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Preface

I first learned Serre’s definition of intersection multiplicity from Mel Hochster,
back when I was an undergraduate. I was immediately intrigued by this surprising
connection between homological algebra and geometry. As it has always been for
me when learning mathematics, I wanted to know how I could have guessed this
definition for myself—what are the underlying principles that tell us to go looking
in homological algebra for a definition of multiplicity. This question has been in the
back of my mind for most of my mathematical life. It took me a long time to accept
that the answers to such questions are not often readily available; one has to instead
make do with vague hints and partial explanations. I still believe, though, that the
answers exist somewhere—and that it is the ultimate job of mathematicians to
uncover them. So perhaps it is better said this way: those questions often don’t
have simple answers yet .

During my first year of graduate school I tried to puzzle out for myself the secrets
behind Serre’s definition. Thanks to the Gillet-Soulé paper [GS] I was led to K-
theory, and similar hints of topology seemed to be operating in work of Roberts
[R1, R4]. Coincidentally, MIT had a very active community of graduate students
in topology, and I soon joined their ranks. Although there were other factors, it
is not far from the truth to say that I became a topologist in order to understand
Serre’s definition.

In Winter quarter of 2012 I taught a course on this material at the University
of Oregon. The graduate students taking the course converted my lectures into
LaTeX, and then afterwards I both heavily revised and added to the resulting doc-
ument. The present notes are the end result of this process. I am very grateful
to the attending graduate students for the work they put into typesetting the lec-
tures. These students were: Jeremiah Bartz, Christin Bibby, Safia Chettih, Emilio
Gardella, Christopher Hardy, Liz Henning, Justin Hilburn, Zhanwen Huang, Tyler
Kloefkorn, Joseph Loubert, Sylvia Naples, Min Ro, Patrick Schultz, Michael Sun,
and Deb Vicinsky.
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Introduction

1. Algebraic intersection multiplicities

Let Z be the parabola y = x2 in R2, and let W be the tangent line at the vertex:
the line y = 0. Then Z and W have an isolated point of intersection at (0, 0):

x

y

W

Z

Since high school you have known how to associate a multiplicity with this inter-
section: it is multiplicity 2, essentially because the polynomial x2 has a double
root at x = 0. This multiplicity also has a geometric interpretation, coming from
intersection theory. If you perturb the intersection a bit, say by moving either Z
or W by some small amount, then you get two points of intersection that are near
(0, 0)—and these points both converge to (0, 0) as the perturbation gets smaller
and smaller.

You might object, rightly so, that I am lying to you. If we perturb y = 0 to y = ε,
with ε > 0, then indeed we get two points of intersection: (

√
ε, ε) and (−√ε, ε). And

these do indeed converge to (0, 0) as ε→ 0. But if we perturb the line in the other
direction, by taking ε to be negative, then we get no points of intersection at all!
To fix this, it is important to work over the complex numbers rather than the reals:
the connection between geometry and algebra works out best (and simplest) in this
case. If we work over C, then it is indeed true that almost all small perturbations
of our equations yield two solutions close to (0, 0).

Our goal will be to vastly generalize the above phenomenom. Let f1, . . . , fk ∈
C[x1, . . . , xn], and let Z be the algebraic variety defined by the vanishing of the f ’s.
We write

Z = V (f1, . . . , fk) = {x ∈ Cn | f1(x) = f2(x) = · · · = fk(x) = 0}.
Likewise, let g1, . . . , gl ∈ C[x1, . . . , xn] and let W = V (g1, . . . , gl). Assume that P
is an isolated point of the intersection Z∩W . Our goal is to determine an algebraic
formula, in terms of the fi’s and gj ’s, for an intersection multiplicity i(Z,W ;P ).
This multiplicity should have the basic topological property that it coincides with
the number of actual intersection points under almost all small deformations of Z
and W .

Here are some basic properties, by no means comprehensive, that we would want
such a formula to satisfy:
(1) i(Z,W ;P ) should depend only on local information about Z and W near P .
(2) i(Z,W ;P ) ≥ 0 always.
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(3) If dimZ+dimW < n then i(Z,W ;P ) = 0 (because in this case there is enough
room in the ambient space to perturb Z and W so that they don’t intersect at
all).

(4) If dimZ + dimW = n then i(Z,W ;P ) > 0.
(5) If dimZ + dimW = n and Z and W meet transversely at P (meaning that

TPZ ⊕ TPW = Cn), then i(Z,W ;P ) = 1.
Note that because of property (1) we can extend the notion of intersection mul-

tiplicity to varieties in CPn, simply by looking locally inside an affine chart for
projective space that contains the point P . From now on we will do this without
comment. The two statements below are not exactly ‘basic properties’ along the
lines of (1)–(5) above, but they are basic results that any theory of intersection
multiplicities should yield as consequences.

(6) Suppose that X ↪→ CPn is the vanishing set of a homogeneous polynomial,
that is X = V (f). Let L be a projective line in CPn that meets X in
finitely-many points. Then∑

P∈X∩L
i(X,L;P ) = deg(f).

(7) (Bezout’s Theorem) Suppose that X,Y ↪→ CP 2 are the vanishing sets of
homogeneous polynomials f and g, and that X∩Y consists of finitely-many
points. Then ∑

P∈X∩Y
i(X,Y ;P ) = (deg f)(deg g).

Note that (6), for the particular case n = 2, is a special case of (7).
If you play around with some simple examples, an idea for defining intersection

multiplicities comes up naturally. It is

i(Z,W ;P ) = dimC

[
C[x1, . . . , xn]/(f1, . . . , fk, g1, . . . , gl)

]
P
.(1.1)

Here the subscript P indicates localization of the given ring at the maximal ideal
(x1−p1, . . . , xn−pn) where P = (p1, . . . , pn). The localization is necessary because
Z∩W might have points other than P in it, and our definition needs to only depend
on what is happening near P .

The best way to get a feeling for the definition in (1.1) is via some easy examples:

Example 1.2. Let f = y−x2 and g = y. This is our example of the parabola and
the tangent line at its vertex. The point P = (0, 0) is the only intersection point,
and our definition tells us to look at the ring

C[x, y]/(y − x2, y) ∼= C[x]/(x2).

As a vector space over C this is two-dimensional, with basis 1 and x. So our
definition gives i(Z,W ;P ) = 2 as desired. [Note that technically we should localize
at the ideal (x, y), which corresponds to localization at (x) in C[x]/(x2); however,
this ring is already local and so the localization has no effect].

Example 1.3. The above example readily generalizes. If h(x) ∈ C[x] then let
f = y − h(x) and g = y. Factor h(x) =

∏
i(x− zi)ei and consider the intersection

multiplicity of V (f) and V (g) at the point (z1, 0). Here we get C[x, y]/(f, g) ∼=
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C[x]/(h(x)) and after localization at the ideal (x− z1) the factors x− zi for i > 1
become units so that we have

C[x](x−z1)/(h(x)) ∼= C[x](x−z1)/(x− z1)e1 ∼= C[u](u)/(u
e1).

The dimension over C is then e1, coinciding with the multiplicity of z1 as a root of
h(x).

Example 1.4. Let f = y2 − x3 − 3x and g = y − 3
2x − 1

2 . Then Z = V (f) is an
elliptic curve, and one can check that W = V (g) is the tangent line at the point
P = (1, 2). Let us recall how this works: the gradient vector to the curve is

∇f = [−3x2 − 3, 2y]

and this is normal to the curve at (x, y). A tangent vector is then [2y, 3x2 + 3]
(since this is orthogonal to ∇f), which means the slope of the curve at (x, y) is
(3x2 + 3)/2y. At the point (1, 2) we then get slope 3

2 , and V (g) is the line passing
through (1, 2) with this slope.

The line V (g) intersects the curve at one other point, which we find by simulta-
neously solving y2 = x3 + 3x and y = 3

2x+ 1
2 . This yields the cubic

0 = x3 + 3x− ( 3
2x+ 1

2 )2.

Since we know that x = 1 is a root, we can factor this out and then solve the
resulting quadratic. One finds that the cubic factors as

0 = (x− 1)2 · (x− 1
4 ).

The second point of intersection is found to be Q = ( 1
4 ,

7
8 ).

Note the appearance of (x− 1) with multiplicity two in the above factorization.
The fact that we had a tangent line at x = 1 guaranteed that the multiplicity
would be strictly larger than one. Likewise, the fact that (x − 1

4 ) has multiplicity
one tells us that V (g) intersects the curve transversely at the second point. These
facts suggest that i(Z,W ;P ) = 2 and i(Z,W ;Q) = 1. Let us consider these in
terms of point-counting under small deformations. We can perturb either Z or W ,
but it is perhaps easiest to perturb the line W : we can write g̃ = y − Ax− B and
then consider what happens for all (A,B) near ( 3

2 ,
1
2 ). We will need to find the

intersection of Z and W̃ = V (g̃), which as before requires us to solve a cubic. Let
us again arrange for there to be a known solution which we can factor out. It is
possible to have this solution be either (1, 2) or ( 1

4 ,
7
8 ). The calculations turn out

to be a little easier for the latter, despite the annoying fractions. So we assume
7
8 = A

4 + B, or g̃ = y − A(x − 1
4 ) − 7

8 . Since we want to look at A near 3
2 , it is

convenient to write A = 3
2 + ε where ε is near zero.

Finding common solutions of f = 0 and g̃ = 0 yields a cubic with (x − 1
4 ) as a

factor, and dividing this out we obtain the quadratic

0 = x2 − x(2 + 3ε+ ε2) + (1− ε+ ε2

4 ).

The discriminant of this quadratic is D = ε(ε3 +6ε2 +4ε+16), so the quadratic has
a double root when ε = 0 (as expected) but simple roots for values of ε near but
not equal to zero. So for these values of ε we get two points of intersection of V (f)
and V (g̃) near P , and it is easy to see that they converge to P as ε approaches zero.
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Let us now see what our provisional definition from (1.1) gives. The quotient
ring in our definition is

C[x, y]/
(
y2 − x3 − 3x, y − 3

2x− 1
2

) ∼= C[x]/
(
( 3

2x+ 1
2 )2 − x3 − 3x

)
∼= C[x]/

(
(x− 1)2(x− 1

4 )
)
.

Here we are killing a cubic in C[x], and so we get a three-dimensional vector space
with basis 1, x, x2. Note that this is, in some sense, seeing all of the information at
P and Q together—this demonstrates the importance of localization. Localization
at P corresponds to localizing at (x − 1), which turns (x − 1

4 ) into a unit. So our
localized ring is

C[x](x−1)/((x− 1)2) ∼= C[t](t)/(t
2)

(where we set t = x − 1), and this has dimension 2 over C. So i(Z,W ;P ) = 2, as
desired.

If we localize at (x− 1
4 ) then the (x− 1)2 factor becomes a unit, and our local-

ized ring becomes C[x](x− 1
4 )/(x − 1

4 ) ∼= C[t](t)/(t), which is just a copy of C. So
i(Z,W ;Q) = 1.

Note that Example 1.2 through 1.4 involve a key step where the variable y is
eliminated, thus bringing the problem down to the multiplicity of a root in a one-
variable polynomial. One cannot always do such an elimination—in fact it happens
only rarely. So these examples are very special, although they still serve to give
some sense of how things are working.

It turns out that our provisional definition from (1.1) is enough to prove Bezout’s
Theorem for curves in CP 2. But in some sense one is getting lucky here, and it
works only because the dimensions of the varieties are so small. When one starts
to look at higher-dimensional varieties it doesn’t take long to find examples where
the definition clearly gives the wrong answers:

Example 1.5. Let C4 have coordinates u, v, w, y, and let X,Y ⊆ C4 be given by

X = V (u3 − v2, u2y − vw, uw − vy, w2 − uy2), Y = V (u, y).

Note that X is somewhat complicated, but Y is just a plane. If a point (u, v, w, y)
is on X ∩ Y then u = y = 0 and therefore the equations for X say that

v2 = 0, vw = 0, and w2 = 0

as well. So X ∩Y consists of the unique point (0, 0, 0, 0). Our provisional definition
of intersection multiplicities would have us look at the ring

C[u, v, w, y]/(u, y, u3 − v2, u2y − vw, uw − vy, w2 − uy2) ∼= C[v, w]/(v2, vw,w2)

which is three-dimensional over C. If this were the correct answer, then perturbing
the plane Y should generically give three points of intersection. However, this is
not the case. If we perturb Y to V (u − ε, y − δ) then the intersection with X is
given by the equations

u = ε, y = δ, ε3 = v2, ε2δ = vw, εw = vδ, w2 = εδ2.

As long as ε 6= 0 we have two solutions for v, and then the fourth equation deter-
mines w completely (the last two equations 7are redundant). So we only have two
points on the intersection, after small perturbations. This is, in fact, the correct
answer: i(Z,W ;P ) = 2, and our provisional definition has failed.
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Serre discovered the correct formula for the interesection multiplicity [S]. His
formula is as follows. If we set R = C[x1, . . . , xn] then

i(Z,W ;P ) =

∞∑
j=0

(−1)j dimC

[
TorRj

(
R/(f1, . . . , fk), R/(g1, . . . , gl)

)]
P
.(1.6)

There are several things to say here. First, although the sum is written to infinity
it turns out that the Tor modules vanish for all j > n (we will prove this later).
So it is, in fact, a finite sum. Secondly, the condition that P be an isolated point
of intersection forces the C-dimension of all the Tor’s to be finite. So the formula
does make sense. As to why this gives the “correct” numbers, it will take us a while
to explain this. But note that the j = 0 term is the dimension of

Tor0(R/(f1, . . . , fk), R/(g1, . . . , gl)) ∼= R/(f1, . . . , fk)⊗R R/(g1, . . . , gl)

∼= R/(f1, . . . , fk, g1, . . . , gl).

So our provisional definition from (1.1) is just the j = 0 term. One should think
of the higher terms as “corrections” to this initial term; in a certain sense these
corrections get smaller as j increases (this is not obvious).

An algebraist who looks at (1.6) will immediately notice some possible gener-
alizations. The R/(f) and R/(g) terms can be replaced by any finitely-generated
module M and N , as long as the Torj(M,N) modules are finite-dimensional over
C. For this it turns out to be enough that M ⊗R N be finite-dimensional over
C. Also, we can replace C[x1, . . . , xn] with any ring having the property that all
finitely-generated modules have finite projective dimension—necessary so that the
alternating sum of (1.6) is finite. Such rings are called regular. Also, instead of
localizing the Tor-modules we can just localize the ring R at the very beginning.
And finally, in this generality we need to replace dimC with a similar invariant: the
notion of length (meaning the length of a composition series for our module). This
leads to the following setup.

Let R be a regular, local ring (all rings are assumed to be commutative and
Noetherian unless otherwise noted). Let M and N be finitely-generated modules
over R such that M ⊗R N has finite length. This implies that all the Torj(M,N)
modules also have finite length. Define

e(M,N) =

∞∑
j=0

(−1)j`
(
Torj(M,N)

)
(1.7)

and call this the intersection multiplicty of the modules M and N .
Based on geometric intuition, Serre made the following conjectures about the

above situation:
(1) dimM + dimN ≤ dimR always
(2) e(M,N) ≥ 0 always
(3) If dimM + dimN < dimR then e(M,N) = 0.
(4) If dimM + dimN = dimR then e(M,N) > 0.
In [S] Serre proved all of these in the case that R contains a field, the so-called
“geometric case” (some non-geometric examples for R include power series rings
over the p-adic integers Zp). Serre also proved (1) in general. Conjecture (3) was
proven in the mid 80s by Roberts and Gillet-Soule (independently), using some
sophisticated topological ideas that were imported into algebra. Conjecture (2)
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was proven by Gabber in the mid 90s, using some high-tech algebraic geometry.
Conjecture (4) is still open.

1.8. Where we are headed. Our main goal in these notes is to describe a par-
ticular subset of the mathematics surrounding Serre’s definition of multiplicity. It
is possible to explore this subject purely in algebraic terms, and that is basically
what Serre did in his book [S]. In contrast, our main focus will be topological.
Although both commutative algebra and algebraic geometry play a large role in
our story, we will always adopt a perspective that concentrates on their relations
to topology—and in particular, to K-theory.

Here is a brief summary of some of the main points that we will encounter:
(1) There are certain generalized cohomology theories—called complex-oriented—

which have a close connection to geometry and intersection theory. Any such
cohomology can be used to detect intersection multiplicities.

(2) Topological K-theory is a complex-oriented cohomology theory. Elements of
the groups K∗(X) are specified by vector bundles on X, or more generally by
bounded chain complexes of vector bundles on X. Fundamental classes for
complex submanifolds of X are given by resolutions.

(3) When X is an algebraic variety there is another version of K-theory called
algebraic K-theory , which we might denote K∗alg(X). The analogs of vector
bundles are locally free coherent sheaves, or just finitely-generated projective
modules when X is affine. Thus, in the affine case elements of K∗alg(X) can be
specified by bounded chain complexes of finitely-generated projective modules.
This is the main connection between homological algebra and K-theory.

(4) Serre’s definition of intersection multiplicities essentially comes from the inter-
section product in K-homology, which is the cup product in K-cohomology
translated to homology via Poincaré Duality.

We will spend a large chunk of this book filling in the details behind (1)–(4).
But whereas we take our motivation from Serre’s definition of multiplicity, that is
not the only subject we will cover. Once we have the K-theory apparatus up and
running there are lots of neat things to do with it. We have attempted, for the
most part, to chose topics that accentuate the relationship between K-theory and
geometry in the same way that Serre’s definition of multiplicity does.
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Part 1. K-theory in algebra

In this first part of the book we investigate the K-theory of modules over a
commutative ring R. There are two main varieties: one can study the K-theory
of all finitely-generated modules, leading to the group G(R), or one can study the
K-theory of finitely-generated projective modules, leading to the group K(R). In
the following sections we get a taste for these groups and the relations between
them.

For the duration of the book all rings are commutative with identity unless
otherwise stated. Some of the theory we develop works in greater generality, but
we will stay focused on the commutative case.

2. A first look at K-theory

Understanding Serre’s alternating-sum-of-Tor’s formula for intersection multi-
plicities will be a gradual process. In particular, there is quite a bit of nontrivial
commutative algebra that is needed for the story; we will need to develop this as
we go along. We will continue to sweep some of these details under the rug for the
moment, but let us at least get a couple of things out in the open. To begin with,
we will need the following important result:

Theorem 2.1 (Hilbert Syzygy Theorem). Let k be a field and let R be k[x1, . . . , xn]
(or any localization of this ring). Then every finitely-generated R-module has a free
resolution of length at most n.

We will prove this theorem in Section 18 below. We mention it here because
it implies that Torj(M,N) = 0 for j > n. Therefore the sum in Serre’s formula
is actually finite. More generally, a ring is called regular if it is Noetherian and
every finitely-generated module has a finite projective resolution. It is a theorem
that localizations of regular rings are again regular. Hilbert’s Syzygy Theorem
simply says that polynomial rings over a field are regular. We will find that regular
rings are the ‘right’ context in which to explore Serre’s formula.

We will also need the following simple observation. If P is a prime ideal in any
commutative ring R, then

[TorR(M,N)]P = TorRp(MP , NP ).

To see this, let Q• → M → 0 be an R-free resolution of M . Since localization is
exact, (Q•)P is an RP -free resolution of MP . Hence

TorRPj (MP , NP ) = Hj

(
(Q•)P ⊗RP NP

)
= Hj

(
Q• ⊗R RP ⊗RP N ⊗R RP

)
= Hj

(
Q• ⊗R N ⊗RP

)
= Hj

(
Q• ⊗R N

)
⊗RP

= TorRj (M,N)⊗R RP .
The importance of this observation is that it tells us that each Tor in Serre’s formula
for i(Z,W ;P ) may be taken over the ring RP . So we might as well work over this
ring from beginning to end. Moreover, without loss of generality we might as well
assume that our point of intersection is the origin, which makes the corresponding
maximal ideal (x1, . . . , xn).

Let R = C[x1, . . . , xn](x1,...,xn), and let M and N be finitely-generated modules
over R. Assume that dimC(M ⊗R N) < ∞. It turns out that this implies that
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dimC Torj(M,N) <∞ for every j, so that we can define

e(M,N) =

∞∑
j=0

(−1)j dimC Torj(M,N).

The above definition generalizes the notion of intersection multiplicity from pairs
(R/I,R/J) to pairs of modules (M,N). The reason for making this generalization
might not be clear at first, but the following nice property provides some justifica-
tion:

Lemma 2.2. Suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence
of R-modules, where R = C[x1, . . . , xn](x1,...,xn). Then e(M,N) = e(M ′, N) +
e(M ′′, N), assuming all three multiplicities are defined (that is, under the assump-
tion that dimC(M ⊗N) <∞ and similarly with M replaced by M ′ and M ′′).

Proof. Consider the long exact sequence

· · · → Torj(M
′, N)→ Torj(M,N)→ Torj(M

′′, N)→ · · ·
This sequence terminates after a finite number of steps, by Hilbert’s Syzygy Theo-
rem. By exactness, the alternating sum of the dimensions is zero. This is precisely
the desired formula. �

Lemma 2.2 is referred to as the additivity of intersection multiplicities. Of course
the additivity holds equally well in the second variable, by the same argument.

While exploring ideas in this general area, Grothendieck hit upon the idea of in-
venting a group that captures all the additive invariants of modules. Any invariant
such as e(−, N) would then factor through this group. Here is the definition:

Definition 2.3. Let R be any ring. Let F(R) be the free abelian group with one gen-
erator [M ] for every isomorphism class of finitely-generated R-moduleM . Let G(R)
be the quotient of F(R) by the subgroup generated by all elements [M ]− [M ′]− [M ′′]
for every short exact sequence 0 → M ′ → M → M ′′ → 0 of finitely-generated R-
modules. The group G(R) is called the Grothendieck group of finitely-generated
R-modules.

Remark 2.4. It is important in the definition of G(R) that one use only finitely-
generated R-modules, otherwise the group would be trivial. To see this, ifM is any
module then let M∞ = M ⊕M ⊕M · · · . Note that there is a short exact sequence

0→M ↪→M∞ →M∞ → 0

where M is included as the first summand. If we had defined G(R) without the
finite-generation condition, we would have [M∞] = [M ] + [M∞] and therefore
[M ] = 0. Since this holds for every module M , the group G(R) would be zero.
This is called the “Eilenberg Swindle”.

Because of the need to focus on finitely-generated modules, and the fact that
arguments will often require us to bring in submodules, results from here on out
will often assume that R is Noetherian. The first example of this is part (c) of the
next result.

The following proposition records some useful ways of obtaining relations in
G(R):

Proposition 2.5. Let R be any ring.



12 DANIEL DUGGER

(a) If 0 → Cn → Cn−1 → · · · → C1 → C0 → 0 is an exact sequence of finitely-
generated R-modules, then

∑
(−1)i[Ci] = 0 in G(R).

(b) If M = M0 ⊇ M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ Mn+1 = 0 is a filtration of M by
finitely-generated modules, then [M ] =

∑
i[Mi/Mi+1] in G(R).

(c) Assume that R is Noetherian, and let 0→ Cn → Cn−1 → · · · → C1 → C0 → 0
be any chain complex of finitely-generataed R-modules. Then

∑
i(−1)i[Ci] =∑

i(−1)i[Hi(C)] in G(R).

Proof. We prove (a) and (c) at the same time. If C• is a chain complex, note that
one has the short exact sequences 0 → Zi → Ci → Bi−1 → 0 where Zi and Bi
are the cycles and boundaries in each dimension. One also has 0 → Bi ↪→ Zi →
Hi(C) → 0. Assuming everything in sight is finitely-generated, one gets a series
of relations in G(R) that immediately yield

∑
(−1)i[Ci] =

∑
(−1)i[Hi(C)]. So if

R is Noetherian we are done, because everything indeed is finitely-generated; this
proves (c). In the general case where R is not necessarily Noetherian, we know that
each Bi is finitely-generated because it is the image of Ci+1. But if C• is exact
then Bi = Zi and so the Zi’s are also finitely-generated. We have the relations
[Ci] = [Zi]+[Bi−1] = [Zi]+[Zi−1], and from this it is evident that

∑
(−1)i[Ci] = 0.

This proves (a).
The proof of (b) is similarly easy; one considers the evident exact sequences

0→Mi+1 →Mi →Mi/Mi+1 → 0 and the resulting relations in G(R). �

Here are a series of examples:
(1) Suppose R = F , a field. Clearly G(F ) is generated by [F ], since every finitely-

generated F -module has the form Fn. If we observe the existence of the group
homomorphism dim: G(F ) → Z, which is clearly surjective because it sends
[F ] to 1, then it follows that G(F ) ∼= Z.

(2) More generally, suppose that R is a domain. The rank of an R-module M is
defined to be the dimension of M ⊗RQF (R) over QF (R), where QF (R) is the
quotient field. The rank clearly gives a homomorphism G(R) → Z, which is
surjective because [R] 7→ 1. So G(R) has Z as a direct summand.

(3) Next consider R = Z. Then G(Z) is generated by the classes [Z] and [Z/n]
for n > 1, by the classification of finitely-generated abelian groups. The short
exact sequence 0 → Z n−→ Z −→ Z/n → 0 shows that [Z/n] = 0 for all n,
hence G(Z) is cyclic. Using (b), it follows that G(Z) = Z. This computation
works just as well for any PID.

(4) So far we have only seen cases where G(R) ∼= Z. For a case where this is not
true, try R = F × F where F is a field. You should find that G(R) ∼= Z2 here.
More generally, the theory of modules over a product ring R × S yields that
G(R× S) ∼= G(R)⊕G(S) (this is a nice exercise).

(5) The definition of G(R) can also be made for R non-commutative, using left
R-modules (one can of course define another group using right R-modules, but
that would be G(Rop)). As an example, let G be a finite group and let R = C[G]
be the group algebra. So R-modules are just representations of G on complex
vector spaces. The basic theory of such finite-dimensional representations says
that each is a direct sum of irreducibles, in an essentially unique way. Moreover,
each short exact sequence is split. A little thought shows that this implies that
G(R) is a free abelian group with basis consisting of the isomorphism classes
of irreducible representations.
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(6) So far all the examples we have computed have G(R) equal to a free abelian
group. This is not always the case, although I don’t know an example where
it is really easy to see this. For a not-so-simple example, let R be the ring of
integers in a number field. It turns out that G(R) ∼= Z ⊕ Cl(R), where Cl(R)
is the ideal class group of R. This class group contains some sophisticated
number-theoretic information about R. It is known to always be torsion, and
it is usually nontrivial. We will work out a simple example when we have more
tools under our belt: see Example 4.2.

(7) As another simple example, we look at R = F [t]/(t2) where F is a field. For any
moduleM over R we have the filtrationM ⊇ tM , and so [M ] = [M/tM ]+[tM ].
But both M/tM and tM are killed by t, hence are direct sums of copies of F
(where t acts as zero). This shows that G(R) is generated by [R/tR]. We also
have the function dimF (−) : G(R)→ Z. Since this function sends [R/tR] to 1,
it must be an isomorphism.

(8) The final example we consider here is a variation of the previous one. Let us
look at R = Z/p2. The R-modules are simply abelian groups killed by p2.
Given any such module A one can consider the sequence 0 → pA ↪→ A →
A/pA → 0, and observe that the first and third terms are Z/p-vector spaces.
So [R/p] generates G(R). We claim that G(R) ∼= Z, and as in the previous
example the easiest way to see this is to write down an additive invariant of
R-modules taking its values in Z. All finitely-generated R-modules have a finite
composition series, and so we can take the Jordan-Hölder length; this is the
same as `(A) = dimZ/pA/pA + dimZ/p pA. With some trouble one can check
that this is indeed an additive invariant (or refer to the Jordan-Hölder theorem),
and of course `(Z/p) = 1. This completes the calculation.

Exercise 2.6. Prove that G(R) ∼= Z for R = F [t]/(tn) or R = Z/pn.

The above examples help establish some basic intuition. In general, though, it
can be very hard to compute G(R). In fact, given two modules M and N it can
be hard to decide whether or not [M ] = [N ] in G(R). The following result (taken
from [He, Lemma 2.1]) at least deconstructs the problem into something concrete:

Proposition 2.7. Let M and N be finitely-generated R-modules. Then the follow-
ing are equivalent:
(1) [M ] = [N ] in G(R).
(2) There exist two exact sequences of finitely-generated modules 0 → A → X →

B → 0 and 0→ A→ Y → B → 0 and a finitely-generated module C such that
X ∼= M ⊕ C and Y ∼= N ⊕ C.

(3) There exist two exact sequences of finitely-generated modules 0 → A → X →
B → 0 and 0→ A→ Y → B → 0 such that M ⊕X ∼= N ⊕ Y .

Proof. We will prove (3)⇒(2)⇒(1)⇒(3). For (3)⇒(2) use the sequences

0→M ⊕N ⊕A→M ⊕N ⊕ Y → B → 0

and
0→M ⊕N ⊕A→M ⊕N ⊕X → B → 0

with C = M ⊕ X ∼= N ⊕ Y . (2)⇒(1) is easy since the hypotheses show that
[M ] + [C] = [X] = [A] + [B] = [Y ] = [N ] + [C], and therefore [M ] = [N ]. The real
content is therefore (1)⇒(3).



14 DANIEL DUGGER

Let Rel ⊆ F(R) be the subgroup generated by all elements [J ]− [J ′]− [J ′′] for
short exact sequences 0 → J ′ → J → J ′′ → 0. If [M ] − [N ] ∈ Rel then there
exist two collections of such sequences 0 → A′i → Ai → A′′i → 0, 1 ≤ i ≤ k1, and
0→ B′j → Bj → B′′j → 0, 1 ≤ j ≤ k2, such that

[M ]− [N ] =

k1∑
i=1

(
[Ai]− [A′i]− [A′′i ]

)
+

k2∑
j=1

(
[B′j ] + [B′′j ]− [Bj ]

)
in F(R). Rearranging, this gives the identity in F(R)

[M ] +

k1∑
i=1

(
[A′i] + [A′′i ]

)
+

k2∑
j=1

[Bj ] = [N ] +

k1∑
i=1

[Ai] +

k2∑
j=1

(
[B′j ] + [B′′j ]

)
.

The only way such sums of basis elements can give the same element of F(R) is if
the collection of summands on the two sides are the same up to permutation. But
in that case one can write

M ⊕
k1⊕
i=1

(
A′i ⊕A′′i

)
⊕

k2⊕
j=1

Bj ∼= N ⊕
k1⊕
i=1

Ai ⊕
k2⊕
j=1

(
B′j ⊕B′′j

)
.

Finally, consider the evident short exact sequences

0→
⊕
j

B′j ⊕
⊕
i

A′i →
⊕
i

Ai ⊕
⊕
j

(B′j ⊕B′′j )→
⊕
i

A′′i ⊕
⊕
j

B′′j → 0

and

0→
⊕
j

B′j ⊕
⊕
i

A′i →
⊕
j

Bj ⊕
⊕
i

(A′i ⊕A′′i )→
⊕
i

A′′i ⊕
⊕
j

B′′j → 0.

Adding N to the middle term of the first sequence is isomorphic to the result of
adding M to the middle term of the second. �

We can adapt our definition of intersection multiplicity of two modules to define
a product on G(R), at least when R is regular. For finitely-generated modules M
and N , define

[M ]� [N ] =
∑
j

(−1)j [Torj(M,N)].

Regularity of R guarantees that this is a finite sum. The long exact sequence for
Tor shows that this definition is additive in the two variables, and hence passes
to a pairing G(R) ⊗ G(R) → G(R). It is not at all clear that this is associative,
although we will prove this shortly (Corollary 2.15).

The above product on G(R) is certainly not the first thing one would think of.
It is more natural to try to define a product by having [M ] · [N ] = [M⊗RN ], but of
course this is not additive in the two variables because of the failure of the tensor
product to be exact. The higher Tor’s are correcting for this. However, we can
make this naive definition work if we restrict to a certain class of modules. To that
end, let us introduce the following definition:

Definition 2.8. Let R be any ring. Let FK(R) be the free abelian group with
one generator [P ] for every isomorphism class of finitely-generated, projective R-
module M . Let K(R) be the quotient of FK(R) by the subgroup generated by all
elements [P ]− [P ′]− [P ′′] for every short exact sequence 0→ P ′ → P → P ′′ → 0 of



A GEOMETRIC INTRODUCTION TO K-THEORY 15

finitely-generated projectives. The group K(R) is called the Grothendieck group
of finitely-generated projective modules.

Every short exact sequence of projectives is actually split, so we could also have
defined K(R) by imposing the relations [P ⊕Q] = [P ] + [Q] for every two finitely-
generated projectives P and Q. This makes it a little easier to understand when
two modules represent the same class in K(R):

Proposition 2.9. Let P and Q be finitely-generated projective R-modules. Then
[P ] = [Q] in K(R) if and only if there exists a finitely-generated projective module
W such that P ⊕W ∼= Q⊕W . In fact, the same remains true if we require W to
be free instead of projective.

Proof. The first statement is immediate from Proposition 2.7 (which can be re-
proven verbatim in the present context) using that short exact sequences of projec-
tives always split. For the second claim use that projectives are direct summands
of free modules, so that there exists a W ′ such that W ⊕W ′ is finitely-generated
and free. �

Exercise 2.10. Give a direct proof of Proposition 2.9 along the lines of what we
did for Proposition 2.7.

Exercise 2.11. Let 0→ Pn → Pn−1 → · · · → P1 → P0 → 0 be an exact sequence
of finitely-generated projectives. Prove that

∑
i(−1)i[Pi] = 0 in K(R). [Note that

this is almost Proposition 2.5(a) but maybe a tiny bit more thought is required.]

Since projective modules are flat, the product [P ] · [Q] = [P ⊗RQ] is additive and
so extends to a product K(R)⊗K(R)→ K(R). Note that this product is obviously
associative, and so makes K(R) into a ring. This is true without any assumptions
on R whatsoever (except our standing assumption that R be commutative).

Remark 2.12. Given the motivation of having the tensor product give a ring
structure, one might wonder why we used projective modules to define K(R) rather
than flat modules. We could have done so, but for finitely-generated modules over
commutative, Noetherian rings, being flat and projective are equivalent notions—
see [E, Corollary 6.6]. For various reasons it is more common to make the definition
using the projective hypothesis.

There is an evident map α : K(R) → G(R) which sends [P ] to [P ] (note that
these two symbols, while they look the same, denote elements of different groups).
This brings us to our first important theorem:

Theorem 2.13. If R is regular then α : K(R)→ G(R) is an isomorphism.

Proof. Surjectivity is easy to see: if M is a finitely-generated module, choose a
finite, projective resolution P• → M → 0. Then

∑
j(−1)j [Pj ] = [M ] in G(R), and

this proves that [M ] is in the image of α.
Proving injectivity is slightly harder, and it will be most convenient just to

define an inverse for α. The above paragraph gives us the definition: for a finitely-
generated R-module M , define

β([M ]) =
∑
j

(−1)j [Pj ]

where P• →M → 0 is a finite resolution by finitely-generated projectives. We need
to show that this is independent of the choice of P , and that it is additive: these
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facts will show that β defines a map G(R)→ K(R). It is then obvious that this is
a two-sided inverse to α.

Suppose Q• → M → 0 is another finite projective resolution of M . Use the
Comparison Theorem of homological algebra to produce a map of chain complexes

· · · // P1
//

f1
��

P0
//

f0
��

M //

id

��

0

· · · // Q1
// Q0

// M // 0

Let T• be the mapping cone of f : P• → Q•. Recall this means that Tj = Qj⊕Pj−1,
with the differential defined by

dT (a, b) =
(
dQ(a) + f(b), −dP (b)

)
.

There is a short exact sequence of chain complexes

0→ Q ↪→ T → ΣP → 0

where ΣP denotes a copy of P in which everything has been shifted up a dimension
(so that (ΣP )n = Pn−1) and the differential picks up a negative sign (dΣP = −dP ).
The long exact sequence on homology groups shows readily that T is exact, hence
we have

∑
j(−1)j [Tj ] = 0 in K(R) by Exercise 2.11. Since [Tj ] = [Qj ] + [Pj−1] in

K(R) this gives that
∑
j(−1)j [Pj ] =

∑
j(−1)j [Qj ]. Hence our definition of β does

not depend on the choice of resolution.
A similar argument can be used to show additivity. Suppose that 0 → M ′ →

M → M ′′ → 0 is a short exact sequence, and let P• → M ′ and Q• → M be finite
projective resolutions. Lift the map M ′ → M to a map of complexes f : P• → Q•,
and let T• be the mapping cone of f . The long exact sequence for homology readily
shows that T is a projective resolution of M ′′. So

β(M ′′) =
∑

(−1)j [Tj ] =
∑

(−1)j [Qj ]−
∑

(−1)j [Pj ] = β(M)− β(M ′)

and this proves additivity. This completes our proof. �

Using the isomorphism K(R) → G(R) (when R is regular), we can transplant
the ring structure onK(R) to the group G(R). We claim that this gives the product
� defined via Tor. In the following result, β : G(R) → K(R) is the inverse to α
defined in the proof of Theorem 2.13.

Proposition 2.14. Assume that R is regular. Then for any two finitely-generated
modules M and N we have

α
[
β([M ])⊗ β([N ])

]
=
∑

(−1)j [Torj(M,N)] = [M ]� [N ].

Proof. Let P• → M and Q• → N be finite projective resolutions. Fix j, and
consider the complex P• ⊗Qj . This is a resolution of M ⊗Qj , since Qj is flat. So



A GEOMETRIC INTRODUCTION TO K-THEORY 17∑
i(−1)i[Pi ⊗Qj ] = [M ⊗Qj ] in G(R). Using this for each j, we have that

α
[
β([M ])⊗ β([N ])

]
=
∑
i,j

(−1)i+j [Pi ⊗Qj ]

=
∑
j

(−1)j [M ⊗Qj ]

=
∑
j

(−1)j [Hj(M ⊗Q)] using Proposition 2.5(c)

=
∑
j

(−1)j [Torj(M,N)].

�

Corollary 2.15. When R is regular the product � on G(R) is associative.

Proof. This follows immediately from the fact that the tensor product gives an
associative multiplication on K(R). �

Let us review the above situation. For any ring R, we have the groupK(R) which
also comes to us with an easily-defined ring structure ⊗. We also have the group
G(R)—but this does not have any evident ring structure. When R is regular, there
is an isomorphism K(R)→ G(R) which allows one to transplant the ring structure
from K(R) onto G(R): and this leads us directly to our alternating-sum-of-Tors
formula.

This situation is very reminiscent of something you have seen in a basic algebraic
topology course. When X is a (compact, oriented) manifold, there were early
attempts to put a ring structure on H∗(X) coming from the intersection product.
This is technically very difficult. In modern times one avoids these technicalities
by instead introducing the cohomology groups H∗(X), and here it is easy to define
a ring structure: the cup product. When X is a compact, oriented manifold one
has the Poincaré Duality isomorphism H∗(X)→ H∗(X) given by capping with the
fundamental class, and this lets one transplant the cup product onto H∗(X). This
is the modern approach to intersection theory.

The parallels here are intriguing: K(R) is somehow like H∗(X), and G(R) is
somehow like H∗(X). The regularity condition is like being a manifold. We will
spend the rest of this course exploring these parallels. [The reader might wonder
what happened to the assumptions of compactness and orientability. Neither of
these is really needed for Poincaré Duality, as long as one does things correctly.
For the version of Poincaré Duality for noncompact manifolds one needs to replace
ordinary homology with Borel-Moore homology—this is similar to singular homol-
ogy, but chains are permitted to have infinitely many terms if they stretch out to
infinity. For non-orientable manifolds one needs to use twisted coefficients.]

Exercise 2.16. Check that the tensor product makes G(R) into a left module over
K(R) in the evident way. The canonical map α : K(R)→ G(R) is just multiplica-
tion by the class [R] ∈ G(R).

