There is a map Repp(G) — Kgre(BG) induced by sending a representation V' to
the bundle FG xg V — BG. This map is not always an isomorphism, but it is so
when G is a p-group (ref?).

Let I(G) be the kernel of the dimension map dim: Reps(G) — Z, which is
typically called the augmentation ideal. The Atiyah-Segal completion theorem
[AS] says that K°(BG) = Repe(G)}. We get the diagram

Repe(G) — Repe(G)7

L

Kar(BG) —2= K°(BG).
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When G is a p-group the left vertical map is an isomorphism, the top horizontal map
is injective, and so the bottom horizontal map is injective as well [JOL Corollary
1.9].

Let us explore what the above says when G = Z/2. Here there are two irreducible
representations, namely the trivial and sign representations on C. If we denote the
latter as z then Repg(G) = Z[z]/(2? — 1). The augmentation ideal is I = (z — 1).
If we set R = Repg(G) then Repp(G)?7 is the inverse limit of

-— R/I® - R/I* - R/I.

One quickly finds that R/I = Z (generated by 1), R/I? = 7 & 7, /2 where the first
summand is generated by 1 and the second by z — 1, and R/I® = Z & Z/4 with the
same generators. To find the order of z — 1 in R/I™ we use the division algorithm
in Z[x] to write

(x —1)" = (2% — 1) f(x) + (linear polynomial)

and observe that since both (z — 1)" and (22 — 1) vanish for # = 1, so must the
linear polynomial. Hence we have

(x—1)" = (22 = 1) f(z) + k(z—1)
for some k, or equivalently
(x—1)"" = (z+1)f(2) +Fk.
We can obtain k by plugging in = —1, and so k = (—2)"~!. Thus one finds that

R/I™ = Z & 7Z/2"~!, with the first summand generated by 1 and the second by
x — 1. The completion R} is therefore Z & Z4, as desired.

15. VECTOR FIELDS ON SPHERES

It is a classical problem to determine how many independent vector fields one
can construct on a given sphere S™. This problem was heavily studied throughout
the 1940s and 1950s, and then finally solved by Adams in 1962 using K-theory.
It is one of the great successes of generalized cohomology theories. In this section
we discuss some background to the vector field problem. We will not tackle the
solution until Section when we have more tools at our disposal.

15.1. The vector field problem. Given a nonzero vector v = (x,y) in R?, there
is a formula for producing a (nonzero) vector that is orthogonal to u: namely,
(—y,z). However, there is no analog of this that works in R3. That is, there is
no single formula that takes a vector in R? and produces a (nonzero) orthogonal
vector. If such a formula existed then it would give a nonvanishing vector field on
S?, and we know that such a thing does not exist by elementary topology.

Let us next consider what happens in R*. Given u = (x1,22,23,24), we can
produce an orthogonal vector via the formula (—xs, 21, —z4, x3). But of course this
is not the only way to accomplish this: we can vary what pairs of coordinates we
choose to flip. In fact, if we consider

—ZI2 —Z3 —T4
v = 1 Vg = T4 v3 = T
1 —T4 9 2 T 9 3 To

xs3 —X2 x1
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then we find that vy, v, and vs are not only orthogonal to u but they are orthogonal
to each other as well. In particular, at each point of S we have given an orthogonal
basis for the tangent space.

We aim to study this problem for any R™. What is the maximum k for which
there exist formulas for starting with v € R™ — {0} and producing k orthogonal
(nonzero) vectors, with u as the first of the set? The following gives a different
phrasing for essentially the same question:

Question 15.2. On S™, how many vectors fields vy, vs, ..., v, can we find so that
vi(x),va(x),...,v.(x) are linearly independent for each x € S™?

In colloquiual usage we will sometimes drop the phrase “linearly independent”
and leave it to be understood. So for example, if we talk about constructing two
vector fields on S® it is implicit that we mean independent vector fields, as otherwise
the problem would be trivial!

Note that by the Gram-Schmidt process we can replace “linearly independent”
by “orthonormal.” If n is even, the answer is zero because there does not exist even
a single nonvanishing vector field on an even sphere. To start to see what happens
when n is odd, we look at a couple of more examples.

Let u € S° have the standard coordinates. We notice that the vector v; =
(—z9,21, —x4, T3, —Tg, T5) is orthogonal to u. However, a little legwork shows that
no other pattern of switching coordinates will produce a vector that is orthogonal
to both © and v1. Of course this does not mean that there isn’t some more elaborate
formula that would do the job, but it shows the limits of what we can do using our
naive constructions.

For u € S7 we can divide the coordinates into the top four and the bottom four.
Take the construction that worked for 52 and repeat it simultaneously in the top
and bottom coordinates—this yields a set of three orthonormal vector fields on S7,
given by the formulas

(15.2) (—$2,$1,—l‘4,$3,—x6,$5,—l‘8,$7),
(—ZE3, L4,T1, T2, —T7,T8,T5, —176),
(=24, —T3, T2, T1, —Ts, —T7, T6, T5)-
This idea generalizes at once to prove the following:

Proposition 15.3. If there exist r (independent) vector fields on S™~!, then there
also exist r vector fields on S*"~1 for all k.

For example, since there is one vector field on S' we also know that there is at
least one vector field on S?*~1 for every k. Likewise, since there are three vector
fields on S® we know that there are at least three vector fields on S**~1 for every
k.

We have constructed three vector fields on S”, but one can actually make seven
of them. This can be done via trial-and-error attempts at extending the patterns in
, but there is a slicker way to accomplish this as well. Recall that 52 is a Lie
group, being the unit quaternions inside of H. We can choose an orthonormal frame
at the origin and then use the group structure to push this around to any point,
thereby obtaining three independent vector fields; in other words, for any point
x € 83 use the derivative of right-multiplication-by-z to transport our vectors in
T,5% to T,,S3. The space S7 is not quite a Lie group, but it still has a multiplication
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coming from being the set of unit octonions. The multiplication is not associative,
but this is of no matter—the same argument works to construct 7 vector fields on
S7. Note that this immediately gives us 7 vectors fields on S°, 23, etc.

Based on the data so far, one would naturally guess that if n = 2" then there
are n — 1 vector fields on S"~!. However, this guess turns out to fail already when
n = 16 (and thereafter). To give a sense of how the numbers grow, we give a
chart showing the maximum number of vector fields that exist on low-dimensional
spheres:

n 21416181012 |14]16|18|20|22|24|26|28]|30] 32
n—1 1135|719 (111315171921 |23|25|27|29]31
vionS™ [ 1317|1318 |1[3[1]7][]1]3]1]9

Notice that we have explained how to construct the requisite number of vector
fields until we get to S'>—there we have shown how to make seven of them, but
the claim is that one more can be made. Once we know how to make eight on S'°
we automatically know how to make eight on S3!, but the claim is again that one
more can be made beyond this. By the end of this section we will know how to
construct all of these.

Okay. Now that we have a basic sense of the problem let us explain the numerol-
ogy behind the answer.

Definition 15.4. If n = m - 2974 where m is odd, then the Hurwitz-Radon
number for n is p(n) = 2%+ 8b — 1.

Theorem 15.5 (Hurwitz-Radon). There exist at least p(n) independent vector
fields on S™~ 1.

Consider n = 32 = 2° = 21741 In the terms of Definition [15.4 we have a = b =
1, so that p(32) = 2! + 8(1) — 1 = 9. That is, there are at least 9 vector fields on
3L If n = 1024 = 210 = 22442 then p(n) = 22 +8-2 — 1 = 19; one can make 19
independent vector fields on S$'%23. One should of course notice that these numbers
are not going up very quickly.

We will prove the Hurwitz-Radon theorem by a slick, modern method using
Clifford algebras. But it is worth pointing out that the theorem can be proven
through very naive methods, too (it was proven in the 1920s). All of the Hurwitz-
Radon vector fields follow the general patterns that we have seen, of switching
pairs of coordinates and changing signs—one only has to find a way to organize the
bookkeeping behind these patterns.

15.6. Sums-of-squares formulas. Hurwitz and Radon were not actually thinking
about vector fields on spheres. They were instead considering an algebraic question
about the existence of certain kinds of “composition formulas” for quadratic forms.
For example, the following identity is easily checked:

(*) (@ +23) - (7 +3) = (@191 — 2y2)” + (2192 + 2231)”
Hurwitz and Radon were looking for more formulas such as this one, for larger

numbers of variables:

Definition 15.7. A sum-of-squares formulas of type [r,s,n| is an identity

(@2 ad 4+ )i+ ) = s 22
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in the polynomial ring R[x1, ..., Ty, Y1, - .., Ys|, where each z; is a bilinear expression
mnx’s and y’s.

We will often just refer to an “[r, s, n]-formula”, for brevity. For what values of r,
s, and n does such a formula exist? This is currently an open question. There are
three formulas that are easily produced, coming from the normed algebras C, H,
and Q. The multiplication is a bilinear pairing, and the identity |zy|*> = |z|?|y|? is
the required sums-of-squares formula. These algebras give formulas of type [2, 2, 2],
[4,4,4], and [8, 8, 8]. (Check that the [2,2,2] formula that comes from C is exactly
formula (*) above). In a theorem from 1898 Hurwitz proved that these are the
only normed algebras over the reals, and in doing so ruled out the existence of
[n, n, n]-formulas for n ¢ {1,2,4,8}. The question remained (and remains) about
other types of formulas. See [Sh| for a detailed history of this problem.

Exercise 15.8. Use the multiplication table for H to write down the corresponding
[4,4, 4] formula.

Perhaps surprisingly, most of what is known about the non-existence of sums-
of-squares formulas comes from topology. To phrase the question differently, we
are looking for a function ¢: R” ® R® — R™ such that |¢(x,y)|> = |z|? - |y|? for all
x € R” and y € R®. The bilinear expressions z1, ..., z, are just the coordinates of
o(z,y).

Write z = ¢(z,y) = > x;A;y, where the A;’s are n x s matrices of real

numbers. The sum of squares formula says that 27z = (27z) - (yTy). But

e = Z(yTAJij)(CUiAiy), hence

07
v i AT Ay =2"e = (@"2)(y"y) = " ((sz)I )y
i

for all y. The first and last expressions are quadratic forms in y, and they are equal
only if ina;jA}ﬂAi = (xTx)I = fo[ This must hold for all x, so equating

i,
coefficients of the monomials in z we find that
o AT A; =1 (that is, A; € O,,) for every i, and
. AJTAi + AT A; = 0 for every i # j.
The case s = n turns out to be significantly simpler to address than the general

case. If s =n we may set B; = AIIAZ- = AT A;. Then B; = Id and the conditions
to satisfy for i > 2 become

° BiT = Bi_1
e B2=-1,
e B;Bj = —B;B; for all i # j.
Note that the first two conditions imply B = —B;, and using this the third

condition can be rewritten as B B; + B} B; = 0. So by replacing the A’s with the
B’s we have proven the following:

Corollary 15.9. If an [r,n,n]-formula exists, then one exists where A; = I and
AiT =—A; fori>2.

In the setting of the corollary, the necessary conditions on the matrices
Ao, Az, ..., A, become that Af = —1 and A;A; = —A;A;.
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Corollary 15.10. If an [r,n, n]-formula ezists, then there exist r — 1 independent
vector fields on S™71.

Proof. Assume the A; are chosen as in Corollary If y € S"~1 then ¢(e;,y) €
S™=1 for i = 1,2,...,r: this follows from the identity |¢(e;,y)|* = |ei|? - [y[2. We
also have that ¢(e1,y) =y since Ay = I. We claim that ¢(e;,y) L ¢(ej,y) if i # 5.
To see this, note that by the norm formula

[¢(es + e, y)° = les + €5 - [y> = 2Jy|*.
On the other hand,
[p(ei +e5, )7 = |oles,y) + dlej,y))?
= [ples, y)* + |6(ej v)|* + 20(ei,y) - $lej,y)
2lyl* + 2¢(ei,y) - dlej,y)-

We conclude ¢(e;,y) - ¢(ej,y) = 0. Therefore we have established that ¢(es, —),
#(e3,—),...,P(e., —) are orthonormal vector fields on S"™~1. O

15.11. Clifford algebras. We have seen that we get r — 1 independent vector
fields on S™~! if we have a sums-of-squares formula of type [r,n,n]. Having such
a formula amounts to producing matrices Az, A3, ..., A, € O,, such that A? = —T
and A;A; + A;A; = 0 for ¢ # j. If we disregard the condition that the matrices
be orthogonal, we can encode the latter two conditions by saying that we have a
representation of a certain algebra:

Definition 15.12. The Clifford algebra Cli, is defined to be the quotient of the
tensor algebra R(ey, ..., ex) by the relations €2 = —1 and eie; +eje; = 0 for all
1% 7.

The first few Clifford algebras are familiar: Cly = R, Cl; = C, and Cl; = H.
After this things become less familiar: for example, it turns out that Cls = H x H
(we will see why in just a moment). It is somewhat of a miracle that it is possible
to write down a precise description of all of the Clifford algebras, and all of their
modules. Before doing this, let us be clear about why we are doing it:

Theorem 15.13. An [r,n,n]-formula exists if and only if there exists a Cl._1-
module structure on R™. Consequently, if there is a Cl._1-module structure on R™
then there are r — 1 independent vector fields on S™ 1.

Before giving the proof, we need one simple fact. The collection of monomials
€, e, for 1 <idy <ig < --- < i, <k give a vector space basis for Clg, which
has size 2% (note that we include the empty monomial, corresponding to 1, in the
basis). This is an easy exercise. This is the “standard basis” for Cl.

Proof of Theorem[15.13. The forward direction is trivial: Given an [r,n,n]-
formula, Corollar gives us such a formula with 4; = I, A? = —1I, and
AiAj = —A;A; for i, j > 2. Then define a Cl,_;-module structure on R" by letting
e; act as multiplication by A;4q, for 1 <i <r —1.

Conversely, assume that Cl._; acts on R". We can almost reverse the proce-
dure of the previous paragraph, except that there is no guarantee that the e;’s act
orthogonally on R”—and we need A; € O,, to get an [r, n, n]-formula.
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Equip R™ with a positive-definite inner product, denoted z,y + = -y. This
inner product probably has no compatibility with the Clifford-module structure.
So define a new inner product on R™ by

wuy= S () (eqw),

1<iy <ig < <ij<r—1

where e; = e;,€;, ---¢e;; and the sum runs over all 271 elements of the standard
basis for Cl,_;. Basically we are averaging out the dot product. Our inner product
(v,w) is a symmetric bilinear form, and it is positive definite because the dot
product is positive definite. It also has the property that it is invariant under the
Clifford algebra action: (e;v,e;w) = (v, w) for all 4.