Exercise 2.17. Let f : R → S be a map of commutative rings. If P is a finitely-
generated projective R-module check that S⊗R P is a finitely-generated projective
S-module. Verify that there is an induced map f∗ : K(R) → K(S) sending each
[P ] to [S ⊗R P ], and that f∗ is a ring map.
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Exercise 2.18. Let f : R→ S be a flat map. Prove that there is an induced map
of groups f! : G(R)→ G(S) sending each [M ] to [S ⊗RM ].

Exercise 2.19. Let f : R → S be a ring map where S is finitely-generated as an
R-module. Prove that there is a map of groups f∗ : G(S)→ G(R) that sends [SM ]
to [RM ] for every finitely-generated S-module M .

Exercise 2.20. In topology H∗(X) is a module over H∗(X) via the cap product.
Given f : X → Y there are maps f∗ : H∗(Y ) → H∗(X) and f∗ : H∗(X) → H∗(Y ),
and f∗ is a map of H∗(Y )-modules (where the module structure on the domain is
via restriction of scalars along f∗): this last statement is the so-called projection
formula f∗(x∩ f∗y) = f∗x∩ y. If f : R→ S is a map where S is module-finite over
R, then we have f∗ : K(R) → K(S) and f∗ : G(S) → G(R). Prove the analgous
statement that f∗ is a map of K(R)-modules.

2.21. Some very basic algebraic geometry. To further develop the analogies
between (K(R), G(R)) and (H∗(X), H∗(X)) we need more of a geometric under-
standing of the former groups. This starts to require some familiarity with the
language of algebraic geometry.

At its most basic level, algebraic geometry attempts to study the geometry of
affine n-space Cn by seeing how it is reflected in the algebra of the ring of polynomial
functions R = C[x1, . . . , xn]. Hilbert’s Nullstellensatz says that points of Cn are
in bijective correspondence with maximal ideals in R: the bijection sends q =
(q1, . . . , qn) to the maximal ideal mq = (x1 − q1, . . . , xn − qn). With a little work
one can generalize this bijection. If S ⊆ Cn is any subset, define I(S) = {f ∈
R | f(x) = 0 for all x ∈ S}. This is an ideal in R, in fact a radical ideal (meaning
that if fn ∈ I(S) then f ∈ I(S)). In the other direction, if I ⊆ R is any ideal then
define V (I) = {x ∈ Cn | f(x) = 0 for all f ∈ I}. Notice that V (mq) = {q} and
I({q}) = mq.

An algebraic set in Cn is any subset of the form V (I) for some ideal I ⊆ R.
The algebraic sets form the closed sets for a topology on Cn, called the Zariski
topology. One form of the Nullstellensatz says that V and I give a bijection
between algebraic sets and radical ideals in R. Under this bijection the prime
ideals correspond to irreducible algebraic sets—ones that cannot be written as
X ∪ Y where both X and Y are proper closed subsets. Algebraic sets are also
called algebraic subvarieties.

The above discussion is summarized in the following table:

Geometry Algebra
Cn or AnC C[x1, . . . , xn] = R

Points (q1, . . . , qn) Maximal ideals (x1 − q1, . . . , xn − qn)
Algebraic sets Radical ideals

Irreducible algebraic sets Prime ideals

The ring R is best thought of as the set of maps of varieties An → A1, with
ring operations given by pointwise addition and multiplication. If we restrict to
some irreducible subvariety X = V (P ) ⊆ An instead, then the ring of functions
X → A1 is R/P . This ring of functions is commonly called the coordinate ring
of X. Much of the dictionary between An and R discussed above adapts verbatim
to give a dictionary between X and its coordinate ring:
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Geometry Algebra
X = V (P ) C[x1, . . . , xn]/P = R/P
Points in X Maximal ideals in R/P

Algebraic subsets V (I) ⊆ X Radical ideals in R/P
Irreducible algebraic sets V (Q) ⊆ X Prime ideals in R/P .

Note that ideals in R/P correspond bijectively to ideals in R containing P , and
likewise for prime (respectively, radical) ideals.

We need one last observation. Passing from An to An+1 corresponds algebraically
to passing from R to R[t]. If X = V (P ) ⊆ An is an irreducible algebraic set, then
X × A1 ⊆ An+1 is V (P [t]) where P [t] ⊆ R[t]. That is, the coordinate ring of X is
R/P and the coordinate ring of X × A1 is R[t]/P [t] = (R/P )[t]. We supplement
our earlier tables with the following line:

Geometry Algebra
X  X × A1 S  S[t]

So far our story involves pairing rings that are finitely-generated over C with their
corresponding geometric objects. With a leap of faith one can extend this to rings
that are finitely-generated over an algebraically closed field, and even to finitely-
generated rings over any field. One of the great developments in 20th century
algebraic geometry is to go all in and extend the theory even further, to all com-
mutative rings. To any commutative ring R we attach the geometric object SpecR.
As a set, this is the set of prime ideals in R. We equip it with the Zariski topology,
where the closed sets are the ones of the form V (I) = {P ∈ Spec(R) |P ⊇ I}. As
a topological space this is a very primitive object with only bare-bones geometric
information. To find more geometry we have to look to the maps between these
gadgets.

The object SpecZ[t] will be called the affine line and denoted A1
Z. A basic fact

to remember is that everything is going to be set up so that Hom(SpecR,A1
Z) = R.

That is, R is the ring of functions from SpecR to the affine line. A map SpecR→
SpecS will then give rise to a map of rings Hom(SpecS,A1

Z) → Hom(SpecR,A1
Z),

i.e. a map of rings S → R. In fact, let us just define the category of affine schemes
Aff to have objects the SpecR and where maps from SpecR to SpecS are the
same as ring maps from S to R. That is, Aff = (CommRing)op.

One final piece of terminology for now. The phrase “affine scheme” just means
one of the objects SpecR. The phrase“affine variety” technically means a SpecR
where R is an integral domain that is finitely-generated over a ground field k. For
some reason the word “variety” is the more appealing of the two words, and as
a result one sometimes ends up saying “variety” when what one really means is
“scheme”. In almost all cases the true intent is clear from context, so we won’t
worry too much about this distinction.

We have defined G(−) and K(−) as functors taking rings as their inputs, but
we could also think of them as taking affine schemes as their inputs. We will write
G(R) and G(SpecR) interchangeably, and similarly for the K-groups. It turns out
that the geometric perspective and notation are very useful—many properties of
these functors take on a familiar “homological” form when written geometrically.
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For example, a map u : SpecR→ SpecS yields a map u∗ : K(SpecS)→ K(SpecR)
as one would expect for a cohomology ring.

For the moment we will mostly keep with the algebraic notation, writing K(R)
more often than K(SpecR). But it is good to train oneself to “see” K(SpecR) even
when it is not explicitly written that way.

2.22. Further properties of G(R). We return to the study of the groups G(R)
and K(R), for the moment concentrating on the former.

Theorem 2.23. If R is Noetherian, the Grothendieck group G(R) is generated by
the set of elements [R/P ] where P⊆R is prime.

Before proving this result let us comment on the significance. When X is a
topological space, the groups H∗(X) have a geometric presentation in terms of
“cycles” and “homologies”. The cycles are, of course, generators for the group. The
definition of G(R) doesn’t look anything like this, but Theorem 2.23 says that the
group is indeed generated by classes that have the feeling of “algebraic cycles” on
the variety SpecR. One thinks of G(R) as having a generator [R/P ] for every
irreducible subvariety of R, and then there are some relations amongst these that
we don’t yet understand. It is worth pointing out that in H∗(X) the cycles are
strictly separated by dimension—the dimensions i cycles are confined to the single
group Hi(X)—whereas in G(R) the cycles of different dimensions are all inhabiting
the same group. This is one of the main differences between K-theory and singular
homology/cohomology.

To prove Theorem 2.23 we first need a lemma from commutative algebra:

Lemma 2.24. Let R be a Noetherian ring. For any nonzero finitely-generated
R-module M there exists a prime ideal P⊆R and an embedding R/P ↪→M . Equiv-
alently, there is some z∈M whose annihilator is prime.

Proof. Consider the set of ideals

S = {Ann(m)
∣∣m ∈M,m 6= 0}.

Equivalently, S is the set of ideals I such that R/I embeds intoM . Note that S 6= ∅
because M 6= 0. Since R is Noetherian S has a maximal element I = Ann(m). We
will prove that I is prime. Suppose ab ∈ I and b /∈ I. Then bm 6= 0 so Ann(bm) ∈ S

and Ann(bm) ⊇ Ann(m) = I. By maximality Ann(bm) = I. But ab ∈ I so
abm = 0, hence a ∈ Ann(bm) and therefore a ∈ I. This completes the proof that I
is prime. �

Proof of Theorem 2.23. Let M be a finitely-generated R-module. We will use re-
peated applications of Lemma 2.24 to construct a so-called prime filtration of
M . Pick an embedding R/P0 ↪→ M , and let M0 = R/P0. Next consider M/M0.
If M/M0 = 0, our filtration is complete. If M/M0 6=0, then there exists a prime
P1 and an embedding R/P1 ↪→ M/M0. Let π : M → M/M0 denote the projection
and define M1 = π−1(R/P1). Then π : M1 → R/P1 also has kernel M0; that is,
M0⊆M1 and M1/M0

∼=R/P1. Next consider M/M1 and repeat. This process yields
a filtration of M

0 ⊆M0 ⊆M1 ⊆ · · · ⊆M
such that Mi+1/Mi

∼=R/Pi. The filtration must be finite since R is Noetherian. By
Proposition 2.5(b) we have that [M ] =

∑
[Mi+1/Mi] =

∑
[R/Pi], and so the set

{[R/P ] |P is prime in R} generates G(R). �
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Remark 2.25. The prime filtrations constructed in the above proof are very useful,
and will appear again and again in our arguments. For future use we note that
if an ideal I⊆R is such that IM = 0, then I also kills any subquotient of M .
Consequently, I will be contained in any Pi for which R/Pi appears as a subquotient
in a prime filtration of M .

If M is an R-module write M [t] for the R[t]-module M⊗RR[t]. The functor
M 7→M [t] is exact because R[t] is flat (in fact, free) over R. So we have an induced
map α : G(R)→ G(R[t]) given by [M ] 7→ [M [t]].

Theorem 2.26 (Homotopy invariance). If R is Noetherian, α : G(R) → G(R[t])
is an isomorphism.

We comment on the name “homotopy invariance” for the above result. If X =
SpecR then SpecR[t] = X×A1, so the result says that G(−) gives the same values
on X and X ×A1. This is reminiscent of a functor on topological spaces giving the
same values on X and X × I.
Proof. We will first construct a left inverse β : G(R[t])→ G(R). A naive possibility
for the map β is J 7→ J/tJ = J⊗R[t]R[t]/(t), but this doesn’t preserve short exact
sequences in general. So we correct this using Tor, and instead define

β([J ]) = [Tor
R[t]
0 (J,R[t]/(t))]− [Tor

R[t]
1 (J,R[t]/(t))].

Before checking that this is well-defined, let us analyze the two Tor-groups. Recall
that we can calculate Tor by taking an R[t]-resolution of either variable. In this
case, it is easier to resolve R[t]/(t):

0→ R[t]
t→ R[t]→ R[t]/(t)→ 0.

Tensoring with J yields 0 → J
t→ J → 0, so that Tor

R[t]
0 (J,R[t]/(t)) = J/tJ and

Tor
R[t]
1 (J,R[t]/(t)) = AnnJ(t). Notice also that Tor

R[t]
i (J,R[t]/(t)) = 0 for i > 1.

We have

β([J ]) = [J/tJ ]− [AnnJ(t)] =

∞∑
i=0

(−1)i[Tor
R[t]
i (J,R[t]/(t))].

The fact that β is a well-defined group homomorphism now follows by the usual
argument: a short exact sequence of modules induces a long exact sequence of Tor
groups, and the alternating sum of these is zero in G(R). It is immediate that βα =
Id: this follows from the fact that for any R-module M one has M [t]/tM [t] ∼= M
and AnnM [t](t) = 0. Consequently, α is injective.

The difficult part of the proof is showing that α is surjective. We will use the
fact, from Theorem 2.23, that G(R[t]) is generated by elements of the form [R[t]/Q]
for primes Q⊆R[t]. It suffices to show that each [R[t]/Q] is in the image of α. Let
us write S for R[t], and define

T = {Q∩R |Q ⊆ S is prime and [S/Q]/∈ im(α)}.
Our goal is to show that T must be empty.

If T 6=∅ then since S is Noetherian it has a maximal element P = Q∩R for some
prime Q⊆S. Using this P and this Q, we will construct an S-module W which
forces [S/Q] to lie in im(α), thus obtaining a contradiction.

First, some observations:
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(1) If I ⊆ R is any ideal then the expansion IS equals I[t], the set of polyno-
mials with coefficients in I. One has S/IS ∼= (R/I)[t].

(2) Any S-module M which is killed by P + u for some u ∈ R− P must lie in
im(α). This is because for each prime Qi appearing in a prime filtration of
M , we have Qi⊇AnnR(M)⊇P + u. In particular, none of these Qi can be
in T since P was chosen to be maximal. So [S/Qi]∈ im(α) for all these Qi,
and hence [M ]∈ im(α) as well.

(3) For any prime J⊆R we have [S/JS]∈ im(α), since S/JS = (R/J)[t] =
α([R/J ]).

(4) If f∈S − JS where J⊆R is prime, then [S/(JS + f)] = 0 in G(S) since
S/(JS + f) fits into the short exact sequence

0 −→ S/JS
f−→ S/JS −→ S/(JS + f) −→ 0.

Note that S/JS ∼= (R/J)[t], which is a domain—and this is why multipli-
cation by f is injective.

Consider the maps

S � S/PS ↪→ (R− P )−1(S/PS).

Observe that (R − P )−1(S/PS) = (RP /PRP )[t]. But RP /PRP is a field, so the
ring (R−P )−1(S/PS) is a PID. Therefore the image of Q in (R−P )−1(S/P [t]) is
generated by a single element. Let f ∈ Q be some lifting of this generator to S.

Consider the S-moduleW = Q/(PS+f). Since Q and f have the same image in
the ring (R−P )−1(S/PS), we have (R−P )−1W = 0. Now, W is finitely generated
(as an S-module), so there exists some u ∈ R−P such that uW = 0. Since PW = 0
by the definition ofW , we have thatW is killed by P+u. By observation (2) above,
[W ] ∈ im(α).

At the same time, W fits into the exact sequence 0 → W → S/(PS + f) →
S/Q → 0, and we know [S/(PS + f)] = 0 in G(S) by observation (4). But this
implies that [W ] and [S/Q] are additive inverses, and hence [S/Q] lies in im(α),
contradicting our choice of Q. �

Here is an interesting consequence of homotopy invariance:

Corollary 2.27. Let F be a field. Then K(F [x1, . . . , xn])∼=Z.

Proof. We have K(F [x1, . . . , xn])∼=G(F [x1 . . . , xn]) by Theorem 2.13, since the
ring F [x1, . . . , xn] is regular by Hilbert’s Syzyzy Theorem. We also have
G(F [x1, . . . , xn])∼=G(F ) by homotopy invariance, and G(F )∼=Z via the dimension
map. �

In the next section we will see what Corollary 2.27 says about projectives over
F [x1, . . . , xn]. See Proposition 3.6.

2.28. Regular local rings. We have seen that regularity is an important condition
when dealing with K-theory, and so it is worth giving a crash course on the theory
of regular local rings. We start with some examples. All of the following local rings
are regular:
(1) k[x1, . . . , xn](x1,...,xn) where k is a field;
(2) k[[x1, . . . , xn]], the ring of formal power series over a field k;
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(3) any discrete valuation ring V (equivalently, a local PID), for example Z(p) or
its p-adic completion Ẑp or any local ring of the ring of integers in a number
field;

(4) V [[x1, . . . , xn]] where V is any discrete valuation ring;
(5) Zp[[x1, . . . , xn]]/(x2

1 + x2
2 + · · ·+ x2

n − p).
We next give some general information that will help sort the above examples

into classes. Let (R,m, k) be a Noetherian local ring. This means that R is a
Noetherian ring with unique maximal ideal m and k = R/m. If char(R) = char(k)
thenR is said to be equicharacteristic, and otherwise it ismixed characteristic.
Regular local rings are always integral domains and so the possibilities for the pair
(char(R), char(k)) are only (0, 0), (p, p), and (0, p) where p is a prime.

Note that k[[x1, . . . , xn]] is equicharacteristic, whereas rings like Z(p) and
Zp[[x1, . . . , xn]] are mixed characteristic. The equicharacteristic case has the closer
ties to geometry, whereas the mixed characteristic case appears more in number-
theoretic situations.

Mixed characteristic local rings (R,m, k) can be further divided into two classes
depending on whether or not p ∈ m2. If p ∈ m2 one says that R is ramified, and
otherwise R is unramified. Note that Z(p) and Ẑp are unramified, whereas the
example from (5) above is ramified.

If one takes an algebraic variety over a field k and looks at the local ring at a
nonsingular point, one obtains a regular local ring that is most likely not in the list
(1)–(5) above. It is far from true, for example, that the local ring of a dimension
n nonsingular variety is isomorphic to k[x1, . . . , xn](x1,...,xn). However, it turns
out that this is true after completion. The upshot is that there are not very many
complete regular local rings, and in some sense we know them all. This is part of the
Cohen structure theorems for complete local rings. The following theorem brings
together several results, but (d) and (e) are the Cohen classification theorems:

Theorem 2.29. Let (R,m, k) be a local ring and set n = dimR.
(a) If R is regular then it is a domain.
(b) R is regular if and only if the m-adic completion R̂ is regular.
(c) If R is regular and f ∈ m−m2 then R/f is also regular.
(d) If R is complete and regular and equicharacteristic then R ∼= k[[x1, . . . , xn]] for

some field k.
(e) Suppose R is complete and regular and mixed characteristic. Then there are

two possibilities:
• If R is unramified (p /∈ m2) then R ∼= V [[x1, . . . , xn−1]] for some complete
discrete valuation ring V with maximal ideal (p).

• If R is ramified (p ∈ m2) then R ∼= V [[x1, . . . , xn]]/(p − f) for some
complete discrete valuation ring V with maximal ideal (p) and some f ∈
(p, x1, . . . , xn)2 such that p6 |f .

For parts (a)–(c) see [BH, Propositions 2.2.2–2.2.4]. Parts (d) and (e) are from
[Co], with [Sam] another good source. The equicharacteristic case in (d) can also
be found in [ZS, Section 12 of Chapter VIII].

Theorem 2.29 gives us a very good handle on complete regular local rings in the
equicharacteristic and the unramified mixed characteristic cases. But although the
theorem says something concrete and useful about the mixed ramified case, things
are much more mysterious here because of how open the choice of f is. Many
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theorems about regular local rings are known in the equicharacteristic and mixed
unramified cases but open in the ramified case.

◦ Exercises ◦

Exercise 2.30. Let R be a commutative ring.
(a) Let Q ⊆ R be a prime ideal. Prove that

P 7→ dimQF (R/Q)(QF (R/Q)⊗R/Q P/QP )

is an additive function on finitely-generated projectives and therefore induces
a homomorphism rankQ : K(R)→ Z.

(b) Let Q ⊆ R be a minimal prime ideal. Then RQ is Artinian, so every finitely-
generated module has finite length. Prove that M 7→ `RQ(MQ) is additive and
so induces a homomorphism `Q : G(R)→ Z.

(c) Prove that in both K(R) and G(R) the class [R] is non-torsion.

Exercise 2.31. If R has the property that every finitely-generated module has a
finite free resolution, prove that K(R) ∼= Z and G(R) ∼= Z. Give an example of an
R for which this property fails. Even better, give an example of a regular ring R
for which this property fails.

Exercise 2.32. Let R = k[x]/(xn) where k is a field and n ≥ 2. Use the classifica-
tion of modules over k[x] to prove that every finitely-generated projective R-module
is free. Verify that K(R) ∼= G(R) ∼= Z but that the canonical map K(R) → G(R)
is isomorphic to multiplication-by-n (and in particular, is not an isomorphism).

Exercise 2.33. Fix a prime p and set R = Z[x]/(x2 − px).
(a) Determine all the prime ideals in R and verify that SpecR looks like two copies

of SpecZ glued together at the prime (p).
(b) Suppose Q is a prime in R other than (x), (x − p), and (x, p). Show that

R/Q has a finite free resolution and use this to prove that [R/Q] = 0 in G(R).
Likewise, find an exact sequence showing that [R/(x, p)] = 0 in G(R). So G(R)
is generated by [R/xR] and [R/(x − p)R]. Also prove that [R] = [R/xR] +
[R/(x− p)R].

(c) Use the maps on G-groups induced by R → R/xR and R → R/(x − p)R to
prove that G(R) ∼= Z2.

(d) Find a free resolution of R/xR and use this to prove that Tor∗(R/xR,R/(x, p))
is nonzero in all degrees. Conclude that R is not regular.
[Note: We will investigate K(R) in Exercise 3.9].

Exercise 2.34. Let R = Z[
√
−3] = Z[X]/(X2 + 3).

(a) Determine all of the prime ideals of R. Prove that SpecR → SpecZ is surjec-
tive, and that the fiber over (p) is two elements when 3|p − 1 and a singleton
otherwise. Prove that every prime other than (2, 1 +X) is principal.

(b) Construct a free resolution of R/(2, 1 + X) and prove that Tori(R/(2, 1 +
X), R/(2, 1 + X)) is nonzero for all i. Deduce that R is not regular. [Hint:
The resolution can be made to exhibit a nice periodicity.]

(c) Check thatRP is regular for every prime P except for (2, 1+X). Said differently,
(2, 1 +X) is the only singular point of SpecR.

(d) Construct an exact sequence 0→ R/(2, 1 +X)→ R/(2)→ R/(2, 1 +X)→ 0.
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(e) Using the previous parts deduce thatG(R) is generated by [R] and [R/(2, 1+X)]
and is either Z or Z ⊕ Z/2, depending on whether [R/(2, 1 + X)] is zero or
nonzero.

(f) ????

Exercise 2.35. Let S = Z[w]/(w2 +w+1) and let R be as in the previous exercise.
It will be convenient to regard R ⊆ S via X = 2w + 1 (if we regard these rings as
inside of C then X =

√
3i and w = −1+

√
3i

2 ). Note that w is integral over Z; it
turns out that S is the integral closure of R. The ring S is the ring of integers in
the number field Q(

√
−3).

(a) Determine all of the prime ideals in S and prove that SpecS → SpecR is
bijective.

(b) Check that the prime in S lying over (2, 1 + X) is (2), and in particular is
principal. Note that R/(2, 1 +X)→ S/(2) is the field extension F2 ↪→ F4.

(c) Verify that S is a PID and conclude K(S) ∼= G(S) ∼= Z.
[Discussion: What is happening geometrically here is that SpecS → SpecR
resolves the singularity in SpecR. The point (2, 1 +X) ∈ SpecR, with residue
field F2, is being “blown up” into the point (2) ∈ SpecS with residue field F4.
Away from these points the map SpecS → SpecR is an isomorphism.]

3. A closer look at projectives

Recall that a module is projective if and only if it is a direct summand of a free
module (there is also a description in terms of lifting criteria, of course). So free
modules are projective, and for almost all applications in homological algebra one
can get by with using only free modules. Consequently, it is common for students
not to know many examples of non-free projectives. One of our goals in this section
is to remedy this.

It turns out to be very useful to be able to think about projectives geometrically.
Projectives over a commutative ring R correspond to vector bundles over SpecR.
This is not at all obvious, and we won’t fully understand it until Section 10 after we
have developed more tools from the theory of vector bundles. But in this section we
will start to see these ideas play out as we import some of the geometric language
and intuition into our algebraic discussion.

Before diving into some examples we need a couple of small tools. Just as vector
bundles are “locally trivial”, projectives are locally free. This is a fun piece of local
algebra:

Proposition 3.1. Over a local ring all projectives are free.

Proof. Let (R,m, k) be a local ring. A set of generators for an R-module M is
minimal (in the sense of no proper subset also generating M) if and only if its
image inM/mM is an R/m-basis. So all minimal generating sets for a module have
the same size. (Of course this is wildly false when R is not local). Every relation
amongst the elements of a minimal set of generators must have all coefficients
belonging to m, otherwise there would be a unit coefficient and we would contradict
minimality.

Pick a generating set for M and map a free module F0 � M by sending the
free basis to these generators. Then take the kernel K and repeat, mapping a free
module F1 � K by sending the free basis to a minimal generating set. Note that
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these generating sets might be infinite here. Continuing in this way we build a
so-called ‘minimal resolution’ F• →M → 0.

The fact that we picked minimal generating sets at each stage implies that F•⊗
R/m has vanishing differentials, since all relations amongst the minimal generators
have coefficients in m. So rank(Fi) = dimk Tori(M,k).

If M is projective then it is also flat, and hence all of the higher Tor’s must
vanish. Therefore F1 = 0 and the resolution 0 → F0 → M → 0 shows that M is
free. �

Let R be a commutative ring, P a finitely-generated projective over R, and q ⊆ R
a prime ideal. Then Pq is free and finitely-generated over Rq, so let us define

rankq(P ) = rankRq (Pq).

Note that rankq is additive in the sense that rankq(P ⊕Q) = rankq(P )⊕ rankq(Q).
If q ⊆ q′ then Pq = (Pq′)q and so rankq(P ) = rankq′(P ). Therefore rank?(P ) is
constant on chains of primes. If R is a domain, for example, then all primes can
be connected by a chain to (0) and so rank?(P ) is constant. In this context we will
just talk about the rank of P . (An example of a projective with different ranks at
different primes is given in (1) below).

Note that when m is a maximal ideal we can also write

rankm(P ) = rankRm(Pm) = dimRm/mRm(Pm/mPm) = dimR/m(P/mP ).

Recall that maximal ideals are the closed points in SpecR. The R/m-vector space
P/mP plays the role of the “fiber” of the projective over our closed point.

Remark 3.2 (The geometry of local rings). In view of the above discussion this
might be a good time to clarify some mysteries about local rings. If q is a prime in
R then SpecRq may be identified with the subset of SpecR consisting of all primes
contained in q. This subset is usually neither open nor closed in SpecR. What we
have instead is this:

SpecRq =
⋂

q∈Uopen⊆SpecR

U.

That is, SpecRq is the intersection of all Zariski open neighborhoods of q in SpecR.
For Hausdorff topological spaces such an intersection would always just be the point
itself, and therefore non-interesting. The analog here is that SpecRq has only one
closed point, but it nevertheless has a significant amount of information lurking in
the non-closed points.

For a typical space that appears in algebraic topology—a manifold or CW-
complex, for example—while the intersection of open neighborhoods of a point
is just the point itself one can nevertheless sense that the open neighborhoods
get similar as they get smaller and smaller. In some sense there is some limiting
information there that is not captured at just the set level. This is really what
is happening in algebraic geometry. Our SpecRq behaves like an “infinitesimal”
Zariski neighborhood of q. This idea takes some getting used to, but it is impor-
tant for understanding how information passes back and forth between algebra and
geometry.

Now let us turn to some examples of interesting projectives:
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(1) Let R = Z/6. Since Z/2 ⊕ Z/3 ∼= Z/6, both Z/2 and Z/3 are projective R-
modules—and they are clearly not free. More generally, if R = S × T then we
can make S into an R module via (s, t).u = su where s, u ∈ S and t ∈ T . Then
S is projective but not free.

Geometrically, what is happening here is that SpecR = SpecS q SpecT .
When we make S into an R-module as above we are consructing the vector
bundle that is free of rank one on the SpecS component but zero on the SpecT
component. Check algebraically that rankm(S) is either 0 or 1 and depends on
the choice of m.

(2) Let R = Z[
√
−5] and I = (2, 1 +

√
−5) = (2, 1 −

√
−5). For convenience let

us write µ =
√
−5. A standard tool for dealing with this ring is the norm

map N(a + bµ) = (a + bµ)(a − bµ) = a2 + 5b2. This is multiplicative, i.e.
N(xy) = N(x)N(y). Using this one argues that if I were generated by a single
element a+ bµ then 2 would be a multiple of a2 + 5b2, and one quickly obtains
a contradiction. So I is not principal.

Let K be the kernel of the map R2 → I sending e1 to 2 and e2 to 1 + µ.
A little work shows that K is spanned by (1 + µ,−2) and (−3, 1 − µ). If one
defines χ : R2 → K by

χ(e1) = (3,−1 + µ), χ(e2) = (1 + µ,−2),

it is readily verified that χ is a splitting for the sequence 0→ K → R2 → I → 0.
So K ⊕ I ∼= R2, and hence both K and I are projective.

The inclusion I ⊆ R becomes an isomorphism after tensoring with QF (R),
so I has rank one. If I were free then we would have I ∼= R. However, this
would contradict I being non-principal. So I is a non-free projective.

This example generalizes: if D is a Dedekind domain (such as the ring of
integers in an algebraic number field) then every ideal I ⊆ D is projective.
Non-principal ideals are never free.

Exercise 3.3. Verify that K is generated by (1 + µ,−2) and (−3, 1 − µ). Note
that the second coordinates of elements of K therefore all belong to I. Prove that
the composition K ↪→ R

π2−→ I is an isomorphism. Deduce that I ⊕ I ∼= R⊕R.
(3) Let R = R[x, y, z]/(x2 + y2 + z2 − 1). If C(S2) denotes the ring of continuous

functions S2 → R, note that we may regard R as sitting inside of C(S2): it is
the subring of polynomial functions on the 2-sphere. The connections with the
topology of the 2-sphere will be important below.

Let π : R3 → R be the map π(f, g, h) = xf + yg + zh. That is, π is left-
multiplication by the matrix

[
x y z

]
. Let T be the kernel of π:

0 // T // // R3 π // R // 0.

The map π is split via χ : R → R3 sending 1 7→ (x, y, z). We conclude that
T ⊕R ∼= R3, so T is projective.

We claim that T is not free. Suppose, towards a contradiction, that T is
free. Since T ⊕ R ∼= R3 we have rank(T ) = 2, and so T ∼= R2. Choose an
isomorphism R2 → T , let e1 and e2 be the standard basis for R2, and let the
image of e1 under our isomorphism be (f, g, h). So f, g, and h are polynomial
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functions on S2 and  p1

p2

p3

 ·
 f(p)
g(p)
h(p)

 = 0

for all p = (p1, p2, p3) ∈ S2. So p 7→ (f(p), g(p), h(p)) is a tangent vector field
on S2. By the Hairy Ball Theorem we can find a point q = (q1, q2, q3) ∈ S2

such that f(q) = g(q) = h(q) = 0. Let m = (x − q1, y − q2, z − q3) ⊆ R and
consider the commutative diagram

R2
∼= //

����

T // //

��

R3

����
(R/mR)2

∼=
// T/mT // // (R/mR)3.

The lower right map is an injection because the upper right map is a split
injection. Note that R/mR ∼= R via F 7→ F (q). Start with e1 in the upper left
corner and compute its image in (R/mR)3 ∼= R3 under the two outer ways of
tracking around the diagram. Along the top route e1 maps to (f(q), g(q), h(q))
which is just (0, 0, 0). On the other hand, along the bottom route e1 first maps
to (1, 0) ∈ R2 and then the bottom composite is an injection—so the image in
R3 is nonzero. This is a contradiction, so we conclude that T is not free. (In
fact, we have proven more: we have proven that T does not contain R as a
direct summand).

Note that T is an algebraic analog of the tangent bundle of S2. As remarked
at the beginning of the section, these parallels between projective modules and
vector bundles are very important. We will see much more about them in
Section 10.

(4) Let us do one more example where we use topology to produce an example of a
non-free projective. This example is based on the Möbius bundle over S1. Let

S = R[x, y]/(x2 + y2 − 1)

and let R ⊆ S be the span of the even degree monomials. One should regard S
as the ring of polynomial functions on the circle, and R is the ring of polynomial
functions f(x, y) satisfying f(x, y) = f(−x,−y). So R is trying to be the ring
of polynomial functions on RP 1 (which happens to be homeomorphic to S1).

Let P ⊆ S be the R-linear span of the homogeneous polynomials with odd
total degree. Observe that P is a finitely generated R-module and we have
π : R2 � P via π(e1) = x and π(e2) = y. Define χ : P → R2 via

h 7→ χ(h) =

[
xh
yh

]
.

One checks that π ◦ χ = id, so P is projective. We leave it as an exercise for
the reader to show that P is not free.

Exercise 3.4. Complete example (4) above by showing that P is not free.

The topological examples (3) and (4), as well as many similar ones, can be found
in the lovely paper [Sw]. See also Section 10 below.

Example 3.5. Here is an example of an algebraic problem whose solution involves
non-free projectives coming from topology. If A and B are commutative rings such
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that A[X] ∼= B[X], does it follow that A ∼= B? This is a natural question that once
upon a time had people stumped. The first counterexample was due to Hochster
[Hoc] and is closely related to our current discussion.

Let R = R[x, y, z]/(x2 + y2 + z2− 1) as in (3) above, and let T also be as above.
Recall that T is not free but that there is an isomorphism R3 ∼= T ⊕R. Apply the
symmetric algebra construction SymR(−) to obtain

R[U, V,W ] ∼= SymR(R3) ∼= SymR(T ⊕R) ∼= SymR(T )⊗R SymR(R)

= SymR(T )⊗R R[W ]

= SymR(T )[W ].

We take A = R[U, V ] and B = SymR(T ), and the above gives a ring isomorphism
A[W ] ∼= B[W ].

It requires a little work to prove that A 6∼= B, though it is not too bad. We only
give a sktech. One first argues that any isomorphism must be R-linear, then that
the isomorphism must map R onto itself. By composing with the inverse to this
automorphism of R, one can assume that the isomorphism A→ B is R-linear. But
if there is such an R-algebra isomorphism then B is generated as an R-algebra by
two elements, and one readily proves that the degree 1 homogeneous components
of those two pieces generate T as an R-module. But the arguments from (3) above
show that T cannot be generated by two elements, and this is the contradiction.
We refer to [Hoc] for more details.

The original question about A and B, together with some variants, are often
called the Zariski Cancellation Problem. This is an active area of research. For
example, one open question is whether or not there exist counterexamples where
A is a polynomial ring over a field of characteristic zero (such counterexamples are
known in positive characteristic, by recent work of Gupta [Gu1]). We mention the
survey paper [Gu2] as just one point of entry into this subject.

A projective module P is called stably free if there exists a free module F such
that P ⊕ F is free. The example in (3) gives a projective that is stably-free but
not free. It turns out that K(R) can be used to tell us whether such modules exist
or not. To see this, recall that if m ⊆ R is a maximal ideal then rankm(−) is an
additive function on finitely-generated, projective modules. So it induces a map
rankm(−) : K(R) → Z, which is evidently surjective because rankm(R) = 1. This
shows that K(R) always contains Z as a direct summand.

Define the reduced Grothendieck group of R to be

K̃(R) = K(R)/〈[R]〉.
Here is another way to define this group. Take the set of isomorphism classes of
finitely-generated projectives and impose the equivalence relation (P ) ∼ (P ⊕ R)
for every P . Such equivalences classes are called stable projectives. Define a
monoid structure on this set by (P ) + (Q) = (P ⊕ Q), and note that (0) = (R) is
the identity. If P is any projective then there exists a Q such that P ⊕ Q is free,
and therefore (P ) + (Q) = 0 in this monoid; hence, we have a group. This is called
the Grothendieck group of stable projectives. One readily checks that this
group is isomorphic to K̃(R), with the equivalence class (P ) corresponding to the
element [P ] ∈ K̃(R).
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Proposition 3.6. Let R be a commutative ring. The following are equivalent:
(1) K(R) ∼= Z
(2) K̃(R) = 0
(3) Every finitely-generated, projective R-module is stably-free.

Proof. Immediate. �

Example 3.7. Recall from Corollary 2.27 that if F is a field then
K(F [x1, . . . , xn]) = Z. Thus, every finitely-generated, projective F [x1, . . . , xn]-
module is stably-free.

In the 1950s, Serre conjectured that every finitely-generated projective over
F [x1, . . . , xn] is actually free. As we will see later (Remark 11.6 below), the motiva-
tion for this conjecture is inspired by topology and the connection between vector
bundles and projective modules. Quillen [Q4] and Suslin [Su] independently proved
Serre’s conjecture in the 1970s.

Example 3.8. Let R = Z[
√
−5] and let I be the ideal (2, 1 +

√
−5). We saw in

example (2) from the beginning of this section that I is a rank one projective that
is not free. Could I be stably free? If it were, then we would have I ⊕Rk ∼= Rk+1,
for some k. Apply the exterior product Λk+1(−) to deduce that

R ∼= Λk+1(Rk+1) ∼= Λk+1(I ⊕Rk) ∼= Λ1(I)⊗ Λk(Rk) ∼= I ⊗R ∼= I

(in the third isomorphism we have used the formula for the exterior product of
a direct sum, together with the general fact that Λj(P ) = 0 for j > rank(P )).
However, this is a contradiction as we have already seen that I is not free. Hence,
I is not stably free and so [I] determines a nonzero class in K̃(R). By Exercise 3.3
we know I⊕ I ∼= R2 and so 2[I] = 0 in K̃(R), therefore we have a nonzero 2-torsion
class.

Again, this example generalizes to any Dedekind domain D. If I ⊆ D is a non-
principal ideal then I is a rank one projective that is not stably free. So a Dedekind
domain hasK(D) ∼= Z if and only ifD is a PID. As another consequence, we observe
that over any commutative ring a rank one projective P cannot be stably free unless
it is actually free.

◦ Exercises ◦

Exercise 3.9. Let R = Z[x]/(x2 − px) as in Exercise 2.33. Here we will analyze
K(R). Recall that geometrically SpecR looks like two copies of SpecZ that are
glued together at the point (p). The theme of this exercise is that projectives over
R are obtained by taking trivial modules of the same rank on the two copies of
SpecZ and then gluing them together via an isomorphism on their fibers over (p).
(a) For u ∈ (Z/p)∗ set Ju = {(f, g) ∈ Z2 |uf ≡ g (p)}. Make Ju into an R-module

by X.(f, g) = (0, pg). Prove that Ju is generated over R by (1, u) and (0, p)
and that the surjection R2 → Ju sending e1 and e2 to these two generators has
an R-linear splitting. So Ju is projective.

(b) Prove that Ju ∼= R if and only if u = ±1, and more generally Ju ∼= Jv ⇐⇒
u = ±v.
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(c) Suppose that P is a rank one projective over R. Then P/xP is a rank
one projective over the PID R/xR, so we can choose an R-linear isomor-
phism φ1 : P/xP → R/xR. Likewise, we can choose an R-linear isomor-
phism φ2 : P/(x − p)P → R/(x − p)R. We then obtain induced isomorphisms
φ̄1, φ̄2 : P/(x, x − p)P → R/(x, x − p)R, so that the composite φ̄−1

2 φ̄1 is an
R-linear automorphism of R/(x, x− p)R and therefore multiplication by a unit
u. Use these ideas to prove that P ∼= Ju.

(d) The set of isomorphism classes of rank one projectives becomes a group under
the tensor product; this is called the Picard group of R and denoted Pic(R).
Putting the previous parts together, prove that Pic(R) ∼= (Z/p)∗/± 1.

(e) For A ∈ GLn(Z/p) define JA = {(f, g) ∈ Zn × Zn |Af = g(p)}. Extend the
above ideas to prove that JA can be generated by 2n elements over R and that
JA is projective. Prove that JAP̄ ∼= JA ∼= JP̄A for any P ∈ GLn(Z) (where P̄
is the mod p reduction), so that A 7→ JA gives a map

GLn(Z)\GLn(Z/p)/GLn(Z) −→
{
iso. classes of rank n projectives over R

}
.

Verify that this is a bijection. [Discussion: Essentially what is happening here
is that we are building vector bundles on SpecR by taking two trivial bundles
on SpecZ and then gluing together their fibers over p. The “gluing map” is
the matrix in GLn(Z/p), and the left and right multiplications by GLn(Z)
correspond to change-of-bases in the two factors.]

(f) Using the previous part, prove that every finitely-generated projective decom-
poses as a direct sum of a rank one projective and a free module. Furthermore,
prove that Ju ⊕ Jv ∼= R ⊕ Juv and that Rr ⊕ Ju is free if and only if u = ±1.
[Hint: Suppose A,A′ ∈ GLn(Z/p) and one can obtain A′ from A by a row
(or column) operation that adds a multiple of one row (or column) to another.
Prove that A ∼ A′ in the orbit space from (e). Then use this technique in the
first two proofs. For the third, use the determinant.]

(g) Define a map Z⊕ [(Z/p)∗/± 1]→ K(R) by (r, u) 7→ Rr ⊕ Ju. Prove that this
is an isomorphism, so that

K(R) ∼=
{
Z if p = 2,
Z⊕ Z/(p−1

2 ) if p > 2.

Deduce that the canonical mapK(R)→ G(R) is neither injective nor surjective
when p > 3.

Exercise 3.10. Let k be a field not of characteristic 2 and let R = k[x, y]/(y2 −
x2(x+ 1)). This is the coordinate ring of a nodal cubic:

In particular, R is not regular. In this exercise we will explore projectives over R.
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Set t = y
x and note that t2 = x + 1, hence t is integral over R. It turns out

that the integral closure of R is R̃ = k[t], with R ↪→ R̃ sending x 7→ t2 − 1 and
y 7→ t(t2 − 1). Geometrically, the map Spec R̃→ SpecR looks as follows:

−→

The curve in the left is just the affine line Spec k[t], but it has been depicted in
a way that is compatible with the map to SpecR. The points t = 1 and t = −1
(shown in the left picture lying above each other) are sent to (0, 0), and away from
these points the map is an isomorphism. Note that R ⊆ k[t] may be regarded
as the subring of polynomials f such that f(1) = f(−1). In particular note that
(t2 − 1)k[t] ⊆ R.

All vector bundles on the affine line Spec R̃ are trivial (e.g. use the classification
of modules over a PID). We can make bundles on SpecR by taking a trivial rank
n bundle on Spec R̃ and gluing the two fibers at t = ±1 together via a fixed
isomorphism A ∈ GLn(k).

Define PA = {g ∈ k[t]n | g(1) = Ag(−1)} and note that this is naturally an R-
module. We claim that PA is a projective over R and that every projective over R
is of this form. Moreover, we can precisely describe the set of isomorphism classes
of all rank n projectives, for any n. These are the goals of this exercise.
(a) First consider n = 1 and u ∈ k∗, with Ju = {g ∈ k[t] | g(1) = ug(−1)}. Prove

that Ju is generated as an R-module by t2 − 1 and αu = (u+1)+(u−1)t
2 (the 2

in the denominator is not necessary, but leads to nicer-looking formulas in the
end). Observe that if f ∈ Ju and g ∈ Jv then fg ∈ Juv, or that multiplication
gives maps Ju ⊗ Jv → Juv. Also note that J1 = R.

(b) Let π : R2 � Ju send e1 7→ t2 − 1 and e2 7→ αu. Find elements P,Q ∈ Ju−1

such that f 7→ (Pf,Qf) gives an R-linear splitting for π.
(c) Prove that Ju ∼= R if and only if u = 1.
(d) Suppose that P is a rank 1 projective over R. Then P ⊗R k[t] is a rank 1

projective over k[t], hence it is isomorphic to k[t] as a k[t]-module. Choose a
k[t]-linear isomorphism P ⊗R k[t] ∼= k[t]. Then the composite

P
p 7→p⊗1 // P ⊗R k[t]

∼=−→ k[t]

is an R-linear embedding. Let P̄ denote the image. Observe that there exist
p0, p1 ∈ P̄ such that 1 = p0 + p1t. Use this to prove that t2 − 1, t(t2 − 1) ∈ P̄
and then that P̄ = Ju for some u ∈ k∗. [Hint for the last part: Show that P̄ is
generated by the three elements t2 − 1, t(t2 − 1), a0 + a1t for some a0, a1 ∈ k.
In the cases a0 + a1 = 0 or a0 − a1 = 0 prove that P̄ could not be projective.]
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(e) The Picard group Pic(R) is the set of isomorphism classes of rank 1 projectives
over R, which becomes a group under the tensor product. Verify that the
previous parts give an isomorphism k∗ → Pic(R) sending u 7→ Ju.

(f) Generalize the previous parts to n > 1. Show that JA = (t2− 1)k[t]n +R.〈(I +
A)a0 + (A − I)a1t〉 for some a0, a1 ∈ kn. In particular, JA can be generated
by 2n elements. Produce an R-linear splitting for the projection R2n � JA to
show that JA is projective. Also, verify that JBAB−1

∼= JA for any B ∈ GLn(k).
(g) Prove that the set of isomorphism classes of rank n projectives over R is in

bijective correspondence with the quotient set GLn(k)/∼ where the equivalence
relation is conjugation (A ' BAB−1).

4. A brief tour of localization and dévissage

It would be nice if we could compute the K-groups of more rings. For example,
we haven’t even computed K(R) for a simple ring like R = Z[

√
−5]. But so far we

don’t have many techniques to tackle such a computation. An obvious thing to try
is to relate the K-groups of R to those of simpler rings made from R, for example
quotient rings R/I and localizations S−1R. We will start to explore these ideas
in the present section. For the moment it will be easier to do this for G-theory,
though, rather than K-theory. Note that R = Z[

√
−5] is a regular ring, and so

K(R) ∼= G(R) by Theorem 2.13; hence, the focus on G-groups still gets us what we
want in this case.

Let R be a commutative ring and let f ∈ R. Consider the maps

G(R/f)
d1 // G(R)

d0 // G(f−1R)

where d1([M ]) = [M ] and d0([W ]) = f−1W . Clearly d0 ◦ d1 = 0. We claim that d0

is also surjective. To see this, let Z be an f−1R-module with generators z1, . . . , zn.
Let W = R〈z1, . . . , zn〉 ⊆ Z be the R-submodule generated by the zi’s. Then
f−1W ∼= Z, and so d0 is surjective.

Theorem 4.1. When R is Noetherian the sequence

G(R/f)
d1 // G(R)

d0 // G(f−1R) // 0

is exact.

We will delay the proof of this theorem for the moment, as it is somewhat
involved. Let us first look at an example.

Example 4.2. Let R = Z[
√
−5] and f = (2). Note that R is not a PID but f−1R

is. Thus G(f−1R) ∼= Z. Now we compute

R/f = Z/2[x]/(x2 + 5) = Z/2[x]/(x2 + 1) = Z/2[x]/((x+ 1)2) ∼= Z/2[t]/(t2).

We calculated in example (7) from Section 2 that G(Z/2[t]/(t2)) ∼= Z and is gen-
erated by the module Z/2 with t acting as zero. Translated into the present situa-
tion, we are saying G(R/f) ∼= Z with the group being generated by R/(2, x+ 1) =
R/(2, 1 +

√
−5).

We have computed that the exact sequence from Theorem 4.1 has the form

Z d1 // G(R)
d0 // // Z // 0
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where d1(1) = [R/(2, 1 +
√
−5)] and d0([R]) = 1. Let I = (2, 1 +

√
−5) and notice

that G(R) is generated by [R] and [R/I].
Now look at the short exact sequence 0 −→ K −→ R2 φ−→ I −→ 0 where

φ(e1) = 2, φ(e2) = 1 +
√
−5, and K = ker(φ) = {(x, y) | 2x + (1 +

√
−5)y = 0}.

In example (2) from Section 3 we saw that K ∼= I. So we have [I] + [I] = [R2] in
G(R), or 2([R]− [I]) = 0. But [R]− [I] = [R/I], hence 2[R/I] = 0. It follows that
G(R) is either Z or Z ⊕ Z/2, depending on whether the class [R/I] = [R] − [I] is
zero or not.

Now use that R is regular, so that G(R) ∼= K(R). Recall that we saw in Exam-
ple 3.8 that K̃(R) 6= 0, or equivalently K(R) 6= Z. In fact we saw precisely that
[R]− [I] is not zero in K(R). We conclude that G(R) ∼= Z⊕ Z/2, with generators
[R] and [R/I] for each of the two summands.

Remark 4.3. Theorem 4.1 gives another parallel between G(−) and singular
homology. If X = SpecR then A = SpecR/f is a closed subscheme, and
Spec f−1R = X − A is the open complement. So the sequence in Theorem 4.1
can be written as

G(A)→ G(X)→ G(X −A)→ 0.

This is somewhat reminiscent of the long exact sequence in singular homology
· · · → H∗(A) → H∗(X) → H∗(X,A) → · · · but with some important differences.
One obvious difference is that our sequence does not yet extend to the left to give a
long exact sequence, but that turns out to be just a lack of knowledge on our part:
we will eventually see that there are ‘higher G-groups’ completing the picture. The
other evident difference is the presence of G(X −A) as the ‘third term’ in the long
exact sequence, rather than a relative group G(X,A). There are several things to
say about this that would be a distraction to delve into at the moment, but perhaps
the most relevant is that H∗(−) is really the wrong analogy to be looking at. If we
instead consider Borel-Moore homology, then there are indeed long exact sequences
that look like · · · → HBM

∗ (A)→ HBM
∗ (X)→ HBM

∗ (X −A)→ · · ·
Remark 4.4. It is important in Theorem 4.1 that we are using G-theory rather
than K-theory. In K-theory we have maps K(R) → K(R/f) and K(R) →
K(f−1R), both given by tensoring, but in neither case do we have an evident
‘third group’ that might form an exact sequence. In essence this is because we need
relative K-groups; we will start to encounter these in the next section.

We will now work towards proving Theorem 4.1. The proof is somewhat involved,
and the result is actually not going to be used much in the rest of the notes. But
the proof is very interesting, as it demonstrates many general issues that arise in
the subject of K-theory. So it is worth spending time on this.

The proof comes in two parts. For the first part, let us introduce the multiplica-
tive system S = {1, f, f2, f3, . . . }. Write

G(M |S−1M = 0)

for the Grothendieck group of all finitely-generated R-modules M such that
S−1M = 0. The notation is a little slack, but it is very convenient. There are
evident maps

G(M |S−1M = 0)→ G(R)→ G(S−1R)→ 0,

and we will prove that this is exact for any multiplicative system S. This is called
the localization sequence for G-theory.
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The second step is to notice that if M is an R/f -module then as an R-module
it has the property that S−1M = 0. So we have a map

G(R/f)→ G(M |S−1M = 0).(4.5)

If M is an arbitrary finitely-generated R-module, the condition S−1M = 0 just
says that M is killed by a power of f . So we would have a filtration

M ⊇ fM ⊇ f2M ⊇ · · · ⊇ fNM = 0

where the factors are all R/f -modules. This shows that the map in (4.5) is surjec-
tive, and in fact these ideas allow one to define an inverse. The fact that

G(R/f) ∼= G(M |S−1M = 0)

is an example of a general principle known as dévissage. When we come to prove
this in a moment we will develop the generalization and get a better understanding
of what is going on here.

So those are the two pieces for the proof of Theorem 4.1: a general localiza-
tion sequence where the third term is something we had not considered before—in
essence, a relative G-group—and a dévissage theorem identifying that third term
with something more familiar.

4.6. The localization sequence. To begin with we will need some basic facts
about the localization functor γ : 〈〈R − Mod〉〉 → 〈〈S−1R − Mod〉〉. Note that if
M and N are R-modules then the map HomR(M,N) → HomS−1R(S−1M,S−1N)
factors through the S-localization to give

S−1 HomR(M,N)→ HomS−1R(S−1M,S−1N).(4.7)

By extension the same is true for the maps ExtiR(M,N)→ ExtiS−1R(S−1M,S−1N),
giving us

S−1 ExtiR(M,N)→ ExtiS−1R(S−1M,S−1N).(4.8)

Proposition 4.9. Let R be a commutative ring and let M and N be R-modules.
If M is finitely-presented then the map from (4.7) is an isomorphism. If M has
a resolution by finitely-generated projective modules then the map from (4.8) is an
isomorphism.

Proof. First observe that (4.7) is readily checked to be an isomorphism when M
is free and finitely-generated. If we have a finite presentation F1 → F0 → M → 0
then consider the diagram

0 // S−1 HomR(M,N)

��

// S−1 HomR(F0, N)

��

// S−1 HomR(F1, N)

��
0 // HomT (S−1M,S−1N) // HomT (S−1F0, S

−1N) // HomT (S−1F1, S
−1N)

where we write T = S−1R for typographical reasons and where each vertical map
is an instance of (4.7). The top row is exact by the left exactness of HomR(−, N)
together with the exactness of S-localization. The bottom row is exact by the
exactness of S-localization and then the left exactness of HomT (−, S−1N). The two
vertical maps on the right are isomorphisms because the Fi are free and finitely-
generated. So the left vertical map is also an isomorphism.
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Note that the map from (4.7) is also an isomorphism when M is a finitely-
generated projective, either using the fact that projectives are retracts of free mod-
ules or by the fact that finitely-generated projectives are automatically finitely-
presented.

For the Ext-statement, choose a projective resolution P∗ →M where the Pi are
all finitely-generated. Then S−1P∗ → S−1M is a free resolution over S−1R, and so

Ext∗S−1R(S−1M,S−1N) = H∗(HomS−1R(S−1P, S−1N))

= H∗(S−1 HomR(P,N))

= S−1H∗(HomR(P,N)) = S−1 Ext∗R(M,N).

Here the equalities are really canonical isomorphisms, and the second equality is
the Hom-isomorphism we have already proven. �

Exercise 4.10. For the verification that (4.7) is an isomorphism whenM is finitely-
generated and free, think through where the finite-generation hypothesis is needed.

Corollary 4.11. Let R be Noetherian and let S ⊆ R be a multiplicative system.
In each of the parts below the modules are always assumed to be finitely-generated.
(a) For any S−1R-module W there exists an R-module A and an isomorphism

S−1A ∼= W .
(b) For any R-modules A1 and A2 and map of S−1R-modules f : S−1A1 → S−1A2,

there exists a map of R-modules g : A1 → A2 and a diagram of S−1R-modules

S−1A1
S−1g // S−1A2

∼=
��

S−1A1
f // S−1A2.

Note that the right vertical map need not be the identity.
(c) For any short exact sequence of S−1R-modules

0→W1 →W2 →W3 → 0,

there exists a short exact sequence of R-modules

0→ A1 → A2 → A3 → 0

and isomorphisms

0 // S−1A1
//

∼=
��

S−1A2
//

∼=
��

S−1A3
//

∼=
��

0

0 // W1
// W2

// W3
// 0

Proof. We saw the technique for (a) already, in the paragraph prior to the statement
of Theorem 4.1: pick a set of generators w1, . . . , wk for W as an S−1R-module, and
let A be the R-linear span of those generators. The inclusion A ↪→ W gives an
inclusion S−1A ↪→ S−1W which is surjective, hence an isomorphism.

Parts (b) and (c) are direct consequences of the surjectivity of the Hom- and
Ext1-maps from Proposition 4.9. �
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Remark 4.12. The proofs of Corollary 4.11(b) and (c) are very slick, and some-
times it can be good to also think through more concretes approaches. To this end,
here is a sketch of an alternative proof.

For (b), choose presentations F1 → F0 → A1 → 0 and G1 → G0 → A2 → 0
where the Fi and Gi are finitely-generated and free. The map f lifts to a map
of complexes f̃ : S−1F → S−1G. Represent the maps f̃0 and f̃1 by matrices, and
choose t ∈ S large enough to clear the denominators for all entries at once. Since
the matrices tf̃i have entries in R we may regard them as maps Fi → Gi. Consider
the square

F1
tf̃1 //

��

G1

��
F0

tf̃0 // G0.

This square need not commute, but it commutes after S-localization: so there
exists some u ∈ S such that multiplying the two horizontal maps by u makes the
square commutative. Now redefine t to be tu, so that the above square truly does
commute. Taking the induced map of cokernels now gives a map g : A1 → A2. In
the diagram

S−1F1
tf̃1 //

��

S−1G1
t−1
//

��

S−1G1

��
S−1F0

tf̃0 //

��

S−1G0
t−1
//

��

S−1G0

��
S−1A1

S−1g // S−1A2
t−1

∼=
// S−1A2

the composition of the first two rows are f̃1 and f̃0, so the composition of the
bottom row is f . This completes the proof for (b).

The proof of (c) is along similar lines. Choose A1 and A3 such that S−1A1
∼= W1

and S−1A3
∼= W3. Then choose free presentations F1 → F0 → A1 and G1 → G0 →

A3. Use the Horseshoe Lemma from homological algebra [W1, 2.2.8] to create a
free presentation for W2 of the form S−1(F1 ⊕G1)→ S−1(F0 ⊕G0), sitting in the
middle of a short exact sequence with the previous two. Play the same game as
in (b) with clearing denominators on the maps in this presentation, so that one
can lift to a diagram of R-modules. There are a couple of slightly tricky points to
think through, but one can in this way create the desired short exact sequence of
R-modules (though not necessarily with the originally chosen A1). We leave the
reader to ponder the details here.

With these basic results about localization out of the way, we can now derive
some consequences for K-theory.

Corollary 4.13. When R is Noetherian the following subgroups of G(R) are all
equal:
(1)

〈
[A]− [B]

∣∣S−1A ∼= S−1B
〉

(2)
〈
[A]− [B]

∣∣ there exists a map f : A→ B such that S−1f is an isomorphism
〉

(3)
〈
[J ]
∣∣S−1J = 0

〉
.



38 DANIEL DUGGER

Proof. Let H1, H2, and H3 be the subgroups listed in (1)–(3). Clearly H1 ⊇ H2 ⊇
H3. The opposite subset H1 ⊆ H2 follows directly from Corollary 4.11(b). To prove
H2 ⊆ H3, let f : A→ B be a map of finitely-generated R-modules such that S−1f
is an isomorphism. Consider the short exact sequence

0→ ker f → A→ B → coker f → 0,

and note that our hypothesis implies that S−1(ker f) = 0 = S−1(coker f). But
[A]− [B] = [ker f ]− [coker f ] in G(R), so we have that [A]− [B] ∈ H3. �

Proposition 4.14. Let R be Noetherian and let S ⊆ R be a multiplicative system.
The sequence

G(M |S−1M = 0)
a−→ G(R)

b−→ G(S−1R)→ 0

is exact, where a and b are the evident maps.

Proof. Part (a) of Corollary 4.11 gives surjectivity of b. The somewhat tricky thing
is to get the exactness in the middle. Let F(R) denote the free abelian group on
isomorphism classes of finitely-generated R-modules, and letRel(R) ⊆ F(R) denote
the subgroup generated by elements [M ′i ] + [M ′′i ] − [Mi] for short exact sequences
0→M ′i →Mi →M ′′i → 0. Note that [0] 6= 0 in F(R); we could have imposed this
as an extra condition, but it is slightly more convenient to not do so. Consider the
following diagram

0 // Rel(R) //

π|Rel
��

F(R)

π

��

// G(R)

b
��

// 0

0 // Rel(S−1R) // F(S−1R) // G(S−1R) // 0,

which we wish to regard as a short exact sequence of chain complexes (the columns
become chain complexes by adding zeros above and below). Corollary 4.11(a) gives
surjectivity of π, and Corollary 4.11(c) gives surjectivity of π|Rel. The long exact
sequence in homology then becomes

0→ ker(π|Rel)→ ker(π)→ ker b→ 0.(4.15)

We next analyze the kernel of π.
Assume that x ∈ ker(π). One can write x in the form

x =
(

[M1] + [M2] + · · ·+ [Mk]
)
−
(

[J1] + · · ·+ [Jl]
)

for some modules M1, . . . ,Mk, J1, . . . , Jl. We then have

0 = π(x) =
(

[S−1M1] + [S−1M2] + · · ·+ [S−1Mk]
)
−
(

[S−1J1] + · · ·+ [S−1Jl]
)

in F(S−1R). How can this happen? It can only be that k = l and that for each
module S−1Mj there is some i for which S−1Mj

∼= S−1Ji. By pairing the terms
up two by two we find that

x ∈
〈
[A]− [B]

∣∣S−1A ∼= S−1B
〉
⊆ F(R).

So kerπ =
〈
[A] − [B]

∣∣S−1A ∼= S−1B
〉
. It then follows from (4.15) and Corol-

lary 4.13 that
ker b = 〈[J ] |S−1J = 0〉 ⊆ G(R).

This is what we wanted to prove. �
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4.16. Dévissage. Now we move to the second stage of the proof of Theorem 4.1.
We can rephrase what needs to be shown as saying that the map

G(M |M is killed by f)→ G(M |M is killed by a power of f)

is an isomorphism. We have seen a baby version of this argument before, namely
back in Section 2 when we showed that

G(Z/p)→ G(Z/p2) and G(F )→ G(F [t]/(t2))

are both isomorphisms. These are both maps of the form

G(M |M is killed by f)→ G(M |M is killed by f2),

for the rings R = Z and R = F [t], respectively. Iterating the same idea we used to
prove these—filter by powers of f—allows one to prove the required generalization.
But while we’re at it, let us generalize even further.

Let B be an exact category. I will not say exactly what the definition of such
a thing is, except that B is an additive category with a collection of sequences
M ′ → M → M ′′ called “exact”, and the collection must satisfy a reasonable list of
axioms. Any abelian category with its intrinsic notion of short exact sequence is
an example. The complete definition is in [Q3]. We are not giving it here in part
because the reader can manufacture a suitable definition for themself: just figure
out what axioms one needs to make the following proof work.

Theorem 4.17 (Dévissage). Let B be an exact category, and let A ↪→ B be an
exact subcategory such that any object in B has a finite filtration whose factors are
in A. Then G(A)→ G(B) is an isomorphism.

Proof. The inclusion i : A → B induces a map α : G(A) → G(B), and we want to
define an inverse β : G(B)→ G(A). To do so, for M ∈ B choose a filtration

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn = 0,

whose quotients Mi/Mi+1 are in A, and define

β([M ]) =
∑

[Mi/Mi+1].

We must check that β is well-defined, because it seems to depend on the choice of
filtration. There are two pieces of this. The first and easier one is to check that our
formula gives the same class in G(A) if we refine the filtration, meaning that we
replace one of the links Mi ⊇ Mi+1 with a longer chain Mi ⊇ M1

i ⊇ · · · ⊇ Mr
i =

Mi+1. This is trivial using Proposition 2.5(b) (or really, its analog in the present
setting).

The second part is to recall something you probably learned in a basic algebra
class, namely the Jordan-Hölder Theorem. This says that given any two filtrations
of M we can refine each one so that the two refinements have the same quotients
up to reindexing. If you accept this, it shows that β([M ]) does not depend on the
choice of filtration. It is a simple exercise to prove that β is additive, which we
leave to the reader.

At this point we have the map β. It is immediate that βα = id and αβ = id. �

Remark 4.18. We will not prove the Jordan-Hölder Theorem, as this is something
that can be found in basic algebra textbooks, but let us at least recall the main
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idea for why it is true. Suppose M ⊇ A ⊇ 0 and M ⊇ B ⊇ 0 are two filtrations for
M . Consider the refinement of the first given by

M ⊇ A+B ⊇ A ⊇ A ∩B ⊇ 0,

having quotients M/(A+B), (A+B)/A ∼= B/(A ∩B), A/(A ∩B) ∼= (A+B)/B,
and A ∩ B, Interchanging the roles of A and B gives a similar filtration refining
M ⊇ B ⊇ 0, having the same set of filtration quotients.

Once one has the above basic idea, it is not hard to extend to longer filtrations.

Note that it is often true in mathematics that the hard work goes into showing
that something is well-defined, and afterwards the rest is easy. This was the case
for the Dévissage Theorem, where all the hard work went into constructing the map
β.

4.19. Recap and summary. We embarked on the above journey in order to prove
Theorem 4.1, so let us now come back to that.

Proof of Theorem 4.1. Recall that R is a Noetherian ring and f ∈ R. Let S be the
multiplicative system {f i | i ≥ 0}. By Proposition 4.14 we have an exact sequence

G(M | S−1M = 0) −→ G(R) −→ G(S−1R) −→ 0.

The inclusion of R/fR-modules into modules M such that S−1M = 0 satisfies the
hypotheses of the dévissage theorem (Theorem 4.17), by looking at the filtration
M ⊇ fM ⊇ f2M ⊇ · · · . The conditions that S−1M = 0 and M is finitely-
generated guarantee that fkM = 0 for some k, so that this filtration is finite.
Therefore we have an isomorphism G(R/fR) ∼= G(M | S−1M = 0), allowing us to
write our exact sequence as

G(R/fR) −→ G(R) −→ G(S−1R) −→ 0.

The composite G(R/fR)→ G(R) is the evident map that regards an R/fR-module
as an R-module. �

5. K-theory of complexes and relative K-theory

Recall that there is always a map K(R) → G(R) sending the K-class of a
projective to the G-class of the same projective. We proved in Theorem 2.13 that
when R is regular this map is an isomorphism, and we did this by constructing
the inverse: it sends a class [M ] to

∑
(−1)i[Pi], where P• → M is any bounded

resolution of M by finitely-generated projectives. If you go back and examine the
proof of that result, you might notice that the alternating sums are largely an
annoyance in the proof—all the key ideas are best expressed without them, and
they are only forced into the proof so that we get actual elements of K(R). If
you think about this enough, it might eventually occur to you to try to make a
definition of K(R) that uses chain complexes instead of modules, thus eliminating
the need for these alternating sums. We will show how to do this in the present
section.

The importance of using chain complexes extends much further than simply
changing language to simplify a proof. We will see that defining K-theory in terms
of complexes allows us to write down natural definitions for relative K-groups as
well.
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Throughout this section let R be a fixed commutative ring. By a bounded chain
complex over R we mean a chain complex which is nonzero in only finitely-many
degrees. We begin by making the following definition.

Definition 5.1.

Kcplx(R) =
Z〈 [P•]

∣∣P• is a bounded chain complex of f.g. projectives〉
〈 Relation 1, Relation 2 〉

where the relations are
(1) [P•] = [P ′•] if P• and P ′• are chain homotopy equivalent,

(2) [P•] = [P ′•] + [P ′′• ] if there is a short exact sequence 0→ P ′• → P• → P ′′• → 0.

The second relation is the one that by now we would expect in a K-group, but
the first relation is new to us. If one goes back and thinks about the proof of
Theorem 2.13, the need for this first relation quickly becomes clear: it guarantees,
for instance, that two projective resolutions of a module will represent the same
class in the K-group.

Regarding relation (1), let us introduce some common terminology:

Definition 5.2. A map of chain complexes C• → D• is a quasi-isomorphism
if the induced maps Hi(C•) → Hi(D•) are isomorphisms for all i ∈ Z. Two chain
complexes C• and D• are quasi-isomorphic, written C• ' D•, if there is a zig-zag
of quasi-isomorphisms

C•
∼−→ J1

•
∼←− J2

•
∼−→ · · · ∼−→ Jn•

∼←− D•.
The following proposition is basic homological algebra. We omit the proof, but

it is very similar to the proof that two projective resolutions of the same module
are chain homotopy equivalent.

Proposition 5.3. If P and Q are bounded below complexes of projectives, then
every quasi-isomorphism P → Q is a chain homotopy equivalence.

Exercise 5.4. Prove Proposition 5.3, or look up a proof in a book on homological
algebra.

Proposition 5.3 lets us replace the words “chain homotopy equivalence” with
“quasi-isomorphism” in any statement about bounded, projective complexes. In
particular, we do this in relation (1) from the definition ofKcplx(R). The advantage
of doing this is simply that quasi-isomorphisms are somewhat easier to identify than
chain homotopy equivalences.

Here is our main result concerning the K-theory of complexes:

Proposition 5.5. K(R) ∼= Kcplx(R) for any commutative ring R.

Before giving the proof we record two useful results. For any chain complex C,
recall that ΣC denotes the chain complex obtained by shifting every module up
one degree and adding a sign to all differentials: (ΣC)n = Cn−1, and dΣC = −dC .
Also, if f : A → B is a map of chain complexes then the mapping cone Cf is the
chain complex with (Cf)n = An−1 ⊕ Bn and dCf (a, b) = (−da + f(b), db). Note
that ΣA is the mapping cone of A→ 0.

Lemma 5.6. Let P and Q be bounded complexes of finitely-generated projectives.
(a) [ΣP ] = −[P ] in Kcplx(R).
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(b) If f : P → Q is a map of complexes then [Cf ] = [Q]− [P ] in Kcplx(R).

Proof. Recall that there is a short exact sequence of complexes

0→ Q ↪→ Cf → ΣP → 0,

which shows immediately that [Cf ] = [Q]+[ΣP ] inKcplx(R). Let T be the mapping
cone of the identity P → P . Note that T is exact, hence quasi-isomorphic to the
zero complex. So 0 = [T ] = [P ] + [ΣP ], from which we get [ΣP ] = −[P ]. It then
follows that [Cf ] = [Q] + [ΣP ] = [Q]− [P ]. �

Exercise 5.7. Prove that if relation (1) in the definition of Kcplx(R) is replaced
with
(1’) [P•] = 0 for every exact complex P•,
then the resulting quotient group is also equal to Kcplx(R).

Exercise 5.8. Sometimes the sign on the differential is omitted in the definition
of the suspension ΣC. Check that the chain complexes obtained from these two
different conventions are naturally isomorphic. (For this reason, occasionally we
will be sloppy with the sign on the differential).

We now have enough tools to prove the main result of this section:

Proof of Proposition 5.5. If P is a projective R-module, let P [n] denote the chain
complex that has P in degree n and in all other degrees is equal to 0. There is an
obvious map α : K(R)→ Kcplx(R) defined by

[P ] 7→
[
P [0]

]
.

It is somewhat less obvious, but one can define a map in the other direction
β : Kcplx(R)→ K(R) by

β
(

[P•]
)

=
∑

(−1)i[Pi].

To see that this is well-defined we need to check that it respects the two defining
relations for Kcplx(R). Relation (2) is obvious, but for the other relation it is
convenient to use Exercise 5.7 to replace (1) with (1’). The fact that β respects
(1’) is immediate, being a consequence of Exercise 2.11.

It is clear that β◦α = id, so α is injective and β is surjective. To finish the proof,
it is easiest to prove that α is surjective; we will do this in several steps. If P is a
finitely-generated projective then P [0] is obviously in the image of α, and we know
that P [n] = (−1)n[P [0]] by iterated application of Lemma 5.6(a). So P [n] ∈ imα
for all n ∈ Z. Said differently, any complex of projectives of length 0 belongs to the
image of α. We next extend this to all bounded complexes by an induction on the
length.

Let P• be a bounded complex of finitely-generated projectives, bounded between
degrees k and n + k, say. Then Pk[k] is a subcomplex of P•, and the quotient Q•
has length at most n− 1. We have [P•] = [Pk[k]] + [Q•], and both [Pk[k]] and [Q•]
belong to imα by induction. So [P•] ∈ imα, and we are done. �

We will use our identification of Kcplx(R) and K(R) implicitly from now on. For
example, if P is a bounded complex of projectives we will often write [P ] to denote
an element of K(R)—although of course we mean β([P ]).
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Exercise 5.9. Assume that R is Noetherian, and let Gfpd(R) denote the
Grothendieck group of finitely-generated modules having finite projective dimen-
sion. Prove that Kcplx(R) ∼= Gfpd(R).

Exercise 5.10. If P is a bounded-below complex of projectives then the functor
(−)⊗ P preserves short exact sequences of chain complexes. Using this, show that
the tensor product of chain complexes gives a ring structure on Kcplx(R) and that
the isomorphism K(R) ∼= Kcplx(R) is an isomorphism of rings.

5.11. G-theory and chain complexes. One can prove an analog of Proposi-
tion 5.5 in which the ‘projective’ hypothesis is left out everywhere, showing that
G(R) is isomorphic to a Grothendieck group made from bounded chain complexes
of arbitrary finitely-generated modules. Here the Grothendieck group of complexes
must be defined using relation (1’) instead of (1), though, because they are no
longer equivalent. Other than this small point, all of the arguments are the same.

What is more interesting, however, is a variant that again uses chain complexes
of projectives. Precisely, consider chain complexes P• such that
(1) Each Pi is a finitely-generated projective,
(2) P• is bounded-below, in the sense that Pi = 0 for all i� 0.
(3) P• has bounded homology, in the sense that Hi(P ) 6= 0 only for finitely many

values of i.
Start with the free abelian group on isomorphism classes of such complexes, and
define Gcplx(R) to be the quotient by the analogs of relations (1) and (2) (or equiv-
alently, (1’) and (2)) in the definition of Kcplx(R).

Note that one readily obtains maps α : Gcplx(R) → G(R) and β : G(R) →
Gcplx(R) by

α([P•]) =
∑
i

(−1)i[Hi(P )] and β([M ]) = [Q•]

where Q• →M is any resolution by finitely-generated projectives. Though we must
be a little careful here, as we are guaranteed that the Hi(P ) are finitely-generated
only when R is Noetherian. The fact that α respects the short-exact-sequence
relation follows from the Snake Lemma.

Proposition 5.12. When R is Noetherian the maps α and β give inverse isomor-
phisms Gcplx(R) ∼= G(R).

Proof. It is immediate that αβ = id, so that α is surjective and β is injective. The
proof will be completed by showing that β is surjective. Let P• be a bounded-
below, homologically bounded chain complex of finitely-generated projectives. We
will prove by induction on the number of nonzero homology groups of P• that
[P•] ∈ imβ. The base is trivial, for if all the homology groups are zero then P• ' 0
and so [P•] = 0.

Without loss of generality assume that Pi = 0 for i < 0. Let n be the smallest
integer for which Hn(P ) 6= 0. If n > 0 then P1 → P0 is surjective, so there exists
a splitting. Using this splitting one sees that P is quasi-isomorphic to a chain
complex concentrated in degrees strictly larger than zero. Repeating this argument
if necessary, one concludes that P is actually quasi-isomorphic to a chain complex
(of f.g. projectives) concentrated in degrees n and higher. So we may assume that
P has this property, and then by shifting indices we may assume n = 0.

Let Q• → H0(P ) be a resolution by finitely-generated projectives (this exists
because R is Noetherian). Standard homological algebra gives us a map f : P• → Q•
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inducing an isomorphism on H0. Let Cf be the mapping cone of f . The long exact
homology sequence shows that Cf has one fewer non-vanishing homology group
than P , and hence we may assume by induction that [Cf ] ∈ imβ. But we know
from Lemma 5.6 (really, its analog for Gcplx(R)) that [Cf ] = [Q] − [P ]. Since
[Q] ∈ imβ by the definition of β, it follows that [P ] ∈ imβ as well. �

When we first learned the definitions of K(R) and G(R), the difference seemed
to be about projective versus arbitrary modules. When we look at these groups as
Kcplx(R) and Gcplx(R), however, the difference is about bounded versus bounded-
below chain complexes.

5.13. Relative K-theory. It may seem like we have introduced an unnecessary
level of complexity (no pun intended) by introducing Kcplx(R). After all, the proof
of Proposition 5.5 shows that for any bounded complex P the class [P ] is just
the alternating sum

∑
(−1)i[Pi[0]]. That is, in Kcplx(R) we may decompose any

complex into its constituent modules; one really only needs modules, not chain
complexes. But we will get some mileage out of these ideas by defining similar
K-groups but restricting to complexes subject to certain conditions. In these cases
we might not be able to ‘unravel’ the complexes anymore. We give a few examples:
(i) Let S be a multiplicative system in R. Start with the free abelian group on

isomorphism classes of bounded complexes P• of finitely-generated projectives
having the property that S−1P• is exact. Define K(R,S) to be the quotient
of this free abelian group by the analogs of relations (1) and (2) defining
Kcplx(R).

(ii) Let I ⊆ R be an ideal. Start with the free abelian group on isomorphism
classes of bounded complexes P• of finitely-generated projectives having the
property that each Hk(P ) is annihilated by I. Define K(R, I) to be the quo-
tient of this free abelian group by the analogs of relations (1) and (2) defining
Kcplx(R).

(iii) Fix an n ≥ 0. Start with the free abelian group on isomorphism classes of
bounded complexes P• of finitely-generated projectives having the property
that each Hk(P ) has Krull dimension at most n. (Recall that the dimension
of a module M is the dimension of the ring R/Ann(M)). Define K(R,≤ n)
to be the quotient of this free abelian group by the usual relations (1) and
(2).

Exercise 5.14. In analogy to (iii), define a group K(R,≥ n). Prove that if n >
dimR then K(R,≥ n) = 0. If R is a domain and n ≤ dimR then K(R,≥ n) ∼=
K(R). [Note: By convention the dimension of the zero module is +∞.]

Exercise 5.15. Verify that the tensor product of chain complexes gives a ring
structure on K(R,S).

Every map f : P → Q of finitely-generated projectives can be regarded as a
chain complex concentrated in degrees 0 and 1. From now on we will often make
this identification without comment. If S−1f is an isomorphism then we get a
corresponding class in K(R,S). The following lemma about these classes will be
very useful:
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Lemma 5.16. Let α : P → Q and β : Q → W be maps between finitely-generated
projectives, and assume both become isomorphisms after localization at S. Then

[P
βα−→W ] = [P

α−→ Q] + [Q
β−→W ]

in K(R,S).

Proof. Use the following short exact sequence of maps:

0 // P

α

��

(α,id) // Q⊕ P
idQ⊕βα
��

(id,−α) // Q

β

��

// 0

0 // Q
(id,β) // Q⊕W (β,− id) // W // 0.

This gives that

[Q
id−→ Q] + [P

βα−→W ] = [P
α−→ Q] + [Q

β−→W ],

but of course the first term on the left is zero in K(R,S). �

Note that there is an evident map K(R,S) → K(R) that sends a class [P ] in
K(R,S) to the similarly-named (but different) class [P ] in K(R) (and recall that we
identify K(R) and Kcplx(R) without comment from now on). In colloquial terms,
the map simply ‘forgets’ that a complex P is S-exact. The composite K(R,S) →
K(R)→ K(S−1R) is clearly zero.

Proposition 5.17. For any multiplicative system in a commutative ring R the
sequence K(R,S)→ K(R)→ K(S−1R) is exact in the middle.

Proof. Suppose x ∈ K(R) is in the kernel of the map to K(S−1R). Every element
of K(R) may be written as x = [P ] − [Q] for some finitely-generated projectives
P and Q. Then [S−1P ] = [S−1Q] in K(S−1R), so by Proposition 2.9 there exists
an n such that S−1P ⊕ (S−1R)n ∼= S−1Q ⊕ (S−1R)n. Alternatively, write this as
S−1(P⊕Rn) ∼= S−1(Q⊕Rn). By Corollary 4.11(b) there exists a map of R-modules
Q ⊕ Rn → P ⊕ Rn that becomes an isomorphism after S-localization. Regarding
this map as a chain complex concentrated in degrees 0 and 1, it gives an element
in K(R,S). The image of this element under K(R,S)→ K(R) is clearly x. �

The reader might have noticed that in the above proof we didn’t encounter
any kind of complicated chain complex when trying to construct our preimage in
K(R,S); in fact, we accomplished everything with chain complexes of length 1.
This is a general phenomenon, similar to the fact that elements of Kcplx(R) can all
be decomposed into modules. For the relative K-groups one can’t quite decompose
that far, but one can always get down to complexes of length 1. To state a theorem
along these lines, consider maps f : P → Q where P and Q are finitely-generated
R-projectives and S−1f is an isomorphism (it is convenient to regard such maps as
chain complexes concentrated in degrees 0 and 1). Let K(R,S)≤1 be the quotient
of the free abelian group on such maps by the following relations:
(1) [f ] = 0 if f is an isomorphism;
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(2) [f ] = [f ′] + [f ′′] if there is a commutative diagram

0 // P ′

f ′

��

// P //

f

��

P ′′

f ′′

��

// 0

0 // Q′ // Q // Q′′ // 0

where the rows are exact.
Notice that there is an evident map K(R,S)≤1 → K(R,S).