Now let v1,...,v, be an orthonormal basis for R"™ with respect to our new inner
product. Let A; be the matrix for e; with respect to this basis. Then the A;’s
are orthogonal matrices, and the relations A? = —I and A;A4; + A;A; = 0 are
automatic because they are satisfied in Cl,._;. In this way we obtain the desired
[r, n, n]-formula. O

Remark 15.14. Most modern treatments of vector fields on spheres go straight
to Clifford algebras and their modules, without ever talking about sums-of-squares
formulas. But the sums-of-squares material is an interesting part of this whole
story, both for historical reasons and for its own sake.

From now on we can focus on the following question: For what values of n do we
have a Cl,_j-module structure on R™? This is one of the most intriguing parts of
the story, because on the face of things it doesn’t seem like we have accomplished
anything by shifting our perspective onto Clifford algebras. We have, after all, just
rephrased the basic question. But a miracle now occurs, in that we can analyze all
the Clifford algebras by a simple technique.

15.15. Clifford algebras over general rings. To make it clear that our analysis
doesn’t use anything special about R, let us change our ground right to any ring
R not of characteristic two. Define Cl,,(R) to be the algebra generated over R
by symbols eq,..., e, that commute with elements of R and satisfy the relations

e? = —1 and e;e; = —eje; for @ # j. It turns out that these algebras show an

interesting pattern that depends on the residue of n mod 8, reflecting how the
elements e; interact.

Here Cl,(R) is a free R-module of rank 2" with a basis consisting of the
monomials e;, ---e;, with ¢y < .-+ < 4. Also recall that if S is a ring then
Sle]/(e? — 1) =2 S x S via the isomorphism f(e) + (f(1), f(=1)). Our deriva-
tion will proceed by finding elements in the Clifford algebras that square to 1 and
commute with certain others.

In this discussion it will be convenient to abbreviate Cl,,(R) as just R,,. Also, if
S is a ring then we will abbreviate the matrix algebra M, «,(S) as just S(n).

Here are a series of observations:

(1) (e1---en)? = (71)(7131). So the product squares to 1 when n is 0 or 3 mod 4,
and to —1 when n is 1 or 2 mod 4.
(2) ey ---e, commutes with all of ey, es, ..., e,_1 precisely when n is odd.
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(3) When n = 3 mod 4 then e; - - - e, squares to 1 and commutes with all elements

of R,,_1 and so we conclude that R, = R,,_1 X R,_1. Let us restate this as

Rapy3 = Rypq2 X Ragyo.

(4) In Ryp4, consider the elements v; = ey ---egpeqrqs for i < 1 < r. Then

R,

72 = —1, 7; anticommutes with v; for i # j, and each 7; commutes with
elements of Clyg(R). This proves that

Ripyr & Ry QR Ry

So once we know R; for ¢ < 4 we can derive all of the others.

R4 = Ry(2). We can derive an isomorphism as follows. If we think of the ring
R3 = Ry x Ry as sitting inside Ry(2) as the diagonal matrices, then what we
are missing are the anti-diagonal matrices. The obvious anti-diagonal matrix
that squares to —1 is f = [(1) _01}. Note that f anticommutes with elements
diag(a, —a) for a € Ry. So define ¢: Ry — Ro(2) by the formulas e; +—
diag(e1, —eq1), ex — diag(ea, —e2), e3 — diag(eies, —ejes), and eq — f. The
images satisfy the defining relations for the Clifford algebra, so ¢ is an algebra
map. One readily checks that ¢ is surjective (this uses that char(R) # 2),
then since the domain and codomain are free modules of the same rank it is an
isomorphism.

At this point we can make the following partial table of Clifford algebras over
and could continue on ad infinitum:

Cl,(R)
R
R’
Ry
RQ X R2
Ry(2)
(R2 @R R1)(2)
(R2 @R R2)(2)
(R2 @R R2)(2) x (R2 @R R2)(2)
(R ®pr R2)(4)

0O ULk WO

In fact we can simplify this table a bit, because we can identify the algebras Ro®r R
and Ry ®r Ro. However, this requires a few more tools.

(6)

Cl,(R) is a Z/2-graded algebra where the even part is the R-linear span of
monomials in the e’s having an even number of factors, and similarly for the
odd part. The algebra Cl,(R) also has a canonical automorphism « given by
e; — —e; for all i; o =1 and the above even and odd parts of Cl,,(R) are the
+1 and —1 eigenspaces of .

There is also an anti-automorphism of Cl, (R) that sends e;, - - - e;, > €;, - - €;,.
This is called the transpose and written x — ‘. Observe that (ab)! = b'a’
for all @ and b. Note that the transpose map on R; is just the identity.

Using the transpose we can construct algebra maps 6,,: Cl,(R) ®g Cl,,(R) —
Endg(Cl,(R)) via a ® b — [z +— axb'] (note that it would not be an algebra
map without the transpose). Note here that Endg(Cl,(R)) denotes the algebra
of R-module endomorphisms, so it is isomorphic to R(2"). The domain and
codomain of §,, are both free R-modules of rank 22”. The # maps are not always
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isomorphisms, e.g. when n = 1 one has 6(e; ® 1) = (1 ® e1). But sometimes
they are, as we are about to see.

Proposition 15.16. 6, is an isomorphism, so Re ®r Ra = R(4). If R is com-
mutative then the restriction of 0 to Ry ®gp R1 C Ry ®g Ro is an isomorphism
Ro®p R & R1(2).

Proof. We prove the second claim first. It concerns the map «a: R; ®r R1 —
Endg(R2) given by
a® b [ axbl].

Since R is commutative, R; is also commutative. It follows that the map x — axb
is Rj-linear when we give Ry the action of R; via right multiplication. So in fact
a is a map Re ®pr R1 — Endpg, (R2). Both the domain and codomain are free
Ri-modules of rank 4, and « is R-linear, so it suffices to prove that « is surjective.
Recalling that we treat Ro as a right R;-module, and choosing the R;-basis 1, es,
we identify Endg, (R2) with 2 x 2 matrices over R;. Then we compute by hand
that the elements 1® 1, 1 ® 1, ea ® 1, and ejes ® 1 map to the matrices

R e B i) B

For example, e; ® 1 becomes the map 1 +— e1, ex — e1ea = —eseq, giving us the
second matrix. As these four matrices are clearly a spanning set for R;(2), this
verifies the surjectivity of a.

To prove that 65 is an isomorphism we can use a similar strategy, but here we
would need 4 x 4 matrices over R and it would be nice not to have to write down
16 of them. We can simplify things somewhat by using the above observation
that Ry ® g R1 maps into the subspace of R;-linear endomorphisms, as well as the
parallel observation that Ry Qg (eaR1) maps into the subspace of Rj-antilinear
endomorphisms (those such that f(xe;) = —f(z)e1). Since Endg(R2) is the direct
sum of Rj-linear and Rj-antilinear subspaces, we are reduced to checking that Ro®p
(e2R1) — Endpg, —anti(R) is an isomorphism. Again representing endomorphisms
via matrices in the usual way, the images of the basis elements 1 ® ez, e; ® eq,
€2 ® ez, and eres ® eq are

0 -1 0 —e1 -1 0 —e; O
1 0|’ —e1 0 |’ 0 -1\’ 0 e1|’
Again, these are a basis for Mayx2(R1) and the proof is complete. O

We can use Proposition [I5.16] to simplify our table of Clifford algebras. For
convenience we show both the table for general R and also the special case R = R:

Note that with the appearance of R(16) in spot 8 the rest of the table becomes

periodic, using the isomorphisms Rypi, = Ryt ®g Rr. So Rg = Ry(16), Ry =

R2(16), and so on: we just add “__(16)” to each of the terms in the above table.
So we have calculated all of the Clifford algebras!

Exercise 15.18. For the ground ring R = C prove that Ry &2 CxC and Ry = C(2),
and observe that the resulting table of Clifford algebras actually has its 8-fold quasi-
periodicity absorbed into a 2-fold quasi-periodicity.
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TABLE 15.17. Clifford algebras

n Cl,(R) r Cl.(R)

0 R 0 R

1 Ry 1 C

2 Ry 2 H

3 Ry x Ry 3 HxH

4 R2(2) 4 H(2)

5 Ri1(4) 5 C(4)

6 R(8) 6 R(8)

7| R(8) x R(8) 7| R(8) x R(8)
8 R(16) 8 R(16)

15.19. Modules over Clifford algebras. Now that we know all the Clifford al-
gebras, it is actually an easy process to determine all of their finitely-generated
modules. We need three facts:
e If A is a division algebra then all finitely-generated modules over A are free;
e By Morita theory, the finitely-generated modules over A(n) are in bijective
correspondence with the finitely-generated modules over A. The bijection
sends an A-module M to the A(n)-module M™.
e If R and S are algebras then modules over R x S can all be written as
M x N where M is an R-module and NN is an S-module.

In the following table we list each Clifford algebra Cl, and the dimension of its
smallest nonzero module.

TABLE 15.20. Dimensions of Clifford modules

r CLF Smallest dim. of a module over Cl,.
0 R 1
1 C 2
2 H 4
3 H x H 4
4 H(2) 8
5 C(4) 8
6 R(8) 8
7 | R(8) x R(8) 8
8 R(16) 16
9 C(16) 32
10 H(16) 64

Note that the third column has a quasi-periodicity, where row k + 8 is obtained
from row k by multiplying by 16.

After all of this, we are ready to prove the Hurwitz-Radon theorem about con-
structing vector fields on spheres. Recall that if Cl._; acts on R™ then there are
r — 1 independent vector fields on S”~'. Going down the rows of the above table,
we make the following deductions:
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Cl; acts on R?, therefore we have 1 vector field on S*
Cly acts on R*, therefore we have 2 vector fields on 53
Cl; acts on R?, therefore we have 3 vector fields on S°
Cly acts on R®, therefore we have 4 vector fields on S7
Cl; acts on R®, therefore we have 5 vector fields on S”
Clg acts on R®, therefore we have 6 vector fields on S7
Cl; acts on R®, therefore we have 7 vector fields on S”
Clg acts on R1®, therefore we have 8 vector fields on S*5.

It is not hard to deduce the general pattern here. The key is knowing where the
jumps in dimension occur, and then just doing bookkeeping. To this end, note that
the smallest dimension of a nonzero module over Cl, is 2°(") where

or)=#{s:0<s<rands=0,1,2, or 4 mod (8)}

(the numbers 0,1,2,4 mod 8 are the rows where the jumps occur in the third column
of Table|15.19)). Our analysis has shown that we can construct r independent vector
fields on S27 1.

Proof of Theorem (Hurwitz-Radon Theorem). First note that we know much
more about Clifford modules than is indicated in Table For each Clifford
algebra Cl, we know the complete list of all isomorphism classes of finitely-generated
modules, and their dimensions are all multiples of the dimension listed in the table.
This is important.

Given an n > 1, our job is to determine the largest r for which Cl,. acts on R™.
We will then know that there are r vector fields on S"~1. If we write n = 2“ - (odd)
it is clear from Table[T5.20|and the previous paragraph that the only way Cl, could
act on R” is if it actually acts on R2". Moreover, the quasi-periodicity in the table
shows that if we add 4 to w then the largest r goes up by 8. It follows at once
that if w = a + 4b then the formula for the largest r is 8b+777 where the missing
expression just needs to be something that works for the values a = 0,1,2,3. One
readily finds that » = 8b 4 2% — 1 does the job.

So we know that there are 8b + 2% — 1 vector fields on S™~!, where n has the
form (odd) - 20140, O

Remark 15.21 (First connection with KO*). Return to Table and look at
the column with the smallest dimensions of the modules. As one reads down the col-
umn, consider where the jumps in dimensions occur: we have “jump-jump-nothing-
jump-nothing-nothing-nothing-jump,” which then repeats. This is strangely remi-
niscent of the periodic sequence

ZoZo0OZ0O0OO0OZ...

At first blush this feels like quite an amazing and unexpected connection! We will
eventually see, following [ABS], that there is a very direct connection between the
groups KO* and the module theory of the Clifford algebras. For now we leave it
as an intriguing coincidence, but see Section ??? for more discussion.
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15.22. Adams’s Theorem. So far we have done all this work just to construct
collections of independent vector fields on spheres. The Hurwitz-Radon lower bound
is classical, and was probably well-known in the 1940’s. The natural question is,
can one do any better? Is there a different construction that would yield more
vector fields than we have managed to produce, or is the bound provided by the
Hurwitz-Radon construction the best possible? People were actively working on
this problem throughout the 1950’s. Adams finally proved in 1962 [Ad2] that the
Hurwitz-Radon bound was maximal, and he did this by using K-theory:

Theorem 15.23 (Adams). There do not exist p(n) + 1 independent vector fields
on S"~1.

This is a difficult theorem, and it will be a long while before we are able to prove
it. We are introducing it here largely to whet the reader’s appetite. Note that it is
far from being immediately clear how a cohomology theory would help one prove
the result. There are several reductions one must make in the problem, but the
first one we can explain without much effort:

Proposition 15.24. If there are r — 1 vector fields on S™~! then the projection
RPUH/RPUTL o RPUMTH/RPYT2 = §un—l has a section in the homotopy
category, for every u > %

The existence of a section in the homotopy category is something that can per-
haps be contradicted by applying a suitable cohomology theory E*(—). See Exer-
cise [15.25] below for a simple example.

We close this section by sketching the proof of Proposition [I5.24] Recall that
the Stiefel manifold of k-frames in R™ is the space

Vie(R™) = {(u1,...,ug) |u; € R" and wuq, ..., u; are orthonormal}.

Consider the map p;: Vi(R™) — S™~! which sends (ug,...,u,) + u1. There exist
r vector fields on S™~! if and only if there is a section of p;: V,.41(R") — S"~1L.

We need a fact from basic topology, namely that there is a cell structure on
Vi (R™) where the cells look like

et X xer

withn —k <i; <ig <---<is <n—1and s is arbitrary. We will not prove this
here: see Hatcher [Hal, Section 3.D] or Mosher-Tangora [MT) Chapter 5].
The cell structure looks like

[6n7k U enfkqtl U---U enfl] U [(6n7k+1 X enfk) U (en7k+2 % ensz) U-- ] U---

Ifn—1< (n—k+1)+ (n— k) (these are the dimensions of the last cell in the
first group and the first cell in the second group) then the (n — 1)-skeleton just
consists of the cells e®™* through e '. This looks like the top part of the cell
structure for RP"™!, and indeed it is. To begin to see this, start with the map
p: RP"™' — O(n) that sends a line £ C R™ to the reflection in the hyperplane ¢.
Let f: RP"™* = Vj(R™) be the composite

P<k

RP" 25 O(n) =5 Vi (R")

where p<j, sends a matrix A € O(n) to the tuple of its first k& columns. The subspace
RP" %=1 C RP"! consisting of points [0:--+:0:2pp1: - xp) is all sent to the
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standard frame (ey, ..., ex) under f, so we obtain the induced map
f:RP"YRPYETL 5 Vi (RM).

If r is a reflection in a hyperplane H then 7(v) — v lies in H+ for every vector v. So

one can recover H* from any vector v such that r(v) # v. Using this, it is easy to

see that f is an injection. The cell structure on Vj(R™) (which we have kept in a

black box) is defined in such a way that the image of f is indeed the (n—1)-skeleton

when n + 2 > 2k.

We will need one more fact about this situation. The composite map
RP" Y /RPYFL Ly (R7) 24§71 sends the subspace RP™™2 = {[0
Ty : -+ : xp,]} to e; and so factors through RP™ ' /RP" 2. The induced map
RP" ' /RP"? — $"~! is a homeomorphism, using the same considerations de-
scribed above for proving that f is injective. So we have a commutative diagram
of the form

(*) R}gn—l/RPn—k—l>i> Vk(Rn)

RP" 1 /RPY? = s gnl

Proof of Proposition[15.2] If there exist » — 1 vector fields on S™~! there also
exist 7 — 1 vector fields on S*"~1 for any u (see Proposition [15.3). Then
p1: Vo(R¥") — Sun~1 has a section s. By the cellular approximation theorem
the map s is homotopic to a cellular map s’. So s’ factors through the (un — 1)-
skeleton of V,.(R*?), which by the above remarks is RP“"~*/RP“"~"~! provided
u is large enough so that un + 2 > 2r. From diagram (*) we deduce that the
composition
Sun—l 5_/> Rpunfl/RPunfrfl L> RPunfl/RPun72 ~ Sun—1.

is homotopic to 4id. If it happened to be —id, alter s’ by precomposing with a
degree —1 map to fix this. O

Exercise 15.25. Use singular cohomology to prove that RP"~!/RP" ™3 — §n—1
does not have a section when n is odd. Deduce that an even sphere does not have
a non-vanishing vector field (which you already knew).

Exercise 15.26 (For those who know Steenrod operations). Use Steenrod opera-
tions to prove that there do not exist two independent vector fields on S°, by proving
that the projection 7: RP®/RP? — S5 does not have a section. [See Section ﬂ
for further discussion of this method.|

o Exercises o

The following exercises take us through another approach to computing the
Clifford algebras over R. For this we will need slight generalization of Clifford
algebras, one that will also be very useful later on (777).

Given a real vector space V and a quadratic form ¢: V' — R, define

Cl(V,q) =Tr(V)/{v@v=gq(v)-1|v e V).
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For R* with q(z1,...,2x) = —(2? + --- + ) this recovers the algebra Cl;. For
q(z1,...,2) = 23 + -+ + 2% this gives a new algebra we will call Cl, . It will be
convenient to temporarily rename Cly as Cl:. Of course there are other quadratic

forms on R*, but these will be the only two we need for our present purposes.

[

Exercise 15.27. Prove that there are isomorphisms of algebras le
Clf ®g CIf_,. [Hint: Make some suitable guesses for where to send each algebra
generator e; and then just prove that it works.]

Exercise 15.28. We have already remarked that Clg‘ ~ R, Clf = C, and Cl = H.
Prove that Cl; 2 R, Cl] @R x R, and Cl; = R(2). [To get the last isomorphism,
note that Cl; is generated by e; and ez subject to the relations e? = 1, e2 = 1, and
e1ea = —eger. The conditions ef = 1 might make you think of reflections, and we
can try to realize the skew-commutativity relation by using two reflections through
carefully chosen lines ¢; and £ in R%. Get an algebra homomorphism Cl; — R(2)
by sending e; to the matrix for reflection in ¢;, and then prove that this map is an
isomorphism.|

Exercise 15.29. Use the previous two exercises to prove that Clg|r ~ H x H,
Clj = H(2), Cl; = C(2), and Cl; = H(2). Then continue with the same method
to show

Cli = (Heg C)(2), Clf = (Her H)(2), Cl5 = H(2) x H(2), Cl; = H(4).
Miller [M] describes this process as being like lacing up a shoe.

Exercise 15.30. The algebras H ®g C and H ®g H can be written in a simpler
form: in fact we have H ®g C = C(2) and H ®g H = R(4). Find where we already
proved these in this section and write down explicit isomorphisms.

Exercise 15.31. Now continue “lacing up the shoe” and deduce that
Cli = R(8) x R(8), Cly = R(16), Cl; = C(8), Clg = R(16).

Note that coincidence of Clj = Clg = R(16), and convince yourself that the
interlacing process now yields the 8-fold quasi-periodicity.

For future reference we give the entire table of our generalized Clifford algebras:

TABLE 15.32. The Clifford algebras CI

r CIt Cl.

0 R R

1 C R xR

2 H R(2)

3| HxH C(2)

4 H(2) H(2)

5 C(4) H(2) x H(2)
6 R(8) H(4)

7 | R(8) x R(8) C(8)

8 R(16) R(16)
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Part 3. K-theory and geometry I

At this point we have seen that there exist cohomology theories K*(—) and
KO*(—). We have not proven their existence, but we have seen that their existence
falls out as a consequence of the Bott periodicity theorems Q2(Z x BU) ~ Z x BU
and Q8(Z x BO) ~ 7 x BO. If the only cohomology theory you have even seen is
singular cohomology, this will seem like an amazing thing: suddenly you know three
times as many cohomology theories as you used to. But a deeper study reveals that
cohomology theories are actually quite common—to be a little poetic about it, that
they are as plentiful as grains of sand on the beach. What is rare, however, is to
have cohomology theories with a close connection to geometry: and both K and
KO belong to this (vaguely-defined) class. In the following sections we will begin
to explore what this means.

To some extent we have a “geometric” understanding of K°(—) and KO°(-)
in terms of Grothendieck groups of vector bundles, at least for compact Hausdorff
spaces. We also know that any K™(—) (or KO™(—)) group can be shifted to a
K9(—) group using the suspension isomorphism and Bott periodicity. One often
hears a slogan like “The connection between K-theory and geometry is via vector
bundles”. This slogan, however, doesn’t really say very much; our goal will be to
develop a more detailed story along these lines.

One way to encode geometry into a cohomology theory is via Thom classes for
vector bundles. Such classes give rise to fundamental classes for submanifolds and
a robust connection wth intersection theory. In the next section we begin our story
by recalling how all of this works for singular cohomology.

16. THOM CLASSES, THOM ISOMORPHISM, AND THOM SPACES

The theory of Thom classes begins with the cohomological approach to orienta-
tions. Recall that

Z if x =n,

H*(Rn7Rn _ 0) o~ H*(Dn7sn—1) ~ ﬁ*(sn) ~ -
0 otherwise.

Moreover, an orientation on R™ determines a generator for H™*(R",R"™ — 0) = Z.
(For a review of how this correspondence works, see the proof of Lemma in
the next section).

Now consider a vector bundle p: E — B of rank n. Let (: B — F be the zero
section, and write £'—0 as shorthand for E—im(¢). We know that H"(E,,, E,—0) =
Z, and an orientation of the fiber gives a generator. We wish to consider the problem
of giving compatible orientations for all the fibers at once; this can be addressed
through the cohomology of the pair (E, E — 0).

For a neighborhood V of z, let By = E|y = p~}(V). If Ey is trivial, then
there is an isomorphism Ey = V x R™, and (Ey — 0) 2 V x (R™ — 0). Hence,
H*(Ey,EBy —0) 2 H(V x R",V x (R™ — 0)). If V is contractible (which we will

temporarily assume), this gives that
Z if x =
H*(Ev,By —0)= H*(R"R"—0)={" " "~ "™
0 otherwise.

Pick a generator Uy € H"™(Ey,Ey —0) = Z. For all x € V the inclusion
Ja: (E$7E$70) — (EV7EV70) gives a map ]: H*(EVaE\/*O) - H*(EmEz*O)
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Since we are assuming that V' is contractible, j7 is an isomorphism. So Uy gives
rise to generators in H"(E,, E, —0) for all x € V. We think of Uy as orienting all
of the fibers simultaneously.

Even when V' is not contractible the conclusions of the last paragraph still hold.
One has that H*(V xR™, V x (R"—0)) & H*(V)® H*(R™,R™ —0) by the Kiinneth
Theorem, and so

H="(V) ifi>n,

HI(V x R",V x (R" —0)) = H"(V) @ H"(R",R" — 0) = i
0 if i <n.

Let Uy € H"(Ey, By —0) be an element that corresponds to 1 € HY(V) under the
above isomorphism. Then one checks that j*(Uy ) is a generator for H"(E,, E, —0)
for every z € V.

Next suppose that we have two open sets V, W C B where E is trivializable over
each one, together with classes Uy € H*(Ey, Ey —0) and Uy € H*(Ew, Ew —0)
that restrict to generators (orientations) on the fibers E,, for every x € V' and every
x € W, respectively. We would like to require that these orientations match: so we
require that the images of Uy and Uy in H"(Evaw, Evaw —0) coincide. Consider
the (relative) Mayer-Vietoris sequence:

H" Y Evrw, Evaw — 0)

H"(Ey,Ey —0)
H"(Evaw, Evaw — 0) <— D ~—— H"(Evuw, Evuw —0)

H"(Ew, Ew — 0)

Under our requirement of compatibility between Uy and Uy, the class Uy @ Uy
maps to zero; so it is the image of a class Uy . Since H" ™Y (Evrw, Evaw —0) =0
(see the computation in the previous paragraph), the class Uy yw is unique. Note
that the Mayer-Vietories sequence also shows that H*(Evyw, Evuw — 0) = 0 for
* < n, which leaves us poised to inductively continue this argument. In other
words, the argument shows that we may patch more and more U-classes together,
provided that they agree on the regions of overlap. This is the kind of behavior one
would expect for orientation classes.
The above discussion suggests the following definition:

Definition 16.1. Given a (constant) rank n bundle E — B, a Thom class for E
is an element Ug € H"(E, E — 0) such that for all v € B, ji(Ug) is a generator
in H"(Ey, E; —0). (Here j,: Ey — E is the inclusion of the fiber).

There is no guarantee that a bundle has a Thom class. Indeed, consider the
following example:

Example 16.2. Let M — S! be the M&bius bundle. Take two contractible open
subsets V and W of S', where VUW = S!. We can choose a Thom class for
My, and one for M|y, but the orientations won’t line up correctly to give us a
Thom class for M. In fact, notice that by homotopy invariance H*(M, M — 0) is
the cohomology of the M&bius band relative to its boundary. But collapsing the
boundary of the band gives an RP?
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Moébius band

\/\ RP2

and we know H'(RP?) = 0. So a Thom class cannot exist in this case.

If a bundle £ — B has a Thom class then the bundle is called orientable. Said
differently, an orientation on a vector bundle £ — B is simply a choice of Thom
class in H"(E,E — 0;Z). One can readily prove that this notion of orientability
agrees with other notions one may have encountered, and we leave this to the reader.

One can also talk about Thom classes with respect to the cohomology theories
H*(—; R) for any ring R. Typically one only needs R = Z and R = Z/2, however.
In the latter case, note that any n-dimensional real vector space V has a canonical
orientation in H™(V,V — 0;Z/2). It follows that local Thom classes always patch
together to give global Thom classes, and so every vector bundle has a Thom class
in H*(—;Z/2).

Finally, note that we can repeat all that we have done for complex vector spaces
and complex vector bundles. However, a complex vector space V of dimension n
has a canonical orientation on its underlying real vector space, and therefore a
canonical generator in H?"(V,V — 0). Just as in the last paragraph, this implies
that local Thom classes always patch together to give global Thom classes; so every
complex vector bundle has a Thom class.

The following theorem summarizes what we have just learned:

Theorem 16.3. Suppose that B is connected.

(a) Every complex bundle E — B of rank n has a Thom class in H**(E,E —0).
(b) Every real bundle E — B of rank n has a Thom class in H"(E,E — 0;Z/2).

The Mayer-Vietoris argument preceding Definition shows that if p: £ — B
is a rank n orientable real vector bundle then H*(E,E — 0) vanishes for * < n
and equals Z for * = n. A careful look at the argument reveals that it also gives
a complete determination of the cohomology groups for * > n. We describe this
next.

For any z € H*(B), we may first apply p* to obtain an element p*(z) € H*(E).
We may then multiply by the Thom class Ug to obtain an element p*(2) UUg €
H*t"(E,E — 0). This gives a map H*(B) — H*(E,E — 0) that increases degrees
by n.

Theorem 16.4 (Thom Isomorphism Theorem). Suppose that p: E — B has a
Thom class Ug € H*(E,E —0). Then the map H*(B) — H*(E, E — 0) given by

2= p () Ulg
is an isomorphism of graded abelian groups that increases degrees by n.

Proof. If the bundle is trivial, then £ = B x R, and E — 0 = B x (R™ — 0). Here
one just uses the suspension and Kiinneth isomorphisms to get

H*(BxR",Bx (R"—-0)) = H*"(B).
One readily checks that the map from the statement of the theorem gives the
isomorphism.
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For the case of a general bundle one uses Mayer-Vietoris and the Five Lemma to
reduce to the case of trivial bundles. The argument is easy, but one can also look
it up in [MS]. O

Exercise 16.5. Write out the details for the above proof.

16.6. Thom spaces. The relative groups H*(E, E — 0) coincide with the reduced
cohomology groups of the mapping cone of the inclusion £ —0 — E. This mapping
cone is sometimes called the Thom space of the bundle £ — B, although that
name is more commonly applied to more geometric models that we will introduce
next (the various models are all homotopy equivalent). For the most common model
we require that the bundle have an inner product (see Section .

Definition 16.7. Suppose that E — B is a bundle with an inner product. Define
the disk bundle of E as D(E) = {v € E|(v,v) <1}, and the sphere bundle of
E as S(E)={v e E|(v,v) =1}.