Theorem 5.18. For any multiplicative system S in a commutative ring R, the
map K(R,S)≤1 → K(R,S) is an isomorphism.

The proof of this theorem is a bit difficult, and the techniques are too distant
from the topics at hand to merit spending time on them. We give the proof in
Appendix F, for the interested reader.

Remark 5.19. Theorem 5.18 naturally suggests the following question: why use
chain complexes at all, for relative K-theory? That is to say, if one can access the
same groups using only chain complexes of length one, why complicate things by
making the definition using complexes of arbitrary length? There are two answers
to this question. The first concerns the ring structure: the tensor product of two
complexes is again a complex in a natural way, giving a ring structure on K(R,S).
In contrast, there is not a particularly natural way of defining a ring structure on
K(R,S)≤1.

The second answer comes from algebraic geometry. Let X be a scheme and let
U be an open subset of X. Then the ‘correct’ way to define a relative K-theory
group K(X,U) is to use bounded chain complexes of algebraic vector bundles on
X that are exact on U . When X = SpecR and U = SpecS−1R then it happens
that one can get the same groups using only complexes of length one—as we saw
above. But even for X = SpecR not every open subset is of this form. A general
open subset will have the form U = (SpecS−1

1 R)∪(SpecS−1
2 R)∪· · ·∪(SpecS−1

d R),
and to get the same relative K-group here using complexes with a fixed bound on
their length the best one can do is to take that bound to be d. See [FH, “Main
Theorem”] and [D3, Theorem 1.4] for the proof in this case.

When R is a regular ring all localizations S−1R are also regular. So the groups
K(R) and K(S−1R) can be identified with G(R) and G(S−1R), by Theorem 2.13.
Comparing the localization sequence in K-theory from Proposition 5.17 to the one
in G-theory from Proposition 4.14 suggests an identification of the relative terms.
Indeed, observe that the usual Euler characteristic map χ(P•) =

∑
(−1)i[Hi(P )]

gives a well-defined map K(R,S)→ G(M |S−1M = 0). We have the following:

Theorem 5.20. If R is regular then χ : K(R,S) → G(M |S−1M = 0) is an iso-
morphism.

Proof. The proof repeats the ideas we have already seen in Theorem 2.13, Proposi-
tion 5.5, and Proposition 5.12. Define β : G(M |S−1M = 0)→ K(R,S) by sending
[M ] to [P•] for some finite resolution of M by finitely-generated projectives (which
exists because R is regular). The exact same steps as in the proof of Theorem 2.13
show that this is well-defined, and it is clear that χ ◦ β = id. So β is injective and
χ is surjective. We finish the proof by showing that β is surjective.
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Let P be a bounded complex of finitely-generated projectives such that S−1P
is exact. If all the homology groups of P are zero then [P ] = 0 in K(R,S) and so
[P ] ∈ im(β). We proceed by induction on the number of non-vanishing homology
groups.

By suspending or desuspending we can assume that Pi = 0 for i < 0. If H0(P ) =
0 then we can split off an acyclic complex from the bottom of P and reduce to
a complex of smaller length. So we can also assume H0(P ) 6= 0. Let Q be a
bounded resolution of H0(P ) by finitely-generated projectives. Then there is a
map of complexes f : P → Q that is an isomorphism on H0, so that the mapping
cone Cf has fewer nonvanishing homology groups than P . Since S−1P and S−1Q
are exact, S−1(Cf) is also exact. We have [Q] = [Cf ] + [P ] in K(R,S), [Q] is in
the image of β by construction, and by induction [Cf ] is also in the image of β. So
[P ] is in the image, and we are done. �

5.21. Relative K-theory and intersection multiplicities. We now wish to
tie several themes together, and use everything we have learned so far to give a
complete, K-theoretic perspective on Serre’s definition of intersection multiplicity.
This perspective is from the paper [GS].

Let R be a Noetherian ring, and let Z ⊆ SpecR be any subset. An R-moduleM
is said to be supported on Z if MP = 0 for all primes P /∈ Z. One usually defines
SuppM , the support of M , to be {P ∈ SpecR |MP 6= 0}. This is known to be
a Zariski closed subset of SpecR, and to say that M is supported on Z is just the
requirement that SuppM ⊆ Z. When M is finitely-generated, M is supported on
Z = V (I) if and only if a power of I annihilatesM . Likewise, if S is a multiplicative
system then M is supported on SpecR− SpecS−1R if and only if S−1M = 0.

Let G(R)Z be the Grothendieck group of all finitely-generated R-modules that
are supported on Z.

Similarly, if C• is a chain complex of R-modules then SuppC is defined to be
{P ∈ SpecR |H∗(CP ) 6= 0}. We say that C• is supported on Z if SuppC ⊆ Z, or
if CQ is exact for every Q /∈ Z. Note that C• is supported on Z if and only if all
the homology modules H∗(C) are supported on Z.

Similar to our definitions of Kcplx(R) and K(R,S), define K(R)Z to be the
Grothendieck-style group of bounded complexes P• of finitely-generated projective
R-modules having the property that SuppP• ⊆ Z. Note that if Z = SpecR −
SpecS−1R then K(R)Z is precisely the group K(R,S) previously defined.

The following statements should be easy exercises for the reader:
(1) The Euler characteristic χ(P•) =

∑
i(−1)i[Hi(P )] defines a group homomor-

phism K(R)Z → G(R)Z .
(2) If R is regular then the map χ : K(R)Z → G(R)Z is an isomorphism.
(3) Tensor product of chain complexes gives pairings

⊗ : K(R)Z ⊗K(R)W → K(R)Z∩W

for all pairs of closed subsets Z,W ⊆ SpecR.
(4) If M and N are R-modules then Supp(M ⊗N) = SuppM ∩ SuppN .
(5) Assume that R is regular and transplant the tensor product of chain complexes

from (3) to a pairing

G(R)Z ⊗G(R)W → G(R)Z∩W .
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This sends [M ]⊗ [N ] to
∑

(−1)i[Tori(M,N)]. (Note that this makes sense on
the level of supports: If Z = V (I) and W = V (J) then Z ∩W = V (I + J).
If M is killed by a power of I and N is killed by a power of J , then M ⊗ N
and all the Tori(M,N) are killed by some Ir + Js and therefore by a power of
I + J).

(6) Let Z = {m} where m is a maximal ideal of R. If a module is supported on Z
then it has finite length, and the assignment M 7→ `(M) gives an isomorphism
G(R)Z

∼=−→ Z.
(7) Let M and N be R-modules such that Supp(M ⊗ N) = {m} where m is a

maximal ideal of R (geometrically, SuppM and SuppN have an isolated point
of intersection). Then Serre’s intersection multiplicity e(M,N) is the image of
[M ]⊗ [N ] under the composite

G(R)Z ⊗G(R)W −→ G(R)Z∩W
`−→ Z,

where we have written Z = SuppM and W = SuppN (and the map labelled `
is in fact an isomorphism).

Exercise 5.22. Prove (1)–(7) above.

Remark 5.23. We will understand this better after seeing how intersection mul-
tiplicities fit into algebraic topology, but it is worth noting that the group K(R)Z
would—from a topological perspective—be better written as K(X,X − Z), where
X = SpecR. For comparison, relative products in a cohomology theory would give
pairings

K(X,X−Z)⊗K(X,X−W )→ K(X, (X−Z)∪ (X−W )) = K(X,X− (Z ∩W )),

which is what we saw above in the form K(R)Z ⊗ K(R)W → K(R)Z∩W . See
Section 18.5 for more on relative topological K-theory.

6. K-theory of exact complexes

We have seen the isomorphism of groups K(R) ∼= Kcplx(R). If P• is a bounded,
exact complex of projectives then it gives rise to a relation in K(R), and (equiva-
lently) represents the zero object in Kcplx(R). Given this, it might seem surprising
to learn that there is yet another model for K(R) in which exact complexes can rep-
resent nonzero elements—and even more, all nonzero elements can be represented
this way. The goal of the present section is to explain this model, as well as some
variations. This material is adapted from [Gr2].

Note: The contents of this section are only needed once in the remainder of the book,
for a certain perspective on Adams operations in Section 35. While the material is
intriguing, it can certainly be skipped if desired.

As in the last section, let R be a fixed commutative ring.

Definition 6.1.

Kexct(R) =
Z〈 [P•]

∣∣P• is a bounded, exact chain complex of f.g. projectives〉
〈 Relation 1, Relation 2 〉

where the relations are
(1) [P•] = [P ′•] + [P ′′• ] if there is a short exact sequence 0→ P ′• → P• → P ′′• → 0,
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(2) [ΣP•] = −[P•].

If P is a projective module let CP denote the mapping cone of the identity map
P → P . Specifically, CP is a chain complex concentrated in dimensions 0 and 1
where the only nonzero differential is the identity map on P . Observe that there is
a group homomorphism K(R)→ Kexct(R) that sends [P ] to [CP ].

Proposition 6.2. The map K(R) → Kexct(R) is an isomorphism. The inverse
is denoted χ′ : Kexct(R) → K(R) and called the derived (or secondary) Euler
characteristic. If P• is an exact bounded complex of finitely-generated projectives
then

χ′(P•) =
∑
j

(−1)j+1j[Pj ] =
∑
j

(−1)j−1[im dj ]

where dj : Pj → Pj−1.

Technically speaking the second formula given for χ′ doesn’t make sense unless
we know that each im dj is a finitely-generated projective module. This is a simple
exercise, but let us record it in a lemma.

Lemma 6.3. Let P• be a bounded, exact complex of projectives. Then each im dj
is projective, and is finitely-generated if Pj is.

Proof. Without loss of generality we can assume that P• has the form 0 → Pn →
· · · → P0 → 0. So d1 : P1 → P0 is surjective, hence im d1 = P0 and there is nothing
to prove here. Exactness gives us short exact sequences 0 → im dj+1 → Pj →
im dj → 0, for each j. We can assume by induction that im dj is projective, hence
the sequence is split-exact and therefore im dj+1 is also projective.

Since im dj is a quotient of Pj , it is finitely-generated if Pj is. �

The above proof of course gives more than was explicity stated: by choosing
splittings one level at a time one can see that P• decomposes as a direct sum
of exact complexes of length 1. This decomposition is non-canonical, however,
depending on the choices of splitting. For variety we will see a weaker, but more
canonical, version of this decomposition in the next proof.

Proof of Proposition 6.2. Let α denote the map K(R) → Kexct(R) sending [P ] 7→
[CP ]. It is easy to see that α is surjective, because if 0 → Pn → · · · → P0 → 0 is
an exact complex then there is an evident short exact sequence

0→ Σn−1(CPn)→ P• → Q• → 0

where Q• is exact and has length at most n−1. Since [P•] = [Σn−1(CPn)]+ [Q•] =
(−1)n−1[CPn] + [Q•], an immediate induction shows that Kexct(R) is generated by
the classes [CP ] as P ranges over all finitely-generated projectives.

Note that Pn ∼= im dn, and Qn−1 = coker(Pn → Pn−1) ∼= im dn−1. The induc-
tion mentioned in the preceding paragraph shows that [P•] =

∑
j(−1)j−1[C(im dj)].

From this it is clear that if an inverse to α exists it must send [P•] to∑
j(−1)j−1[im dj ]. It is only left to check that this formula does indeed define

a map Kexct(R)→ K(R).
Let P• be any bounded, exact complex of finitely-generated projectives, and

assume that the smallest degree containing a nonzero module is degree n. Write
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Ij = im dj . Since · · · → Pj+1 → Pj → Ij → 0 is exact, we have that [Ij ] =∑
k≥j(−1)k−j [Pk] in K(R). So in K(R) we have∑

j≥n

(−1)j−1[Ij ] =
∑
j≥n

∑
k≥j

(−1)j−1(−1)k−j [Pk] =
∑
k

(−1)k−1
∑

n≤j≤k

[Pk]

=
∑
k

(−1)k−1(k − n+ 1)[Pk]

=
∑
k

(−1)k−1k[Pk] + (n− 1)χ(P•)

=
∑
k

(−1)k−1k[Pk].

In the last equality we have used that χ(P•) = 0 since P• is exact.
Define χ′(P•) =

∑
k(−1)k−1k[Pk]. One easily checks that this satisfies relations

(1) and (2) in the definition of Kexct(R), and hence defines a map χ′ : Kexct(R)→
K(R). It is trivial to check that χ′ ◦ α = id. Therefore α is injective, and since we
already proved surjectivity it is an isomorphism and χ′ is its inverse. �

6.4. Derived Euler characteristics. Now that we have encountered the derived
Euler characteristic it seems worthwhile to take a moment and place it into a
broader context. Consider the definition

χt(P•) =
∑

tj [Pj ] ∈ K(R)[t, t−1].

This function is additive, and in fact one can see that it is the universal additive
invariant for bounded complexes of finitely-generated projectives. The usual Euler
characteristic is χ(P•) = χt(P•)|t=−1. Of course we do not have χt(ΣP•) = −χt(P•),
this only becomes true after the substitution t = −1; what we have instead is the
identity

χt(ΣP•) = t · χt(P•).(6.5)

If we differentiate χt with respect to t then we obtain χ′t(P•) =
∑
jtj−1[Pj ].

Clearly this is also an additive invariant of complexes. The invariant we called χ′
is just χ′t(P•)|t=−1. Differentiating (6.5) yields the formula

χ′t(ΣP•) = χt(P•) + t · χ′t(P•),(6.6)

and consequently χ′(ΣP•) = χ(P•) − χ′(P•). This is not the kind of behavior we
are used to, but notice that if we restrict to complexes P• with χ(P•) = 0 then we
get the nicer behavior χ′(ΣP•) = −χ′(P•).

One can, of course, iterate this procedure. Let χ(n)
t (P•) denote the nth derivative

of χt(P•), and white χ(n)(P•) = χ
(n)
t (P•)|t=−1. Call this the nth derived Euler

characteristic. It is an additive function, and if one restricts to complexes such
that 0 = χ(n−1)(P•) then it satifies χ(n)(ΣP•) = −χ(n)(P•).

6.7. Doubly-exact complexes. A bicomplex C•,• will be called bounded if the
modules Ci,j are nonzero for only finitely many values of (i, j). The bicomplex
will be called doubly-exact if every row and every column is exact. By abuse
of terminology an ordinary chain complex D• will be called doubly-exact if it is
isomorphic to the total complex of a bounded, doubly-exact bicomplex. Doubly
exact complexes all represent zero in Kexct(R):
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Proposition 6.8. If P• is a bounded, doubly-exact complex of finitely-generated
projectives then [P•] = 0 in Kexct(R).

Proof. Let M•,• be a doubly-exact bicomplex of finitely-generated projectives. For
some n and k, Mi,j is zero outside of the rectangle 0 ≤ i ≤ n and 0 ≤ j ≤ k.
Write Mi,∗ for the ordinary complex whose jth term is Mi,j , and write M≤i,∗ for
the sub-bicomplex of M•,• consisting of all Ma,j for a ≤ i. Observe that there are
short exact sequences

0→ Tot(M≤(i−1),∗) ↪→ Tot(M≤i,∗)� ΣiMi,∗ → 0,

for all i. Induction shows that each Tot(M≤i,∗) is exact, and therefore in Kexct(R)
we have

[TotM•,•] =
∑
i

[ΣiMi,∗] =
∑
i

(−1)i[Mi,∗]

(using the analog of Proposition 2.5(b)). But M•,• may be regarded as an exact
sequence of chain complexes

0→Mn,∗ →Mn−1,∗ → · · · →M1,∗ →M0,∗ → 0.

The image of each map in this sequence is a chain complex of finitely-generated
projectives (using Lemma 6.3), and we have the short exact sequences of chain
complexes

0 −→ im(Mi+1,∗) −→Mi,∗ −→ im(Mi,∗) −→ 0.

By a straightforward induction, each of these image complexes is exact. Each of
these short exact sequences gives a relation inKexct(R), and taking their alternating
sum shows that

∑
i(−1)i[Mi,∗] = 0. We have therefore shown that [TotM•,•] = 0

in Kexct(R). �

The reader will notice the beginnings of a pattern here. Exact complexes P•
represent zero in Kcplx(R), but then we produced a new model for this same group
where the exact complexes are the generators. In this new group Kexct(R) the
doubly-exact complexes represent zero. It is natural, then, to wonder if there is yet
another model for this group where the doubly-exact complexes are the generators.
Indeed, this works out in what is now a completely straightforward manner, and
can be repeated ad infinitum.

Let us use the term multicomplex for the evident generalization of bicomplexes
to n dimensions. We will denote a multicomplex byM?, where the symbol ? stands
for an n-tuple of integers. Say that the multicomplex is n-exact if every linear
‘row’ (obtained by fixing n− 1 of the indices) is exact.

Definition 6.9.

Kn−exct(R) =
Z〈 [M?]

∣∣M? is a bounded, n-exact multicomplex of f.g. projectives〉
〈 Relation 1, Relation 2 〉

where the relations are
(1) [M?] = [M ′?] + [M ′′? ] if there is an exact sequence 0→M ′? →M? →M ′′? → 0,

(2) [ΣM?] = −[M?], where Σ stands for any of the n suspension operators on
n-multicomplexes.
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Given an (n+ 1)-multicomplex M? there are
(
n+1

2

)
ways to totalize it to get an

n-multicomplex—one needs to choose two of the n+ 1 directions to combine. One
can follow the proof of Proposition 6.8 to show that ifM? is (n+1)-exact then each
of these totalizations represents zero in Kn−exct(R).

If M? is an n-multicomplex then let CM? denote the cone on the identity map
M? → M?. This is an (n + 1)-multicomplex, defined in the evident manner. This
cone construction induces a group homomorphism Kn−exct(R)→ K(n+1)−exct(R).

Proposition 6.10. The map Kn−exct(R) → K(n+1)−exct(R) is an isomorphism,
with inverse given by

χ′(M?) =
∑

(−1)j+1j[Mj,?]

where the symbols Mj,? represent the various slices of M? in any fixed direction.

Proof. Follow the proof of Proposition 6.2 almost verbatim, but where each Pi
represents an n-exact multicomplex rather than an R-module. �

We have the sequence of isomorphisms

K(R)→ Kexct(R)→ K2−exct(R)→ · · ·
The composite map K(R) → Kn−exct(R) sends [P ] to the n-dimensional cube
consisting of P ’s and identity maps. The composite of the χ′ maps in the other
direction yields the map Kn−exct(R)→ K(R) given by

M? 7→
∑

j1,...,jn

(−1)j1+···+jn+nj1 · · · jn[Mj1,...,jn ].

If one considers the formal Laurent polynomial

χt1,...,tn(M) =
∑

j1,...,jn

tj11 · · · tjnn [Mj1,...,jn ]

then this is the nth order partial derivative ∂t1 · · · ∂tnχt1,...,tn(M) evaluated at t1 =
t2 = · · · = tn = −1.

Remark 6.11. Grayson [Gr2] suggests a perspective where exact complexes are
analogous to the formal infinitesimals from nonstandard analysis. Doubly-exact
complexes are analogues of products of infinitesimals, and so forth.

7. A taste of K1

Note: The material in this section will not be needed for most of what follows. We
include it for general interest, and because the material fits naturally here. But this
section can safely be skipped.

Given a commutative ring R and a multiplicative system S ⊆ R, we have seen
the exact sequences

G(M |S−1M = 0)→ G(R)→ G(S−1R)→ 0

and
K(R,S)→ K(R)→ K(S−1R).

It is natural to wonder if these extend to long exact sequences, and the answer is
that they do: in the first case there is an extension to the left, and in the latter
case there is an extension in both directions. These extensions are not easy to
produce, however—they are the subject of ‘higher algebraic K-theory’, a field that
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involves some very deep and difficult mathematics. Our aim here is not to start a
long journey into that subject, but rather to just give some indications of the very
beginnings.

Remark 7.1. From now on the groups K(R) and G(R) will be written K0(R) and
G0(R).

7.2. The basic theory of K1(R). Let us adopt the perspective that K0(R) is, in
essence, constructed with the goal of generalizing the familiar notion of dimension
for vector spaces. The key property of dimension is additivity for short exact
sequences, so consequently one forms the universal group with that property. The
groupK1(R) is obtained similarly but with the goal of generalizing the determinant .

Determinants are invariants of self-maps—maps with the same domain and
target—and we need some language for dealing with such things. Given two self-
maps f : A→ A and g : B → B, we define a map from f to g to be a map u : A→ B
giving a commutative diagram

A
u //

f
��

B

g

��
A

u // B.

Likewise, an exact sequence of self-maps is a diagram

0 // P ′
u0 //

f ′

��

P
u1 //

f

��

P ′′ //

f ′′

��

0

0 // P ′
u0 // P

u1 // P ′′ // 0

(7.3)

in which the rows are short exact sequences of modules.

Definition 7.4. Form the free abelian group generated by isomorphism classes of
maps [P

α−→ P ] where P is a finitely-generated projective and α is an isomorphism.
Let K1(R) be the quotient of this group by the following relations:

(a) [P
α−→ P ] = [P ′

α′−→ P ′]+[P ′′
α′′−→ P ′′] whenever there is a short exact sequence

as in (7.3);
(b) [P

αβ−→ P ] = [P
α−→ P ] + [P

β−→ P ] for all self-maps α, β : P → P .

As a consequence of relation (b) one has that [P
id−→ P ] = [P

id−→ P ]+[P
id−→ P ],

and so [P
id−→ P ] = 0 for any finitely-generated projective P . Note also that if

α : P → P and β : Q→ Q are automorphsms then

[P ⊕Q α⊕β−→ P ⊕Q] = [P
α−→ P ] + [Q

β−→ Q],(7.5)

as a consequence of relation (a).
The use of projective modules in the definition of K1(R) turns out to be unnec-

essarily complicated—one can get the same group by only using automorphisms of
free modules. Even more, the use of short exact sequences in relation (a) is un-
necessarily complicated; one can get the same group by only imposing the weaker
relation from (7.5). We will prove both of these claims in just a moment.

Observe that there is a map of groups GLn(R)→ K1(R) that sends a matrix A
to the class [Rn

A−→ Rn] (left-multiplication-by-A). Relation (b) guarantees that
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this is indeed a group homomorphism. If we let j : GLn(R) ↪→ GLn+1(R) be the
usual inclusion, obtained by adding an additional row and column and a 1 along
the diagonal, then it is clear that [Rn+1 j(A)−→ Rn+1] = [Rn

A−→ Rn]. This follows
from (7.5) and the fact that [R

id−→ R] = 0. Let GL(R) denote the colimit

GL(R) = colim[GL1(R)→ GL2(R)→ GL3(R)→ · · · ],
and call this the infinite general linear group of R. We have obtained a map
GL(R)→ K1(R), and of course this will factor through the abelianization to give

GL(R)ab = GL(R)/[GL(R), GL(R)]→ K1(R).

Exercise 7.6. We abelianized after taking the colimit, but could have just as well
done it the other way around. Verify that if G1 → G2 → · · · is any sequence of
group homomorphisms then [colimnGn]ab = colimn[(Gn)ab].

The most fundamental result in the theory of K1 is the following:

Theorem 7.7. The map GL(R)ab → K1(R) is an isomorphism.

It will be convenient to prove this at the same time that we give other descriptions
for K1(R). In particular, we make the following definitions:
(1) Kfr

1 (R) is the group defined similarly to K1(R) but changing all occurrences
of ‘projective’ to ‘free’.

(2) Ksp
1 (R) is the group defined similarly to K1(R) but replacing relation (a) by

the direct sum relation of (7.5). The “sp” stands for “split”.
(3) Ksp,fr

1 (R) is the group defined by making both the changes indicated in (1)
and (2).

One obtains a large diagram as follows:

colimP Aut(P )ab // // Ksp
1 (R) // // K1(R)

GL(R)ab colimnGLn(R)ab // //

OO

Ksp,fr
1 (R) // //

OO

Kfr
1 (R).

OO
(7.8)

The maps labelled as surjections are obviously so. Let us explain the colimit over
projectives P . LetM denote the monoid of isomorphism classes of finitely-generated
projectives, with the operation of ⊕. The translation category T (M) of this monoid
has object set equal to M, and the maps from A to B are the elements C ∈ M

such that A+C = B; composition is given by the multiplication in M. This is the
indexing category for our colimit. Given an isomorphism f : P → Q, there is an
induced map of groups Aut(P )→ Aut(Q) sending α to fαf−1. Changing f gives a
different induced map, but it gives the same induced map on Aut(P )ab → Aut(Q)ab:
this is a consequence of the formula

fαf−1 = (fg−1)(gαg−1)(gf−1).

We can therefore construct a functor T (M)→ Ab sending each [P ] to Aut(P )ab. If
[Q] is a map from [P ] to [J ] then we choose an isomorphism f : P⊕Q→ J and have
T send the map [Q] to the composite Aut(P )ab ↪→ Aut(P ⊕Q)ab → Aut(J)ab. The
first map is direct sum with idQ and the second map is independent of the choice
of f , so this is well-defined. The upper left term in our diagram is the colimit of
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the functor T . The map from this colimit to Ksp
1 (R) is induced by the one sending

an element α ∈ Aut(P ) to the class [P
α−→ P ].

Theorem 7.7 will follow as an immediate consequence of the following stronger
result:

Theorem 7.9. All of the maps in (7.8) are isomorphisms.

We are almost ready to prove this theorem, but we will need one key result
first. Let E(R) ⊆ GL(R) be the subgroup generated by the elementary matrices—
matrices that have ones along the diagonal and a single nonzero, off-diagonal entry.
We likewise define En(R) ⊆ GLn(R), and observe that E(R) = colimnEn(R). We
will implicitly identify matrices in En(R) with their image in E(R); note that this
involves adding trailing ones down the diagonal of the matrix.

Note that right multiplication by an elementary matrix amounts to performing a
column operation where a multiple of one column is added to another; similarly, left
multiplication amounts to performing the analogous row operation. One very useful
way to recognize a matrix as belonging to E(R) is to observe that it can be obtained
from the identity matrix by using these types of row and column operations. It will
be convenient to call a column or row operation of this type allowable.

Lemma 7.10.
(a) For any X ∈Mn(R) the matrix

[
I X
0 I

]
and its transpose belong to E(R).

(b) If A ∈ GLn(R) then
[
A 0
0 A−1

]
∈ E(R).

(c) Let A be a matrix obtained from the identity by switching two columns and
multiplying one of the switched columns by −1. Then A ∈ E(R), and similarly
for the transpose of A.

Proof. For part (a) just note that
[
I X
0 I

]
can be obtained from the identity matrix

by a sequence of allowable column operations. Same for the transpose.
For (b) consider the following chain of matrices:[
I 0
0 I

]
∼
[
I A
0 I

]
∼
[

I A
A−2 −A−1 A−1

]
∼
[

A 0
A−2 −A−1 A−1

]
∼
[
A 0
0 A−1

]
.

Passage from each matrix to the next can be done by allowable row and column
operations. Alternatively, each matrix can be obtained from its predecessor by left
multiplication by a matrix of the type considered in (a): use the matrices [ I A0 I ],[

I 0
A−2−A−1 I

]
·,
[
I −A2

0 I

]
·, and ·

[
I 0

A−2−A−3 I

]
.

Finally, for (c) we argue directly in terms of column operations. If v and w are
two columns consider the following chain

v, w 7→ v, w − v 7→ w,w − v 7→ w,−v.
Each link involves adding a multiple of one column to another, and is therefore
allowable; therefore the composite operation is allowable. The argument is similar
for v, w 7→ −w, v, or one could use the fact that

[−1 0
0 −1

]
∈ E(R) by part (b). �

The following is the key lemma that we will need in our proof of Theorem 7.9:

Lemma 7.11 (Whitehead Lemma). E(R) = [GL(R), GL(R)]
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Proof. For the ⊆ direction we consider three columns u, v, w, and the following
chain of operations (where r, s ∈ R):

u, v, w
1 // u, v + ru,w

2 // u, v + ru,w + sv + sru
3 // u, v, w + sv + sru

4

��
u, v, w + sru.

It should be clear what column operation is being used in each step. Note that the
third and fourth operations are the inverses of the first and second, so the composite
it a commutator. This shows that any column operation of the type “add a multiple
of one column to another” is a commutator, and therefore E(R) ⊆ [GL(R), GL(R)].
(We have actually shown En(R) ⊆ [GLn(R), GLn(R)] for n ≥ 3).

For the other subset direction, let A,B ∈ GLn(R). Consider the following
identity: [

ABA−1B−1 0
0 I

]
·
[
B 0
0 B−1

]
·
[
A 0
0 A−1

]
=

[
AB 0
0 B−1A−1

]
.

The first matrix is identified with the commutator of A and B inside GL(R), and
all of the other matrices are in E(R) by Lemma 7.10(b). So [A,B] ∈ E(R) as
well. �

Corollary 7.12. For any A ∈ GLn(R), B ∈ GLk(R), and X ∈ Mn×k(R),[
A X
0 B

]
=
[
A 0
0 B

]
in GL(R)ab. If n = k then this matrix also equals

[
AB 0
0 I

]
in

GL(R)ab.

Proof. For the first claim simply observe that[
A X
0 B

]
=

[
A 0
0 B

]
·
[
I A−1X
0 I

]
.

The second matrix in the product is in E(R) by Lemma 7.10(a), and hence in
[GL(R), GL(R)] by the Whitehead Lemma.

For the second claim notice that
[
A 0
0 B

]
·
[
B 0
0 B−1

]
=

[
AB 0
0 I

]
and use

Lemma 7.10(b) together with the Whitehead Lemma. �

We are now ready to prove that all of our descriptions of K1(R) give the same
group:

Proof of Theorem 7.9. Let α : P → P be an automorphism of a finitely-generated
projective, and let Q be a free complement to P : that is, P ⊕Q ∼= Rn for some n.
Then

[P
α−→ P ] = [P ⊕Q α⊕idQ−→ P ⊕Q]

in Ksp
1 (R), which shows that Ksp,fr

1 (R) → Ksp
1 (R) is surjective. The same proof

works for all of the vertical maps in diagram (7.8).
The fact that colimnGLn(R)ab → colimP Aut(P )ab is an isomorphism is very

easy: it is just because the subcategory of T (M) consisting of the free modules is
final in T (M) (see [ML, IX.3] for the notion of final functors).

Define a map Kfr
1 (R)→ GL(R)ab by sending [Rn

A−→ Rn] to the matrix A. To
see that this is well-defined we need to verify that it respects relations (a) and (b)
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from Definition 7.4. Relation (b) is self-evident. For (a), suppose that

0 // F ′ //

α′

��

F //

α

��

F ′′ //

α′′

��

0

0 // F ′ // F // F ′′ // 0

is a short exact sequence of automorphisms between free modules. Then there
is a basis for F with respect to which the matrix for α has the form

[
α′ ∗
0 α′′

]
.

Corollary 7.12 verifies that this matrix equals
[
α′ 0
0 α′′

]
in GL(R)ab.

Now that we have the map Kfr
1 (R) → GL(R)ab, it is trivial to check that this

is a two-sided inverse for the map from (7.8). It follows that all the maps in the
bottom row of that diagram are isomorphisms.

The proof for the maps along the top row proceeds in a similar manner. Define a
mapK1(R)→ colimP Aut(P )ab by sending [P

α−→ P ] to the element α ∈ Aut(P )ab.
One has to check that this respects relations (a) and (b) in the definition of K1(R),
and relation (b) is again trivial. Suppose that

0 // P ′ //

α′

��

P //

α

��

P ′′ //

α′′

��

0

0 // P ′ // P // P ′′ // 0

is a short exact sequence of automorphisms between finitely-generated projectives.
Choose free complements Q′ for P ′, and Q′′ for P ′′. Consider the new short exact
sequence

0 // P ′ ⊕Q′ //

α′⊕idQ′

��

P ⊕Q′ ⊕Q′′ //

α⊕idQ′ ⊕ idQ′′

��

P ′′ ⊕Q′′ //

α′′⊕idQ′′

��

0

0 // P ′ ⊕Q′ // P ⊕Q′ ⊕Q′′ // P ′′ ⊕Q′′ // 0.

All of the modules in this diagram are free (recall that P ∼= P ′ ⊕ P ′′), and so this
diagram gives a relation in Kfr

1 (R). Using the map Kfr
1 (R) → GL(R)ab already

constructed, we find that

α⊕ idQ′ ⊕ idQ′′ =
(
α′ ⊕ idQ′

)
+
(
α′′ ⊕ idQ′′

)
in GL(R)ab and hence also in colimP Aut(P )ab. But this says precisely that α =
α′ + α′′ as elements in colimP Aut(P )ab, and this is what we needed to check. We
have now constructed our map K1(R) → colimP Aut(P )ab, and it readily follows
that it is an inverse for the map in the other direction from (7.8). So all the maps
in the top horizontal row of (7.8) are isomorphisms.

We have shown that all horizontal maps in (7.8) are isomorphisms, and that the
left vertical map is an isomorphism. So all the maps are isomorphisms. �

We now work towards computing a few examples of K1(R) in some easy cases.
The defining relations we used to construct K1(R) captured familiar properties of
the determinant, so it should not be surprising that the determinant plays a large
role here.

Observe that det : GL(R)→ R∗ factors through the abelianization and therefore
yields an induced map det : K1(R)→ R∗. This map is split, since we can send any
r ∈ R∗ to the class of the automorphism R

r−→ R (this is a group homomorphism
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using relation (b) of Definition 7.4). So we always have K1(R) ∼= R∗ ⊕ (???). The
mystery factor is usually called SK1(R).

We will not calculate K1 for many rings, but in the easiest examples SK1(R)
always vanishes. We explain this next.

Lemma 7.13. If A is a diagonal matrix of determinant 1 then A lies in E(R).

Proof. This can be proven directly by using row and column operations, but the
following argument is a bit easier to write. We use that GL(R)/E(R) ∼= K1(R).
Let d1, . . . , dn be the diagonal entries of A. Working in K1(R) we write

[Rn
A−→ Rn] = [R

d1−→ R] + · · ·+ [R
dn−→ R] = [R

d1···dn−→ R] = [R
1−→ R] = 0

where the first equality is by relation (a) in Definition 7.4 and the second equality
is by relation (b). �

Proposition 7.14. If F is a field then K1(F ) = F ∗.

Proof. One must show that if A ∈ GL(F ) satisfies det(A) = 1 then A ∈
[GL(F ), GL(F )] = E(F ). Lemma 7.13 verifies this in the case where A is diag-
onal. The proof proceeds by using row and column operations to reduce to this
case.

We will use two types of column and row operations: adding a multiple of
one column/row to another, and switching two columns (or rows) together with
a sign change of one of them. Both types of operation are allowable, the latter
by Lemma 7.10(c). Pick any nonzero entry in the matrix, move it into the (1, 1)
position, and then use it to clear out the rest of its row and column. Proceeding
inductively, this transforms A into a diagonal matrix. That is, there exist matrices
E1, E2 ∈ E(F ) such that E1AE2 is diagonal. But by the preceding paragraph we
then have E1AE2 ∈ E(F ), and so A ∈ E(F ). �

Essentially the same proof as above also shows the following:

Proposition 7.15. Let R be a Euclidean domain. Then det : K1(R) → R∗ is
an isomorphism. In particular, K1(Z) = {1,−1} ∼= Z/2 and when F is a field
K1(F [t]) ∼= F ∗. The conclusion also holds when R is a local ring.

Proof. We must again show that if A ∈ GLn(R) has det(A) = 1 then A ∈ E(R).
For any fixed row of A, the ideal generated by the elements in that row contains
det(A) and is therefore the unit ideal. Pick an element x of smallest degree in
this row and then use column operations (and the Euclidean division property) to
arrange all other elements in this row to be either zero or have degree smaller than
x. By repeating this process, eventually the row will contain a unit and all other
entries will be zero. Do a signed transposition to switch this unit into position (1, 1),
and then do row operations to clear out all other terms in the first column. Repeat
this process for the submatrix obtained by deleting the first row and column, and
so forth. Eventually the matrix will be reduced to a diagonal matrix, necessarily of
determinant 1. Such a diagonal matrix lies in E(R) by Lemma 7.13, so this proves
A also lies in E(R).

Essentially the same proof works for local rings, by finding units in the matrix
and then using them to clear out their row and column. �

It is somewhat of a challenge to come up with an easy ring R for which one can
prove by elementary means that SK1(R) 6= 0, or equivalently that det : K1(R) →
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R∗ is not an isomorphism. We have just seen that there are no examples amongst
fields or Euclidean domains or local rings, and Milnor [Mi2, Corollary 16.3] proves
that one also cannot find examples amongst rings of integers in number fields. There
do exist examples where R is a PID, but they are a bit exotic—see Example 7.17
below. In some sense the “easiest” example of such a ring (though not a PID)
involves some topology. We outline this in the next example, but skim over the
details.

Example 7.16. Let R be a commutative ring.
(a) If a, b ∈ R are such that (a, b)R = R, choose c, d ∈ R such that ad − bc = 1.

The matrix
[
a b
c d

]
lies in SL2(R) and therefore gives us an element in K1(R)

via the inclusions SL2(R) ↪→ SL(R) ↪→ GL(R). It turns out this element does
not depend on the choice of c and d, for if aq − bp = 1 one computes that[

a b
c d

]
·
[
a b
p q

]−1

=

[
a b
c d

]
·
[
q −b
−p a

]
=

[
1 0
?? 1

]
∈ E(R).

Write [a, b] for the element in K1(R) represented in this way, and note that in
fact we have [a, b] ∈ SK1(R). This is called theMennicke symbol represented
by a and b.

(b) With some trouble one can prove that for any λ ∈ R one has

[a, b] = [a+ λb, b] = [a, b+ λa] and [a, b] = [b, a]

(see [Mi2, Lemma 13.2]). We will not need these facts, we just list them to
spark the reader’s interest.

(c) Let R = R[x, y]/(x2 + y2 − 1), which we regard as the ring of polynomial
functions on the circle S1. We will argue that the Mennicke symbol [x, y] is
nonzero, so that SK1(R) 6= 0.

Note that we get maps GLn(R) → [S1, GLn(R)] (unpointed homotopy
classes) in the evident way: if A ∈ GLn(R) then we get a map S1 → GLn(R)
by sending the point (a, b) ∈ S1 to the matrix obtained by plugging in x = a
and y = b into A. This is a map of groups when we give [S1, GLn(R)] the
operation coming from pointwise multiplication. Elementary matrices all go
to the identity under this map: if E = I + N where N has a single nonzero
entry off the diagonal, then t 7→ I+ tN gives a homotopy (of course elements of
E(R) might be products of such matrices, but then one does the homotopy in
each factor simultaneously). In this way one gets a map K1(R)→ [S1, GL(R)],
and likewise a map SK1(R) → [S1, SL(R)]. Since SL(R) is a path-connected
topological group, unpointed homotopy classes of maps from S1 agree with the
pointed version; that is to say, [S1, SL(R)] ∼= π1(SL(R))) ∼= π1(SO) (the latter
because SOn ↪→ SLn(R) is a deformation retract for all n). It is known that
this homotopy group is Z/2 and is generated by the image of the standard
generator in π1SO(2) (see Section 12.7 below for this fact).

The Mennicke symbol [x, y] denotes the matrix
[ x y
−y x

]
∈ SL2(R), and there-

fore gives the map S1 → SO(2) sending (a, b) ∈ S1 to
[
a b
−b a

]
. Said differently,

this sends eiθ ∈ S1 to the 2× 2 matrix for (clockwise) rotation by θ, and so is
a generator for π1SO2. In particular, this proves that [x, y] 6= 0.

(d) In fact Bass [B1, XIII.2, p. 714] proves that SK1(R) ∼= Z/2, but we will not do
this much. Let us at least prove that SK1(R) is 2-torsion, as this is easy. Let
T = C⊗RR = C[x, y]/(x2 +y2−1) and note that as an R-module T is just R2.
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So there is an induced map π : K1(T )→ K1(R) sending [Tn
f−→ Tn] ∈ K1(T )

to [Tn
f−→ Tn] ∈ K1(R) where in the latter case we regard Tn as an R-module.

Consider the diagram

K1(R)
i // K1(T )

π // K1(R)

SK1(R)

OO

OO

i // SK1(T )

OO

OO

where i is induced by the inclusion R ↪→ T . Then π ◦ i sends [Rn
g−→ Rn]

to [Rn ⊕ Rn g⊕g−→ Rn ⊕ Rn] and is therefore multiplication by 2. But if we set
z = x + iy and w = x − iy then T ∼= C[z, w]/(zw − 1) = C[z, z−1]. This is a
localization of the Euclidean domain C[z], and essentially the same proof as for
Proposition 7.15 shows that SK1(T ) = 0 (see also Exercise 7.20 below). Hence,
SK1(R) is 2-torsion.

Example 7.17. Here we describe an example due to Grayson [Gr1] of a PID R
with SK1(R) 6= 0. Let T = Z[x] and let S be the multiplicative system generated
by x and all polynomials xm − 1 where m ≥ 1. Let R = S−1T . Observe that
dimT = 2 and that T is a UFD. The latter implies that all height one primes
are principal, and the former gives that the height two primes are maximal. But
quotienting out by a maximal ideal will yield a finite field, which means that x will
map to either zero or a root of unity. Consequently, every maximal ideal of T must
intersect S. Since the primes in R are all extended from the primes in T that do
not intersect S, we conclude that all of the primes in R are principal. So R is a
PID.

The computation of SK1(R) is a combination of results from [Gr1], [Le], and
[Sc]. This computation is far too complex for us to include here, but the upshot is
that

SK1(R) ∼=
⊕
n≥2

Z/nZ ∼=
⊕

p prime

⊕
i≥1

(Z/piZ)∞.

So this group is quite big. See [Gr1] for details.
Other examples of PIDs with SK1 6= 0 had previously been given by Bass [B2]

and Ischebeck [I].

◦ Exercises ◦

Exercise 7.18. Let R be a commutative ring. Prove that if D is an invertible
diagonal matrix and N is strictly lower triangular then [D +N ] = [D] in K1(R).

Exercise 7.19. Prove that the following are equivalent:
(1) SK1(R) = 0,
(2) K1(R) is generated by the classes [R

r−→ R] for r ∈ R∗,
(3) Every invertible matrix over R can be transformed via allowable column oper-

ations into a diagonal matrix,
(4) Every invertible matrix over R can be transformed via allowable column oper-

ations into a diagonal matrix with exactly one entry that is not a 1.
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Exercise 7.20. Let R be a Euclidean domain.
(a) Prove that every matrix can be transformed to a lower triangular matrix using

allowable column operations. Use this together with the previous two exercises
to give a (slightly) different proof that SK1(R) = 0.

(b) For every f ∈ R− {0} prove that SK1(f−1R) = 0.

Exercise 7.21. Prove that GLn(R×S) = GLn(R)×GLn(S) and thatK1(R×S) =
K1(R)⊕K1(S).

Exercise 7.22. Calculate K1(Z/360).

Exercise 7.23. Attempt to prove that if R is a PID then SK1(R) = 0 and get a
sense of what goes wrong.

7.24. Longer localization sequences. We next work on extending the localiza-
tion sequence from Proposition 5.17 to the left using K1 terms. See Theorem 7.27
below.

Proposition 7.25. Let S ⊆ R be a multiplicative system.

(a) The group K1(S−1R) is generated by classes [S−1Rn
S−1α−→ S−1Rn] where

α : Rn → Rn is such that S−1α is an isomorphism.
(b) There is a unique map ∂ : K1(S−1R) → K0(R,S) having the property that if

α : Rn → Rn is such that S−1α is an isomorphism, then ∂ sends [S−1Rn
S−1α−→

S−1Rn] to the class of the chain complex 0→ Rn
α−→ Rn → 0 (concentrated in

degrees 0 and 1).

Proof. First let β : (S−1R)n → (S−1R)n be an automorphism. Let A be the matrix
for β with respect to the standard basis, and let u ∈ S be an element such that uA
has entries in R (e.g., take u to be the product of all the denominators of the entries
in A). Then uA represents a map β′ : Rn → Rn, and we have the commutative
diagram

(S−1R)n
β // (S−1R)n

uIn // (S−1R)n

Rn

OO

β′ // Rn

OO

where the vertical maps are localization. This diagram gives uIn ◦ β = S−1β′, and
so [uIn] + [β] = [S−1β′] in K1(S−1R). Note that [uIn] = n[uI1], and uI1 is itself
the localization of the multiplication-by-u map on R; so we can write

[β] = [S−1β′]− n[S−1u].(7.26)

This shows that K1(S−1R) is generated by classes [S−1α] for α : Rn → Rn, and we
have thereby proven (a) and the uniqueness part of (b).

For the existence part of (b), we will define a map ∂ : Ksp,fr
1 (S−1R)→ K0(R,S)

and then appeal to Theorem 7.9. Given an automorphism β : (S−1R)n → (S−1R)n,
choose a u ∈ S such that the standard matrix representing uβ has entries in R.
Consider the assignment

β 7→ F (β, u) = [Rn
uβ−→ Rn]− n[R

u−→ R] ∈ K0(R,S).

Note that this expression doesn’t come out of thin air: the expected homomorphism
∂, if it exists, must have this form by (7.26). It remains to show that the above
formula does indeed define a homomorphism.
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We first show that F (β, u) does not depend on the choice of u. It suffices to
prove that F (β, tu) = F (β, u) for any t ∈ S; for if u′ is another choice for u then
we would have F (β, u) = F (β, u′u) = F (β, u′). But now we just compute that

F (β, tu) = [Rn
tuβ−→ Rn]− n[R

tu−→ R]

= [Rn
t−→ Rn] + [Rn

uβ−→ Rn]− n
[
[R

t−→ R] + [R
u−→ R]

]
= [Rn

uβ−→ Rn]− n[R
u−→ R]

(the second equality is by Lemma 5.16, applied twice).
Let us now write F (β) instead of F (β, u). The last things that must be checked

are that F (β ⊕ β′) = F (β) + F (β′) and F (βγ) = F (β)F (γ), but these are both
immediate (the latter using Lemma 5.16). So we have established the existence of
∂ : K1(S−1R)→ K0(R,S) having the desired properties. �

Theorem 7.27 (Localization sequence for K-theory). Let R be a commutative ring
and S ⊆ R a multiplicative system. The following sequence is exact:

K1(R) −→ K1(S−1R)
∂−→ K0(R,S) −→ K0(R) −→ K0(S−1R).

Proof. We will not prove exactness at K1(S−1R), as this is a bit difficult and would
take us too far afield. Exactness at K0(R) was already proven in Proposition 5.17,
so it only remains to verify exactness at K0(R,S).

Let x ∈ K0(R,S). We know by Theorem 5.18 that x can be written in the
form x = [P1 → P0] − [Q1 → Q0] for finitely-generated projectives P0, P1, Q0, Q1

over R and maps α : P1 → P0, β : Q1 → Q0 that become isomorphisms after S-
localization. Consider the isomorphism S−1Q0 → S−1Q1 that is the inverse to
S−1β. By Corollary 4.11(b) there is a map γ : Q0 → Q1 whose localization is
isomorphic to this map. Notice that

x = [P1
α−→ P0] + [Q0

γ−→ Q1]−
(
[Q0

γ−→ Q1] + [Q1
β−→ Q0]

)
= [P1 ⊕Q0

α⊕γ−→ P0 ⊕Q1]− [Q0 ⊕Q1
γ⊕β−→ Q1 ⊕Q0].

So by replacing our original P ’s and Q’s we can assume that Q0 = Q1.
Let G be a projective such that Q0 ⊕G is free, and observe that

x = x− [G
id−→ G] = [P1 → P0]− [Q0 ⊕G→ Q0 ⊕G].

So again, by replacing our chosen Q0 = Q1 we can actually assume that Q0 = Q1

is free. That is, x = [P1
α−→ P0]− [Rn

β−→ Rn].
Now assume that x maps to zero in K0(R). This just says that [P0] = [P1] in

K0(R), and so there exists a free module G such that P0 ⊕G ∼= P1 ⊕G (Proposi-
tion 2.9). Since x = x+ [G

id−→ G] we see that we can write x as

x = [Rk
α−→ Rk]− [Rn

β−→ Rn]

where α and β become isomorphisms after S-localization. It is now immediate that
x is in the image of ∂; to be completely specific,

x = ∂
(

[S−1Rk
S−1α−→ S−1Rk]− [S−1Rn

S−1β−→ S−1Rn]
)
.

�
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Example 7.28. This example will be a “reality check”. We won’t learn anything
new, but we will see that the localization sequence is doing something sensible.
Let R be a discrete valuation ring (a regular local ring whose maximal ideal is
principal), and let F be the quotient field. Let x be a generator for the maximal
ideal, and let S = {1, x, x2, . . .}. Note that S−1R = F . The localization sequence
for K-theory takes on the form

R∗ → F ∗
∂−→ K0(R,S)→ Z

∼=−→ Z
where we are using K1(R) ∼= R∗, K1(F ) ∼= F ∗, K0(R) ∼= Z (because R is a PID),
and the mapK0(R)→ K0(F ) ∼= Z sends [R] to [F ] and is therefore an isomorphism.
So the localization sequence distills into a single isomorphism

F ∗/R∗
∂−→ K0(R,S).

The group F ∗/R∗ is readily checked to be Z, where the isomorphism Z ∼= F ∗/R∗

sends n to [xn]. On the other hand, we also know by Theorem 5.20 that K0(R,S) ∼=
G(M |S−1M = 0). A finitely-generated module M satisfies S−1M = 0 if and only
if M is killed by a power of x, or equivalently if M has finite length over R. The
length map ` : G(M |S−1M = 0)→ Z is easily checked to be an isomorphism.

Finally, let us analyze the map ∂. Given an element a ∈ F ∗, we write a =
r/xn for some r ∈ R∗ and n ≥ 0. The description of ∂ given in the proof of
Proposition 7.25 shows that

∂(a) = [R
r−→ R]− [R

xn−→ R] = [R
r−→ R]− n[R

x−→ R].

The isomorphism K0(R,S) → G(M |S−1M = 0) sends a complex P• to the alter-
nating sum of its homology modules, so under this isomorphism we would write

∂(a) = [R/rR]− n[R/xR].

Note that `(R/xR) = 1. We can write r = uxk for some unit u ∈ R and k ≥ 0, in
which case R/rR ∼= R/xkR and so `(R/rR) = k. It follows that the composite

F ∗
∂−→ K0(R,S)

∼=−→ G(M |S−1M = 0)
∼=−→ Z

sends uxk

xn to k − n and so is just the usual x-adic valuation on F ∗.

Exercise 7.29. Let R = Z and S = {2i | i ≥ 0}. Compute all the groups and maps
in the K-theory localization sequence, and also compare with the isomorphism
K(R,S) ∼= G(M |S−1M = 0).

The following example generalizes the previous one, but is a bit more interesting.

Example 7.30. Let D be a Dedekind domain—a regular ring of dimension one.
In such a ring all nonzero primes are maximal ideals. Let S = D − {0} and let
F = S−1D be the quotient field. Our localization sequence looks like

K1(D)→ F ∗ → K0(D,S)→ K0(D)→ Z.
Although we have not calculated K1(D), the commutative diagram

K1(D) //

det

��

K1(F )

det ∼=
��

D∗ // // F ∗
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shows that the image of K1(D) in F ∗ is just D∗. The map K0(D)→ Z is just the
usual rank map, so its kernel is K̃0(D). So we get a short exact sequence

0→ F ∗/D∗
∂−→ K0(D,S)→ K̃0(D)→ 0.

We know K0(D,S) ∼= G(M |S−1M = 0) by Theorem 5.20. The condition S−1M =
0 just says that M is a torsion module. Consider the evident map

j :
⊕
P 6=0

G0(D/P )→ G(M |S−1M = 0)

where the direct sum is over all nonzero prime ideals and where the map just forgets
that a module is defined over D/P and instead regards it as a D-module. This map
is clearly surjective: a torsion D-moduleM will have a prime filtration in which the
primes appearing are all maximal, and [M ] will be the sum of the corresponding
[D/P ]’s by the usual argument (see Theorem 2.23 and its proof).

Note that each D/P is a field, and so G0(D/P ) ∼= Z. IfM is a torsion D-module
then MP is a torsion DP -module. Since DP is a discrete valuation ring, this means
that MP has finite length. Define

χ : G(M |S−1M = 0)→
⊕
P 6=0

G0(D/P )

by sending [M ] to the tuple of integers `DP (MP ), as P runs over all maximal ideals
of D (the only ones that give nonzero lengths are the ones containing AnnM , and
there are only finitely-many of these since they are precisely the minimal primes
of AnnM). It is easy to check that χ ◦ j = id. Since j was already known to be
surjective this means they are inverse isomorphisms. So we can rewrite our short
exact sequence as

0→ F ∗/D∗
∂−→
⊕
P 6=0

Z→ K̃0(D)→ 0.

It will be convenient to write eP for the basis element of the free abelian group in
the middle corresponding to the maximal ideal P . Note that these basis elements
correspond to the closed points of SpecD, and so we are looking at a group of
0-cycles.

It remains to analyze the map ∂. By Proposition 7.25, if r ∈ D − {0} then
∂(r) = [D

r−→ D] ∈ K0(D,S). Under the isomorphisms described above this
corresponds to the tuple of integers `DP (DP /rDP ). This is usually called the
divisor class of r, and written

div(r) =
∑

`DP (DP /rDP )eP .

It should be thought of as listing all the zeros of the “function” r, together with
their orders of vanishing (see below for an example). For a general element x ∈ F ∗
we would just write x = r/s for r, s ∈ D − {0}, and then ∂(x) = div(r) − div(s);
this gives the zeros and poles of x, with multiplicities.

The quotient of
⊕

P 6=0 Z by the classes div(x) for x ∈ F ∗ is called the divisor
class group of D; it is isomorphic to the ideal class group from algebraic number
theory. Our short exact sequence shows that K̃0(D) is also isomorphic to this
group.

To demonstrate the geometric intuition behind div(r), consider the case D =
F [t] where F is algebraically closed. If r = p(t) is nonzero then the maximal
ideals containing r are the ones (t − ai) where ai is a root of p(t). If we write
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r = u
∏

(t− aj)mj where u ∈ F ∗ and we localize at P = (t− ai), then r becomes a
unit multiple of (t− ai)mi and the number `DP (DP /rDP ) is precisely mi. So

div(r) =
∑
i

mi · e(t−ai),

as expected. Note that the divisor class group is not very interesting in this case:
clearly div is surjective, and so the group is zero. We already knew this for another
reason, because K̃0(D) = 0 whenever D is a PID.

Example 7.31. As one more example, let us return to the ring R = Z[
√
−5] and

S = {2i | i ≥ 0}. Some of the computations here are a little difficult, but one can
determine that K1(R)→ R∗ is an isomorphism because [Mi2, Corollary 16.3] tells
us this holds for all rings of integers in number fields. One can also compute that
R∗ = {1,−1} by using the fact that the norm map N(a + b

√
−5) = a2 + 5b2 is

multiplicative. The localization sequence takes the following form:

K1(R) //

∼=
��

K1(S−1R)
∂ //

∼=
��

K0(R,S) //

∼=
��

K0(R) //

∼=
��

K0(S−1R)

∼=
��

Z/2 c // SK1(S−1R)⊕ Z⊕ Z/2 ∂ // Z b // Z⊕ Z/2 a // Z

Let us recall how these isomorphisms work, identify generators for the groups, and
see what the maps do. Since S−1R is a PID one has that K0(S−1R) is Z, generated
by [S−1R]. We have seen in Example 4.2 thatK0(R) is generated by [R] and [R]−[I]
where I = (2, 1 +

√
−5) (recall that I is projective), with the former generating

the Z summand and the latter the Z/2. The map a is S-localization and therefore
sends [R] to [S−1R] and [R]− [I] to zero.

Since R is regular we have isomorphisms K0(R,S) ∼= G(M | S−1M = 0) ∼=
G0(R/(2)) where the first is the Euler characteristic and the second is devissage
(Theorem 4.17). Note that R/(2) ∼= Z/2[x]/(x2 + 1) ∼= Z/2[x]/((x + 1)2) ∼=
Z/2[u]/(u2) and so G0(R/(2)) is Z generated by Z/2[u]/(u) = R/(2, 1 +

√
−5) =

R/I. Tracing this back into K0(R,S), we see that the group is generated by the
chain complex [0 → I ↪→ R → 0]. The map b sends this to [R] − [I], which is the
generator of the Z/2. So it must be that 2[I ↪→ R] is in the image of ∂, but let us
check this.

Recall thatK1(S−1R) = SK1(S−1R)⊕(S−1R)∗. The second summand is clearly
Z⊕Z/2 with generators 2 and −1. Under ∂ these map to [R

2−→ R] and [R
−1−→ R],

the latter of which is zero (being acyclic). Under the isomorphism K0(R,S) ∼=
G0(R/(2)) the complex [R

2−→ R] maps to R/(2), and this is twice the generator
(look at the dimension over Z/2). So ∂(2) = 2[I ↪→ R], as expected. The long
exact sequence now shows that SK1(S−1R) must be zero.

Remark 7.32. The localization sequence of Theorem 7.27 can be extended further
to the left, by definining K-groups Kn(R) and Kn(R,S) for all n ≥ 1. This is the
subject of higher algebraicK-theory, a deep field with intricate connections to many
area of mathematics. It does not really do justice to the subject for us to give just
a few references, but some places to get started learning about it are [B1], [Mi2],
[Q3], [Ro], and [W2].
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◦ Exercises ◦
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Part 2. K-theory in topology

Let’s take as our starting point that we understand finite-dimensional linear
algebra extremely well. There aren’t that many isomorphism types of objects (one
for each dimension), and we have a pretty good understanding of the maps between
them. Our next goal in these notes is to explore the idea of doing linear algebra
continuously over a fixed parameter space X. What this means is that rather than
have only one vector space we will have a continuously varying family of vector
spaces, parameterized by the points of X.

The way to talk about such “continuously varying families” is to bundle the
objects together into a single topological space E together with a map p : E → X,
so that the members of our family appear as the fibers of p. A map from the family
p : E → X to the family p′ : E′ → X will then be a continuous map F : E → E′,
commuting with the maps down toX, such that F is a linear transformation on each
fiber. It turns out that much of linear algebra carries over easily to this enhanced
setting. But there are more isomorphism types of objects here, because the topology
ofX allows for some twisting in the vector space structure of the fibers. The surprise
is that studying these ‘twisted vector spaces’ over a base space X quickly leads to
interesting homotopy invariants of X! From a topological viewpoint, K-theory is a
cohomology theory for topological spaces that arises out of this study of fiberwise
linear algebra.

8. Vector bundles

The point of this section and the next one is to establish all of the founda-
tional results we will require for working with vector bundles. Unfortunately, going
through all of this carefully ends up being somewhat tedious. The reader might
do well to skim these two sections for the basic ideas but not get bogged down in
details, referring back for those only as needed.

A (real) vector space is a set V together with operations +: V × V → V and
· : R×V → V satisfying a familiar (but long) list of properties. If X is a topological
space, a family of vector spaces over X will be a continuous map p : E → X together
with extra data making each fiber p−1(x) into a vector space, with the operations
varying in a continuous manner. The easiest way to say this is as follows:

Definition 8.1. A family of (real) vector spaces is a map p : E → X together
with operations +: E ×X E → E and • : R× E → E making the two diagrams

E ×X E

p
$$

+ // E

p
��

R× E • //

p◦π2 ##

E

p
��

X X

commute, together with a map ζ : X → E called the “zero section”, such that the
operations make each fiber p−1(x) into a real vector space with zero element ζ(x).

One could write down the above definition completely category-theoretically, in
terms of maps and commutative diagrams. Essentially one is defining a “vector



68 DANIEL DUGGER

space object” in the category of topological spaces over X. In the case where X is
a point, E is simply called a topological vector space.

The space X is called the base of the family. If x ∈ X we will write Ex for the
fiber p−1(x) regarded with its vector space structure. The dimension of Ex is called
the rank of the family at x, and denoted rankx(E). The rank of E is defined to be

rank(E) = sup{rankx(E) |x ∈ X},
where we include the possibility that rank(E) is infinite (though we will need this
case only rarely).

A section of p : E → X is a map s : X → E such that ps = idX . The condition
is equivalent to saying s(x) ∈ Ex for each x ∈ X. So a section is a continuous choice
of element in each fiber. This explains the term “zero-section” for ζ. By abuse of
terminology the image of ζ is also sometimes referred to as the zero-section.

Remark 8.2. The additive inverse map E → E is continuous, as it can be expressed
as the composite E = {−1} × E ↪→ R × E ·−→ E. Similarly, the zero-section can
be recoved set-theoretically from the scalar multiplication as the image of

{0} × E ↪→ R× E ·−→ E,

and this determines a set-theoretic section X → E. However, continuity of this
section is not automatic from the other axioms; this is why it is included as part of
Definition 8.1.

Definition 8.3. Given two familes of vector spaces p : E → X and p′ : E′ → X,
a map of families is a continuous map f : E → E′ such that p′f = p and such
that f restricts to a linear map on each fiber. Write FamVS(X) for the category of
families of vector spaces over X.

A subfamily of E is a topological subspace J ↪→ E that contains the zero section
and is closed under the operations of addition and scalar multiplication.

Given a map of families f : E → E′, the usual image of f (denoted im f) is a
subfamily of E′. Let us define the kernel of f , denoted ker f , to be the subspace
of E consisting of all elements mapped to zero in E′. Equivalently, ker f is defined
to be the pullback

ker f //

��

E

f
��

X
ζ′ // E′.

Exercise 8.4. Review the categorical notions of kernels and cokernels from Appen-
dix G. Verify that the family X id−→ X is the zero object of the category FamVS(X)
and that the kernel of a map, as defined above, is a kernel in the categorical sense.

Note that kernels in FamVS(X) are also fiberwise kernels, in the sense that
(ker f)x = ker(fx) for all x ∈ X. Be warned that this property will turn out not to
hold for cokernels, though. REF???

We next explore a few examples of these basic concepts:

Example 8.5.
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(a) The simplest example of a family of vector spaces is E = X × Rn, with the
projection map X×Rn → X (here Rn is equipped with the standard topology).
This is called the trivial family of rank n, and it is often denoted simply by
nX . It is also denoted by just n, with the space X understood. Note that 0X

is the family X id−→ X.
(b) Let E = {(x, v) |x ∈ R2, v ∈ R.〈x〉} ⊆ R2 × R2, and let p : E → R2 be

projection onto the first coordinate. Define (x, v) + (x, v′) = (x, v + v′) and
r.(x, v) = (x, rv). This makes E → R2 into a family of vector spaces, in fact a
subfamily of the trivial family 2. Note that the fiber p−1(x) is one-dimensional
for x 6= 0, but 0-dimensional when x = 0.

(c) Let X = R and E = X × R be the trivial family of rank 1. Consider the
map of familes E → E given by (t, v) 7→ (t, tv). This is multiplication-by-t
on the fiber over t. The kernel of this map is the subfamily K ↪→ E given by
K = (X × {0}) ∪ ({0} × R). Note that most of the fibers are 0-dimensional,
but the fiber over 0 is one-dimensional.

(d) Let X = R. Let e1, e2 be the standard basis for R2. Let E ⊆ X × R2 be the
union of {(x, re1) |x ∈ Q, r ∈ R} and {(x, re2) |x ∈ X\Q, r ∈ R}. Recall from
(a) that X × R2 → X is a family of vector spaces, and note that E becomes a
sub-family of vector spaces under the same operations.

Let π : R2 → R be the linear transformation such that π(e1) = π(e2) = 1.
Define a map E → 1X by (x, v) 7→ (x, π(v)). This is a map of families that is
an isomorphism on each fiber, but is not an isomorphism of families.

(e) Let Rnind denote the vector space Rn but with the indiscrete topology, so that
the only open sets are ∅ and Rn. Check that Rnind is a topological vector space,
i.e. that Rnind → ∗ is a family of vector spaces.

Part (d) of the previous example shows that the concept of “family of vector
spaces” admits some unpleasant pathology. Even the examples in (b) and (c) show
that families can have jumps in the fibers, which doesn’t give the feeling of a
“continuously varying” family. Part (e) gives the warning that the topology on the
fibers might not be what one expects. Very shortly we will start imposing some
conditions that eliminate these kind of phenomena.

If p : E → X is a family of vector spaces and A ↪→ X is a subspace, then
p−1(A)→ A is also a family of vector spaces. We will usually write this restriction
as E|A.

More generally, suppose that p : E → X is a family of vector spaces and f : Y →
X is a map. One may form the pullback Y ×X E, more commonly denoted f∗E in
this context:

f∗E Y ×X E //

��

E

p

��
Y

f // X.

A point in f∗E is a pair (y, e) such that f(y) = p(e), and one defines addition and
scalar multiplication on f∗E by (y, e) + (y, e′) = (y, e + e′) and r · (y, e) = (y, re).
This makes f∗E → Y into a family of vector spaces, called the pullback family.
If y ∈ Y then there is an evident map of vector spaces (f∗E)y → Ef(y) which
one readily checks is an isomorphism. Note that if f is a subspace inclusion then
f∗E = E|Y .
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Exercise 8.6. Check carefully that f∗E is a family of vector spaces.

We will need to develop some tools for dealing with maps in FamVS(X). The
following proposition is easy but will be used very often:

Proposition 8.7. Giving a map of trivial families X×Rk → X×Rn is equivalent
to giving a continuous map X → Hom(Rk,Rn) ∼= Rkn, where the target has the
standard Euclidean topology.

Proof. Let F : X × Rk → X × Rn be a map of families. Define Fi : X → Rn by
Fi(x) = π2F (x, ei). These maps are continuous, and so they induce a continuous
map φ : X → Rn × · · · × Rn (k factors) by φ(x) = (F1(x), . . . , Fk(x)).

In the other direction, given φ : X → Rkn = Rn × · · · × Rn (k factors) define F2

to be the composite

X × Rk φ×id−→ Rn × · · · × Rn × Rk LC−→ Rn

where LC is the “linear combination map” sending (v1, . . . , vk, r) 7→ r1v1+· · ·+rkvk.
Both maps are continuous, so their composite is as well. Then define F : X×Rk →
X × Rn by F (x, r) = (x, F2(x, r)).

It is now routine to check that the two assignments given above are inverses to
each other. �

Here is one more example showing the oddities of the category FamVS(X):

Exercise 8.8. Let X = [−1, 1] and let f : 1X → 1X be the map that is
multiplication-by-t on the fiber over t. Prove that the zero bundle 0X is the coker-
nel of f (see Appendix G for the definition). In particular, note that in this case
the cokernel is not the fiberwise cokernel.

Sometimes we will have to deal with families of vector spaces where the fibers
are infinite-dimensional. Mostly we will only need trivial families, but even here
there are some subtleties. We describe these next.

If S is any set, write R〈S〉 for the vector space with basis S (occasionally we will
abbreviate this to RS). There is a natural isomorphism of vector spaces

colim
Ffinite⊆S

R〈F 〉 → R〈S〉

where the colimit is over the finite subsets of S. If we give each R〈F 〉 the standard
Euclidean topology then the colimit inherits an induced topology, giving a topology
on R〈S〉. This is also called the “finite” topology in some of the literature on
topological vector spaces, but we will call it the colimit topology. When S is
infinite this topology is different than the subspace topology induced from the
evident embedding R〈S〉 ⊆∏S R, where the product is given the product topology.
In fact, the colimit topology is the subspace topology induced by the box topology.
See Appendix B.5 for a complete discussion.

A theorem of Kakutani-Klee [KK] says that when R〈S〉 is given the colimit
topology, addition is continuous only when S is countable. We will only ever work
with R〈S〉 in this case, and from now on we only ever consider families of vector
spaces where the rank is countable.

Note that there are at least three distinct topologies that make R∞ into a topo-
logical vector space: these are the colimit, product, and metric topologies, described
in detail in Appendix B.5. So when talking about trivial families with fiber R∞ one
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needs to be careful about specifying which topology is being used. The product
and metric topologies have certain algebraic deficiencies—e.g., linear functionals
are not always continuous (see ???)—and so we will only use R∞ with the colimit
topology in our applications.

The background category for families of vector spaces is the overcategory Top ↓ X
of spaces over X. The terminal object of this category is X itself (or more precisely,
the identity map X → X). A “vector” in a family of vector spaces E should be a
map in Top ↓ X from X to E, which is the same thing as a section of E → X.
Given a collection of such “vectors” sα : X → E, for α in an indexing set A, say
that these are linearly independent (resp. spanning) if for every x ∈ X the
vectors {sα(x)}α∈A are linearly independent (resp. spanning) in Ex. Say that the
collection is a weak basis for E if it is both linearly independent and spanning,
i.e. for every x ∈ X the collection {sα(x)}α∈A is a basis for the vector space Ex.
When A is finite a weak basis gives a map of families X × R〈A〉 → E which is a
bijection (see Exercise 8.40 for the case when A is infinite). However, it need not be
an isomorphism! The inverse map need not be continuous: as an example consider
a basis b1, . . . , bn in Rnind and the associated map Rn → Rnind sending ei 7→ bi.

Define a strong basis for a family E to be a collection of sections sα with the
property that the induced map X × R〈A〉 → E is an isomorphism. So a family is
trivial if and only if it has a strong basis.

Remark 8.9. If s1, . . . , sn is a weak basis for E, then let φi : E → X×R be the ith
coordinate function: it is the map that sends a vector v ∈ Ex to the pair (x, t) where
t is the ith coordinate of v with respect to the basis s1(x), . . . , sn(x). The condition
that s1, . . . , sn be a strong basis is equivalent to the coordinate functions φ1, . . . , φn
all being continuous. (Note that the case of an infinite basis is more subtle, though,
essentially because of the difference between the colimit and product topologies on
R∞—see ???).

Most families of vector spaces will have neither a weak nor a strong basis, as
the topology of X gets in the way. The families in Example 8.5(b,c,d) do not have
any nonvanishing sections at all! However, demanding that we have strong bases
locally turns out to be a reasonable thing to require. To this end, if p : E → X is a
family of vector spaces and U ⊆ X recall that E|U denotes the family p−1(U)→ U
(equipped with the subspace topology from E). If x ∈ X say that a local weak
(resp. strong) basis at x is a neighborhood U of x together with a weak (resp.
strong) basis for E|U .
Definition 8.10. A vector bundle is a family of finite rank vector spaces p : E →
X that has a local strong basis at every point of X. In other words, for each x ∈ X
there is a neighborhood x ∈ U ⊆ X, an n ∈ Z≥0, and an isomorphism of families
of vector spaces

p−1(U)

##

∼= // U × Rn

{{
U.

The isomorphism in the above diagram is called a “local trivialization”. Usually one
simply says that a vector bundle is a family of finite rank vector spaces that is locally
trivial.
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A map of vector bundles is just a map of the underlying families, and Vect(X)
will denote the category of vector bundles over X.

Remark 8.11. Note that the n appearing in Definition 8.10 is rankx(E), and it
depends on the point x. It is easy to prove, though, that this number is constant
on each connected component of X. Vector bundles of constant rank 1 are called
line bundles, and bundles of constant rank 2 are called plane bundles.

Remark 8.12. Definition 8.10 defines real vector bundles, but one could do the
same with C or H replacing R to define complex and quaternionic bundles.

Remark 8.13. Some authors allow vector bundles to have countably-infinite rank.
There is nothing wrong with that, though one has to specify the topology one
uses for R∞. But if we take this approach then we end up having to add “finite
rank” hypotheses in an annoying number of places. In our approach, we will on
occasion abuse terminology and use the phrase “vector bundle of infinite rank” for
this concept, even though such an object is not a vector bundle according to our
definition.

Exercise 8.14. Let f : E1 → E2 be a map of vector bundles on X that is an
isomorphism on each fiber. Prove that f is an isomorphism in Vect(X).

Of the families of vector spaces we considered in Example 8.5, only the trivial
family from (a) is a vector bundle. Before discussing more interesting examples,
though, we need some general remarks. Establishing that a given family of vector
spaces is a vector bundle requires producing weak local bases and proving that the
associated coordinate functions are continuous—oftentimes one forgets the latter
part, but it is important. This second part can be somewhat annoying, though, so
it is useful to know that in many situations one can avoid it. In order to discuss
these situations, we start with the following definition:

Definition 8.15. A family of vector spaces E → X is said to be tame if for every
point x ∈ X and every local weak basis {sα} defined on an open neigborhood U of
x, there is an open set x ∈ V ⊆ U such that the set {sα|V } is a local strong basis.
That is to say, every local weak basis near a point can be restricted to a local strong
basis.

Proposition 8.16. Let E → X be a tame family of vector spaces. Then E is a
vector bundle if and only if for every x ∈ X there exists a local weak basis on a
neighborhood of x.

Proof. Immediate. �

Of course every vector bundle is tame. The families from Example 8.5(b,c,d) are
also tame, essentially because these families do not have any local weak bases at
the “exotic” points. The family Rnind from Example 8.5(e) is not tame. The concept
of tameness is not particularly natural or important, but it is useful to us because
of the following result which guarantees tameness in many common situations:

Proposition 8.17. Let E → X be a family of vector spaces of finite rank. Then
E is tame if either of the following conditions is satisfied:
(a) E is a subfamily of a trivial family (perhaps of countably infinite rank).
(b) X is locally compact and E is Hausdorff.
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Recall that a CW-complex is locally compact if it is locally finite, in the sense
that every point lies in the closures of only finitely-many open cells. So Propo-
sition 8.17(b) applies in a large percentage of the cases one naturally encounters.
But as just one example note that the CW-complex S∞ is not locally compact; so
Proposition 8.17(b) is not a universal panacea.

The proof of Proposition 8.17 is technical and a distraction from our goals at the
moment; it can be found in Appendix B. However, from now on we will use Propo-
sition 8.17 often and—except for the first few times—mostly without comment.

Example 8.18.
(a) Let φ : Rn → Rn be a vector space isomorphism. Let E′ = [0, 1]×Rn and let E

be the quotient of E′ by the relation (0, v) ∼ (1, φ(v)). Identifying S1 with the
quotient of [0, 1] by 0 ∼ 1, we obtain a map E → S1 that is clearly a family of
vector spaces. We claim this is a vector bundle. If x ∈ (0, 1) then it is evident
that E is locally trivial at x, so the only point of concern is x = 0 = 1 ∈ S1.
Let e1, . . . , en be the standard basis for Rn, and let si : [0, 1

4 ) → E′ be the
constant section whose value is ei. Likewise, let s′i : ( 3

4 , 1]→ E′ be the constant
section whose value is φ(ei). Projecting into E we obtain si(0) = s′i(1), and
so the sections si and s′i patch together to give a section Si : U → E, where
U = [0, 1

4 ) ∪ ( 3
4 , 1]. The sections S1, . . . , Sn are independent and therefore give

a local trivialization of E over U .
When n = 1 and φ(x) = −x the resulting bundle is the Möbius bundle M ,

depicted below:

We further discuss the case of general n and φ in Example 11.3.
(b) Let X = RPn, regarded as the space of lines in Rn+1. Let L ⊆ X × Rn+1 be

the set
L = {(l, v) | l ∈ RPn, x ∈ l}.

Then L is a subfamily of the trivial family, and we claim that it is a line bundle
over X. To see this, for any l ∈ X we must produce a local trivialization. By
Propositions 8.17(a) and 8.16 it suffices to just produce a local weak basis at
every point. By symmetry it suffices to do this at the point l = 〈e0〉. Let
U ⊆ RPn be the set of lines whose orthogonal projection to 〈e0〉 is nonzero.
Then Rn ∼= U via the homeomorphism x 7→ 〈e0 + x〉, where here we regard Rn
as having basis e1, . . . , en. Define s : U → L by sending l to (l, e0 + u) where
e0+u is the unique point on l with u ∈ Rn. Via the homeomorphism Rn ∼= U we
verify at once that s is continuous. This section is clearly nonzero everywhere,
so it gives the desired weak basis of L|U . Thus, L is a vector bundle.

To be clear, it is not hard to prove that s induces a local trivialization of
L without referencing Propositions 8.16 and 8.17. But the point is that those
results allow us to avoid having to think about the extra steps that would be
involved for that.
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The bundle L is called the tautological line bundle over RPn. Do not
confuse this with the canonical line bundle over RPn that we will define shortly
(they are duals of each other). Note that when n = 1 the bundle L is isomorphic
to the Möbius bundle on S1. (Exercise: Check this!)

(c) One may generalize the previous example as follows. Let V be a vector space
and fix an integer k > 0. Consider the Grassmannian Grk(V ) of k-planes in V .
Let

η = {(W,x) |W ∈ Grk(V ), x ∈W}.
Projection to the first coordinate π : η → Grk(V ) makes η into a rank k vector
bundle, called the tautological bundle over Grk(V ). To see that it is indeed
a bundle, letW ∈ Grk(V ) be an arbitrary k-plane. By choosing an appropriate
basis for V we can just assume W = 〈e1, . . . , ek〉. Equip V with the standard
dot product with respect to the e-basis, and let U ⊆ Grk(V ) be the collection
of all k-planes whose orthogonal projection onto W is surjective (equivalently,
an isomorphism). One readily checks that this is an open set of W . For each
J ∈ U let s1(J), . . . , sk(J) be the unique vectors in J that orthogonally project
onto e1, . . . , ek. One checks that these are continuous sections of η|U , and of
course they are clearly independent and hence give a local trivialization.

(d) Let M be a smooth manifold, and let TM →M be its tangent bundle. So the
fiber over each x ∈ M is the tangent space at x. Let x ∈ M and let U be a
local coordinate patch about x. Let x1, . . . , xn be local coordinates in U , and
let ∂1, . . . , ∂n be the associated vector fields (giving the tangent vectors to the
coordinate curves in this system). Then ∂1, . . . , ∂n are independent sections of
TM , and hence give a local trivialization.

Note that if f : E → F is a map of vector bundles over X then neither ker f nor
coker f will necessarily be a vector bundle. For an example, let X = [−1, 1] and
let E = 1. Define f : E → E by letting it be multiplication-by-t on the fiber over
t ∈ X. We will give a thorough discussion of kernels and cokernels in Section 9.

8.19. Pullback bundles. If E → X is a vector bundle and f : Y → X then
it is easy to check that f∗E is also a vector bundle. Given composable maps
Z

g−→ Y
f−→ X, there is an evident natural isomorphism (fg)∗E ∼= g∗(f∗E). For

each topological space X and each integer k ≥ 0, let Vectk(X) denote the set of
isomorphism classes of vector bundles of rank k on X. The pullback construction
then makes Vectk(−) into a contravariant functor from Top into Set.

Example 8.20. Pullback bundles can be slightly non-intuitive. Let M → S1 be
the Möbius bundle, and let f : S1 → S1 be the map z 7→ z2. We claim that
f∗M ∼= 1. This is easiest to see if one uses the following model for M :

M =
{(
eiθ, rei

θ
2

) ∣∣∣ θ ∈ [0, 2π], r ∈ R
}
.