If E has rank n over each component of B, note that D(F) — B and S(E) — B
are fiber bundles with fibers D™ and S™~!, respectively. Note also that we have
the following diagram:

E-0 E

~ ~

S(E)>——= D(E)

This diagram shows that £ — 0 — E and S(E) — D(E) have weakly equivalent
mapping cones. Unlike E—0 — FE, however, the map S(F) — D(E) is a cofibration
(under the mild condition that B is a CW-complex, say): so the mapping cone
is weakly equivalent to the quotient D(E)/S(E). This quotient is what is most
commonly meant by the term ‘Thom space’:

Definition 16.8. For a bundle E — B with inner product, the Thom space of E
is ThE = D(E)/S(E).

Remark 16.9. The notation B is also commonly used in the literature to denote
the Thom space.

Note that if B is compact then Th E' is homeomorphic to the one-point com-
pactification of the space E. To see this it is useful to first compactify all the fibers
separately, which amounts to forming the pushout of B + S(E) — D(E). The
inclusion from B into the pushout P is the ‘section at infinity’, and the quotient
P/B is readily seen to be the one-point compactification of E. But clearly the
quotients P/B and D(FE)/S(E) are homeomorphic.

Example 16.10. We will show that Th(nL — RP*) = RP"*¥/RP"~! where L
is the tautological line bundle. First we define a homeomorphism of spaces over
RP":

o

RPTL+kJ _RP'IL—l

nL*
RP".




148 DANIEL DUGGER

Consider RP" ! <3 RP"™* as embedded via the last n coordinates. Take a point
C=lxg: - :1Tp:yr: - :Yn) € RPHE RP"™ !, and note that at least one z; is
nonzero. The map 7: RP"™* —RP"~! - RP" is defined to send £ to [zq : - - - : x].

Regard ¢ as a line in R"™*+1 and 7(¢) as a line in R¥*!.  The formula
(g, ...,2x) — y1 specifies a unique functional w(£) — R (obtained by extending
linearly). Likewise, we obtain n functionals on 7(¢) via the formulas

(Zoy -y TE) — Y1, cor (Toye -y TR) > Yn
Note also that these functionals are independent of the choice of the homogeneous
coordinates for ¢: multiplying all the z;’s and y;’s by A gives rise to the same
functionals. We have therefore described a continuous map RP"F—RP" "1 — nL*

and this is readily checked to be a homeomorphism.
Since the Thom space is the one-point compactification, we get that

Th(nL* — RPF) = (nL*) = (RP™HF — RP" 1) = Rp"TF /R,
We know by Corollary [B:34] that any real vector bundle over a paracompact space

is isomorphic to its dual. So nL* 2 nL, and we have shown that Th(nL — RP") =
an+k/RP7L—1 .

Remark 16.11. Note the case n = 1 in the above example: Th(L — RPk) =
RPk+1.

Remark 16.12. A similar analysis to above shows that Th(nL* — CP¥) =
CP"™* /CP™!, but note that unlike the real case the dual is important here.

There is another approach to Thom spaces that does not require a metric for the
bundle. If F — B is any vector bundle, let P(E) — B be the corresponding fiber
bundle of projective spaces where the fiber of P(E) — B over a point b is P(E})
(see Exercise [8.41)). Another definition of Thom space is then

ThE =P(E®1)/P(E).

Note that this definition does not require a metric.

To see that our definitions are equivalent, note that if V' is a vector space then
there is a canonical inclusion V' < P(V @ R) given by v — (v @& 1). A little thought
shows that we get a diagram

V— P(VaR)

N

V—=>P(Va&R)/PV)

where the bottom map is a homeomorphism. Extending this to the bundle setting,
it is clear that the pushout of B +— P(E) — P(E @ 1) is the fiberwise one-point
compactification of E. Then P(E @ 1)/P(E) is obtained by taking this fiberwise
one-point compactification and collapsing the section at infinity: this clearly agrees
with the other descriptions we have given of the Thom space.

It is sometimes useful to be able to connect the pairs (P(E @ 1),P(F)) and
(E,E —0) in a way that doesn’t make use of any metric. To do so, observe that



A GEOMETRIC INTRODUCTION TO K-THEORY 149

every vector space V gives rise to a commutative diagram

V—O>—>P(VEBR)—* P(V)

] |

1% P(V & R) =———P(V & R).

Here x € P(V @ R) is the line formed by the distinguished copy of R, and V' —
P(V @ R) is the map v — (v @ 1). All the other maps are the evident inclusions.
To see that the indicated map is a homotopy equivalence, use the map in the other
direction that projects a line in V' & R down to V; this is readily checkd to be a
deformation retraction of P(V @ R) — % down to P(V'). The left square is an open
covering diagram (with open sets along the antidiagonal and their intersection in the
upper left corner), and therefore a homotopy pushout. Taking homotopy cofibers
of the three columns therefore yields a zig-zag of weak equivalences between the
homotopy cofiber of V—0 < V and the homotopy cofiber of P(V) — P(V@®R). The
latter is weakly equivalent to its cofiber, because P(V) < P(V & R) is a cofibration.

Now consider a fiberwise version of the above diagram. If E — B is a real bundle
then we have maps

~

E—-0——PE®1)— B<——DP(E)

| |

E>————>PEal)——P(E®1]).

The only difference worth noting is that B < P(E@®1) is the evident section that in
each fiber selects out the distinguished line determined by the trivial bundle 1. The
left square is again a homotopy pushout square, and so taking homotopy cofibers
of the columns gives a zig-zag of weak equivalences between the homotopy cofibers
of E—0— Eand P(E) - P(E®1).

16.13. Thom spaces for virtual bundles. Thom spaces behave in a very simple
way in relation to adding on trivial bundles:

Proposition 16.14. For any real bundle E — X one has Th(E ®n) = X" Th(E).
For a complex bundle E — X one has Th(E @ n) = %" Th(E).

Proof. We only prove the statement for real bundles, as the case of complex bundles
works the same (and is even a consequence of the real case). Also, we will give
the proof assuming the bundle has a metric, although the result is true in more
generality. Note the isomorphisms
D(E®n) = D(E) x D", S(E®n) = (S(E) x D™)gg)xsn-1 (D(E) x S™71).
From this one readily sees that
D(E ®n)/S(E ®n) = [D(E)/S(E)] A[D"/S" '] = Th(E) A S™.
O

Proposition allows one to make sense of Thom spaces for virtual bundles,
provided that we use spectra. This material will only be needed briefly in the rest
of the book, but we include it here because these Thom spectra play a large role in
modern algebraic topology.
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Assume that X is compact and let E — X be a bundle. Then by Proposition[0.10]
FE embeds in some trivial bundle N. Let @) denote the quotient, so that we have
E ® Q= N. Assuming that Th(—FE) had some meaning then we would expect

Th(Q) = Th(N — E) = V¥ Th(-E).
This suggests the definition
Th(—E) = ¥ Th(Q),

where the negative suspension must of course be interpreted as taking place in a
suitable category of spectra.

Our definition seems to depend on the choice of embedding £ — N. To see that
this dependence is an illusion, let £ < N’ be another embedding and let Q' be
the quotient. Then N' & Q =2 Q' ® E® Q = Q' ® N. On Thom spaces this gives
SN Th(Q) = &N Th(Q'), or =N Th(Q) ~ =~V Th(Q").

The above discussion can be extended to cover any element o € KO(X). Write
a = FE — F for vector bundles E and F', and choose an embedding F' <— N. Let
@ denote the quotient N/F. Note that « + N =(FE - F)+ (F+Q)=FE+ Q. If
Th(a) makes sense then we would expect XV (Tha) ~ Th(a + N) ~ Th(E + Q),
and so this suggests the definition

Th(a) = 2"V Th(E @ Q).

Again, one readily checks that up to homotopy this does not depend on the choice
of E, F', N, or the embedding F' — N.

16.15. An application to stunted projective spaces. To demonstrate the use-
fulness of Thom spaces we give an application to periodicities amongst stunted
projective spaces. This material will be needed later, in the solution of the vector
fields on spheres problem presented in Section [38]

Consider the space RP*T?/RP?. This has a cell structure with exactly b cells
(not including the zero cell), in dimensions a + 1 through a + b. The space
RP*T*T" /RP" has a similar cell structure, although here the cells are in di-
mensions a + 1 + r through a + b + r. The natural question arises: fixing a and b,
what values of r (if any) satisfy

YT RPTY /RPY] ~ RPYHFT /RPYHT?

One can use singular cohomology and Steenrod operations to produce some neces-
sary conditions here. For example, integral singular homology easily yields that if
if b > 2 then r must be even. Use of Steenrod operations produces more stringent
conditions (we leave this for the reader to think about).

We will use Thom spaces to provide some sufficient conditions for a stable ho-
motopy equivalence between stunted projective spaces. We begin with a simple
lemma:

Lemma 16.16. The element A = [L] — 1 € KO(RP") satisfies A2 = —2\ and
AL = 0. Consequently, \¥ = (—=2)k¥=1\ for all k, and 2"\ = 0.

Proof. The square of any real line bundle is trivializable (Exercise, soL?=1.
This immediately yields A2 = —2\. The second statement follows from the fact
that RP™ may be covered by n + 1 contractible sets Uy, ..., U,. (With respect to
homogeneous coordinates [zg : - - : z,] on RP", one may take U; to be the open



A GEOMETRIC INTRODUCTION TO K-THEORY 151

set x; # 0). The element A € KO(RP", ) lifts to a class \; € KORP",U;), and
therefore A" *! is the image of A\gA1 - - - A,, under the natural map

KORP™,UyU---UU,) — KO(RP").

But since U;U; = RP", the domain of the above map is zero; hence A\"*! = 0.
Finally, since A2 = —2)\ it follows that \¢ = (—2)¢~!\ for all e. In particular,
(—2)" X = A"t =0. O

Proposition 16.17. Let r be any positive integer such that r([L] —1) = 0 in
KO(RPb_l), Then there is a stable homotopy equivalence
ST RPTY JRPY] ~ RPYHFT /RPOTT,

Proof. The assumption that r([L] — 1) = 0 implies that rL @& s = r & s for some
s > 0. We have

(a+1)L (a+1)Lpr+s
RP"*/RP*~Th( | |~%""°Th 1
RPO-1 RP®-1

(a+147)LPs

N— ~—

~ ¥ ""°Th (
RPO-1

(a+1+4r)L
~ ¥ "Th +
RPb-1
~ YT [RPOTT /RO

The first and last steps use the identification of stunted projective spaces with a
corresponding Thom space—see Example [16.10] for this. a

Combining Lemma [I6.16] and Proposition [I6.17 we see that stunted projective
spaces with b cells have a periodicity of 20=1:

221771 [Rpa+b/RPa] ~ RPa+b+2b71/RPa+2b71

(here ~ means stable homotopy equivalence). However, this is not the best result
along these lines: we will get a better result by finding the exact order of [L] — 1 in

I’{\é(RPb_l). This was determined by Adams; see Theorem [37.14

17. THOM CLASSES AND INTERSECTION THEORY

In this section we will see how Thom classes give rise to fundamental classes for
submanifolds, and we will develop the connection between products of such classes
and intersection theory.

Let E — B be a real vector bundle of rank n. In general, E may not have a
Thom class; and if it does have a Thom class, it actually has two Thom classes
(since H"(E,E — 0) = Z by the Thom Isomorphism Theorem). The situation is
familiar, as it matches the usual behavior of orientations. It is, of course, possible—
and necessary!—to do geometry in a way that includes keeping track of orientations
and computing signs according to whether orientations match up or not. But it is
easier if we are in a situation where we don’t have to keep track of quite so much,
and there are two situations with that property: we can work always with mod 2
coeflicients, or we can work in the setting of complex geometry. In either case we
have canonical Thom classes all the time. In this section, and for most of the rest
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of these notes, we choose to work in the setting of complex bundles and complex
geometry. But it is important to note that almost everything works verbatim for
real bundles if we use Z/2 coefficients, and that many things can be made to work
for oriented real bundles if one is diligent enough about keeping track of signs.

For a rank n complex bundle £ — B we have a canonical Thom class Ug €
H?"(E, E —0). The following result gives two useful properties:

Proposition 17.1.

(a) (Naturality) Suppose E — B is a rank n complex vector bundle, and f: A — B.
Consider the pullback

f*Ef*>E

L,

A—— B.

Then f*: H*™(E,E —0) — H™(f*E, f*E — 0) sends Ug to Upp; that is,
f*(Ug) =Usk

(b) (Multiplicativity) Suppose that E — B is a rank n complex vector bundle, and
E' — B is a rank k complez vector bundle, with Thom classes Ug € H*"(E, E—
0) anduE/ S H2k(EI, E/—O). Then uEqu/ = UE@E/ m H2n+2k(E><E/, (EX
E') —0).

Proof. Recall that the Thom class of a rank n complex bundle £ — B is the unique
class in H?"(E, E — 0) that restricts to the canonical generator in H*"(E,, E, —0)
for every fiber E,. Part (a) follows readily from this characterization. Using the
same reasoning, part (b) is reduced to the case where B is a point; this is checked
in the lemma below. (]

Lemma 17.2. Let V and W be two real vector spaces, of dimensions n and k,
respectively. Assume given orientations on V and W, and let V& W have the
product orientation. Let Uy € H™"(V,V —0), Uy € HY(W,W —0), and Uygw €
H" R (Ve W, (Ve W) —0) be the corresponding orientation classes. Then Uygw =
Uy x Uwy .

Proof. Let vy,...,v, be an oriented basis for V', and let oy : A™ — V be the affine
simplex whose ordered list of vertices is 0,v1,...,v,. Let o}, denote any translate
of o that contains the origin of V in the interior. Then [o}] is a generator for
H,(V,V —0), and any relative cocycle in C7;, (V,V — 0) that evaluates to 1 on
ol, is a generator (in fact, the same generator) for H"(V,V — 0). This is how an
orientation of V' determines a generator of H™(V,V — 0).

Now let wi,...,wy be an oriented basis for W. Let oygw: A"F = VoW
be the affine simplex whose ordered list of vertices is 0,v1,..., vy, w1,...,wy (note
that omitting 0 gives an oriented basis for V & W). Again, let of, o, denote a
translate of oy g that contains the origin in its interior.

Recall that Uy x Uy = (m1)*(Uy) U (73)(Uw), where m1: V. x W — V and
mo: VX W — W are the two projections. The definition of the cup product gives

Oy x Uw)(oyew) = (71 Uv)(0ygw (01 n]) - (m3Uw) (ovgwln - (n+ k)])

=Uy(m 00ygwl0l--n]) Uw(m2 0 0y gwln: - (n+k))).