The bundle map is projection onto the first coordinate π : M → S1. Then f∗M =
{(eiθ, reiθ) | θ ∈ [0, 2π], r ∈ R}. This is clearly isomorphic to 1S1 , via the map
S1 × R→ f∗M given by (eiθ, r) 7→ (eiθ, reiθ).

We can also demonstrate the isomorphism f∗M ∼= 1 by the following picture:
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bb b bbc
f

a ab x x

Here f is the evident map that wraps the circle around itself twice, so that f−1(x) =
{a, b}. We see that f∗M can be thought of as two copies of M that are cut open
and then sewn together as shown, thereby producing a cylinder.

8.21. Constructing new vector bundles out of old ones. Let p : E → X
and p′ : E′ → X be two vector bundles. We may form a new bundle E ⊕ E′,
whose underlying topological space is just the pullback E ×X E′. So a point in
E⊕E′ is a pair (e, e′) where p(e) = p′(e′). The rules for vector addition and scalar
multiplication are the evident ones. Note that the fiber of E ⊕ E′ over a point
x is simply Ex ⊕ E′x. The local trivializations of E and E′ combine to give local
trivializations of E ⊕ E′, showing that this is indeed a vector bundle.

More generally, any canonical construction that one can apply to vector spaces
may be extended to apply to vector bundles. So one can talk about the bundle
E ⊗ E′, the dual bundle E∗, the hom-bundle Hom(E,E′), the exterior product
bundle /\iE, and so on. We will only carefully define E ⊗ E′, and leave the other
definitions to the reader.

Set-theoretically define

E ⊗ E′ = {(x, v) |x ∈ X, v ∈ Ex ⊗ E′x}.
This is clear enough, and it is clear how to define addition and scalar multiplication
in the fibers. The only thing that takes thought is how to define the topology
on E ⊗ E′, and to check that the operations are continuous. But it is enough to
define the topology locally , and to check continuity locally. If x ∈ X, let U be a
neighborhood of x over with both E and E′ are trivializable. Choose isomorphisms
φ : U × Rk → E|U and φ′ : U × Rl → E′|U . Then one gets a bijection of sets
U × (Rk⊗Rl)→ (E⊗E′)|U which is a linear isomorphism on each fiber: one sends
(u, v⊗w) to (u, φ(u, v)⊗φ′(u,w)) and then extends linearly. Finally, one uses this
bijection to transplant the topology from U × (Rk ⊗ Rl) to (E ⊗ E′)|U . We leave
the reader to fill in all the details here.

A brief summary of this technique is “define the new bundle set-theoretically and
then use the local trivializations to induce the topology”. Technically one should
check that different choices of local trivialization yield the same topology, but this
is usually routine and left implicit.

Remark 8.22 (External sums and products). Let E → X and F → Y be two
vector bundles, but this time over possibly different base spaces. One may construct
an external direct sum E⊕̂F → X × Y whose fiber over (x, y) is Ex ⊕ Fy. The
underlying topological space of E⊕̂F is just E×F , and it has the evident operations.
Note that E⊕̂F can also be constructed as π∗1(E)⊕π∗2(F ), where π1 and π2 are the
projections from X × Y onto the two factors.
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In the case X = Y we can construct the (internal) direct sum from the external
one: namely E⊕F = ∆∗(E⊕̂F ) where ∆: X → X×X is the diagonal map. Thus,
the internal and external direct sums determine each other.

One can tell a similar story about external tensor products, or external hom-
bundles.

Exercise 8.23. Given two vector bundles E1 → X and E2 → X construct the
bundle Hom(E1, E2) whose fiber over x ∈ X is Hom((E1)x, (E2)x). Prove an ad-
jointness formula

Vect(X)(E1 ⊗ E2, E3) ∼= Vect(X)(E1,Hom(E2, E3)).

Even better, establish an isomorphism of bundles

Hom(E1 ⊗ E2, E3) ∼= Hom(E1,Hom(E2, E3)).

8.24. Constructing vector bundles by patching. Let X be a space and let
A and B be subspaces such that A ∪ B = X. Recall that if fA : A → Y and
fB : B → Y are continuous maps that agree on A ∩ B then we may patch these
together to get a continuous map f : X → Y provided that either (i) A and B are
both closed, or (ii) A and B are both open. This is a basic fact about topological
spaces. The analogous facts for vector bundles are very similar in the case of an
open cover, but a little more subtle for closed covers.

Proposition 8.25. Let E → X be a family of vector spaces.
(a) If {Uα} is an open cover of X and each E|Uα is a vector bundle, then E is a

vector bundle.
(b) Let {A,B} be a cover of X by closed subspaces. Suppose that either

(i) B is regular and has a countable basis, or
(ii) For every x ∈ A ∩ B and every neighborhood x ∈ U ⊆ X there exists a

neighborhood x ∈ V ⊆ U such that V ∩A ∩B ↪→ V ∩B has a retraction.
Then if E|A and E|B are both vector bundles, so is E.

Proof. Part (a) is trivial, so we focus on (b). The main issue is producing local
trivializations around points x ∈ A ∩ B: one can do so in the “A-part” of a neigh-
borhood and in the “B-part” of the neighborhood, but then some care is required
in doing the two simultaneously in a compatible way.

Let x ∈ X, with the goal of producing a local trivialization around x. There are
three cases: x ∈ X − A, x ∈ X − B, and x ∈ A ∩ B. If x ∈ X − B then we have
x ∈ (X−B)open ⊆ A. Since E|A is a vector bundle there is a subset x ∈ U ⊆ X−B
such that U is open in A and E|U is trivializable. But then U is open in X−B and
hence also open in X, so E → X has a local trivialization at x. A similar argument
works if x ∈ X −A.

We have left to analyze the case x ∈ A∩B. The fact that E|A is a vector bundle
implies that there exists an open set x ∈ U1 ⊆ X such that E is trivializable over
U1 ∩A. Similarly, there exists an open set x ∈ U2 ⊆ X such that E is trivializable
over U2 ∩ B. Let U = U1 ∩ U2. Then E|U∩A and E|U∩B is a closed cover of E|U ,
and so E|U is the pushout of the diagram

E|U∩A E|U∩A∩B //oo E|U∩B .
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Choose a trivializaion E|U∩A ∼= (U ∩ A) × Rn, which induces a trivializaion of
E|U∩A∩B . So we have the following diagram

E|U∩A E|U∩A∩B //oo E|U∩B

(U ∩A)× Rn
fA ∼=

OO

(U ∩A ∩B)× Rn //oo

fA∩B ∼=

OO

(U ∩B)× Rn.

fB

OO

and the question is whether we can find an isomorphism fB that makes the diagram
commute.

Let j denote the various horizontal maps in the above diagram, which are all
subspace inclusions. Choose an isomorphism h : E|U∩B → (U ∩ B) × Rn. Then
the composite hjfA∩B may be represented by a map U ∩ A ∩ B → GLn(R) (via
adjointness, essentially). The construction of fB is the question of extending this
over U ∩B.

Under hypothesis (ii), by passing to a smaller neighborhood x ∈ U ′ ⊆ U we can
find a retraction U ′∩B → U ′∩A∩B, in which case the required extension is evident.
Under hypothesis (i) we know that all subspaces of B are normal [Mu, Theorems
31.2 and 32.1], and hence we can apply the Tietze extension theorem: the composite
map U∩A∩B → GLn(R) ↪→Mn(R) = Rn2

extends to U∩B. By continuity we can
land in the open set GLn(R) after passing to a smaller neighborhood x ∈ U ′ ⊆ U .
Thus, we have produced the localization trivialization of E at x. �

Remark 8.26. A good example of Proposition 8.25(b) is the covering of a sphere
Sn by its upper and lower hemispheres, intersecting in the equator. In this situation
both hypotheses (i) and (ii) happen to be satisfied.

Corollary 8.27 (Patching vector bundles). Let {A,B} be a cover of the space X.
Suppose given vector bundles EA → A and EB → B, together with a vector bundle
isomorphism φ : EA|A∩B → EB |A∩B. Then there exists a vector bundle E → X
such that E|A is isomorphic to EA and E|B is isomorphic to EB provided that one
of the following conditions holds:
(i) A and B are both open, or
(ii) A and B is a closed cover satisfying either of the hypotheses in part (b) of

Proposition 8.25.

Proof. Define E to be the pushout of the following diagram:

EA|A∩B

��

φ // EB |A∩B // // EB

��
EA // E.

The composite maps EA → A → X and EB → B → X yield a map E → X,
and one readily checks that this inherits the structure of a family of vector spaces
(see Exercise 8.39). It is also evident that E|A ∼= EA and E|B ∼= EB . It only
remains to verify that E is a vector bundle, and this is a direct application of
Proposition 8.25. �

Corollary 8.27(a) admits a generalization to arbitrary open coverings. Suppose
{Uα} is an open cover of X, and assume given a collection of vector bundles Eα →
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Uα. For each α and β further assume given an isomorphism

φβ,α : Eα|Uα∩Uβ
∼=−→ Eβ |Uα∩Uβ .

Let E be the quotient of qαEα by the equivalence relation generated by saying
(α, vα) ∼ (β, φβ,α(vα)) for every α, β, and vα ∈ Eα|Uα∩Uβ . Here we are writing
(α, vα) for the element vα in qγEγ that lies in the summand indexed by α.

It is easy to see that in this generality E is a family of vector spaces. It is not
necessarily the case, however, that E|Uα ∼= Eα. If this were true for all α then of
course E would be a vector bundle and we would be done. Here is the trouble,
though. Suppose α0, α1, . . . , αn are a sequence of indices such that α0 = αn =
α. If v ∈ Eα then we identify v with φα1,α0(v), which is in turn identified with
φα2,α1(φα1,α0(v)), and so forth—so that v ends up being identified with(

φαn,αn−1 ◦ φαn−1,αn−2 ◦ · · · ◦ φα1,α0

)
(v).(8.28)

Note that, like v, this expression is an element of Eα. So identifications are possibly
being made within individual summands of qαEα, rather than just between differ-
ent summands. The fibers of E|Uα are quotients of those in Eα, but they might not
be identical. To prohibit this from happening we impose some extra conditions: for
any indices α, β, γ we require that
(i) φα,α = id,
(ii) The two isomorphisms φγ,α and φγ,β ◦φβ,α agree on their common domain of

definition, which is Eα|Uα∩Uβ∩Uγ .
We leave it to the reader to check that these conditions force any expression as
in (8.28), with α0 = αn, to just be equal to v (in particular, note that they force
φα,β = φ−1

β,α). So the fibers of E coincide with the fibers of the Eα’s, we get
isomorphisms E|Uα ∼= Eα, and hence E is a vector bundle.

Condition (ii) above is usually called the cocycle condition. To see why, con-
sider the case where all of the Eα’s are trivial bundles of rank n. Then the data
in the φα,β maps is really just the data of a map gα,β : Uα ∩ Uβ → GLn(R). These
gα,β maps are called transition functions. Condition (ii) is the requirement that
the transition functions assemble to give a Čech 1-cocycle with values in the group
GLn(R). Condition (i) is just a normalization condition, so that we are dealing
with ‘normalized’ Čech 1-cocycles. Elements of the (continuous) Čech cohomol-
ogy group Ȟ1

cts(U•;GLn(R)) can be seen to be in bijective correspondence with
isomorphism classes of vector bundles on X that are trivializable over the Uα’s; if
we take the direct limit over all open coverings then we obtain a bijection between
isomorphism classes of vector bundles on X and elements of the Čech cohomology
group Ȟ1

cts(X;GLn(R)). But we are getting ahead of ourselves here; see Section 13
for related discussion.

8.29. Dual bundles. Let E → X be a vector bundle of rank n. Using the
method of Section 8.21 we can define the dual bundle E∗, which set-theoretically
is {(x, v) |x ∈ X, v ∈ E∗x}. One can examine this construction in terms of patching
trivial bundles. Choose an open cover {Uα} of X with respect to which E is triv-
ializable; a choice of trivialization over each Uα then yields a collection of gluing
maps φα,β . We think of E as being built from the trivial bundles Eα = Uα × Rn
via these gluing maps. Then the dual bundle E∗ is built from the trivial bundles
Uα × (Rn)∗ via the duals of the gluing maps: that is, (φE

∗
)β,α =

(
φEα,β

)∗.
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We will see in a moment (Corollary 8.34) that for real vector bundles over para-
compact Hausdorff spaces one always has E ∼= E∗, although the isomorphism is
not canonical. This is not true for complex bundles, however (see Example 8.37).

Let L→ CPn be the tautological complex line bundle over CPn. Its (complex)
dual L∗ is called the canonical line bundle over CPn. Whereas from a topological
standpoint neither L nor L∗ holds a preferential position over the other, in algebraic
geometry there is an important difference between the two. The difference comes
from the fact that L∗ has certain “naturally defined” sections, whereas L does not.
For a point z = [z0 : · · · : zn] ∈ CPn, Lz is the complex line in Cn+1 spanned
by (z0, . . . , zn). Given only z ∈ CPn there is no evident way of writing down a
point on Lz, without making some kind of arbitrary choice; said differently, the
bundle L does not have any easily-described sections. In contrast, it is much easier
to write down a functional on Lz. For example, let φi be the unique functional
on Lz that sends the point (z0, . . . , zn) to zi. Notice that this description depends
only on z ∈ CPn, not the point (z0, . . . , zn) ∈ Cn+1 that represents it; that is, the
functional sending (λz0, . . . , λzn) to λzi is the same as φi. In this way we obtain an
entire Cn+1’s worth of sections for L∗, by taking linear combinations of the φi’s.

To be clear, it is important to realize that L has plenty of sections—it is just that
one cannot describe them by simple formulas. The slogan to remember is that the
bundle L∗ has algebraic sections, whereas L does not. In algebraic geometry the
bundle L∗ is usually denoted O(1), whereas L is denoted O(−1). More generally,
O(n) denotes (L∗)⊗n when n ≥ 0 (so that O(0) is the trivial line bundle), and
denotes L⊗(−n) when n < 0.

8.30. Inner products on bundles. It is nearly possible to develop everything
we need from bundle theory without using inner products, and in the rest of the
text we do try to minimize our use of them. But for some results the use of inner
products provides significant simplifications of proofs, and so it is good to know
about them.

Definition 8.31. Let E → X be a real vector bundle. An inner product on E is
a map of vector bundles E ⊗ E → 1X that induces a positive-definite, symmetric,
bilinear form on each fiber Ex. A vector bundle with an inner product is usually
called an orthogonal vector bundle.

There is a similar notion for Hermitian inner products on complex vector bun-
dles, but here we cannot phrase things in terms of the tensor product because of
conjugate-linearity in one variable. So perhaps the simplest thing is just to say that
if E → X is a complex bundle then a Hermitian inner product is a map E×XE → 1
(over X) which induces a Hermitian inner product on each fiber of E.

The next result is the first of several places where we will need to use partitions
of unity, so let us take a moment to review this concept.

Definition 8.32. Let U = {Uα} be an open cover of a space X. A partition of
unity subordinate to U is a collection of continuous functions φα : X → [0, 1] such
that
(1) [Support condition] For each α, Suppφα ⊆ Uα where Suppφα = φ−1

α (R− 0).
(2) [Local finiteness] For each x ∈ X there is a neighborhood x ∈ V such that V

has nonempty intersection with Suppφα for only finitely many indices α.
(3) [Partition of 1] For each x ∈ X,

∑
α φα(x) = 1 (note that this is a finite sum

by (2)).
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The basic theory of partitions of unity is discussed in [Mu, Section 41], though
note that Munkres’s terminology is slightly different from ours: he defines the
support of φα to be the closure of φ−1

α (R − 0). The main result we will need is
that on a paracompact Hausdorff space any open cover has a partition of unity
subordinate to it [Mu, Theorem 41.7].

Proposition 8.33. Assume that X is paracompact and Hausdorff. Then any real
bundle on X admits an inner product, and any complex bundle on X admits a
Hermitian inner product.

Proof. The idea is to produce the necessary inner products locally, and then use a
partition of unity to average the results into a global inner product. We may as
well assume X is connected, and then E has a constant rank n.

Let E → X be a real vector bundle, and let {Uα} be an open cover over which
the bundle is trivial. Choose bundle isomorphisms fα : E|Uα ∼= Uα × Rn, for each
α. Equip Rn with the standard Euclidean inner product, and let 〈−,−〉α be the
inner product on E|Uα obtained by transplanting the Euclidean product across the
isomorphisms fα.

Let {φα} be a partition of unity subordinate to the cover {Uα}. For x ∈ X and
v, w ∈ Ex define

〈v, w〉 =
∑
α

φα(x) · 〈v, w〉α.

It is clear that this is continuous in v and w, bilinear, symmetric, and positive-
definite—these follow from the corresponding properties of the forms 〈−,−〉α (note
that continuity uses the local finiteness property of the partition). So this completes
the construction.

The proof for Hermitian inner products on a complex bundle is basically identical.
�

Corollary 8.34. Let E → X be a real vector bundle on a paracompact Hausdorff
space X. Then E is isomorphic to its dual E∗.

Proof. Start by equipping E with an inner product E ⊗ E → 1, and note that the
fiberwise forms are nondegenerate (since they are positive-definite). The adjoint of
the above bundle map is a map E → E∗, and nondegeneracy of the fiberwise forms
shows that this is a fiberwise isomorphism. So it is an isomorphism of bundles. �

Exercise 8.35. Here is an illuminating problem to think through. Every com-
plex vector space may be equipped with a nondegenerate, symmetric bilinear form.
Check that the proof of Proposition 8.33 does not generalize to show that every
complex vector bundle may be equipped with a symmetric bilinear form that is non-
degenerate on the fibers—in particular, find the point where the proof breaks down.
Note that if the proof did generalize, one could show just as in Corollary 8.34 that
every complex bundle was isomorphic to its own dual. This is false, as we will see in
Example 8.37 below. The complex version of Corollary 8.34 says that if E → X is
a complex bundle over a paracompact Hausdorff space then E is isomorphic to the
conjugate of E∗ (the bundle obtained from E∗ by changing the complex structure
so that z ∈ C acts as z̄).

Consider a trivial bundle X × Rn → X and equip it with the standard inner
product. This bundle may be considered as trivial in two different ways: the vector
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bundle structure is trivial, and the inner product structure is also trivial. It is not
clear a priori that the former property implies the latter, but in fact it does:

Proposition 8.36. Let X be a space and let n ∈ Z+. Every inner product on nX is
isomorphic (in the category of vector bundles with inner product) to the ‘constant’
inner product provided by the standard Euclidean metric.

Proof. Consider Rn with its standard basis e1, . . . , en. Inner products on Rn are in
bijective correspondence with symmetric, positive-definite matrices A ∈Mn×n(R),
by sending an inner product 〈−,−〉 to the matrix aij = 〈ei, ej〉. LetMsym,+ denote
the space of such matrices. To give an inner product on the trivial bundle nX is
therefore equivalent to giving a map X →Msym,+.

Given an isomorphism Rn → Rn we may transplant an inner product from the
target onto the domain; this gives rise to an action of GLn(R) on the space of inner
products. If P ∈ GLn(R) and A ∈ Msym,+ then the action is P.A = PAPT . The
fact that every inner product on Rn has an orthonormal basis shows that Msym,+

equals the orbit of the identity matrix In under this action. The stabilizer of the
identity is of course the orthogonal group On, and so we obtain the homeomorphism
GLn(R)/On ∼= Msym,+.

Since On is a compact Lie group the quotient GLn(R)→ GLn(R)/On is a fiber
bundle and hence a fibration (cf. [Pa, Section 4.1]). So we have the fibration
sequence On ↪→ GLn(R) → Msym,+, where the projection map sends a matrix P
to PInPT = PPT . The inclusion On ↪→ GLn(R) is a homotopy equivalence by
Gram-Schmidt, and so Msym,+ is weakly contractible. But actually it is not hard
to show directly that there is a homeomorphism Msym,+ ∼= R(n+1

2 ). For this, recall
from linear algebra that a real symmetric matrix A is positive definite if and only
if the minors A[1 · · · k|1 · · · k] are positive, for every 1 ≤ k ≤ n. When n = 2, for
example, we can use this to write down a homeomorphism

(0,∞)× R× (0,∞)
∼=−→Msym,+

2 , (a, b, c) 7→
[
a b

b b2

a + c

]
So Msym,+

2
∼= R3. For the general case one works inductively to show M sym,+

n
∼=

Msym,+
n−1 ×Rn−1×(0,∞). The idea is that after specifying the upper (n−1)×(n−1)

submatrix and the top n − 1 entries of the last column, we rearrange the cofactor
expansion of the determinant about the last column to obtain a lower bound for
the final diagonal entry.

Since M sym,+
n is a Euclidean space, it can be given the structure of a CW-

complex. So the commutative square

{In}
��

'
��

// // GLn(R)

[P 7→PPT ]
����

Msym,+
n

id //

r
99

Msym,+
n

has a lift as indicated.
As we have discussed, our given inner product on nX is represented by a map

X → Msym,+
n . Compose with r to obtain X → GLn(R). This map specifies

a bundle isomorphism nX → nX . If we equip the domain with our given inner
product and the codomain with the standard inner product, this map preserves the
inner products and therefore proves the proposition. �
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Suppose that E → X is a rank n real vector bundle with an inner prod-
uct. Choose a trivializing open cover {Uα}, and for each α fix an inner-product-
preserving trivialization fα : E|Uα → Uα × Rn where the codomain has the stan-
dard inner product (this is possible by Proposition 8.36). The transition functions
gα,β : Uα ∩ Uβ → GLn(R) therefore factor through On, as they must preserve the
inner product. This process is usually referred to as reduction of the structure
group.

We may use these ideas to give another proof of Corollary 8.34, one that is
perhaps more down-to-earth. Let E → X be a real vector bundle on a compact
space, and choose a trivializing cover {Uα} with respect to which there exist local
trivializations where the transition functions are maps gα,β : Uα ∩Uβ → On. So we
obtain E by gluing together the spaces Eα = Uα×Rn via the maps gα,β . But then
we obtain E∗ by gluing together the spaces Uα × (Rn)∗ via the maps

hβ,α = g∗α,β .

Recall that in terms of matrices the dual is represented by the transpose. Since
each gα,β(x) is in On we can write hβ,α(x) = gα,β(x)−1, or

hα,β(x) = hβ,α(x)−1 = gα,β(x).

In other words, the transition functions for E and E∗ are exactly the same, and
that is why the bundles are isomorphic.

We close this section with the promised example of a complex bundle that is not
isomorphic to its dual:

Example 8.37. Let D+ and D− denote the upper and lower hemispheres of S2.
Let S1 be the equator, which we identify with the unit complex numbers. Given
a map f : S1 → GLn(C) we may construct a complex bundle on S2 by taking two
trivial bundles nD+

and nD− and gluing them together using the map f : precisely,
for z ∈ S1 an element v ∈

(
nD+

)
z
is glued to f(z) · v ∈

(
nD−

)
z
. Here we are using

Corollary 8.27(b). Let E(f) denote the resulting bundle.
Observe that giving an isomorphism E(f) → E(g) is equivalent to giving two

maps A : D+ → GLn(C) and B : D− → GLn(C) such that g(z) · A(z) = B(z) ·
f(z) for all z ∈ S1. Let us rewrite this as A(z) = g(z)−1B(z)f(z). Now, the
map B|S1 : S1 → GLn(C) is null-homotopic because it extends over D−; so it is
(unbased) homotopic to the constant map at In (this uses connectivity of GLn(C)).
Therefore the map z 7→ g(z)−1B(z)f(z) is homotopic to g(z)−1f(z). But A|S1 is
also (unbased) homotopic to the constant map at In, because it extends over D+.
So we have proven that if E(f) ∼= E(g) then z 7→ g(z)−1f(z) is unbased homotopic
to a constant map.

Next, observe that the dual of E(f) is E(f ′), where f ′(z) =
[
f(z)T

]−1. So if
E(f) is isomorphic to its dual then the map z 7→ f(z)T · f(z) is null-homotopic.

Consider the case where n = 1 and f(z) = z. Since z 7→ z2 is not null-homotopic,
we see that E(f) is not isomorphic to its dual.

Exercise 8.38. Check that E(f) from the end of the above example is isomorphic
to the tautological line bundle L→ CP 1.

The above example starts to give an indication that the classification of vector
bundles on spheres reduces to a problem in homotopy theory. We will explore this
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in detail in Section 12, and in Section 13 we will see that this is true not only for
spheres but for vector bundles on any paracompact Hausdorff space X.

◦ Exercises ◦

Exercise 8.39. Let EA → A, EX → X, and EY → Y be families of vector spaces
and assume given maps of families

EX EAoo // EY

that lie over subset inclusions X ⊇ A ⊆ Y . Assume either that
(i) A is open in X and Y , and the maps EA → EX and EA → EY are open

injections, or
(ii) A is closed in X and Y , and the maps EA → EX and EA → EY are closed

injections.
Prove that the pushout E = EX qEA EY is a family of vector spaces over Ω =
X qA Y .
[Hint: The difficult part is producing the addition E ×Ω E → E. Show that the
domain is covered by EX ×X EX and EY ×Y EY and that these are open (resp.
closed).]

Exercise 8.40. Let E → X be a family of vector spaces and let s1, s2, . . . be a weak
basis for E. If X is locally compact and Hausdorff prove that there is an associated
map of families X × R∞ → E that is a bijection, where R∞ is given the colimit
topology. [Hint: First show that the natural map colimn(X×Rn)→ X×colimnRn
is a homeomorphism. Consult [Mu, Theorem 46.11].]

Exercise 8.41. Given a vector bundle E → X, explain how to construct an asso-
ciated projective bundle P(E)→ X that is a fiber bundle whose fiber over a point
x ∈ X is the projective space P(Ex). Verify that your construction admits a natural
map of fiber bundles E → P(E ⊕ 1) that sends a point e ∈ Ex to the line spanned
by (e, 1) in Ex ⊕ R.

Exercise 8.42. Let E → X be a rank n vector bundle and Y ⊆ X a closed set.
Suppose given a trivialization u : E|Y

∼=−→ nY . Define E′ to be the pushout of the
top row in this diagram:

Rn

��

E|Y

��

π2◦uoo // // E

��
∗ Yoo // // X.

In words, E′ is made by gluing all of the fibers of E|Y together according to the
isomorphism u. Prove that E′ → X/Y is a vector bundle IF there exists an open
subset Y ⊆ U and an extension of u to an isomorphism E|U ∼= nU .

Exercise 8.43. Let E → X be a vector bundle and let Y ⊆ X be a closed subset.
(a) Prove that every section s : Y → E extends to a section defined on all of X in

each of the following two cases:
(i) Y ↪→ X is a cofibration, or
(ii) X is locally compact and paracompact and Hausdorff.
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[Note: This demonstrates a common theme in bundle theory, which is that
certain results work either in the presence of sufficient cofibration hypotheses
or in the presence of technical point-set topology hypotheses. For (ii), use the
Tietze extension theorem locally and then patch the results together using a
partition of unity.]

(b) Again under hypotheses (i) or (ii), prove that a nonvanishing section s : Y → E
extends to a nonvanishing section on some neighborhood of Y .

(c) Suppose that F → X is another bundle and u : E|Y → F |Y is an isomorphism.
Under hypotheses (i) or (ii) prove that u extends to an isomorphism E|U → F |U
for some neighborhood U of Y .

9. Some results from fiberwise linear algebra

Recall that our basic goal is to learn to do linear algebra “over a base space”.
The fundamental objects in this setting are the vector bundles, and the maps are
the bundle maps. This section contains a miscellany of foundational results that
are frequently useful. This material can be safely skipped the first time through
and referred back to as needed.

Lemma 9.1. Let X be any space, and let f : n� k be a surjective map of bundles.
Then f has a splitting.

Note that the result is not immediately obvious. Of course one can choose a
splitting in each fiber, but what guarantees that these can be chosen in a continuous
manner?

Proof. Let W = {A ∈ Mk×n | rankA = k}, which is the space of surjective maps
Rn → Rk (our matrices act on the left). Let Z be the space

Z = {(A,B) |A ∈Mk×n, B ∈Mn×k, AB = I},
which is the space of surjective maps with a chosen splitting. We claim that the
projection map p1 : Z →W is a fiber bundle with fiber Rk(n−k), but defer the proof
for just a moment. The fact that the fiber is contractible then shows that p1 is
weak homotopy equivalence.

Consider the diagram
Z

∼p1
����

W W.

The space W is an open set of Mk×n ∼= Rkn; indeed, it is the union of the
(
n
k

)
open

sets defined by one of the k × k minors being nonzero. Any open set of Euclidean
space may be given a CW-structure (ref???), so the standard lifting theorems now
show that there is a lifting r : W → Z in the above diagram.

Our surjective bundle map f : n → k is determined by a map X → W . Com-
posing with W → Z, and then projecting to the second coordinate of Z, gives the
desired splitting for f .

It remains to prove the claim about p1 being a fiber bundle. Let A ∈ W . Since
rank(A) = k there is a k × k minor of A that is nonzero; without loss of generality
let us assume that it is the minor made up of the first k columns of the matrix.
Let U ⊆ W be the subspace consisting of all matrices where this same minor is
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nonzero, which is an open neighborhood of A inW . Writing matrices in block form,
U consists of matrices [X|Y ] where det(X) 6= 0. Then p−1

1 (U) consists of pairs

αX,Y,J,K =

([
X Y

]
,

[
J
K

])
having the property that det(X) 6= 0 and XJ + Y K = Ik. We obtain an iso-
morphism U × Mn−k,k(R) ∼= p−1

1 (U) by sending ([X|Y ],K) to αX,Y,J,K with
J = X−1(Ik − Y K). �

Note the significance of the map W → Z that is produced in the above proof.
This assigns to every surjection Rn → Rk a splitting, and it does so in a continuous
manner. Of course there is no claim that there is a nice formula for how to do this,
and in fact there almost certainly is not—but the proof shows that there does exist
some way of doing so.

The previous result implies that every surjection of vector bundles is locally split.
The following is a global version of this:

Proposition 9.2. Let X be a paracompact Hausdorff space. Then any surjection
of bundles E � F has a splitting.

Proof. Briefly, we choose local splittings and then use a partition of unity to patch
them together.

Choose an open cover {Uα} such that both E and F are trivializable over each
Uα. Lemma 9.1 shows that there are splittings χα : F |Uα → E|Uα . Now choose a
partition of unity {φα} subordinate to our open cover (cf. Definition 8.32). Set
χ =

∑
α φαχα. This sum makes sense and is continuous because the partition of

unity is locally finite, and one readily checks that it is a splitting for f . �

Given a map of vector bundles f : E → F over a space X, we would like to
construct kernels, images, and cokernels—bundle operations that reflect the usual
constructions of linear algebra. But we have already seen a good example that
shows the subtleties here: take X = [−1, 1] and let f : 1→ 1 be multiplication by t
on the fiber over t ∈ X. Taking fiberwise kernels or images does not give a vector
bundle. To avoid these issues we will require that f have constant rank on the
fibers (actually locally constant is enough, as this is equivalent to constant rank
on each connected component) . Under this assumption the construction of kernel
and image bundles is faily straightforward, as these can be realized as subobjects of
bundles we already have. The construction of cokernels is a little more challenging,
but also works.

We start by looking at kernels and images. If f : E → F is a map of bundles
and x ∈ X, write rankx(f) for the rank of fx : Ex → Fx. If these fiberwise ranks
are independent of x then we will also write rank(f) for the common value.

Proposition 9.3. Let X be any space, and let f : E → F be a map of vector
bundles over X. If f has constant rank then ker f and im f are vector bundles.

Proof. Let x ∈ X, let n = rankx(E), let k = rankx(F ), and let r = rank(f). It will
suffice to produce a neighborhood U of x together with n− r independent sections
of ker f over U and r independent sections of im f over U . In particular, this makes
it clear that we might as well assume that E and F are both trivial bundles; in this
case f is specified by a map X →Wr where Wr = {A ∈Mk×n | rank(A) = r}.
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Let Zr be the space

Zr = {(A, v1, . . . , vn−r) |A ∈Wr and v1, . . . , vn−r span the kernel of A}.
One can check that the projection Zr →Wr is a fiber bundle with fiber GLn−r(R),
but this is stronger than what we actually need. We only need that the map is
locally split: any point in Wr has a neighborhood over which there exists a section.
Given a map X →Wr, it will then follow that every point in x has a neighborhood
over which there exists a lifting into Zr, and this will give the n − r independent
local sections of ker f .

So let A be a point in Wr. Since rank(A) = r, some r× r minor of A is nonzero.
Without loss of generality we might as well assume it is the upper left r× r minor.
Since rank(A) = r, then for j > r the jth column of A is a linear combination of
the first r columns in a unique way; said differently, there is a unique vector of the
form

vj = ej − s1e1 − s2e2 − · · · − srer
that is in the kernel of A. Here the si’s are certain rational expressions in the
matrix entries of A that can be determined using Cramer’s Rule. These formulas
define sections on the neighborhood U of A consisting of all k× n matrices of rank
r whose upper left r × r minor is nonzero. This finishes the proof of our claim.

We have established that ker f is a vector bundle. The proof for im f is entirely
similar but a little easier. Let Yr be the space

Yr = {(A, v1, . . . , vr) |A ∈Wr and v1, . . . , vr span the image of A}.
Again, it suffices to show that Yr → Wr is locally split. For A ∈ Wr there is some
non-vanishing r × r minor, and the subset U ⊆ Wr consisting of all matrices with
that minor nonzero is a neighborhood of A. We get a section U → Yr be sending
each B ∈ U to the pair consisting of B and the r columns of B that are chosen by
that minor. �

Next we turn to the construction of cokernels. Let us begin with a precise
definition:

Definition 9.4. Let f : E → F be a map of vector bundles over a space X. A
fiberwise cokernel for f is a vector bundle Q together with a map of bundles
F → Q with the property that for every x ∈ X the map Fx → Qx makes Qx a
cokernel for fx.

The following result says that fiberwise cokernels are also cokernels in the cate-
gorical sense (see Appendix G).

Proposition 9.5. Suppose that Q is a fiberwise cokernel for the bundle map
f : E → F . Then for any map of bundles g : F → G such that gf = 0, there
is a unique map of bundles Q→ G making the diagram

F //

��

G

Q

??

commute.
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Proof. Each fiber Qx is a cokernel for fx, so there is a unique map of vector spaces
Qx → Gx making the evident triangle commute. This defines a map of sets Q→ G,
but we need to check continuity. However, continuity is a local condition and so we
can assume that all of the bundles are trivial. In this case the map p : F → Q has
a splitting χ by Lemma 9.1. Then p(id−χp) = 0, therefore id−χp factors through
the kernel of p, which is the image of f . Since gf = 0 it follows that g(id−χp) = 0
(note that this identity can be checked on fibers). So g = gχp, and therefore gχ is
the set map Q→ G constructed in the first line. As both g and χ are continuous,
we are done. �

Exercise 9.6. Explain why categorical cokernels in the category of vector bundles
over X are not always fiberwise cokernels.

Our aim is to prove that fiberwise cokernels for bundle maps f : E → F exist
when f has locally constant rank. Let us start with the case where E is a subbundle
of F . Define an equivalence relation on F by saying that v1 ∼ v2 if v1 and v2 are
in the same fiber and v1 − v2 ∈ E. Let Q be the quotient space of F under this
relation, and let π : F → Q be the quotient map. Note that the bundle projection
F → X respects the equivalence relation and so induces Q→ X.

Proposition 9.7. Under the above setup we have
(a) For the standard inclusion E = X × Rk ↪→ X × Rn = F , then Q ∼= X × Rn−k

with the map F → Q induced by projection onto the last n − k coordinates
Rn → Rn−k.

(b) For any open set U ⊆ X, the map F |U → Q|U is a quotient map.
(c) π : F → Q is an open map;
(d) The map F ×X F → Q×X Q is a quotient map;
(e) There is a unique structure of addition and scalar multiplication that makes Q

into a family of vector spaces and F → Q a map of families.
(f) Q is a vector bundle.

Proof. The projection onto the final n−k coordinates X×Rn → X×Rn−k respects
the equivalence relation and so induces a map Q→ X×Rn−k. But we also have the
inclusion Rn−k ↪→ Rn and so can consider the composition X×Rn−k ↪→ X×Rn →
Q. One readily verifies that the two maps are inverses, and so Q ∼= X × Rn−k.

Part (b) is trivial: for any quotient map f : A → B, when W ⊆ B is open then
f−1(W )→W is a quotient map. Apply this to W = Q|U .

By (b) it is enough to prove (c) locally on X, so we immediately reduced to the
case where E and F are trivial. The inclusion f : X ×Rk → X ×Rn is represented
by a map X → LE(Rk,Rn) where LE denotes the space of linear embeddings.
Consider the restriction map LE(Rn,Rn) → LE(Rk,Rn). We claim this is locally
split. Given a linear embedding f : Rk → Rn, the associated n × k matrix has a
non-vanishing k× k minor—without loss of generality assume it is the initial k× k
minor. Then on the open subset of LE(Rk,Rn) where this minor is nonzero, the
assignment [

A
B

]
7→
[
A 0
B In−k

]
gives a continuous splitting.

Since LE(Rn,Rn)→ LE(Rk,Rn) is locally split, by passing to smaller open sets
in X we can assume that X → LE(Rk,Rn) lifts to LE(Rn,Rn) (via composition
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with a splitting). This says that there is a bundle isomorphism X ×Rn → X ×Rn
making the following diagram commute:

X × Rk
f // X × Rn

∼=
��

// Q

��
X × Rk i // X × Rn // X × Rn−k.

Here i is the standard inclusion. The diagram shows that we can get an induced
isomorphism Q→ X × Rn−k. So verifying that X × Rn → Q is open is equivalent
to the same statement for X×Rn → X×Rn−k, which is true because the standard
projection Rn → Rn−k is open.

Now we turn to (d). Let π be the map F×X F → Q×XQ. Suppose U ⊆ Q×XQ
is such that π−1(U) is open in F×XF . Let (q1, q2) ∈ U , and choose preimages v1 for
q1 and v2 for q2. Since π−1(U) is open in F ×X F , there exist open neighborhoods
v1 ∈ V1 ⊆ F and v2 ∈ V2 ⊆ F such that V1 ×X V2 ⊆ π−1(U). But then (q1, q2) ∈
π(V1 ×X V2) ⊆ U . But observe that π(V1 ×X V2) = (πV1) ×X (πV2), and by (c)
both πV1 and πV2 are open in Q. This proves that U contains a neighborhood of
(q1, q2).

For (e) we refer to the diagram

F ×X F
+ //

��

F

��
Q×X Q // Q

and observe that the composition F ×X F
+−→ F −→ Q respects the equivalence

relation on F and so induces the map Q×X Q→ Q using (b). A similar argument
works for scalar multiplication, using that R× F → R×Q is a quotient map [Mu,
Section 46, Exercise 9]. One readily checks that this structure makes Q into a
family of vector spaces with the correct properties.

Finally we prove (f). Since we are verifying a local condition, it is enough to do
so under the assumption that E and F are trivial. Just as in the proof of (c), we
can reduce to the case where E ↪→ F is the standard inclusion X ×Rk ↪→ X ×Rn,
and here we know by (a) that Q is X × Rn−k. �

Corollary 9.8. Let f : E → F be a map of vector bundles of constant rank. Then
a fiberwise cokernel for f exists.

Proof. By Proposition 9.3 we know that im f is a vector bundle. Now apply Propo-
sition 9.7 to the inclusion im f ↪→ F . �

The result below is an easy variation on Proposition 9.2; it will be used often,
so it is useful to have it stated explicitly.

Corollary 9.9. Let X be a paracompact Hausdorff space. Then any injection of
bundles E ↪→ F has a splitting.