A GEOMETRIC INTRODUCTION TO K-THEORY 153

It is clear that ) o 0{ 4 [01---n] gives a simplex in the same homology class as
of,, and so Uy evaluates to 1 on this simplex. Similarly, 75 0 o, gy [ (n + k)]
gives a simplex in the same homology class as ol;,, and so Uy, evaluates to 1 here.
Since 1-1 =1, we see that Uy x Uy satisfies the defining property of Uyqw .
Given that a picture is worth a thousand words, here is a picture showing what
is happening in the smallest nontrivial case:
w w

oveow

w1 / WZU%/@WHZ]
2 \+

[NV Vv 14
0 1 K

ot ¢
vew m10vgw [01]

O

17.3. Fundamental classes. Next we use the Thom isomorphism to define fun-
damental classes for submanifolds. Let M be a complex manifold, and let Z be
a regularly embedded submanifold of complex codimension c. By ‘“regularly em-
bedded” we mean that there exists a neighborhood U of Z and a homeomorphism
¢: U — N between U and the normal bundle N = Nj;,7, with the property that
¢ carries Z to the zero section of N. The neighborhood U is called a tubular
neighborhood of Z. Keep in mind the following rough picture:

In the above situation we have that H*(U,U — Z) = H*(N, N —0). Notice that
N — Z is a complex bundle of rank ¢, with Thom class Uy € H?¢(N, N — 0), and
so by the Thom Isomorphism we get H*=2¢(Z) = H*(N, N — 0). Also, by excision
one has H*(M,M — Z) = H*(U,U — Z). So we have isomorphisms

Hi=2(7) "2 Hi(N, N — 0) = H'(U,U — Z) <~ H'(M,M — 7).

Now consider the long exact sequence for the pair (M, M — Z), but use the above

isomorphisms to rewrite the relative groups H*(M, M — Z) and H*~2¢(Z):
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e H"(M - Z)~— H*(M) ~—— H*(M,M — Z) < -

IR

H*—2C(Z)
If j: Z < M is the inclusion, then the indicated composition in the above diagram
is denoted j; and called a pushforward map or Gysin map. We can rewrite
the long exact sequence to get the Gysin sequence, also called a localization
sequence by algebraic geometers:

e HW(M — Z) ~—— H{(M) <2 H2(2) < H"Y(M — Z) ~—— ---

Definition 17.4. Let Z be a regularly embedded, codimension ¢ submanifold of
the complex manifold M. Let j, be the Gysin map described above. We define the
fundamental class of Z to be [Z]y = ji(1) € H?*¢(M), where 1 € HY(Z) is the
unit. We also define the relative fundamental class [Z),.; € H?**(M,M — Z)
to be the image of 1 under the chain of isomorphisms from H®(Z) to H?*(M, M —
Z). Note that j*([Z]re1) = |Z], where j* denotes the induced map in cohomology
associated to the inclusion (M,0) — (M, M — Z).

On an intuitive level one should think of [Z] as being the Poincaré dual of the
usual fundamental class of Z in H,(M). The point, however, is that we don’t need
to think through the hairiness of the Poincaré duality isomorphism; this has been
replaced with the machinery of vector bundles and Thom classes.

One must of course prove a collection of basic results showing that the classes
[Z] really do behave as one would expect fundamental classes to behave, and have
the expected ties with geometry. We will do a little of this, just enough to give the
reader the idea that it is not hard. Before tackling this let us do the most trivial
example:

Exercise 17.5.

(a) Check that the relative fundamental class of the origin in C¢ is the canonical
generator: i.e., [0].; € H?¥(C4, C? — 0) is the canonical generator provided by
the complex orientation on C?.

(b) Let M be a d-dimensional complex manifold. If a,b € M are path-connected,
verify that [a] = [b]. Hint: Reduce to the case where a and b belong to a
common chart U of M, with U =2 C%. Let I be a line joining a and b inside of
U, and consider the diagram

M—-1b
U —b)

H*(M,M — a) —> H*(M,M — I) <— H*(M,

:l :l

H*(U,U — a) — H*(U,U — I) <—— H*(U,

)

IR
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Using an argument similar to that in the proof of Lemma [I7.2] show that
[a]rer,v and [b]re;, v map to the same element in H*(U,U — I).

(c) Suppose M is compact and connected. Verify that if a € M then [a] € H*¢(M)
is a generator. (Use that the map H?4(M) — H?4(M, M —a) is an isomorphism
in this case).

The following theorem connects our fundamental classes to intersection theory.
It is far from the most general statement along these lines, but it will suffice for
our applications later in the text. The diligent reader will find that the proof
readily generalizes to tackle more complicated situations, for example where the
intersection is not discrete.

Theorem 17.6. Let M be a connected complex manifold. Suppose that Z and W
are reqularly embedded submanifolds of M that intersect transversely in d points.

Assume also that W is connected (this is mostly for convenience in the statement
of (b)). Then

(a) [Z]a U Wlar = dl¥]m
(b) 7*([Z]m) = dx|w, where j: W < M.

Proof. We begin by proving (a). Suppose that dim Z = k and dim W = ¢, so that
dimM =k+ ¢ Let ZNW = {p1,...,pa}, and for each i let U; be a Euclidean
neighborhood of p; such that U;NU; = 0 for i # j. Consider the following diagram:

HY(M,M — Z)® H(M,M — W) — H¥(M) @ H'(M)

[ |o

HYUM, M — (ZNW)) ————— H*(M)

HY (M, M — {py,...

,Pd})

S HMH (M, M — {p,})

Since [Z] and [W] lift to relative classes [Z],¢; and [W], it will suffice to show that
if we take [Z],e;U[W]e; and take its projection to the rth factor H**/(M, M —{p,})
of the summand then we get [p,],e;- From this it will follow from the diagram that
[Z]JU[W] = [p1]+...+[pa) in HEFL(M). Since we have already seen in Exercisem
that [p;] = [p,] for any ¢ and j, this will complete the proof of (a).

Next, fix an index r and consider the second diagram

H*U,,U. - Z)® H(U,,U, — W) =— H¥(M,M — Z) @ H'(M,M — W)

lUre[ \Lurvel

Hk—H(U’HUT_{pT}) Hk+l(M7M_{p1a'-'7pd})

T

HEH (M, M — {pr}).

IR
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Thanks to this diagram, it is enough to replace M by U,., Z by ZNU,, and W by
W NU,, and to prove that [Z],e; U [Wlrer = [Pr]rei-

But now M is just CF*'. By choosing our neighborhood small enough, we
can find local coordinates so that Z is just C* x {0} and W is just {0} x C!,
intersecting transversely at the origin (we will write C*¥ x 0 and 0 x C! for brevity).
We need to compute [CF x 0], U [0 x C'],.o; € HF(CHHL CkH — 0). By writing
Ck+l = C* x C! one sees that [C* x 0],¢; coincides with the Thom class for the
bundle [ — C*. Likewise, [0 x C!],¢; coincides with the Thom class for the bundle
k — C!. These are trivial bundles, so they are pulled back from C' — % and
C* — % along the projection maps C*¥ — % and C' — %, respectively. In particular,
by Proposition a) we can write

[(Ck X O]Tel @] [O X (Cl]rel = Wf(ul) U W;(Uz)

where U; € H¥(C!,C! —0) and Uy € H?*(C*,C* —0) are the canonical classes and
mp: CHH — €Y 7y : CHL — CF are the projection maps. But 75 (U; )U7s (Us) is the
external cross product U; x Us, and so Lemma says that this is the same as the
canonical generator in H2*¥+2/(Ck+! C*+! — (). This canonical generator is [0],,
by Exercise a). We have therefore shown that [C* x 0],.c; U[0 X C',e; = [0] et
and this completes the proof of (a).

The proof of (b) is very similar. One considers the diagram

Sk

J

H*(W) H*(M)

! T

@, HY (W, W —p,) ——= HY(W,W — {p1,...,pa}) ~<—— H*(M,M — 2)

l l

H*W NU,,(WnU,) - p,) <~— H*U,,U, — p,)

where 7 is an arbitrary choice of index. The top square implies that it suffices
to show that the projection of j*([Z],c;) to H¥(W,W — p,.) equals [p,] e, for any
choice of r. The bottom square then allows us to replace M by U, and Z and W
by ZNU, and W NU,. That is, we are again reduced to the case where M = CF+!,
Z =CF x0,and W = 0 x C!. Here we are considering the map

HA(C!,C! - 0) &= H2(CF x CL, (CF x C') — (CF x 0))
and must show that the image of [(Ck X 0],¢; is the canonical generator in the target.
But if we identity C* x C! with the bundle  — C* then [C* x 0],.¢; is just the Thom

class U, and the map j* is restriction to the fiber over 0 € C¥; so it becomes the
canonical generator by definition of the Thom class. ([l

Exercise 17.7. If W were not assumed to be connected in Theorem what
would need to change in the statement of part (b)?

It is important to notice that for the most part the above proof used nothing
special about singular cohomology—we only used the basic properties of Thom
classes, together with generic properties that hold in any cohomology theory. In
the proof of Lemma[I7.2] we apparently used particular details about the definition
of the cup product, but in fact what we needed could have been written in a way
that doesn’t reference the peculiar definition of the cup product at all. Indeed, we
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have the identifications H*(C",C" — C*) = H*(CF x C"k,CF x (C"* - 0)) =
H*(Cr—k Cr=F — 0) = H*(D*" 2k gD?*—2k) =~ F*(S2(=F)) (for the second
identification we use the map induced by projection C¥ x C*~* — C"* and
for the third identification we use the induced map of any orientation-preserving
embedding of the disk into C"~*). Similarly, we have a canonical identification
H*(C",C™ — C*~*) = H*(S%*) . Considering the commutative diagram

H*(C",C" — Ck) @ H*(C*,C" —C»*) — 2~ g*(C",Cc" - 0)
Il I
f{*(SQ(n—k)) ® f]*(szk) H f{*(SZn)

where p denotes our product, the property needed for the proof of Lemma
boils down to the requirement that

R (1) @ o (1) 5 o(1).

In other words, the computation comes down to the fact that the product behaves
well with respect to the suspension isomorphism.

Example 17.8. To demonstrate Theorem we will be content with the usual
first example. Let Z — CP" be a codimension ¢ complex submanifold. Then
[Z] € H?*¢(CP™) 2 Z. A generator for this group is [CP" "], so [Z] = d[CP"™“]
for a unique integer d. This integer is called the degree of the submanifold Z.
A generic, c-dimensional, linear subspace of CP™ will intersect Z transversely in
finitely many points, say e of them. Theorem [I7.6] gives that [Z] U [CP°] = e[«],
but we also have d[CP"™°] U [CP*] = d[#] since [CP"™°| U [CP*] = [*] (again by
Theorem . So d = e, and this gives the geometric description of the degree:
the number of intersection points with a generic linear subpace of complementary
dimension.

The following result is the evident generalization of Theorem [17.6

Theorem 17.9. Let M be a connected complex manifold. Suppose that Z and W
are regularly embedded submanifolds of M that intersect transversely. Then

(a) [Z]p VWM = [Z20W];

(b) 7*([Z)m) = [Z N W], where j: W — M.

Outline of proof. We omit the details here, since the proof is largely similar to that
of Theorem [17.6] For (a) use the relative fundamental classes [Z].; and [W],,
and show that [Z],e; U [Wlrer = [Z N Wlpe in H*(M, M — (Z N W)). For this,
restrict to a tubular neighborhood and then show that both classes restrict to the
canonical generators on the fibers of the normal bundle. For [Z N W], this is the
definition, and for [Z],¢; U [W],¢ this is a computation with the cup product. The
proof of (b) is similar. O

17.10. Topological intersection multiplicities. We can now use our machinery
to give a topological definition of intersection multiplicity. Suppose that Z and W
are complex submanifolds of the complex manifold M, and that Z and W have
an isolated point of intersection at p. Let k denote the complex codimension of Z
in M, and [ denote the complex codimension of W in M. Let d be the complex
dimension of M.

Let U be a Euclidean neighborhood of p that contains no other points of ZNW.
Consider the classes [Z],..; € H**(M, M — Z) and [W],e; € H*(M, M — W). Then
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the cup product [Z],e; U [W]e; lies in the group H2*+D (M, M — (Z N W)). This
group is zero if k + 1 # d, and in this case we define the intersection multiplicity
i(Z,W;p) to be zero. In the case where k + [ = d we have that

HYS0(M M —(Z0W)) = H* (M, M — {p}) = Z,

which has the preferred generator [pl,.;. Here we define i(Z, W; p) to be the unique
integer such that
[Z]rel U [W]’r‘el = Z(Z7 W7p)[p]

The same proof as for Theorem [I7.6] shows that when Z and W intersect trans-
versely at p we have i(Z,W;p) = 1.

The final subject we turn to is the invariance of the intersection multiplicity
under small deformations. There are different ways one might approach this; we
just give one version. Assume given a Euclidean neighborhood E of p in which the
normal bundle of Z is trivializable, and a closed disk D = D?¢ C E where p is in
the interior. Let Zp = ZN D and Wp = W N D. Next suppose we have a nonzero
smooth section s of the normal bundle of Zp, and consider the associated homotopy
h: Zp xI — D given by h(z,t) = ts(z). Let S be the image of h and let Z}, be the
image of s. Assume that SNW C int(D) and that Z;, N W has only finitely-many
points q1, ..., q,. The following picture shows an example of this setup:

w

) S
s /\/Z
p

D

The space Z7, need not be a complex submanifold of M, but we can still define
the intersection multiplicities i(Z},, W;¢;). For these we only need a Thom class
for the normal bundle of Z, in M, which itself is determined by a consistent choice
of local orientations along the fibers. For each © € Zp we can use the path h,
(t — h(z,t)) to transport the normal orientation for Zp to Z7,.