Proof. We can assume X is connected. Let Q be the cokernel, which is a vector
bundle by Corollary 9.8. By Proposition 9.2 the map F � Q has a splitting, which
then induces an isomorphism F ∼= E ⊕ Q. The composition F

∼=−→ E ⊕ Q π1−→ E
gives the required splitting of E ↪→ F . �
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The next result is of a somewhat different nature:

Proposition 9.10. Suppose that X is compact and Hausdorff. Then every bundle
is a subbundle of some finite-rank trivial bundle.

Proof. Let π : E → X be a vector bundle on X. Choose a finite cover U1, . . . , Us
over which E is trivializable, which exists because of compactness. For each i choose
a trivialization fi : E|Ui

∼=−→ Ui × Rn. Write Fi = π2 ◦ fi.
Let {φi} be a partition of unity subordinate to the open cover (Definition 8.32).

Define a map
β : E −→ X × Rn × Rn × · · · × Rn

(where there are s copies of Rn) by the formula

(*) β(v) =
(
πv, φ1(πv)F1(v), . . . , φs(πv)Fs(v)

)
.

We have written πv instead of π(v) here, to avoid being overwhelmed by parenthe-
ses. Note that if v is not in E|Ui then Fi(v) is undefined, but in this case φi(πv)
equals 0 and so the formula still makes sense. More rigorously, we can interpret
the formula φi(πv)Fi(v) as specifying continuous functions on the two closed sets
π−1(Suppφi) (which is contained in E|Ui) and on E\π−1(Suppφi) (in this case the
zero function), which agree on the overlap—so these patch to give a continuous
function on all of X. It is routine to check that formula (*) gives an embedding of
bundles. �

We can generalize Proposition 9.10 to paracompact Hausdorff spaces at the ex-
pense of passing to trivial bundles of countably-infinite rank. The proof is essentially
the same once we have established the following lemma and its corollary:

Lemma 9.11. Let X be a paracompact Hausdorff space. Let P be a property of
open subsets of X such that (1) if U has P and V ⊆ U then V also has P, (2) if
{Uα} are disjoint open subsets that all have P then so does

⋃
α Uα, and (3) X can

be covered by open sets with property P. Then X can be covered by countably many
open subsets with property P.

Proof. We take the argument from [MS, Lemma 5.9]. First choose an open cover
{Vα} by sets with property P, indexed by some set I. Then choose a partition of
unity {φα} subordinate to this cover. For each finite subset S ⊆ I, define

W (S) = {x ∈ X | φα(x) > φβ(x) for all α ∈ S and β ∈ I − S}.
Said in words, W (S) is the collection of points for which the φ’s from S are all
larger than the φ’s from outside of S. This is an open set. One sees readily that if
W (S)∩W (S′) 6= ∅ then either S ⊆ S′ or S′ ⊆ S. So if S and S′ have the same size
then W (S) and W (S′) are disjoint.

Let Wm =
⋃

#S=mW (S). Note that this is a disjoint union. If x ∈ X then let
Sx be the (necessarily finite) collection of all α ∈ I for which φα(x) is maximal.
Then x ∈ W (Sx), which shows that

⋃
mWm = X. Finally, for each S ⊆ I note

that if α ∈ S then W (S) ⊆ Suppφα ⊆ Vα. So each W (S) has property P, and
therefore each Wm has property P. �

Corollary 9.12. Let E → X be a vector bundle, where X is paracompact and
Hausdorff. Then there is a countable open cover {Ui} for X such that each E|Ui is
trivializable.
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Proof. Apply the lemma where a subset U has P if E is trivializable over U . �

Proposition 9.13. Let X be paracompact and Hausdorff, and let E → X be a
vector bundle. Then there is an embedding of bundles E ↪→ X × R∞, where R∞
denotes the vector space of countably-infinite dimension topologized as the colimit
of its finite-dimensional subspaces (see Appendix B.5).

Proof. One chooses a countable trivializing cover as in Corollary 9.12, and then the
proof is essentially identical to that for Proposition 9.10 except for one subtlety.
The construction from that proof gives a collection of continuous maps E → Rn
which can be assembled to give an embedding

g : E → X × Rn × Rn × Rn · · · ∼= X ×
∞∏
i=1

R.

The image of each point is a tuple where only finitely many entries are nonzero, so g
factors through X ×R∞. But the topology on R∞ here is the product topology—or
more precisely, the subspace topology induced by the product topology on

∏∞
i=1 R—

and this is different from the colimit topology (see Appendix B.5 for discussion of
this). So an extra argument is required to see that the map is still continuous when
R∞ has the colimit topology.

Since continuity is a local condition, it is sufficient to prove that every v ∈ E has
a neighborhood on which the function is continuous. But by the local finiteness of
the partition of unity, there is a neighborhood π(v) ∈ W with the property that
W only intersects finitely-many of the Suppφi spaces—i = 1 through i = N , say.
So the coordinates of g(v′) past the Nth all vanish, for all v′ ∈ π−1(W ). Then g
maps π−1(W ) into X × RN , and is continuous as such a map. Therefore g is also
continuous as a map g : π−1(W )→ X × R∞colim. �

Finally, we close this section with a few useful results related to ranks and ex-
actness:

Proposition 9.14. Let α : E → F be a map of vector bundles over X. Then for
any n ∈ Z≥0, the set Rn = {x ∈ X | rank(αx) ≥ n} is an open subset of X.

Proof. Let k = rank(E) and l = rank(F ). Let x ∈ Rn. We can choose a neighbor-
hood V of x over which both E and F are trivial. The map α is then specified by
a continuous function α : V → Hom(Rk,Rl) = Ml×k(R). Since rank(αx) ≥ n, some
n × n minor of α(x) is nonzero. If U ⊆ Ml×k(R) is the subspace of all matrices
for which the corresponding minor is nonzero, this is an open subset of Ml×k(R).
Then φ−1(U) is a neighborhood of x that is completely contained in Rn. �

Remark 9.15. Let Z+∞ denote the set Z equipped with the topology where the
open sets are the intervals (n,∞) for n ∈ Z. Note that since (n,∞) = [n+1,∞), the
open sets can also be described as half-open intervals. The following two conditions
on a function f : X → Z are readily seen to be equivalent:
(a) f is continuous when Z is given the topology Z+∞,
(b) for any convergent net x : I → X, there exists α ∈ I such that f(limI x) ≤ f(xi)

for all i ≥ α.
(Recall that a net is simply a function whose domain is a directed set, and the notion
of convergent net is the evident one; a standard result of point-set topology is that a
function is continuous if and only if it sends convergent nets to convergent nets [Mu,
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Section 29, Supplementary Exercise 7]). When these properties are satisfied the
function f is said to be lower semi-continuous. Briefly, in a lower semi-continous
function the value on the limit of a convergent sequence can jump down—but not
up—from the limiting values in the sequence. Proposition 9.14 says that the map
x 7→ rank(αx) is lower semi-continuous. We leave the reader to think about the
inverted notion of upper semi-continuity, and the fact that the map x 7→ nullity(αx)
is upper semi-continuous.

Proposition 9.16. Let E α−→ F
β−→ G be an exact sequence of vector bundles.

Then imα (which equals kerβ) is a vector bundle.

Proof. Using Proposition 9.3 it suffices to prove that α has constant rank on each
connected component of X. Without loss of generality we can assume that X is
connected. Since the question is local on X, we can assume that E, F , and G are
all trivial bundles. Let n = rank(F ).

Pick an x ∈ X and let p = rank(αx). Then rank(βx) = n− p by exactness. Let
U = {z ∈ X | rank(αz) ≥ p} and V = {z ∈ X | rank(βz) ≥ n − p + 1}. Note that
exactness implies that U = X−V . But both U and V are open by Proposition 9.14,
which means they are also both closed. By connectedness, U is either empty or the
whole of X. Since x ∈ U , we must have U = X.

A similar argument proves that {z ∈ X | rank(αz) ≤ p} = X. So for every z ∈ X
we have p ≤ rank(αz) ≤ p; that is, the rank of α is constant on X. �

If E• is a chain complex of vector bundles on X and x ∈ X, write (Ex)• for the
chain complex of vector spaces formed by the fibers over x. Define the support
of E•, denoted SuppE•, to be the subspace {x ∈ X | (Ex)• is not exact} ⊆ X. We
will occasionally write SuppiE• for {x ∈ X |Hi((Ex)•) 6= 0}. Note that SuppE• =⋃
i SuppiE•.

Proposition 9.17. Let E• be a chain complex of vector bundles on X. Then for
any i ∈ Z, the subspace SuppiE• is closed in X. If E• is a bounded chain complex
then SuppE• is closed.

Proof. We will prove that X − SuppiE• is open, so assume x belongs to this set.
Write the maps in the chain complex as

Ei+1
α−→ Ei

β−→ Ei−1.

Let n = rankx(Ei), a = rankx(α), and b = rankx(β). Since the complex is exact at
x in the ith spot we have a+ b = n. By Proposition 9.14 applied twice, there is an
open neighborhood U of x such that ranky(α) ≥ a and ranky(β) ≥ b for all y ∈ U .
Then we can write

a ≤ ranky(α) ≤ n− ranky(β) ≤ n− b
where the middle inequality follows from the fact that (Ey)• is a chain complex.
Since a = n− b all the inequalities are in fact equalities, and so we have exactness
at y for all y ∈ U . That is, U ⊆ X − SuppiE•.

The final statement follows from the fact that SuppE• is a finite union of the
SuppiE• spaces. �

◦ Exercises ◦
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10. Swan’s Theorem

In this section we explore our first connection between topology and algebra. We
will see that vector bundles are closely related to projective modules.

When X is a space let C(X) denote the ring of continuous functions from X to
R, where the addition and multiplication are pointwise. Recall that if E → X is a
family of vector spaces, then Γ(E) denotes the vector space of sections. In addition
to being a vector space, it is easy to see that this is actually a module over C(X):
if f ∈ C(X) and s ∈ Γ(E) then fs is the section x 7→ f(x)s(x). The assignment
E 7→ Γ(E) gives a functor from the category FamVS(X) to C(X)-modules.

Proposition 10.1. Suppose that E′ i−→ E
p−→ E′′ are maps in FamVS(X) where

i is the kernel of p. Then 0→ Γ(E′)→ Γ(E)→ Γ(E′′) is exact.

Proof. We have the pullback diagram

E′
i //

��

E

p

��
0X

ζ // E′′.

This is a pullback both in FamVS(X) and in Top, since the limits in these categories
are the same. The conclusions about Γ(−) follow immediately from categorical
diagram chasing. �

Remark 10.2. Note in particular that Proposition 10.1 applies when 0 → E′ →
E → E′′ → 0 is a fiberwise exact sequence of vector bundles over X, by ????.

If E → X is a vector bundle then of course the modules of the form Γ(E) are not
just arbitrary C(X)-modules; there is something special about them. It is easiest
to say what this is under some assumptions on X:

Proposition 10.3. If X is compact and Hausdorff, and E is a vector bundle over
X, then Γ(E) is a finitely-generated, projective module over C(X).

Proof. By Proposition 9.10 we can embed E into a trivial bundle N . This embed-
ding has constant rank on each connected component, so by Proposition 9.3 the
quotient Q is also a vector bundle. So we have the exact sequence 0→ E � N �
Q→ 0 of vector bundles on X. Now apply Γ(−), which yields the exact sequence

0→ Γ(E)→ Γ(N)→ Γ(Q)

of C(X)-modules. This much is for free. But by Proposition 9.2 the map N → Q
has a splitting, and this splitting shows that Γ(N)→ Γ(Q) is split-surjective. So

Γ(E)⊕ Γ(Q) ∼= Γ(N) = C(X)n.

That is, Γ(E) is a direct summand of a free module; hence it is projective. �

For the rest of this section we will assume that our base spaces are compact
and Hausdorff. Let Vect(X) denote the category of vector bundles over X, and
let C(X)-Mod denote the category of modules over the ring C(X). Let C(X)-proj
denote the full subcategory of finitely-generated, projective modules. Then Γ is
a functor Vect(X) → C(X)-proj. It is proven in [Sw] that this is actually an
equivalence:
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Theorem 10.4 (Swan’s Theorem). Let X be a compact, Hausdorff space. Then

Γ: Vect(X) −→ C(X)-proj

is an equivalence of categories.

Remark 10.5. Theorem 10.4 is also known as the “Serre-Swan theorem”, as Serre
had earlier proven the analogous result in algebraic geometry. The content of Swan’s
paper was to demonstrate that the basic framework provided by Serre could also be
made to work in the purely topological context. For more on the algebraic geometry
side of things, see Section 19 below.

To prove Swan’s theorem we need to verify two things:
• Every finitely-generated projective over C(X) is isomorphic to Γ(E) for

some vector bundle E.
• For every two vector bundles E and F , the induced map

Γ: HomVect(X)(E,F )→ HomC(X)(ΓE,ΓF )

is a bijection.
That is to say, we need to prove that Γ is surjective on isomorphism classes, and is
fully faithful. Here is the first part:

Proposition 10.6. If X is paracompact Hausdorff and P is a finitely-generated
projective module over C(X), then P ∼= Γ(E) for some vector bundle E → X.

Proof. Choose a surjection p : C(X)n � P . Since P is projective, there is a splitting
χ. Then e = χp satisfies e2 = e, and P is isomorphic to im(e).

Since e : C(X)n → C(X)n we can represent e by an n×n matrix whose elememts
are in C(X). Denote the entries of this matrix as eij . Note that for any x ∈ X we
can evaluate all these functions at x to get an element e(x) ∈ Mn×n(R). In this
way we can regard e as a continuous map X →Mn×n(R).

Define a map of vector bundles α : X × Rn → X × Rn by the formula α(x, v) =
e(x) · v. Then the sequence

n
α−→ n

1−α−→ n

is exact in the middle. Let E = im(α), which by Proposition 9.16 is a vector bundle
on X; the proof of that lemma also shows that α has locally constant rank. We
claim that Γ(E) ∼= P . To see this, consider the following diagram of vector bundles:

kerα // // n

!! !!

α // n

imα.
==

==

The map n→ imα is split by Proposition 9.2, because X is paracompact. Applying
Γ to the above diagram gives

Γ(kerα) // // C(X)n

%% %%

e // C(X)n

Γ(imα).
99

99

The sequence 0 → Γ(kerα) → C(X)n → Γ(imα) → 0 is exact because it was
split-exact before applying Γ, and the identification Γ(kerα) = ker(Γα) shows that
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Γ(kerα) is the kernel of e. It now follows that Γ(imα) is isomorphic to the image
of e, which is P . �

Our next goal is to prove that Γ is fully faithful. To do this, it is useful to relate
the fibers Ex of our bundle to an algebraic construction based on the module Γ(E).
For each x ∈ X consider the evaluation map evx : C(X) → R, and let mx be the
kernel. The ideal mx ⊆ C(X) is maximal, since the quotient is a field.

Note that we have the evaluation map evx : Γ(E)→ Ex. This map clearly sends
the submodule mxΓ(E) to zero so that we get the induced map Γ(E)/mxΓ(E) →
Ex. In reasonable cases this map is an isomorphism:

Lemma 10.7. Assume that X is paracompact Hausdorff. Then for any vector
bundle E → X and any x ∈ X, the map evx : Γ(E)/mxΓ(E)

∼=−→ Ex is an isomor-
phism.

Proof. We first record the following important fact, which we label (*): if s is a
section of E defined on some neighborhood U of x, then there exists a section s′

defined on all of X such that s and s′ agree on some (potentially smaller) neighbor-
hood of x. To see this, first choose a neighborhood V of x such that V ⊆ U (this
exists because X is normal). By Urysohn’s Lemma there is a continuous function
f : X → R such that f |V = 1 and f |X−U = 0. The assignment z 7→ f(z) · s(z) is
readily checked to be a continuous section of E that agrees with s on V .

To prove surjectivity of evx, let v ∈ Ex. Since E is locally trivial, one can find
a section s defined locally about x such that s(x) = v. By principle (*) there is a
section s′ defined on all of X that agrees with s near x; in particular, s′(x) = v.

For injectivity we must work a little harder. Suppose that s ∈ Γ(E) and s(x) = 0.
We must prove that s ∈ mxΓ(E). Choose independent sections e1, . . . , en defined on
a neighborhood U of x. Fact (*) says that by replacing U by a smaller neighborhood
of x we can assume that the sections are defined on all of X (but only independent
on U).

Using that e1(y), . . . , en(y) is a basis for Ey when y ∈ U , we can write s(y) =
a1(y)e1(y) + · · · + an(y)en(y) for uniquely defined numbers a1(y), . . . , an(y) ∈ R.
The functions ai are continuous (under the local trivialization given by the ei’s the
ai are just compositions of s with projection operators). Regarding the ai’s as local
sections of the trivial bundle X ×R, (*) shows we may assume the ai’s are defined
on all of X (again, we might need to replace U with a smaller neighborhood here).
Since s(x) = 0 note that 0 = a1(x) = a2(x) = · · · = an(x).

Let t = s − a1e1 − · · · − anen ∈ ΓE. Note that t vanishes throughout the
neighborhood U of x. Again using the Urysohn Lemma, choose a continuous
function b : X → R such that b(x) = 0 and b|X−U = 1. So t = bt. Then
s = t+

∑
aiei = bt+

∑
aiei ∈ mxΓ(E), since b and all the ai are in mx. �

Remark 10.8. Lemma 10.7 should be thought of as giving an algebraic construc-
tion of the geometric fiber Ex. We already encountered this idea back in Section 3
and will develop it in more detail in Section 19.

Proposition 10.9. Assume that X is paracompact Hausdorff. Then for any vector
bundles E and F over X, the map Γ: HomVect(X)(E,F ) → HomC(X)(ΓE,ΓF ) is
a bijection.

Proof. First of all, it is easy to check this when E and F are both trivial. A map
of vector bundles X ×Rk → X ×Rl is uniquely specified by a map X →Ml×k(R),
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and likewise a map of C(X)-modules C(X)k → C(X)l is specified by an l × k
matrix with entries in C(X). One observes that continuous maps X → Ml×k(R)
bijectively correspond with l × k matrices with entries in C(X).

For the general case, consider the following diagram:

HomVect(X)(E,F )
��

��

Γ // HomC(X)(ΓE,ΓF )

��∏
x∈X Hom(Ex, Fx)

∼= // ∏
x∈X Hom(ΓE/mxΓE,ΓF/mxΓF ).

The bottom horizontal map is an isomorphism by Lemma 10.7. The left vertical
arrow sends a bundle map α : E → F to the collection of its restrictions to each
fiber; surely this map is an injection. It follows at once that Γ is also an injection.

Next we show that the right vertical map is injective. Suppose β ∈
HomC(X)(ΓE,ΓF ) is sent to zero. If β 6= 0 then there is an s ∈ ΓE such that
β(s) 6= 0. Then (βs)(x) 6= 0 for some x ∈ X. The square

ΓE
β //

evx
��

ΓF

evx
��

ΓE/mxΓE
β̄ // ΓF/mxΓF

immediately shows that β̄(s(x)) cannot be zero, which is a contradiction. So indeed
the right vertical map is injective.

It remains to show that the top horizontal map (labelled Γ) in our diagram is
a surjection, so let β ∈ HomC(X)(ΓE,ΓF ). We can apply the right vertical arrow
to β, and then find a unique preimage in

∏
x Hom(Ex, Fx) using that the bottom

map is an isomorphism. This gives us a map of sets α : E → F , by defining it on
each of the fibers. We need to prove that α is continuous. However, this is a local
question: so it suffices to do so in the case that E and F are trivial, and this case
has already been verified. So we have produced a bundle map α : E → F whose
restriction to each fiber agrees with the map β. Then Γα and β are sent to the
same object under the right vertical map, therefore they must be equal. �

Note that we have now completed the proof of Swan’s Theorem, via Proposi-
tions 10.6 and 10.9.

10.10. Variants of Swan’s Theorem. While Swan’s theorem is very pretty, it is
unfortunate that the rings C(X) are quite large and unwieldy from an algebraic
perspective. For example, these are typically non-Noetherian: choose an infinite
descending sequence of sets X ⊇ A0 ⊇ A1 ⊇ A2 ⊇ · · · and look at the ideals
of functions vanishing on each Ai. In many cases, however, a projective coming
from Swan’s Theorem can be seen to be extended from a projective over a smaller,
more manageable ring. As one example, let us consider the ring R of polynomial
functions on the 2-sphere: R = R[x, y, z]/(x2 + y2 + z2− 1) ⊆ C(S2). Let T be the
module appearing as the kernel in the following short exact sequence:

0 // T // R3
[x y z] // R // 0.
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Note that the map R3 → R is split by the map 1 7→ (x, y, z), so T is projective. By
applying the functor (−)⊗R C(S2) one sees that T ⊗R C(S2) is the C(S2)-module
corresponding to the tangent bundle of S2 under Swan’s Theorem.

It is reasonable to regard the finitely-generated projective modules over R as
the “algebraic” vector bundles over S2, and this is exactly what happens in the
context of algebraic geometry. Given an affine scheme X = SpecS, the category
of algebraic vector bundles over X is defined in such a way that it is equivalent (in
some sense tautologically) to the category of finitely-generated S-projectives.

As a slight generalization of the previous example, let R be a finitely-generated
C-algebra that is an integral domain and let X = SpecR. We can consider the
topological space XC of C-valued points in X with its analytic topology, and we
get an inclusion R ↪→ C(XC). From this we get a functor P 7→ PC = P ⊗R C(XC)
from the category of finitely-generated projective R-modules into the category of
finitely-generated projective C(XC)-modules, the latter of which is equivalent to the
category of complex vector bundles on XC by Swan’s Theorem. For example, when
R = C[x1, . . . , xn] then every finitely-generated R-projective gives us an associated
complex vector bundle on Cn. This technique of passing from algebra into topology
will be used often.

Exercise 10.11. Keeping the above discussion in mind, revisit the examples of
Section 3 and think about how they fit into this perspective.

Exercise 10.12. Check that Swan’s Theorem holds for any paracompact Hausdorff
space having the property that every vector bundle is trivializable on a finite open
cover. Using the results of the next section, check that this property holds for
all paracompact Hausdorff spaces that are homotopy equivalent to a finite CW-
complex. [By ??? this includes all algebraic varieties over C.]

11. Homotopy invariance of vector bundles

For a fixed n, let Vectn(X) denote the set of isomorphism classes of vector
bundles on X. It turns out that when X is a finite complex this set is always
countable, and often finite. It actually gives a homotopy invariant of the space X.
In this section we prove the homotopy invariance property, and in the next section
we will start to compute Vectn(X) for some simple spaces X.

Write i0 and i1 for the two inclusions X ↪→ X × I coming from the boundary
points of the interval. The key to homotopy invariance is the following result.

Proposition 11.1. Let X be paracompact Hausdorff, and let E → X × I be a
vector bundle. Then there is an isomorphism i∗0(E) ∼= i∗1(E).

Before proving this let us give the evident corollaries:

Corollary 11.2. Let X be paracompact Hausdorff.
(a) If f, g : X → Y are homotopic then f∗ and g∗ give the same map Vectn(Y )→

Vectn(X), for any n ≥ 0.
(b) If Y is also paracompact Hausdorff and f : X → Y is a homotopy equivalence

then f∗ : Vectn(Y )→ Vectn(X) is a bijection, for all n ≥ 0.
(c) If X is contractible then all vector bundles on X are trivializable.
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Proof. For (a), let H : X × I → Y be a homotopy and consider the diagram

Vectn(X) Vectn(X × I)
i∗0oo
i∗1

oo Vectn(Y ).
H∗oo

One of the compositions is f∗, the other is g∗, and Proposition 11.1 says that the
two compositions are the same.

Parts (b) and (c) are simple consequences of (a). �

Example 11.3. To give an idea of how we will apply these results, let us think
about vector bundles on S1. Divide S1 into an upper hemisphere D+ and a lower
hemisphere D−, intersecting in two points. Each of D+ and D− are contractible,
so any vector bundle will be trivializable when restricted to these subspaces.

Given two elements α, β ∈ GLn(R), let En(α, β) be the vector bundle on S1

obtained by taking nD+
and nD− and gluing them together via α and β at the

two points on the equator. The considerations of the previous paragraph tell us
that every vector bundle on S1 is of this form (up to isomorphism). The following
picture depicts the construction of En(α, β):

α β
−1 1

−1 1

Note that En(id, id) = n, and E1(id,−1) = M (the Möbius bundle). It is easy
to check the following:
(1) En(α, β) ∼= En(id, α−1β)
(2) En(id, β) ∼= En(id, β′) if and only if β and β′ are in the same path component

of GLn(R) (or equivalently, if det(β) and det(β′) have the same sign).
In (2) we have used the fact that π0(GLn(R)) = Z/2, with the isomorphism being
given by the sign of the determinant.

Let us explain the above facts. The isomorphism in (1) can be depicted as

α β
−1 1

−1 1
id α−1β

f

g

−1 1

−1 1

Here f and g are maps D+ → GLn(R) and D− → GLn(R) giving the isomorphisms
on each fiber; compatibility with the gluing requires that we have g(−1)α = f(−1)
and α−1βf(1) = g(1)β. This can be achieved by letting f(t) = In and g(t) = α−1,
for all t.
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The proof of (2) is a little more subtle. To give an isomorphism E(id, β) ∼=
E(id, β′) we must again specify maps f and g as above, but this time satisfying
g(−1) = f(−1) and β′f(1) = g(1)β. If we paste D+ and D− together at −1
and identify the resulting interval with [0, 1], then we are just asking for a map
h : [0, 1]→ GLn(R) such that β′h(1) = h(0)β.

If β and β′ are in the same path component then choose a path h : I → GLn(R)
such that h(0) = β′ and h(1) = β. Since we then have β′h(1) = h(0)β, this yields
the desired isomorphism. Conversely, if we have a map h satisfying β′h(1) = h(0)β
then we can rearrange this as β′ = h(0)βh(1)−1. The term on the right is path-
connected to h(0)βh(0)−1, using the homotopy t 7→ h(0)βh(t)−1. But h(0)βh(0)−1

has the same determinant as β, so these are also in the same path-component.
Hence, β′ and β are themselves path-connected and this proves (2).

To summarize, from (1) and (2) it follows that isomorphism types for rank n bun-
dles over S1 are in bijective correspondence with the path components of GLn(R).
We know that for n > 0 there are two such path components, given by the sign of
the determinant. They can be represented by the identity matrix and the diago-
nal matrix J whose diagonal entries are −1, 1, 1, . . . , 1. The corresponding bundles
En(id, β) are n and M ⊕ (n− 1).

Most of the basics of this discussion generalize readily from S1 to Sk. We discuss
this in Proposition 12.3.

The methods of the above example apply in much greater generality, and with
little change allow one to get control over vector bundles on any suspension. We
will return to this topic in Section 12.

At this point let us now give the proof of Proposition 11.1, starting with an
overview of the basic approach. For a bundle on E → X × I one can look at the
slices E|X×{t} and try to track potential “twisting” that develops as t increases.
We need to differentiate between the twisting that was already present in E|X×{0}
and twisting that is getting added (or subtracted) as the time variable progresses.
To this end, it is useful if we can arrange things so that the new twists only occur
in sectors of EX×{0} where the bundle was already trivial. The heart of the proof
is reducing to this situation, which will then be handled by the following technical
lemma:

Lemma 11.4. Let X be a Hausdorff space and suppose given maps f, g : X → X×I
that are sections of the projection map X×I → X. Let A = {x ∈ X | f(x) = g(x)}.
Suppose there exists an open subset V of X such that (X −A) ⊆ V . Finally,
assume that E → X × I is a vector bundle that is trivializable on V × I. Then
f∗E ∼= g∗E.

The statement of the lemma is a mouthful, so let us explain a bit. The following
picture shows the two images f(X) and g(X) inside X × I, with the intersection
f(A) = g(A) drawn in bold. The region where the two sections disagree is contained
inside of V × I, where we assume the bundle E is trivializable. The proof will
construct a fiberwise isomorphism E|f(X) → E|g(X) that equals the identity on the
portion of the bundles over the bold region.
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X

I

f(X)

g(X)

V

Proof of Lemma 11.4. Let Xf = f(X) and Xg = g(X). The maps f : X → Xf and
X → Xg are homeomorphisms, and we have isomorphisms of bundles f∗E ∼= E|Xf
and g∗E ∼= E|Xg . Write B : Xf → Xg for the homeomorphism g ◦ f−1.

Note that our hypotheses say that the points where Xf and Xg differ are con-
centrated in the region V × I, where E is trivializable.

The subset A is closed because X is Hausdorff. Let C = f(A) = g(A), Df =

f
(
X −A

)
, and Dg = g

(
X −A

)
. We have Xf = C ∪ Df and Xg = C ∪ Dg,

and the subsets appearing in the unions are all closed. Observe that B maps Df

homeomorphically to Dg. Also note that Df ∩Dg ⊆ C.
For S ⊆ X × I write ES = E|S for brevity. Then EXf = EC ∪ EDf and

EXg = EC ∪ EDg are again decompositions into closed sets. We will define a map
of bundles φ : EXf → EXg that covers B:

EXf
φ //

��

EXg

��
Xf

B // Xg.

Note that Df ⊆ V × I and Dg ⊆ V × I. Choose a trivialization α : EV×I
∼=−→ n.

This gives the diagram

EDf
φ1 //

α ∼=
��

EDg

α∼=
��

Df × Rn B×id

∼=
// Dg × Rn

and we define φ1 to be the indicated fill-in. This is clearly an isomorphism of
bundles. Moreover, for x ∈ Df ∩ Dg one has B(x) = x and therefore φ1 is the
identity on the fiber over x.

We now have a continuous map φ1 : EDf → EDg ↪→ EXg , and we define
φ0 : EC ↪→ EC ∪ EDg = EXg to be the inclusion. We have just seen that φ0

and φ1 agree on the overlap, and so they patch together to define a continuous map
φ : EXf → EXg . This is an isomorphism on each fiber by construction, and hence
an isomorphism of vector bundles. �

Proof of Proposition 11.1. This proof is taken from [Ha2]. Pick an x ∈ X. Using
the compactness of I and the definition of vector bundle, we may find a neighbor-
hood U ⊆ X of x and values 0 = a0 < a1 < ... < an−1 < an = 1 such that E is
trivial over each U × [ai, ai+1]. Patching these together gives a trivialization of the
vector bundle over U × I.
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Now assume for a moment that X is compact. Then we can cover X by open
sets U1, . . . , Un such that E is trivial over each Ui × I. Choose a partition of unity
φ1, . . . , φn subordinate to this cover, and set β0 = 0, βi = φ1 + . . . + φi. Define
Xi to be the graph of βi in X × I. If fi : X → X × I is fi(x) = (x, βi(x)), then
Xi = fi(X).

Observe that βn = 1 and thus Xn = X × {1}, X0 = X × {0}. Also, βi−1 and
βi agree except on the support of φi, whose closure is inside of Ui. Because of this,
the pair of maps fi−1, fi satisfies the hypotheses of Lemma 11.4, for each i. The
following picture gives an example of the first four sections Xi; each section agrees
with the previous one except for a new “bubble” that appears in a region over the
set Ui.

X3

X2

X1

X0

Define Bi = fi−1 ◦ f−1
i . These are homeomorphisms Xi → Xi−1 that in terms

of the picture can be described as“push down until you hit the next graph".
Lemma 11.4 yields fiberwise isomorphisms φi making the diagram

E|Xi

��

φi // E|Xi−1

��
Xi

Bi // Xi−1

commute. Here we have used that Xi and Xi−1 coincide except over the open set
Ui, and that E|Ui×I is trivial.

Via the identifications X ∼= Xi, each E|Xi is a vector bundle on X and we have
isomorphisms

i∗1(E) = E|Xn
∼=−→ E|Xn−1

∼=−→ E|Xn−2

∼=−→ · · · ∼=−→ E|X1

∼=−→ E|X0
= i∗0(E).

This gives us what we wanted.
The paracompact case is similar, except for a few details. Let P be the prop-

erty that an open subset U ⊆ X is such that E is trivializable on U × I. By
Lemma 9.11 there is a countable cover {Ui} of X where each Ui has this property.
Choose a partition of unity φi and work as previously to produce fiberwise bundle
isomorphisms

· · · → EXn −→ EXn−1
−→ · · · −→ EX1

−→ EX0
.

For any particular x ∈ X the maps on the fiber over x are eventually identities
as one moves to the left, and after a finite number of steps one has (EXn)x =
(EX×{1})x (equality, not just isomorphism). So we have a fiberwise isomorphism
of sets E|X×{1} → E|X0 , and it only remains to check continuity. But continuity is
a local condition, and by local finiteness of the partition of unity one knows that
each x ∈ X has a neigborhood where the above sequence stabilizes after a finite
number of steps. Continuity is then immediate. �
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Remark 11.5. The isomorphism i∗0(E) ∼= i∗1(E) is not canonical, as is clear from
the proof of the theorem.

Remark 11.6. We have seen that all bundles on contractible spaces are trivial,
and that there is a close connection between vector bundles and projective modules.
Recall that when k is a field then k[x1, . . . , xn] is the algebraic analog of affine space
An, and that projectives over this ring correspond to algebraic vector bundles. The
analogy with topology is what led Serre to conjecture that all finitely-generated
projectives over k[x1, . . . , xn] are free, as we discussed in Example 3.7.

We have proven that if E is a vector bundle on X × I then i∗0(E) ∼= i∗1(E).
It is natural to wonder if this result has a converse, but stating such a thing is
somewhat tricky. Here is one possibility: if F and F ′ are isomorphic vector bundles
on X, is there a vector bundle E on X × I such that i∗0(E) ∼= F and i∗1(E) ∼= F ′?
Unfortunately, this has a trivial answer: yes, just take E = π∗(F ) where π : X×I →
X is the projection. So this phrasing of the question was not very informative.

Here is another possibility: if F and F ′ are isomorphic vector bundles on X, is
there a vector bundle E on X × I such that i∗0(E) = F and i∗1(E) = F ′? Note the
presence of equalities here, as opposed to isomorphisms. This question does not
have an obvious answer, but it is also the kind of question that one really doesn’t
want to be asking: saying that two abstract gadgets are equal , rather than just
isomorphic, is going to force us down a path that requires us to keep track of too
much data.

So we find ourselves in somewhat of a muddle. Perhaps there is an interesting
question here, but we don’t quite know how to ask it. One approach is to restrict to
a class of bundles where “equality” is something we can better control. For example,
one can restrict to bundles on X that sit inside of X × R∞. Here, finally, we have
an interesting question: if F and F ′ are two such bundles, which are abstractly
isomorphic, is there a bundle E inside of (X × I)× R∞ that restricts to F and F ′
at times 0 and 1? The answer is yes, and we will discuss this further in Section 13.

11.7. Isomorphisms and homotopy invariance. Let E and F be two vector
bundles on a space X, and let u, v : E → F be two bundle maps. Let π : X×I → X
be the projection. Define a homotopy from u to v to be a bundle map π∗E → π∗F
that restricts to u on X × 0 and to v on X × 1. Intuitively, this is the same as
deforming u to v through bundle maps (we will make this precise in a moment).

For arbitrary bundle maps the set of homotopy classes isn’t very interesting,
since via scalar multiplication we find that every bundle map is homotopic to the
zero map. It is more interesting to put restrictions on the maps, and to require that
the homotopies respect these restrictions. For example, we can require u and v to
be isomorphisms and then that the homotopy π∗E → π∗F also be an isomorphism.
When we talk about homotopies between bundle isomorphisms this is always what
we will mean.

The following result is a bit silly but will be useful later on. We will also outline
a massive generalization in the exercises.

Proposition 11.8. Let X be a paracompact Hausdorff space, and let E and F be
bundles on X × I. Any bundle isomorphism u0 : E|X×0 → F |X×0 may be extended
to a bundle isomorphism u : E → F , and given any two such extensions their
restrictions to X × 1 are homotopic (through isomorphisms).
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Proof. Note that the second statement is trivial, because by definition an extension
is a homotopy from u|X×1 to u|X×0. Given two such extensions u and u′, we simply
glue them together at u|X×0 to obtain a homotopy from u|X×1 to u′|X×1.

For the first statement, by Corollary 11.2(b) the map π∗ : Vectn(X) →
Vectn(X × I) is a bijection. So there exist bundles E′ and F ′ on X together with
isomorphisms E ∼= π∗E′ and F ∼= π∗F ′, and therefore it is enough to prove the
result for π∗E′ and π∗F ′. In this case, the first statement simply claims that any
bundle map E′ → F ′ extends to a bundle map π∗E′ → π∗F ′, which is obvious. �

◦ Exercises ◦

Exercise 11.9. Let E and F be rank n bundles on X, and recall the bun-
dle Hom(E,F ) → X whose fiber over a point x ∈ X is Hom(Ex, Fx). Define
Iso(E,F ) ⊆ Hom(E,F ) to be the subspace whose fibers over x are Iso(Ex, Fx).
Finally, define IsoX(E,F ) to be the space of sections of Iso(E,F ) → X, equipped
with the compact-open topology. Said differently, IsoX(E,F ) is defined by the
pullback diagram

Iso(E,F ) //

��

Iso(E,F )X

��
∗ id // XX

where the function spaces have the usual compact-open topology.
For the following exercises assume that X is locally compact and Hausdorff, so

that one has the natural adjunction isomorphism Top(Z, Y X) ∼= Top(Z ×X,Y ).
(a) If E = n = F verify that IsoX(E,F ) ∼= GLn(R)X .
(b) If Z is a space verify that IsoX(E,F )Z ∼= IsoZ×X(π∗E, π∗F ) where π : Z×X →

X is the projection.
(c) Let u, v : E → F be bundle isomorphisms. Prove that u and v are homotopic in

the sense defined in Section 11.7 if and only if there is a path I → IsoX(E,F )
from u to v.

(d) Given a map g : Y → X explain how to get an induced map of spaces
IsoX(E,F )→ IsoY (g∗E, g∗F ) that has the evident behavior on points.

(e) Let J andM be bundles onX×I, and assume thatX is paracompact Hausdorff.
Prove that the restriction maps

resi : IsoX×I(J,M)→ IsoX×{i}(J |X×{i},M |X×{i})
(induced by the inclusions X × {i} ↪→ X × I as in (d)) are acyclic fibrations,
for i ∈ {0, 1}. [Hint: It suffices to prove this when J = π∗E and M = π∗F
for some bundles E and F on X. Relate the restriction maps to the evaluation
maps evi : W

I →W for a certain space W .]
(f) It follows from (e) that the restriction maps are surjective and induce bijections

on path components. Relate this statement to Proposition 11.8.

12. Vector bundles on spheres

In this section we explore the set of isomorphism classes Vectn(Sk) for various
values of k and n. Our goal is to compute as much as we can by elementary means
and see how far this gets us.
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In the end there are two important points to keep in mind. First, for a fixed
k these sets stabilize for n � 0. Secondly, Bott was able to compute these stable
values completely and found an 8-fold periodicity (with respect to k) in the case of
real vector bundles, and a 2-fold periodicity in the case of complex bundles. Bott’s
periodicity theorems are of paramount importance in modern algebraic topology
and will be discussed at length later in the book.

12.1. The clutching construction. LetX be a pointed space, and let C+ and C−
be the positive and negative cones in ΣX. Fix n ≥ 0. For a map f : X → GLn(R),
let En(f) be the vector bundle obtained by gluing n|C+ and n|C− via the map f
(we use Corollary 8.27(b) here). Precisely, if x ∈ X and v belongs to the fiber of
nC+

over x then we glue v to f(x) · v in the fiber of nC− over x. This procedure for
constructing vector bundles on ΣX is called clutching , and when X is paracompact
Hausdroff every bundle on ΣX arises in this way (use Corollary 11.2(c) to see that
the bundle is trivial on the two cones). By changing basis in one of the trivial
bundles we can always require f(∗) = In; that is, we can require f to be a based
map.

Proposition 12.2. Let X be a paracompact Hausdorff space with a chosen base-
point. If f, f ′ : X → GLn(R) are homotopic relative to the basepoint, then En(f) ∼=
En(f ′). Therefore we have a well-defined map En : [X,GLn(R)]∗ → Vectn(ΣX),
and in addition this map is surjective.