Proposition 17.11. In the above setting, we have

i(2,Wip) = i(Zp, W;q).
i=1
In particular, if Z5 is a complex submanifold of M and meets W transversely at
each point q; then i((Z,W;p) = r.
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Proof. We give a sketch and leave some of the details to the reader. Consider the
following diagram:

H?(D,D — Zp)® H*(D,D — W) —=—= H?(D, D — p) —— H?4(D,dD)

i l

H?(D,D-5)® H*(D,D-W) —2> H>(D,D — (SN W)) —= H2(D,0D)

| T

H?*(D,D - Z})) @ H¥(D,D — W) = H*(D,D — {q1, ..., q.}) = H?¥(D,0D)

Note that in the middle line we are using that SNW does not meed dD. In the top
left corner we have [Z],¢; ® [W]e, and in the bottom left corner we have [Z'],.c; ®
[W]yer. The diagram shows that these map to the same element in H2¢(D,dD) =
7, provided that [Z],o; and [Z'],; map to the same element in H2*(D,D — S).
Assuming this for the moment, along the top row the class maps to i(Z, W;p) and
along the bottom row the class maps to Zj i(Z,W;q;) (using the same argument
as in the proof of Theorem [17.6)).
So it only remains to analyze the two maps

H?*(D,D - Zp) — H**(D,D — S) «— H**(D,D — Z},))
and see that [Z],¢; and [Z’],¢; map to the same element in the middle. Note that
in our setup the inclusions D — S — D — Zp and D — S < D — Z}, are homotopy

equivalences, so the above two maps are isomorphisms. Pick any point z € Zp and
let N, C D be the fiber of the normal bundle to Z. Consider the diagram

H?*(D,D — Zp) H?*(D,D - S) H?**(D,D — 7))

- | -

H?*(N.,N, —0) —= H?*(N.,N, — (N. N S)) ~— H>*(N.,N. — (N. N Z}))

where the indicated maps are all isomorphisms (and therefore every map is an
isomorphism). The elements [Z],¢; and [Z'],.; map to the orientation classes in the
left and right groups from the bottom row, and these map to the same class in the
middle precisely because we oriented the normal directions to Z’ in the way that
was determined by the given orientation on the normal spaces of Z. O

18. THOM CLASSES IN K-THEORY AND KOSZUL COMPLEXES

In the last section we saw how Thom classes for complex vector bundles give
rise to cohomological fundamental classes for submanifolds, and we saw that these
fundamental classes have the expected connections to geometry. The discussion was
carried out in the case of singular cohomology, but very little specific information
about this cohomology theory was actually used. In fact, once we showed that
Thom classes existed everything else followed formally. So let us now generalize a
bit:

Definition 18.1. A multiplicative generalized cohomology theory is a coho-
mology theory & equipped with product maps

i €P(X, A) @ &9(Y,B) — EPT(X x Y, X x BUA X Y)
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satisfying the following requirements:

(1) Naturality in both (X, A) and (Y, B);

(2) There exists a two-sided unit 1 € E°(pt, ) = E%(pt);

(3) The pairings are associative;

(4) The pairings are compatible with the connecting homomorphisms, in the
sense that when (X, A) and (Y, B) are CW-pairs the following two diagrams
commute:

12

EP(A) ® &9(Y, B) — "~ erra(Ax Y, A x B)

soi T:

ertl(X, A) ® &4(Y, B) erti(X x BUA X Y,X x B)

\> i‘s

EPTIHFL(X x Y, X x BUAXY)

"

(X, A) ® &4(B) £ri(X x B, A x B)

(—1)Pid®5l T:

EP(X,A) ® E9TH(Y, B) EPTIX x BUAXY,AXY)

5
x i
EPTIHFL(X x Y, X x BUAXY)

(the wvertical § maps are the connecting homomorphisms for the evident
triples).

Let € be a multiplicative generalized cohomology theory.

Definition 18.2. Let E — B be a rank n complex vector bundle. A Thom class
for E is an element Ug € E2"(E,E — 0) such that for all x € B one has i*(Ug)
mapping to 1 under the string of isomorphisms

£ (Ey, B, \0) = €2"(C",C"—0) = £2"(D*", 9D*") = €27 (5°") = €°(5°) = £%(pt).

In the above definition note that the first isomorphism depends on an identifica-
tion E, = C™, which is equivalent to a choice of basis in E,. However, any two such
bases give homotopic maps of pairs (C"*,C" — 0) — (E,, E, — 0) (since GL,(C) is
path-connected) and therefore induce the same map on £*.

Definition 18.3. A complex orientation for & is a choice, for every rank n
complex bundle E — B, of a Thom class Ug € £2"(E, E — 0) such that

(1) (Naturality) Us+g = f*(Ug) for every map f: A — B;

(2) (Multiplicativity) Uper = Ug - Ug/

A given cohomology theory may or may not admit a complex orientation—
most likely, it will not. The complex-orientable cohomology theories are a very
special class. Note that once a complex orientation is provided one gets the Thom
isomorphism, Gysin sequences, and fundamental classes for complex submanifolds
just as before—as well as the same connections to intersection theory.

Our goal in this section is the following:
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Theorem 18.4. Complex K -theory is a multiplicative cohomology theory that ad-
mits a complex orientation.

Actually, it will take us many more sections to complete the details of our dis-
cussion of this result. But in this section we set down the basic ideas.

We will spend a long time exploring the geometric consequences of Theorem
(essentially all of Part [4| of this book), but let us go ahead and give one example
right away. Let Z < CP" be a complex submanifold of codimension ¢. The above
theorem implies that we have a fundamental class [Z] € K2¢(CP"), just as we did
in the case of singular cohomology. Whereas H2¢(CP") = Z and only results in
one integral invariant, we will find that K2¢(CP") = Z"*!. This is a much larger
group, and so there is suddenly the potential for detecting more information: the
K-theoretic fundamental class [Z] is an (n + 1)-tuple of integers rather than just a
single integer. Of course it might end up that all of these new invariants are just
zero, or some algebraic function of the invariant we already had—we will have to
do some computations to find out. But this demonstrates the general situation: K-
theory has an inherent ability to detect more information than singular cohomology
did.

To prove Theorem [I8:4] we need to give a construction, for every rank n complex
vector bundle E — B, of a Thom class in K*"(E, E — 0). By Bott periodicity this
group is the same as K°(E, E —0). Our first step will be to develop some tools for
producing elements in relative K-groups.

18.5. Relative K-theory. Let A < X be an inclusion of topological spaces.
When we talked about algebraic K-theory back in Part 1, we defined the relative
K-group K°(X, A) using quasi-isomorphism classes of chain complexes that were
exact on A (Section . We will make a similar construction in the topological
case, with some important differences.

Definition 18.6. Let F(X, A) be the free abelian group on isomorphism classes of

bounded chain complezes of vector bundles E, on X that are exact on A (meaning

that for every x € X the complex of vector spaces (E;), is exact). Define K(X, A)

to be the quotient of F(X, A) by the following relations:

(1) [E. & F\] = [E)] + [F.];

(2) [E,] =0 whenever E, is exact on all of X;

(3) If €, is a boundex complex of vector bundles on X x I that is exact on A x I
then [E‘XXO] = [8|X><1].

Note that pullback of vector bundles makes K (X, A) into a contravariant functor.

Relations (1) and (2) are familiar from Part |1 although the reader might be
surprised that (1) only deals with direct sums and not short exact sequences. We
will say more about this in a moment. Let us first make some remarks on relation
(3), since in our work on algebraic Grothendieck groups we did not encounter
relations of this type.

If d: F — F is a map of vector bundles over X there is a clear, intuitive notion
of a deformation of d. One way to make this rigorous is to consider the subspace
VB(E, F) C Jop(E, F) consisting of the vector bundle maps; then a deformation of
d is just a continuous map I — VB(E, F) that sends 0 to d. If m: X x I — X is the
projection, a little thought shows that the above notion of deformation is the same
as a map of vector bundles 7*FE — 7*F over X x I that restricts to d on X x {0}.
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Likewise, a deformation of a chain complex F, over X can be thought of in two
ways. One way involves a collection of deformations for all the maps of F,, having
the property that at any given time ¢ the maps in the deformation assemble into
a chain complex. The other way is simply as a chain complex structure on the set
of vector bundles {7*E;} which when restricted to X x {0} is isomorphic to E,.
These notions are equivalent.

The point here is that if (E,, d) is a given chain complex and d’ is a deformation
of the differential on d, then relation (3) implies that [(E,,d)] = [(E.,d')]. (To be
precise, there is an exactness condition required for the deformation, namely that
at every time ¢ the differential d; is exact on A). Moreover, if X is paracompact
Hausdorff then by Corollary (b) every bundle on X x [ is isomorphic to the
pullback of a bundle from X; it follows that every relation from (3) can be recast
in this form. That is to say, for paracompact Hausdorff spaces it is equivalent to
replace (3) by
(3) [(E.,d)] = [(E,,d")] for any bounded chain complex (E,,d) that is exact on A

and any deformation d’ of d (where each d; is also required to be exact on A).

The following important lemma will help give a feeling for the idea of deforming
a chain complex:

Lemma 18.7. Let E, be a bounded complex of vector bundles on X that is exact
on A. Then [E,] = —[XE,] in K(X, A), where XE, is the shifted complex having
E; in degree i + 1 and dsgp = —dp.

Proof. First note that if V, and W, are exact complexes of vector spaces and
f:V, = W, is any map, then the mapping cone Cf is still exact. This follows
by the long exact sequence on homology. Consequently, if £, — F, is a map be-
tween complexes of vector bundles on X, each of which is exact on A, then the
mapping cone is also exact on A.

Let C denote the mapping cone of the identity map F, d, E,. We depict this

complex as follows:
/ / / /

Eq Eo

The arrows depict the various components of the differentials in the mapping cone;
recall that d(a,b) = (da+id(b), —db) for (a,b) € E,, ® E,,_1, where we have written
id(b) instead of b just to indicate the role of the original chain map.

Consider the deformation of C' obtained by putting a ¢ in front of all the diagonal
arrows and letting ¢ — 0. That is, C(t) is the mapping cone for t(id): E, — F,.
Then C(t) is exact on A for every t, and when ¢ = 0 we have C(0) = E, ® XE,. So
C] = [C(1)] = [C(0)] = [E.] + [SE.] in K(X, A).

But C is exact on all of X, being the mapping cone of an identity map. So
[C] =0 in X(X, A), and hence [E,] = —[ZFE,]. O

Exercise 18.8. Let E, and F, be complexes of vector bundles on X that are exact
on A and let f: F, — F, be any map, with C'f denoting the mapping cone. Use
the ideas in the above proof to show that [Cf] = [F,] — [E,] in X(X, A).
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Our next task is to analyze exact complexes, and see that just as in homological
algebra they split up into basic pieces.

Definition 18.9. An elementary complex is one of the form

[O—>~-~—>O—>E1>E—>O—>--~—>O]

where E is a vector bundle on X and the E’s occur in some dimensions i and i+ 1.
Denote this complex as D;(E).

Proposition 18.10. Let X be a paracompact Hausdorff space. If E, is a bounded
complex of vector bundles on X that is exact, then E, is a direct sum of elementary
complezes.

Proof. The proof is really the same as in homological algebra. Assume without
loss of generality that F; = 0 for ¢ < 0. Then F; — Ej is a surjection, so the
kernel K7 is a vector bundle by Proposition 0.3 By Proposition [0.2] the sequence
0 — K7 — E1 — Ey — 0 is split-exact, and a choice of splitting allows us to write
E, = K1 ® @ where the composite Q1 — E; — Ej is an isomorphism. Noting
that Fs — F; has image contained in K7, the complex FE, splits as the direct sum
of Dy(Ep) and a complex that is zero in dimensions smaller than 1. Now continue
inductively, replacing FE, with this smaller factor, until the nonzero degrees of F,
have been exhausted. (]

Remark 18.11. Observe now that relation (2) of Definition could be replaced
with the relation that [D;(E)] = 0 for any vector bundle F on X and any i € Z.
This fact is sometimes useful.

The next result explains why we were able to forego short exact sequences in
relation (1) from Definition

Proposition 18.12. Let X be paracompact and Hausdorff, and let A C X. Assume
given a short exact sequence 0 — E! — E, — E” — 0 of complexes of vector
bundles on X, where each complez is exact on A. Then [E,] = [E.] + [E!] in
K(X,A).

Proof. Let C, be the mapping cone of E/ — F,, and recall that there is a natural
map C, - E!. Let K, be the kernel, which is a chain complex of vector bundles
by Proposition Elementary homological algebra (applied in each fiber) shows
that K, is exact on X. By Lemma [I8.13 below the inclusion K, < C, is split, and
soC, 2 K,&E!. So[C,] = [K,]+[E/] = [E/] in X(X, A). Yet Exercise [18.§ gives
[C.] = [E.] - [E]. O

Lemma 18.13. Let X be a paracompact Hausdorff space. Let j: K, — C, be an
inclusion between bounded complexes of vector bundles on X, and assume that K,
is exact. Then the map j admits a splitting x: C, — K,.

Proof. Without loss of generality assume that K; = 0 = C; for ¢ < 0. By Propo-
sition [18.10| we can write K = ®X ,D;(A;) for some vector bundles Ay, ..., Ay on
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X. The inclusion j looks as follows:

Ju |
A2 52 A1 —_— > 02
ia /

Al S2] AO —— Cl

fa

AOHCO

Starting at the bottom, choose a splitting xo for the inclusion Ag — (Y, using
Corollary Likewise, choose a splitting «; for the inclusion A; — Cy/Aq (note
that C1/Ag is a vector bundle by Proposition . Define x1: C7 — A1 @ Ag to be
the sum of C1 — C1/Ag 24 Ay and €y — G Xo, Ap. Tt is readily checked that
X1 is a splitting for j; and that dy; = xod. Continue inductively to define x at all
levels. O

The groups X(X, A) are readily seen to be homotopy invariant constructions,
essentially because this was built into the definition:

Proposition 18.14. For any map of pairs f: (X, A) — (Y, B) that is part of a
homotopy equivalence (of pairs), the induced map f*: K(Y,B) — K(X,A) is an
isomorphism.

Proof. If jo,j1: (X, A) — (X x I, A x I) are the evident inclusions then it is clear
that j; = j;, by relation (3) in Definition It then follows by category the-
ory that homotopic maps (X, A) — (Y, B) induce the same map upon applying
K(—,—). Consequently, if f: (X, A) — (Y, B) is part of a relative homotopy equiv-
alence then it induces an isomorphism on K-groups. O

Before finishing with our basic exploration of the group X (X, A), let us note the
following simple result:

Proposition 18.15. For any paracompact Hausdorff space X there is an iso-
morphism K(X,0) — K&,,(X) given by the formula [E,] = >,(=1)"[E;], where
K2, ,(X) is the Grothendieck group of vector bundles on X .

Proof. It is immediate that the indicated formula gives a group homomorphism
x: K(X,0) — K2,,(X); the only nontrivial part is verifying relation (3), but here
one uses that if F' is a vector bundle on X x I then F|xxo = F|xx1 by Proposi-
tion

There is also the evident map j: K2,,(X) — X(X,0) sending a vector bundle F
to the chain complex E[0] consisting of F in degree 0 and zeros in all other degrees.
Certainly x o j = id.

If E, is any chain complex of vector bundles on X then we may deform E, to
the complex with zero differentials, by putting a ¢ in front of all the d maps and
letting t — 0. So [E,] = [(E,,d = 0)] = Y_,[¥'E;] in K(X,0). But by Lemma
we know [X¢E;] = (—1)![E;]. This proves that j o x = id. O

Let E, and F, be bounded chain complexes of vector bundles on X. Let F, ® F,
denote the usual tensor product of chain complexes, giving another complex of
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vector bundles on X. In contrast to this, there is also an external tensor product.
If G, is a complex of vector bundles on a space Y, define

E.®G, =i (E,) ® 75(G.)
where m1: X XY — X and m3: X XY — Y are the two projections. Note that if
A: X — X x X is the diagonal map then E, @ F, = A*(E,®F,).
The internal and external tensor products induce pairings on the K-groups de-
fined above, taking the form

®: K(X,A) @ K(X,B) - X(X,AUB)

and

&: K(X,A) @ K(Y,B) - K(X x Y, (AxY)U (X x B)).
The main point is that if V, and W, are bounded exact sequences of vector spaces
and V, is exact, then V, ® W, is exact. It follows that if F, is exact on A and F, is
exact on B, then F, ® F, is exact on AU B, with a similar analysis for the external
case. Note again that the internal and external tensor products are connected by
the formula

B @ [F] = A" ([E]®[E.]).
The following theorem is essentially due to Atiyah, Bott and Shapiro [ABS].

Theorem 18.16. There is a natural transformation of functors x: K(X,A) —
K°(X, A) such that when A =0 one has x(E,) = Z(—l)Z[EZ}, and all such nat-

ural transformations agree on pairs (X, A) where both X and A are homotopically
compact. Moreover, x is a natural isomorphism on pairs that are homotopy equiva-
lent to a finite CW-pair. Also, x is compatible with (external and internal) products
in the sense that x(E, ® F,) = x(E,) - x(F.,) for pairs (X, A) and (Y, B) that are
either finite CW-complexes or are homotopically compact with A being open in X
and B being open in'Y .

The proof of Theorem [I8.16] involves some technicalities that would be a distrac-
tion at this particular moment, so we postpone the proof until Section 22] below.
See, in particular, Section 22.43] for the final proof.

In light of the above theorem, it is unclear how well-behaved the groups K(X, A)
are for pairs (X, A) that are not homotopy equivalent to a finite CW-pair. This is
unfortunate, because we have already seen that we need to work with groups like
K°E,E —0) (E a vector bundle) and K°(X, X — Z) (Z a closed subvariety of X).
The above result does not allow us to replace these with the analogous X groups.
Still, we do have a map from the latter to the former, and that is often enough for
us. Essentially, the K construction is good for producing elements and relations in
the KV groups, even when it is not good for computing them explicitly.

From now on we assume that a specific natural transformation x has been chosen,
but the indeterminancy in this choice will not effect any arguments we ever need
to make.

18.17. Koszul complexes. Now that we know how to produce classes in relative
K-theory, we will put this knowledge to good use.

Let V be a complex vector space of dimension n. For any v € V consider the
chain complex

VA— vA— vA

0 AV AV C Ay YA Ay 0.
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Denote this chain complex by Jy,. It is easy to see that this is exact when v # 0:
indeed, pick a basis ey, ..., e, for V where e; = v, then use the usual induced basis
for the exterior products. It is clear that if e; A w = 0 then all the basis elements
appearing in w have an e; in them.

Exercise 18.18. Check that Jy,, ® Jww = Jyveow,wew, and the isomorphism is
canonical.

For various reasons we will need to consider the dual of .Jy,,. Recall the existence
of a natural isomorphism A*(V*) — (A*V)*: for any ¢1,...,¢r € V* it sends
é1 A -+ A ¢y to the functional on A*V given by

Vi A AU Z )7 01(Ve(1))P2(Vo(2)) -+ - Pk (Vo (1))
cEX

Ifeq,...,e, is a basis for V, let e7, ..., e} denote the dual basis for V*. As a basis
for AV use the standard basis of wedge products e;,...;, = e;, A--- A e;, where
i1 < --- < ik, and write ez‘l___ik for the corresponding elements of the dual basis for
(A*V)*. One readily checks that our map sends €] A--- A e}, to the functional
e;-kl,.,ik, which shows that we have an isomorphism.

Using these isomorphisms, the dual complex of Jy, has the form

0 — AmV* Loy An—tys Doy oy gLy oy £Ope g

We denote this by Jy; ., and it is called a Koszul complex. Here is a description
of the differential:

Proposition 18.19. Let e1,--- ,e, be a basis for V and write v = > v;e;. Let
€l,...,er be the dual basis for V*. Then the differential in Iy, s given by
k
dy(efy Ao Aer) =Y (=1 v el A Nef AeeAes,,
j=0

where the hat indicates that that term is omitted from the wedge.
Proof. Left to the reader. O

Example 18.20. Prove that Jy,, and Jy;, are isomorphic as chain complexes. A
good exercise is to try to do this without any help, starting with a specific map
A’V — A"V* and figuring out what the other maps would have to be to get
a map of complexes. This essentially leads one to discover the so-called “Hodge
star-operator”. But for good measure we also give an outline of how to do this.

Fix a basis eq,...,e, of V,and let w =e; A---Ae, € A"V, For I = (i1,...,0),
let [ = (415 - -+ Jn—k) denote any tuple of indices for which ey A ej = w. Note that
e; € A"7*(V) only depends on e; € A*(V) and not the choice of ordering in either
tuple. Define S: A¥(V) — A"~ FV* by

S(er) = (1)) ez,

A few examples are: S(1) = w, S(e1) = €., S(e2) = —ef...,,, and S(ej2) =
—e}...,. Prove that S gives the desired isomorphism of complexes. (Note that the
isomorphism between Jy,,, and Jy;, is not canonical, though, as it depends on the
chosen basis of V.)
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Recall that K-theory is largely about ‘doing linear algebra fiberwise over a base
space’. Anything canonical that we can do for vector spaces can be done for vector
bundles as well. So let £ — B be a rank n complex vector bundle, and let s: B — F
be a section. We get a chain complex of vector bundles

SA— SA— sA

0 AE AE ~ AR AR 0

which we will denote Jg ;. For x € B this chain complex is exact over x provided
that s(x) # 0. Thus it determines an element in K°(B, B—s71(0)). We can just as
well consider the dual complex, which also determines a (likely different) element
3. € K°(B, B — s~1(0)).

Now let V' be a complex vector space of dimension n. Consider the vector bundle
m:V xV — V, with section given by the diagonal map A: V — V x V. Our
Koszul complex Jj; . A is exact on V — 0, and so defines an element

B(V) = [Fyxv,al € K°(V,V —0).
Example 18.21. One readily checks that §(C) is the complex

1 —= =1

NS

C

where the fiber over z € C is the chain complex 0 — C — C — 0 (multiplication
by z). The Koszul complex 3(C?) has the form

14A> Ll

N

where over a point (z,w) € C? we have

)

A:[Zw} and B=[z w].

Finally we look at 3(C3), which has the form

A B

1 3 3 1
where the fiber over (z,w,u) € C3 has
U —w —u 0
A= |-w|, B=]| z 0 —ul, C:[z w u]
z 0 z w

Let us return to our element 8(V) € K°(V,V —0). If we pick a basis for V then
we get isomorphisms

K°(V,V —0) = K°(C",C" — 0) = K°(D*",0D*") = K°(5*")
[?—271(50) _ K_Qn(pt).

1
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Moreover, one checks that any two choices of basis for V' give rise to the same
isomorphism (essentially because a C-linear automorphism of C" is orientation-
preserving). So we may regard 3(V) as giving us an element of K ~2"(pt). Using
Exercise we have (V@ W) = B(V) - B(W).

When we first learned about K-theory as a cohomology theory, we set ourselves
the goal of having explicit generators for K*(pt). We can now at least state the
basic result:

Theorem 18.22.
(a) K°(C*,C" —0) = K~2"(pt) 2 Z and B(C") = (B(C))" is a generator.
(b) K*(pt) = Z[B, 1], where B = B(C) € K~*(pt).

The element 3 = B(C) € K~2(pt) is often called the Bott element, although
sometimes this name is applied to 37! € K?(pt) instead. This theorem is best
regarded as part of Bott periodicity. And just as for the periodicity theorem, we
again postpone the proof in favor of moving forward and seeing how to use it. The
proof can be found in 7777.

Let p: EF — B be a rank n complex vector bundle. Consider the pullback p*FE,
which is 71 : ExpE — E. This bundle has an evident section given by the diagonal
map A: EF — FE xpg F, and we may consider the Koszul complex with respect to
this section. Since A is nonzero away from the zero-section of F, this gives us an
element in K°(E, E — 0): we define

(18.23) Up =[J)pal € K°(E,E—-0).

Note that if x € B and j,: FE, — F is the inclusion of the fiber, it is completely
obvious that j*(Ug) = B(E,) € K°(E,, E, —0).

The element Ug is not quite our desired Thom class, since the Thom class is
supposed to live in K?"(E, E—0) rather than K°(E, E—0). Of course these groups
are the same because of Bott periodicity. To be completely precise, we should define
our Thom class to be Ug = 87" - [J). p A]. However, it is common practice to leave
off the factors of 3 and just do constructions in K. We will often follow this
practice, but sometimes we will put the factors of § back into the equations in
order to emphasize a point. Hopefully this won’t be too confusing.

We have now completed our outline of the proof that K-theory admits Thom
classes, modulo Theorems [18.16] and [18.22| whose proofs will come in Sections
and 777, respectively.

18.24. Koszul complexes in algebra. Now that we have seen Koszul complexes
in geometry it seems worthwhile to also see how they appear in algebra. They turn
out to be very important tools in homological algebra.

Let R be a commutative ring, and let z1,...,z, € R. Define the Koszul complex
K(x1,...,2,; R) to be the complex

0—= A"R? 4o An—1pn o 4 pg2pn 4 pipn 4 popn

where the differential d is given by
k
dleig A+ Neiy) =D (=1 a; (e, Ao NEy A-e- Aeyy).
j=0
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Note that d is the unique derivation such that d(e;) = z;. Define the Koszul
homology groups as H,.(z1,...,z,; R) = H.(K(x1,...,2,;R)). We will often
abbreviate the sequence 1, ..., z, to just z, and write K (z; R) and so forth. It is
easy to see that Hy(z; R) = R/(x1,...,2n).

In some cases the Koszul complex K(z;R) is actually a resolution of
R/(x1,...,x,), and this is perhaps the main reason it is useful. To explain when
this occurs we need a new definition. The sequence x1,...,x, is said to be a reg-
ular sequence if z; is a non-zero-divisor in R/(z1,...,x;—1) for every 1 <i <mn
(in particular, 1 is a non-zero-divisor in R). For example, in the polynomial ring
Clz1,- .., 2zn] the indeterminates z1, ..., z, are a regular sequence.

Theorem 18.25. Let x1,...,z, € R.
(a) If z1,..., 2y is a reqular sequence, then H;(z; R) =0 for alli > 1.

(b) Suppose R is local Noetherian and x1,...,x, € m, where m is the mazimal
ideal. Then x4, ...,y is a reqular sequence if and only if H;(z; R) =0 for all
1> 1.

Proof. The subalgebra of A*R™ generated by ej,...,e,_1 is a subcomplex of
K(z1,...,2,; R), and is isomorphic to K(z1,...,z,—1; R). The quotient complex
has a free basis consisting of wedge products that contain e,; and in fact the pro-
cess of ‘wedging with e, gives an isomorphism between K(z1,...,2,—1;R) and
this quotient complex that shifts degrees by one. We can summarize this by saying
that there is a short exact sequence of chain complexes

(18.26)
0— K(z1,...,2p—1; R) = K(21,...,2; R) » XK(z1,...,2,-1; R) = 0.
Denote the sequence z1,...,z, by z and z1,...,2,_1 by 2’.

Our short exact sequence induces a long exact sequence in homology groups:
- = Hy(2';R) — Hy(z; R) — H,_1(z/; R) -5 H, 1(z; R) — H;_y(x; R) — - --

and one easily checks that the connecting homomorphism is multiplication by +x,,

(we leave this as Exercise [18.27)).

Our proof of part (a) now proceeds by induction on the length of the sequence
"SR 0,so Hi(z;R) =

n. When n = 1 the Koszul complex is 0 R
Anng r1 = 0 since z; is a non-zero-divisor.

Now assume that we know part (a) for all regular sequences of length n — 1. By
the induction hypothesis and the above long exact sequence, it is easy to see that
H;(z;R) = 0 for ¢ > 2. So we only need to worry about Hi(z; R), for which we
have

Hy(«; R) — Hy(x; R) — Ho(z'; R) =28 Ho(a; R) — Ho(z; R) = 0
By induction Hy(z'; R) = 0, and we know Hy(2'; R) = R/(x1,...,2Zn—1). Since z,
is a non-zero-divisor in this ring, the kernel of the map labelled +x,, is zero—hence
Hy(z; R) = 0 as well. This completes the proof of (a).

For (b), the point is that the above argument is almost reversible. For n = 1 the
other direction works without any assumptions on R, because H;(x; R) = Ann(z).
So assume by induction that the result holds for sequences of length n — 1. It
follows from the long exact sequence we saw in part (a) that there are short exact
sequences

0 — Hi(2'; R)/xnHi(2'; R) — H;(z; R) — Anngy, ,(a,r) (%) = 0.
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The assumption that H;(z; R) = 0 implies that z,H;(z’; R) = H;(z’; R). But
Zn € m, so by Nakayama’s Lemma this yields H;(z’; R) = 0. This holds for all
i > 1, so induction gives that 2’ is a regular sequence. The assumption H;(z; R) =0
also yields (using the other half of the above short exact sequence) that x,, is a non-
zero-divisor on H;_1(z’; R); so for ¢ = 1 this says that z,, is a non-zero-divisor on
R/(x1,...,2,—1). Hence, z is a regular sequence. |

Exercise 18.27. In the above proof, work through the definition of the connecting
homomorphism for the short exact sequence ([18.26) to check that it is multiplication
by £z, (the sign can be determined, we just don’t care about it).

We can use our knowledge of Koszul complexes to prove the Hilbert Syzygy
Theorem:

Theorem 18.28 (Hilbert Syzygy Theorem). Let L be a field. Then every finite-
generated module over L{xy,...,x,] has a finite projective resolution.

Proof. We first prove the result in the graded case. Let R = L[xy,...,2,], and
grade R by setting deg(xz;) = 1. Assume that M is a finitely-generated, graded R-
module. We construct the so-called “minimal resolution” of M: Start by picking a
minimal set of homogeneous generators wy, ..., wy for M. Define Fy = R, graded
so that the ith generator has degree equal to deg(w;). Let dy: Fy — M be the
map sending e; to w;, and let K be the kernel. Then dj preserves degrees, so K
is again a graded module. Repeat this process to construct F} — Ky, let K; be
the kernel, repeat to get F» — K4, and so forth. This constructs a free resolution
F, — M of the form

o> R 5 R 5 R 5 M 0

Each differential has entries in the ideal (x4, ..., 2, ): this follows from the fact that
at each stage we chose a minimal set of generators.

Next, form the complex F, ® g R/(x1,...,z,) and take homology. Tensoring
with R/(z1,...,xy) kills all the entries of the matrices and changes every R to an
L; so we have

LY = Hy(F, ®r R/(z1,...,2,)) = Tor;(M,R/(x1, ..., z,)).

Now we use the fact that we can also compute Tor by resolving R/(z1,...,z,)
and tensoring with M. Yet by Theorem [I8.25(a) R/(1,...,,) is resolved
by the Koszul complex, which has length n: so this immediately yields that
Tor;(M,R/(x1,...,2,)) = 0 for i« > n. It follows that b; = 0 for ¢ > n, which
says that F, was actually a finite resolution.

Now we prove the general case, for modules that are not necessarily graded.
Choose a presentation of the module

Rt 45 Rbo s M

where A is a matrix with entries in R. Now introduce a new variable zo and
homogenize A to A: that is, multiply factors of xy onto the monomials ap-
pearing in the entries of A so that all the entries have the same degree. Put

S = Llxo, ..., xn] = Rlzg], and let M be the cokernel of A:

gbi AL gbo i 0.

Note that M is a graded module over S, and M ®g S/(1 — z0) = M.
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What we have already proven in the graded case guarantees a finite S—free
resolution F', — M — 0. Let F, = F, ®g (S/(1 — x0)). This is an R-free chain
complex, and Hy(F,) = M. Note that H;(F) = Tor (M, S/(1 — x)), and the Tor-
module can again also be computed by resolving S/(1 —xg). We use the resolution
0— S =% 8§ — 0 and immediately find that H;(F) =0ifi > 2. We also have that
Hy(F) = Anng (1 — zg), but such an annihilator is zero for any finitely-generated,
graded module. So F, — M is a finite free resolution over R. (]

Remark 18.29. In the above proof, the deduction of the general case from the
graded case was taken from [El Corollary 19.8].
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19. INTERLUDE: MORE ALGEBRAIC GEOMETRY

In preparation for some arguments in the next section we need to develop a little
more algebraic geometry: we need the concepts of schemes and coherent sheaves,
as well as some experience with specific examples. The good news is that we only
require the basic ideas here. An extremely brief summary is:

(i) The category of affine schemes is the opposite category of commutative rings.
Affine algebraic geometry is just commutative algebra.

(ii) Schemes are affine schemes that have been pasted together along open inclu-
sions, analogously to the way one passes from open subsets of Euclidean space
to manifolds.

(iii) Here is an SAT-style analogy:

[R : R-modules] :: [X : quasi-coherent O x-modules].

That is, the category of quasi-coherent O x-modules is the algebraic geometers’
version of the category of R-modules. When X = Spec R the categories
are equivalent. Coherent Ox-modules are the analog of finitely-presented R-
modules, but we will always deal with Noetherian situations and so one might
as well read finitely-generated here. If you know and love the theory of modules
over a ring, the theory of quasi-coherent O x-modules will soon be your good
friend.

This section will give an introduction to these topics, and along the way will
introduce blowup varieties and a few other geometric concepts.

19.1. Getting started. Let us start by recalling what we have learned so far about
the correspondence between geometry and algebra:

’ Geometry \ Algebra ‘
C" or A} Clz1,...,zn] =R
Points (g1, ...,q,) in A™ Maximal ideals (x1 — ¢q1,...,Zn — Gn)
Algebraic sets Radical ideals
Irreducible algebraic sets Prime ideals
subvarieties X = V(P) C A" Clx1,...,zn]/P=R/P
(Closed) Points in X Maximal ideals in R/P
Algebraic subsets V(I) C X Radical ideals in R/P
Irreducible algebraic sets V(Q) C X Prime ideals in R/P
algebraic vector bundles E' on X f.g. projective R/P-modules &
fiber E, at the closed point z € X 8/ Mgt where Mg 18 the maximal
ideal corresponding to x

One of the questions we aim to answer is this: if finitely-generated R/P-
projectives on the Algebra side correspond to algebraic vector bundles on the Ge-
ometry side, what do more general finitely-generated R/P-modules correspond to?
The answer will be that they represent “coherent sheaves”, but our job will be to
figure out what these are.

Here is a related issue that will drive our discussion. Once we have the idea
that a chain complex of projectives corresponds to a chain complex of algebraic
vector bundles, we immediately notice an issue: exactness in the module setting
does not match our usual fiberwise notion of exactness in the geometric setting.
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Recall that the most basic example is the map of trivial bundles f: 1 — 1 on A!
that corresponds to the map C[z] —= C[xz]. So on the fiber over ¢ € C this map is
multiplication by ¢. On fibers these are isomorphisms for every ¢ # 0, but at ¢t =0
we have both a kernel and a cokernel. We might draw the following picture:

| l

0 ¢ 0t

Notice that on the module side C[z] — C[z] we have a cokernel, namely Q =
Clz]/(x), but zero kernel. In other words, regarding these maps as chain complexes
concentrated in degrees 0 and 1, the complex on the module side is exact in degree
1 but the complex on the geometric side is not. The module Q) satisfies Q/mQ =0
for every maximal ideal m C C[x] other than m = (z), and Q/(x)Q = C. So the
“fibers” of @) are matching the cokernel in our picture, but something is not lining
up when we look at kernels.

The fix for this—that is to say, the way to get the geometry to better match the
algebra—is that we need to be looking at stalks rather than fibers. So let us pause
for a moment to say what these are.

If p: E — X is an algebraic vector bundle and z € X, then the stalk E,)
is the vector space of germs of sections of p: that is, it consists of pairs (U, s)
where U is a Zariski neighborhood of x and s: U — X is a section of p, subject to
the identification (U, s) = (V,s') if sluny = §'|unv. Note that the stalk contains
much more information about sections than the fiber does: the fiber just records
the values of sections, but the stalk remembers all of the local information (for
example, the values of all of the derivatives). For our example of E =1 on A!, the
stalk ;) may be identified with the localization C[xz],_y).

Returning to our map of bundles f: E — E on A', on the stalk over ¢ we have

C[SIJ] (:E—t) _CC) C[Z'] (:E—t) .

When ¢t # 0 the element z is a unit in C[x],_s), therefore this map is an
isomorphism—kernel and cokernel are both zero. When ¢ = 0 we have the map
C[z](s) = Clz](s), which has cokernel C but which is an injective map.

The lesson is that if we are to create a geometric version of the category of
modules, which in some way expands on our existing picture of algebraic vector
bundles, we need to be paying attention to stalks and not just fibers. This provides
some motivation for the notions of sheaves and quasi-coherent O x-modules that we
survey below.

19.2. Crash course on schemes. We start with the category of affine schemes
over C, which is defined to be the opposite of the category of C-algebras. For R a
C-algebra we define Spec R to be the associated affine scheme. Maps from Spec R to
SpecT are the same as maps of C-algebras from 7" to R. We define the underlying
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topological space of Spec R to be the set of prime ideals in R, equipped with the
Zariski topology.

It will be most convenient for us to build up the category of schemes by working
backwards. So let us assume given a category of objects called “C-schemes” which
will be our preferred setting for doing algebraic geometry. It should contain the
affine schemes over C as a full subcategory, but it should also contain any Zariski
open subset of an affine variety. The category should also contain objects, like
complex projective space, that are constructed by gluing affine varieties together
in certain allowable ways. We will have the property that for any C-scheme X
and any point p € X there is a neighborhood of p that is affine. Denote this
imagined category by 8ch/C. Since we will be working entirely over C throughout
this section, we shorten C-scheme to just “scheme” and write Sch instead of Sch/C.

Let A! = SpecCl[t]. We have maps Al x Al — A! called addition and multi-
plication, corresponding to the maps of rings C[t] — Clt,t2] given by t — t; + o
and t +— t1t3. For any scheme X we can consider Sch(X, Al), which is a ring via
the operations induced by the above two maps. We denote this ring as O(X) and
call it the “ring of algebraic functions” on X. For any open covering {U;} of X we
would expect to have an isomorphism

(19.3) 0(x) = nm[H o) = [Jow mUj)}

i 1,5
where the top map sends a tuple (f;); to (fi|lv,nv,)ij, and the bottom map sends
the same tuple to (f;|u,nv, )i;- The isomorphism captures the notion that functions
patch well: giving an algebraic function defined on all of X is the same as giving
functions defined on each U; which agree on the pairwise intersections.

Observe that when X = Spec R we have

O(X) = 8ch(X,A') = C—Alg(C[t],R) = R.
That is, the ring of algebraic functions on Spec R is just R.

The isomorphism of is called a descent condition. It is useful to consider
other assignments satisfying these conditions, so define a presheaf F on X to be an
assignment U +— F(U) that maps each open set U C X to a set (or abelian group,
or ring) F(U), together with restriction maps F'(V) — F(U) whenever U C V.
Say that a presheaf F' is a sheaf if it satisfies the descent condition saying that for
every open covering {U;} of X the natural map

(19.4) F(X) 25 lim [H FUy) = [[Fwin Uj)}

is an isomorphism. The functor O, when restricted to open subsets of X, is usually
written Ox. It is a sheaf of rings on X. More generally, for any scheme Z the
functor U +— 8ch(U, Z) will give a sheaf on X.

For any presheaf F' and any point z € X, define the stalk of F' at = to be

Fla) = melcjgilvleglgx FU),

where the colimit is taken over the inverse system of Zariski neighborhoods of x in
X. The stalk represents the truly local information in F' near . The stalk (Ox) )
is usually written as Ox , and called the ring of germs of algebraic functions
at x.
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Starting with a presheaf F', there is a universal way to impose the descent con-
dition, resulting in a universal map F — F where F is a sheaf. This is called
the sheafification of /. We will not explain the construction, but it is not hard
(consult any introductory text on sheaf theory, e.g. [Bx]). In addition to the uni-
versality, the main property is that F(,) — F(w) is an isomorphism for every point
z. So F and F contain the same local information.

One can mimic the definition of topological vector bundle and define an algebraic
vector bundle to be a map of schemes p: E — X with certain extra structures,
that is locally trivial in the evident way. We omit the details only because it is
cumbersome to write them all out. For U an open subset of X write I'g(U) for the
subset of Sch(U, E) consisting of sections of p. Then I'p will be a sheaf on X. Even
more, each I'g (U) will be an abelian group under pointwise addition from the fibers
of E, and an Ox (U)-module under pointwise multiplication. Let us generalize this
scenario and define a sheaf of Ox-modules to be a sheaf of abelian groups F on
X together with maps Ox(U) ® F(U) — F(U) that make F(U) into an Ox (U)-
module and are compatible with the restriction maps in Ox and F. Often one just
says “Ox-module” as shorthand for “sheaf of O x-modules”.

Observe that I'g isn’t just any Ox-module, but it has the additional property
of being locally-free: for any point x in X there is an open set « € U such that
I'p(U) = 0x(U)®™ where n is the rank of E. Consequently, note that for any
point x € X one has an isomorphism of stalks (I'r) ) = 0% .

Now assume X = Spec R is an affine scheme, and let M be an R-module. For
any open set U C X we have the map of rings R = Ox(X) — Ox(U), and so we
can define

Fy(U)=0x(U)®gr M.
This might not be a sheaf, but one can sheafify it to obtain E\; . This will be a sheaf
of Ox-modules. We will write M instead of F;. For a prime idggl P € SpecR
one has a natural isomorphism Mpy = Mp. That is, the stalks of M are the usual
localizations of M.

If X is a scheme, define a quasi-coherent sheaf on X to be a sheaf F' of Ox-
modules such that for every x € X there is an affine open neighborhood z € U
such that F|y is isomorphic to M for some Ox(U)-module M. See Remark
below for a more intrinsic characterization. One can prove that when X = Spec R
the category of quasi-coherent sheaves on X is equivalent to the category of R-
modules, via the functor M — M. A coherent sheaf is a quasi-coherent sheaf
that is locally isomorphic to M for M a finitely-generated Ox(U)-module (recall
that by convention all of our rings are Noetherian).

Let qcMod y and cModx denote the categories of quasi-coherent and coherent
O x-modules, respectively. These are both abelian categories, for any scheme X.

Remark 19.5. Here are equivalent versions of the definitions that in some ways
are more appealing in that they don’t explicitly refer back to the categories of rings
and modules on an affine chart. They also don’t require any Noetherian conditions.
A sheaf of Ox-modules F' is quasi-coherent if for each z € X there is an open
neighborhood = € U such that F|y is a cokernel of free sheaves of O x-modules:

P ox)lv — POx)lv — Flv — 0.
i€Jd Jjed
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A sheaf of Ox-modules F' is finite-type if for each z € X there is an open neigh-
borhood z € U, an n > 0, and a surjection (Ox)"|y — F|y. Finally, a sheaf of
Ox-modules F'is coherent if it is finite-type and for every open set U, every n > 0,
and every surjection (0% )|y — F, the kernel is also finite-type.

We will not need these conditions, but include them to give the reader some
assurance that the theory we are outlining can all be worked out in rigorous detail
and in quite general settings.

The analog of Swan’s theorem says that the assignment E — I'p gives an equiv-
alence of categories between algebraic vector bundles over X and the locally-free
coherent sheaves on X. In this context it is often called the Serre-Swan Theo-
rem. Note that when X = Spec R this is an equivalence between algebraic vector
bundles on X and finitely-generated projective R-modules. Thus, one may regard
the category of quasi-coherent sheaves as an expansion of the category of algebraic
vector bundles into an abelian category, analogous to the way the category of R-
modules is an expansion of the category of finitely-generated projectives. It is often
useful to think of a quasi-coherent sheaf as being like a vector bundle but where
there can be certain kinds of “jumps” in the fibers.

The category of quasi-coherent sheaves on a scheme X is the algebraic geometer’s