Proof. Given a homotopy H between f and f ′, we use H to make a bundle E on
(ΣX) × I by gluing together trivial bundles on C+ × I and C− × I via H. Then
E|X×{0} ∼= En(f) and E|X×{1} ∼= En(f ′) by construction, so En(f) ∼= En(f ′) by
Proposition 11.1.

To see that the map En is surjective, just note that a given vector bundle E

on ΣX can be trivialized on C+X and C−X by Corollary 11.2(c). Choose such
isomorphisms φ+ : E|C+X → (C+X)×Rn and φ− : E|C−X → (C−X)×Rn, then let
F be the composite isomorphism

X × Rn
(φ+)−1

// E|X
φ− // X × Rn.

By Proposition 8.7 this has the form F (x, v) = (x, fx(v)) for a unique map f : X →
GLn(R).

The maps φ+ and φ− can be regarded as vector bundle maps E|C+X →
En(f)|C+X and E|C−X → En(g)|C−X , and by our construction of f they agree
on E|X . So they induce a vector bundle map φ : E → En(f) that is a fiberwise
isomorphism, and therefore an isomorphism of vector bundles by Exercise 8.14. �

It is natural to guess that En : [X,GLn(R)]∗ → Vectn(ΣX) is an isomorphism,
but this is not quite true. It does turn out to be true when R is replaced by C and
we are dealing with complex vector bundles, but over the reals there is an issue. To
see this, observe that GLn(R) acts on [X,GLn(R)]∗ by pointwise conjugation: if
A ∈ GLn(R) and f : X → GLn(R) then define A.f by (A.f)(x) = A·f(x)·A−1. If A
and B in GLn(R) are connected by a path then A.f and B.f are based homotopic,
and so the action factors through π0GLn(R) = Z/2. For the analogous story over
the complex numbers note that the action factors through π0GLn(C) = ∗, and so
the action is trivial.



104 DANIEL DUGGER

Notice that En(f) ∼= En(A.f) for all A and f ; the isomorphism from the former
to the latter just consists of left multiplication by A on the trivial bundles C+X×Rn
and C−X ×Rn, which are readily checked to be compatible with the gluing maps.
So our En map factors as

[X,GLn(R)]∗/(Z/2)� Vectn(ΣX)

where in the domain we factor out by the group action of Z/2.

Proposition 12.3. The above maps ER
n : [X,GLn(R)]∗/(Z/2) → Vectn(ΣX) and

EC
n : [X,GLn(C)]∗ → VectCn(ΣX) are bijections. Moreover, when n is odd the action

of Z/2 on [X,GLn(R)]∗ is trivial.

Proof. Let f, g : X → GLn(R) be based maps with En(f) ∼= En(g). A choice of
isomorphism α amounts to giving maps α+ : C+X → GLn(R) and α− : C−X →
GLn(R) such that

(*) g · (α+|X) = (α−|X) · f.
Evaluating at the basepoint gives α+(∗) = α−(∗). Let A denote this element of
GLn(R).

Since α+|X has an extension to C+X there is a homotopy relative to the base-
point between α+|X and the constant map with value A. The same holds for α−|X.
Then (*) gives that g · A ' A · f , or g ' A · f · A−1. This verifies that En is an
injection when we mod out by the Z/2 conjugation action on the domain.

Finally, we need to prove that the Z/2 action is trivial when n is odd. But in this
case the two components of GLn(R) are represented by I and −I, and conjugation
by both of these elements is trivial. �

Example 12.4. To see the importance of the Z/2-action in the above result, con-
sider the case where X = S1 and n = 2. Here we are dealing with

E2 : [S1, GL2(R)]∗ → Vect2(S2).

We can replace GL2(R) by its homotopy-equivalent subgroup O(2), and then by
SO(2) since any pointed map S1 → O(2) must land entirely inside SO(2). Let
us also identify S1 ∼= SO(2) via eiθ 7→

[
cos θ − sin θ
sin θ cos θ

]
. We of course know that

[S1, S1]∗ ∼= Z via the degree map. So [S1, SO(2)]∗ ∼= Z with n ∈ Z corresponding
to the map

fn : S1 → SO(2), eiθ 7→
[

cosnθ − sinnθ
sinnθ cosnθ

]
.

The nontrivial path component of GL2(R) is represented by A =
[−1 0

0 1

]
. Con-

jugating fn by A gives

eiθ 7→
[−1 0

0 1

]
·
[

cosnθ − sinnθ
sinnθ cosnθ

]
·
[−1 0

0 1

]
=
[

cosnθ sinnθ
− sinnθ cosnθ

]
and this is precisely f−n. So we see that the Z/2-action is nontrivial here, and the
map E2 is not injective before we quotient out by this action.

Exercise 12.5. Think through the isomorphism E(f1) ∼= E(f−1) (or more gener-
ally, E(fn) ∼= E(f−n)) for bundles on S2 until it feels second nature to you.

Our next goal is to apply Proposition 12.3 when X is a sphere Sk−1, in order
to obtain a classification of bundles on Sk. For rank 2 bundles on S2 this was the
content of Example 12.4, but we want to see how much further we can push those
ideas. The proposition gives a bijection Vectn(Sk) ' [πk−1GLn(R)]/(Z/2). It will
be convenient to replace GLn(R) with its subgroup On. Recall that On ↪→ GLn(R)
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is a deformation retract, as a consequence of the Gram-Schmidt process. When
k ≥ 2 any based map Sk−1 → On must actually factor through the connected
component of the identity, which is SOn. So we have

Vectn(Sk) ∼= [πk−1GLn(R)]/(Z/2) ∼= [πk−1On]/(Z/2) ∼= [πk−1SOn]/(Z/2)

(where the last isomorphism needs k ≥ 2).

12.6. Vector bundles on S1. For k = 1 and n > 0 we need to look at π0GLn(R) =
Z/2. The conjugation action is trivial here (it is literally the conjugation on the
group Z/2, which is trivial since the group is abelian). So we find that Vectn(S1) ∼=
Z/2, and we have previously seen in Example 11.3 that the two isomorphism classes
are represented by n and M ⊕ (n− 1) where M is the Möbius bundle.

12.7. Vector bundles on S2. Here we have Vectn(S2) ∼= [π1SOn]/(Z/2). When
n = 1 we have SO1 = Z/2 and π1SO1 = ∗, so all line bundles on S2 are trivial.
We analyzed n = 2 in Example 12.4 and found a bijection Vect2(S2) ∼= Z≥0. We
claim that for n > 2 one has π1SOn ∼= Z/2 and the action of Z/2 is trivial, so that
we have the following:

Proposition 12.8. Vectn(S2) ∼=


∗ if n = 1,

Z≥0 if n = 2,

Z/2Z if n ≥ 3.

Proof. For n = 3 recall that SO3
∼= RP 3, so that π1(SO3) ∼= Z/2. To see the

homeomorphism use the model RP 3 ∼= D3/∼ where the equivalence relation has
x ∼ −x for x ∈ ∂D3. Map D3 → SO3 by sending a vector v to the rotation of R3

with axis 〈v〉, through |v| · π radians, in the direction given by a right-hand-rule
with the thumb pointed along v. Note that this makes sense even for v = 0, since
the corresponding rotation is through 0 radians. For x ∈ ∂D3 this map sends x
and −x to the same rotation, and so induces a map RP 3 → SO3. This is clearly a
continuous bijection, and therefore a homeomorphism since the spaces are compact
and Hausdorff.

For n ≥ 4 one can use the long exact sequence associated to the fibration
SOn−1 ↪→ SOn � Sn−1 to deduce that SOn−1 ↪→ SOn induces an isomorphism on
π1.

To deduce that the conjugation action is trivial, we recall that the nonzero
element of π0On is represented by any orthogonal matrix of determinant −1. A
convenient choice is the diagonal reflection matrix An = diag(−1, 1, 1, . . . , 1). We
know that conjugation by An acts trivially on π1SOn when n > 1 is odd (see the
last sentence of Proposition 12.3), and the same statement for even numbers n ≥ 4
follows from lifting the generator of π1SOn back to π1SOn−1. �

Definition 12.9. Let O(n) ∈ Vect2(S2) be the vector bundle Efn where fn : S1 →
SO2 is a map of degree n. Note that O(0) ∼= 2.

The bundles O(n), n ∈ Z≥0, give a complete list of the rank 2 bundles on S2.
To get to higher ranks we consider the operation of adding on a trivial line bundle,
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and note that we have commutative diagrams

Vect2(S2)
⊕1 // Vect3(S2) Vectn−1(S2)

⊕1 // Vectn(S2)

π1(SO2)/(Z/2)
(i2)∗ //

∼=

OO

π1(SO3)

∼=

OO

π1(SOn−1)

∼=

OO

(in−1)∗ // π1(SOn)

∼=

OO

where in the second diagram n ≥ 4, the bottom maps are induced by the inclusions
in−1 : SOn−1 ↪→ SOn, and we are using the fact that the conjugation action on
π1(SOn) is trivial when n ≥ 3. We saw in the proof of Proposition 12.8 that
(in−1)∗ is an isomorphism for n ≥ 4 and surjective for n = 3, and so the same is
true for the top maps in the two squares. That is, bundles of rank at least 3 on S2

all come from bundles of rank 2 by adding on trivial bundles.
The map π1(SO2)→ π1(SO3) is readily seen to be the projection Z→ Z/2 (use

the fibration sequence SO2 ↪→ SO3 → S2). This shows that O(j)⊕1 is trivial when
j is even, and is isomorphic to the nontrivial bundle O(1)⊕ 1 when j is odd.

Putting all of this information together, the following table shows all the vector
bundles on S2:

n 1 2 3 4 5 6
Vectn(S2) 1 O(n), n ∈ Z≥0 3, O(1)⊕ 1 4, O(1)⊕ 2 5, O(1)⊕ 3 · · ·

The operation (−) ⊕ 1 moves us from one column of the table to the next, and is
completely clear except from column 2 to column 3; as we saw above, there it is
given by O(j)⊕ 1 ∼= 3 if j is even, and O(j)⊕ 1 ∼= O(1)⊕ 1 if j is odd.

To complete our study of these bundles there is one final question that we should
answer, namely what happens when one adds two rank 2 bundles (all other sums
can be figured out once one knows how to do these):

Theorem 12.10. O(j)⊕ O(k) ∼=
{

4 if j + k is even,
O(1)⊕ 2 if j + k is odd.

Proof. Let fj : S1 → SO2 and fk : S1 → SO2 be the clutching functions for O(j)
andO(k), respectively. The clutching function for the bundleO(j)⊕O(k) is the map
fj ⊕ fk : S1 → SO4, where ⊕ is the (pointwise) block diagonal sum SO2 × SO2 →
SO4, given by

(A,B) 7→
[
A O
0 B

]
.

We can factor fj ⊕ fk = (fj ⊕ f0) · (f0 ⊕ fk) where · is pointwise multiplication
and f0 is the constant map at the identity. It is a standard fact in topology that
the group structure on [S1, SO4]∗ given by pointwise multiplication agrees with the
group structure given by concatenation of loops (this is true with SO4 replaced by
any topological group). Note that the homotopy classes of f0 ⊕ fk and fk ⊕ f0 are
the same, since these clutching functions give rise to isomorphic bundles. So we
have

[fj ⊕ fk] = [fj ⊕ f0] + [fk ⊕ f0]

where this is a statement abouts sums of homotopy classes in π1(SO4).
But π1(SO4) = Z/2. The function fj ⊕ f0 is the nontrivial element of π1SO4

precisely when j is odd, and similarly for fk ⊕ f0. It follows that the sum of these
elements is trivial/non-trivial when j + k is even/odd. �
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The core argument used in the above proof actually works verbatim in other
dimensions, so we record the result below for later use:

Proposition 12.11. For any n and k, the following diagram commutes:

Vectn(Sk)×Vectn(Sk)
⊕ // Vect2n(Sk)

(πk−1SOn)/(Z/2)× (πk−1SOn)/(Z/2)

∼=

OO

(πk−1SO2n)/(Z/2)

∼=

OO

πk−1SOn × πk−1SOn
µ //

OOOO

πk−1SOn
i∗ // πk−1SO2n.

OOOO

Here µ is the group operation on πk−1SOn.

Exercise 12.12. Think through the proof of Proposition 12.11.

12.13. Vector bundles on S3. Now we have to calculate π2SOn. This is trivial
for n ≤ 2 (easy), and for n = 3 it also trivial: use SO3

∼= RP 3 and the fibration
sequence Z/2 ↪→ S3 � RP 3. Finally, the fibration sequences SOn−1 ↪→ SOn �
Sn−1 now show that π2SOn = 0 for all n. We have proven

Proposition 12.14. Vectn(S3) ∼= π2(SOn) ∼= 0. That is, every vector bundle on
S3 is trivializable.

12.15. Vector bundles on S4. Once again, the first step is to calculate π3SOn.
Eventually one expects to get stuck here, but so far we have been fortunate. The
group is trivial for n ≤ 2, and for n = 3 it is Z using SO3

∼= RP 3 and Z/2 →
S3 � RP 3. Next look at the long exact homotopy sequence for the fibration
SO3 ↪→ SO4 → S3:

· · · → Z/2 = π4(S3)→ Z→ π3SO4 → Z→ π2(SO3) = 0.

It follows that π3SO4
∼= Z2. Next do the same thing for SO4 ↪→ SO5 → S4:

· · · → Z = π4S
4 → π3SO4 → π3SO5 → 0.

Unfortunately we cannot go further without calculating the map π4S
4 → π3SO4,

which is Z→ Z2. So now we are indeed stuck, unless we can resolve this issue. Note,
however, that the fibrations SOn−1 ↪→ SOn → Sn−1 show that π3SO5 = π3SOn
for n ≥ 5, so once we’ve figured this one out we know everything. It will take us
a moment, but we will show that the map Z ↪→ Z2 is a split inclusion. So we get
that

Proposition 12.16. π3(SOn) ∼=


1 n ≤ 2

Z n = 3

Z2 n = 4

Z n ≥ 5.
Moreover, the maps π3SOn → π3SOn+1 are isomorphisms for n ≥ 5, and a surjec-
tion when n = 4.

The way we “get lucky” here is that we can think of S3 as the unit quaternions,
and then use quaternionic arithmetic to get our hands on both π3SO3 and π3SO4.
This gets a bit gnarly and takes a couple of pages, but is worth sketching. For
each q ∈ S3 the conjugation map γq : H → H given by x 7→ qxq̄ is orthogonal and
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fixes 1. So it induces an orthogonal transformation of 〈1〉⊥ = 〈i, j, k〉, which we
may identify with an element of SO3. The resulting map C1 : S3 → SO3 given by
q 7→ γq|〈i,j,k〉 has the property that C1(q) = C1(−q) for all q ∈ S3, and the induced
map RP 3 → SO3 is readily seen to be a homeomorphism. Since elements of π3SO3

are classified by their degree (use SO3
∼= RP 3 and Z/2 → S3 → RP 3), C1 is a

generator. Write Cn for q 7→ γqn = (γq)
n, which is the n-fold multiple of C1 in

π3SO3.
Let f be the image of C1 in π3SO4. Here we think of SO4 as acting on the

quaternions H by taking 1, i, j, k as the standard basis, so that the inclusion SO3 ↪→
SO4 is X 7→ [ 1 0

0 X ]. Then f(q) is still conjugation by q, since that operation fixes
1. Things are about to become slightly awkward in that we will want to use both
additive and multiplicative notation for the group operation in π3SO4, the latter
mostly when we are using matrix multiplication. We will write f or nf when using
additive notation, and C1 or Cn when using multiplicative notation.

The element f (or C1) gives us the generator of π3SO4 that comes from π3SO3.
Using the long exact sequence for SO3 → SO4

p1−→ S3, where p1 is projection onto
the first column, for the second generator we can take any map g : S3 → SO4 having
the property that the composite

S3 g−→ SO4
p1−→ S3

has degree 1. Consider the maps Ln : S3 → SO4 sending q ∈ S3 to left multiplica-
tion by qn (so Ln = (L1)n). The fact that [L1(q)](1) = q shows p1 ◦ L1 = id, and
so L1 is a choice for the second generator for π3SO4. The elements of π3SO4 can
therefore be written as CkLn = LnCk for k, n ∈ Z. When working additively we
will write L1 as g, so that f and g form our additive basis for π3SO4

∼= Z2.
The next step is to think about the conjugation action on π3SOn−1 that comes

into our bijection Vectn(S4) ∼= (π3SOn−1)/(Z/2). We know the action on π3SOn
is trivial when n is odd, and then the isomorphisms π3SOn ∼= π3SOn+1 for n ≥ 5
show that the action is trivial in that range. So the only place it has to be analyzed
is for n = 4.

For conjugation in SO4 we use the matrix B = diag(1,−1,−1,−1), which as
a transformation of H is B(x) = x̄ (we could use A = diag(−1, 1, 1, 1) instead to
match our previous work, but that introduces an unwelcome and unhelpful minus
sign into the formulas on H). Then we readily compute that BC1B

−1 sends q ∈ S3

to the map
x 7→ (qx̄q̄) = qxq̄ = C1(x),

or BC1B
−1 = C1. Likewise, BL1B

−1 sends q ∈ S3 to the map

x 7→ (qx̄) = xq̄ = q(q−1x)q̄ = [C1(q)L−1(q)](x).

This is, BL1B
−1 = C1L−1. So in additive notation the conjugation action on

π3SO4 = Z〈f, g〉 is f 7→ f , g 7→ f − g, or (a, b) 7→ (a + b,−b). Each orbit
has a unique element with non-negative second coordinate, therefore the quotient
(π3SO4)/(Z/2) can be identified with Z× Z≥0.

What is left to do is to understand the connecting homomorphism for the long
exact homotopy sequence for the fibration SO4 ↪→ SO5 → S4

Z ∂−→ π3SO4
i∗−→ π3SO5 → 0.
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But this is the same as understanding the kernel of i∗, which by the long exact
sequence can have rank at most 1. We identify π3SO4 with Z2 via the basis f, g,
and recall that the conjugation action is (a, b) 7→ (a+ b,−b). Since the conjugation
action on π3SO5 is trivial, we know that (0, 1) and (1,−1) will both map to the
same element. So (1,−2) is in the kernel of i∗. But the only subgroup of Z2 that
contains (1,−2) and has rank at most 1 is 〈(1,−2)〉, and so this must be ker(i∗).
Therefore the image of ∂ is this subgroup, and this completes our analysis.

The following table summarizes some of what we now know about vector bundles
on S4:

n 1 2 3 4 5 6 7
Vectn(S4) ∗ ∗ Z Z× Z≥0 Z Z · · ·

All of the bundles of rank 5 and higher come from adding trivial bundles to rank 4
bundles. Let us give names to some of the bundles and thereby give a more precise
description. Let Fn be the rank 3 bundle whose clutching function is nf (or Cn).
Let Gn,k be the rank 4 bundle whose clutching function is nf + kg, where n, k ∈ Z
and k ≥ 0. Note that Gn,0 = Fn ⊕ 1. We have shown that Ga,b ⊕ 1 ∼= Ga+1,b−2 ⊕ 1,
and so for a complete list of rank 5 bundles we can use Gn,0 ⊕ 1 = Fn ⊕ 2 and
Gn,1⊕1, for n ∈ Z. In our basis the map π3SO4 → π3SO5 is the map Z2 → Z given
by (a, b) = 2a+ b, and so in our bijection Vect5(S4) ∼= Z we have Fn ⊕ 2 7→ 2n and
Gn,1 ⊕ 1 7→ 2n+ 1.

The following table compactly summarizes all of the vector bundles on S4:

n 1 2 3 4 5 6
Vectn(S4) ∗ ∗ Fn (n∈Z) Gn,k (n∈Z,k∈Z≥0) Fn ⊕ 2, Gn,1 ⊕ 1 (n∈Z) · · ·

The direct sum relations are all deduced from Fn⊕Fn′ ∼= 3⊕Fn+n′ and Ga,b⊕Ga′,b′ ∼=
4⊕ Ga+a′,b+b′ . These follow directly from Proposition 12.11.

Exercise 12.17 (Challenge). Show that the tangent bundle TS4 is isomorphic to
G−1,2 (or equivalently, G1,−2). One way is to follow the steps below:
(1) First check that TS4 ⊕ 1 is trivial, and deduce that TS4 ∼= G−a,2a for some

a ≥ 0.
(2) Regard S4 as the sphere inside R〈eN 〉 ⊕H, where eN is the “north pole”. The

equator of S4 is then the unit quaternions, and the tangent space of S4 at eN
is identified with H by projection. Orient S4 by having 1, i, j, k be an oriented
basis of TeNS4, and then verify that −1, i, j, k is an oriented basis of T−eNS4.

(3) Let 〈x, q〉 = Re(xq̄) be the standard inner product on H. For each q ∈ S3

consider the transformation Rθ,q of R ⊕ H that rotates the plane Span{eN , q}
by θ radians and is the identity on Span{eN , q}⊥. We rotate according to the
orientation that when θ = π

2 the vector eN rotates to q, and q to −eN . Prove
that for x ∈ H = TeNS

4 we have

Rθ,q(x) = −(sin θ)〈x, q〉eN + (cos θ − 1)〈x, q〉q + x.

Conclude that Rπ,q(x) = x− 2〈x, q〉q, which is the reflection of x in the hyper-
plane 〈q〉⊥ of H.

(4) Verify that to get the clutching function for TS4 we can use q 7→ Rπ,q but with
one caveat. The way we have set things up, this maps S3 into the determinant
−1 component of O4. To instead get into SO4 we need to compose this with a
fixed orthogonal transformation of determinant −1; choose the transformation
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A(x) = −x̄. In this way we get the clutching function h : S3 → SO4 given by

q 7→ [x 7→ −(x− 2〈x, q〉q)].
(5) We know that h = (−a, 2a) for some a in our basis for π3SO4 = Z2, so to de-

termine a it suffices to compute the image of h under the map (p1)∗ : π3SO4 →
π3S

3. This image is p1 ◦ h, which is

q 7→ Rπ,q(1) = 2〈1, q〉q̄ − 1.

Verify that this map has degree −2 as a map S3 → S3, for example by using
the local degree theorem.

(6) The previous part completes the problem, but for good measure let us compute
just a little more. The element 2g+h will have (p1)∗(2g+h) = 0, and so 2g+h
will be a multiple of f . We already know what multiple this must be, but let
us find it by brute force. The element 2g + h is represented by

q 7→ [x 7→ −q2(x− 2〈x, q〉q) = −q2x̄+ 2〈x, q〉q].
Verify that restricting to x = 1 gives the map q 7→ 1, i.e. the trivial map
S3 → S3. If we instead restrict to 〈x, 1〉 = 0 (i.e. x ∈ 〈i, j, k〉) show that the
above formula reduces to

q 7→ [x 7→ qxq̄] = C1(q).

This confirms that 2g+h is represented by the image of the element C1 ∈ π3SO3

under i∗ : π3SO3 → π3SO4, i.e. that 2g + h = f . So h = −f + 2g.

12.18. Vector bundles on Sk. Although we cannot readily do the calculations for
k > 4, at this point one sees the general pattern. One must calculate πk−1SOn for
each n, and these groups vary for a while but eventually stabilize. In fact, πiSOn ∼=
πiSOn+1 for n > i + 1. The calculation of these stable groups was an important
problem back in the 1950s, that was eventually solved by Bott. (There is again
the conjugation action that must be dealt with, but because of the stabilization
isomorphisms this action is trivial when n is large enough.)

Let us phrase things as follows. Consider the inclusions

O1 ↪→ O2 ↪→ O3 ↪→ · · ·

that send a matrix A to
[
A 0
0 1

]
. The colimit of this sequence is denoted O and

called the stable orthogonal group. The homotopy groups of O are the stable
values that we encountered above. We computed the first few: π0O = Z/2, π1O =
Z/2, π2O = 0, and π3O = Z. Bott’s calculation showed the following:

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πiO Z/2 Z/2 0 Z 0 0 0 Z Z/2 Z/2 0 Z 0 0 0 Z

The pattern is 8-fold periodic: πi+8O ∼= πiO for all i ≥ 0. One is supposed to
remember the pattern of groups to the tune of “Twinkle, Twinkle, Little Star”:

zee - two - zee - two - ze - ro - zee ze - ro - ze - ro - ze - ro - zee.

We will eventually have to understand Bott’s computations at a deeper level; in
particular, we will need to get our hands on explicit generators. See Part 6 for an
extensive treatment. But for now we will just accept that the values are as given
above.
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Exercise 12.19. Using the methods we have demonstrated for Sn, n ≤ 4, attempt
to understand all vector bundles on S5. Look up whatever homotopy groups of
spheres you need to do the calculations. Establishing a complete classification is
challenging and perhaps requires more tools than we have developed, but you should
be able to at least determine the following:

• All bundles of rank 1 and 2 are trivial.
• There is exactly one nontrivial bundle of rank 3. Describe the clutching

function as concretely as you can.
• There are at most four different isomorphism types of rank 4 bundles.
• All bundles of rank 5 or more are obtained by adding trivial bundles to

rank 4 bundles, and therefore there are at most four isomorphism classes
in each rank.

• [Accepting the Bott results] All bundles of rank 6 or higher are trivial.

12.20. Complex vector bundles on spheres. One can repeat the above analysis
for complex vector bundles on a sphere. One finds that

VectCn(Sk) ∼= πk−1(GLn(C)) ∼= πk−1(Un),

where Un ↪→ GLn(C) is the unitary group. Analogously to the real case, one has
fiber bundles Un−1 ↪→ Un � S2n−1 coming from the fact that when Un acts on Cn
the orbit of e1 is S2n−1 and the stabilizer is Un−1. Using that U1

∼= S1 one can
again compute VectCn(Sk) for small values of k. Here is what you get:

n 1 2 3 4 5 6 · · ·
VectCn(S1) 0 0 0 0 0 0 · · ·
VectCn(S2) Z Z Z Z Z Z · · ·
VectCn(S3) 0 0 0 0 0 0 · · ·
VectCn(S4) 0 Z Z Z Z Z · · ·
VectCn(S5) 0 Z/2 0 or Z/2 0 or Z/2 0 or Z/2 0 or Z/2 · · ·

The stable value in the last row turns out to be 0, although one cannot figure this
out without computing a connecting homomorphism in the long exact homotopy
sequence.

Exercise 12.21. Verify all of the computations in the above table.

The fiber bundles Un ↪→ Un+1 � S2n+1 again imply that πiUn stabilizes as n
grows. In fact, πiUn ∼= πiUn+1 for n > i

2 . We can write the stable value as πiU
where U is the infinite unitary group defined as the colimit of

U1 ↪→ U2 ↪→ U3 ↪→ · · ·
Bott computed the homotopy groups of U to be 2-fold periodic, with

πiU =

{
Z if i is odd
0 if i is even.

Again, for now we will just accept this result; but eventually we will have to un-
derstand the computation in more detail, and in particular we will need to get our
hands on specific generators.
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13. Classifying spaces

Consider the functor sending a paracompact Hausdorff space X to the set
Vectn(X). This is contravariant and homotopy invariant, so it has the feel of a
functor [−, Y ] for some space Y—that is, a functor that is representable in the
homotopy category. In this section we prove that the functor Vectn(−) is indeed
representable. A representing space Y is called a classifying space for rank n
vector bundles. There are different methods for constructing such a space, some
more homotopical and some more geometric.

Before embarking on the construction, let us give an overview of some of the
key ideas. Suppose given a space VBn and a rank n vector bundle γn → VBn.
To every map f : X → VBn we can associate the pullback bundle f∗γn, and by
Proposition 11.1(a) this gives a natural transformation [X,VBn] → Vectn(X) for
paracompact Hausdorff spaces X. It will then be a matter of proving surjectivity
and injectivity of this natural map, and our construction of VBn will give sur-
jectivity almost automatically: that is, for any vector bundle E → X there is a
map f : X → VBn and an isomorphism E ∼= f∗γn. The bundle γn → VBn is
called a “universal bundle”, since every other rank n bundle is pulled back from it.
Injectivity of our natural transformation is the slightly subtle part.

For injectivity we will produce an analogous classifying space for isomorphisms
between bundles of rank n. This will be a space VBIn together with two canonical
maps π1, π2 : VBIn → VBn and an isomorphism φ : π∗1γn → π∗2γn. For any two
maps f, g : X → VBn and an isomorphism f∗γn ∼= g∗γn there will exist a map
u : X → VBIn such that π1 ◦ u ' f and π2 ◦ u ' g. This is the analog of the
surjectivity part of the previous paragraph, and is again fairly easy.

Finally, we will construct a map VBIn → (VBn)I sitting in a homotopy-
commutative diagram

VBn

VBIn //

π1

11

π2 --

(VBn)I
ev0

::

ev1

$$
VBn .

As an exercise, check that injectivity of [X,VBn]→ Vectn(X) follows formally from
these considerations. So the work ahead of us comes down to constructing VBn
and VBIn with the properties outlined above.

One may view a vector bundle as a family of vector spaces indexed by the base
space. In general, it is often useful to view a map E → B as a family of if each
fiber is a . Taking our cue from the subject of moduli spaces, one could naively
hope that families of some mathematical object over B are in bijection with maps
from B to some space, called the moduli space corresponding to that mathematical
object. With this naive idea, we would have that families over ∗ are in bijective
correspondence with points of our moduli space. But for rank n vector bundles this
would mean that the moduli space has only one point, since there is only one real
vector space of rank n. So this can’t work.

What turns out to work instead is a homotopical version of the theory, where
rank n vector bundles over B are in bijective correspondence with homotopy classes
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of maps from B to a ‘homotopical moduli space’. Our goal in this section is to
construct this space—called the classifying space of rank n vector bundles—and
prove the bijective correspondence.

There are several different approaches to the construction of classifying spaces,
but we will only focus on the most geometric of these. Instead of just one rank n
vector space we look at all of the rank n subspaces of some fixed infinite-dimensional
vector space. This gets somewhat technical because of the ins-and-outs of dealing
with R∞.

13.1. Grassmannians. We start by developing the basic theory of Grassmannians
for topological vector spaces. We include the case where the vector space is infinite-
dimensional, though one is free to think mostly about the finite-dimensional case.
To this end, let W be a topological vector space. Let V In(W ) ⊆Wn be the subset
of tuples (w1, . . . , wn) that are linearly independent, equipped with the subspace
topology (the ‘V’ is the usual notation for Stiefel manifolds, and here ‘I’ stands for
‘independent’). Define Grn(W ) to be the quotient space of V In(W ) with respect
to the relation where (w1, . . . , wn) ∼ (w′1, . . . , w

′
n) if the vectors span the same

subspace. As usual, we identify points of Grn(W ) with n-dimensional subspaces of
W .

From another perspective, change-of-basis gives a continuous group action of
GLn(R) on V In(W ), and V In(W ) → Grn(W ) is just quotienting by this action.
Let us construct the action carefully. If w = (w1, . . . , wn) is a tuple of vectors in W
and P ∈ GLn(R), define [w · P ]j =

∑
i wiPij . Note that if W = Rk and we regard

each wi as a column vector then w is a k×n matrix and this definition is just matrix
multiplication. Our definition clearly gives a map of sets V In(W ) × GLn(R) →
V In(W ). To see continuity start with the “linear combination map” LC : Wn ×
Rn → W , (w, r) 7→∑

i riwi. This is continuous because W is a topological vector
space. Next consider the diagram

V In(W )×GLn(R) //
��

��

V In(W )
��

��

Wn ×GLn(R)
��

��
Wn × (Rn)n // Wn.

The map GLn(R) ↪→ (Rn)n sends a matrix to the n-tuple of its columns, and the
bottom horizontal map is a product of n copies of LC and so is continuous. The
down-bottom composite factors through the subspace V In(W ), thereby giving the
upper horizontal map.

Let W ′ be another topological vector space. If f : W → W ′ is a continuous
linear embedding then the map Wn → (W ′)n restricts to V In(W )→ V In(W ′) and
therefore induces a map Grn(W )→ Grn(W ′). We will generally denote all of these
maps by f as well. The following result just says that homotopies among the maps
W →W ′ descend to homotopies among the induced maps of Grassmannians.
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Lemma 13.2. Suppose that H : W × I →W ′ is a homotopy such that each Ht is a
linear embedding. Then there is a homotopy Grn(W )× I → Grn(W ′) that at each
time t is the map induced by Ht.

Proof. Let H̃ be the composite

Wn × I id×∆ // Wn × In Hn // (W ′)n

which sends (w1, . . . , wn, t) 7→ (Ht(w1), . . . ,Ht(wn)). This is continuous by con-
struction. Since each Ht is a linear embedding the composite restricts to give

H̃ : V In(W )× I −→ V In(W ′).

In the diagram

V In(W )× I //

����

V In(W ′) // Grn(W ′)

Grn(W )× I

33

the projection V In(W )× I → Grn(W )× I is a quotient map by [Mu, Chapter 29,
Exercise 11], and one readily checks that the quotient relations are respected by
the horizontal map. So the indicated extension exists. �

Corollary 13.3. If k < N ≤ ∞ then all linear embeddings Rk ↪→ RN induce
homotopic maps on Grassmannians.

Proof. First assume N < ∞. Since a linear map Rk → RN is completely deter-
mined by the image of the standard basis, the space of all such embeddings is
homeomorphic to V Ik(RN ). The usual Stiefel manifold Vk(RN ) of orthornormal
frames sits inside V Ik(RN ) as a deformation retract, by Gram-Schmidt. But the
space Vk(RN ) is connected, by the usual inductive argument using the fibrations
Vk−1(RN−1) → Vk(RN ) → V1(RN ) (this is where we need k < N). So any two
points are connected by a path, i.e. any two linear embeddings are connected by a
homotopy through linear embeddings.

For the case N = ∞ just use that any linear map Rk → R∞ factors through a
finite Rs, and then appeal to what has already been proven. �

Here is a useful property of the V I-spaces:

Proposition 13.4. There is a natural bijection between Top(X,V In(W )) and the
set of fiberwise injections of families of vector spaces nX ↪→ X ×W .

Proof. Start with the linear combination map LC : V In(W ) × Rn → W . Given a
map f : X → V In(W ), let φf be the composite

X × Rn f×id−→ V In(W )× Rn LC−→W.

This is evidentally continuous. We then get (π1, φf ) : X × Rn → X ×W and one
readily checks that this is a fiberwise injective map of families.

In the other direction, suppose given a fiberwise injective map of families j : X×
Rn ↪→ X ×W . For each i let αi be the composite

X × {ei} ↪→ X × Rn j−→ X ×W π2−→W,
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which is clearly continuous. These induce α : X → Wn, and the image lies in the
subspace V In(W ). So we get a continuous map X → V In(W ). This construction
is readily checked to be a two-sided inverse for the construction of the previous
paragraph. �

To prove more about V In(W ) and Grn(W ) we will have to assume that W is
a reasonable topological vector space in the sense of Definition B.10. This ensures
that finite-dimensionsal subspaces of W are homeomorphic to Rn, and that when
W = F + W ′ is a direct sum decomposition with F finite-dimensionsal then the
corresponding projections from W to F and W ′ are continuous. The main non-
trivial example to keep in mind is W = R∞ (with the colimit topology), though
the finite-dimensional spaces Rn are also examples. Note that R∞ in the metric or
product topologies are not reasonable topological vector spaces in this sense.

Proposition 13.5. If W is a reasonable topological vector space then the quotient
map p : V In(W )→ Grn(W ) is a principal GLn(R)-bundle.

Proof. Let F ⊆ W be a subspace of dimension n. Choose a complement W ′
for F and write πF : W → F and πW ′ : W → W ′ for the associated projections.
These are continuous because W is reasonable (Proposition B.11). Set U = {J ∈
Grn(W ) |πF (J) = F}. We will prove that U is a neighborhood of F in Grn(W )
that trivializes p.

Observe that

p−1(U) = {(w1, . . . , wn) ∈Wn |πF (w1), . . . , πF (wn) is a basis for F}.
The set p−1(U) is open in V In(W ) because it sits in the pullback diagram

V In(W ) // // Wn πF // // Fn

p−1(U) //
OO

OO

V In(F )

OO

OO

and V In(F ) ↪→ Fn is open. The last statement is because F ∼= Rn (this uses
that W is reasonable) and for n vectors in Rn independence is determined by the
nonvanishing of the determinant. Also, note that we are using continuity of πF .

Since p−1(U) is open in V In(W ), we have that U is open in Grn(W ).
We have the continuous map

α : p−1(U)→ (W ′)n × Fn, w 7→ (πW ′(w1), . . . , πW ′(wn), πF (w1), . . . , πF (wn)).

This is continuous because both πF and πW ′ are continuous, by Proposition B.11.
Note that the image of α lands in the subspace (W ′)n× V In(F ). We also have the
map β given by the composite

(W ′)n × V In(F ) ↪→ (W ′)n × Fn = (W ′ × F )n ↪→ (W ×W )n
+−→Wn

and the image lands in p−1(U). One readily checks that α and β are inverses, so
we have the homeomorphism p−1(U) ∼= (W ′)n × V In(F ).

Choose a basis b1, . . . , bn for F . Let f be the composite

(W ′)n = (W ′)n × {(b1, . . . , bn)} ↪→ (W ′)n × V In(F )
β−→ p−1(U)

p−→ U.
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This is readily seen to be a bijection, but we need to prove it is a homeomorphism.
For this consider the composite

p−1(U)

α

��
(W ′)n × V In(F )

a // (W ′)n ×GLn(R)
b // (W ′)n × (Rn)n

c // (W ′)n.

The map a comes from the identification F ∼= Rn provided by the chosen basis.
The map b sends a matrix in GLn(R) to its tuple of rows. The map c consists
of several instances of the linear combination map (W ′)n × Rn → W ′ given by
((w), (r)) 7→ ∑

riwi. All of these maps are continuous. The composite takes a
tuple of the form (v1 + w′1, . . . , vn + w′n) where (v1, . . . , vn) ∈ V In(F ) and each
w′i ∈ W ′ and sends it to the W ′-projections of the unique basis for the same span
that has the form (b1 +w′′1 , . . . , bn +w′′n) with w′′i ∈W ′ for all i. This map respects
the quotient relation for p−1(U) → U and so descends to give a map U → (W ′)n.
This is the inverse to the map f , thereby proving that f is a homeomorphism.

Putting everything together, at this point we have produced the homeomorphism
in the commutative triangle

p−1(U)

##

∼=
// U ×GLn(R)

yy
U.

It is routine to check that the horizontal map respects the right GLn(R) action.
This completes the proof that p is a principal GLn(R)-bundle. �

In the course of the above proof we also established the following result, which
we record for future use:

Proposition 13.6. Every point in Grn(W ) has a neighborhood that is homeomor-
phic to (W ′)n for some subspace W ′ ⊆W such that dim(W/W ′) = n.

Define γn(W ) to be the vector bundle associated to the principal GLn(R)-bundle
V In(W )→ Grn(W ). That is,

γn(W ) = V In(W )×GLn(R) Rn.
There is a continuous map φ : γn(W )→W defined by ((w1, . . . , wn), (r1, . . . , rn)) 7→
r1w1 + · · · + rnwn. From this we can construct γn(W ) → Grn(W ) ×W which is
the projection in the first coordinate and φ in the second. As a map of sets this is
readily checked to be an injection.

Proposition 13.7. The canonical map γn(W ) → Grn(W ) ×W is a homeomor-
phism onto its image (in the subspace topology).

Proof. Let f denote the canonical map in question, and let Z denote the image of
f with the subspace topology. We have the triangle

γn(W )

p %%

f // Z

π1{{
Grn(W ).
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The map Z → Grn(W ) is a rank n subfamily of the trivial family of vector spaces
Grn(W )×W , and f is an isomorphism on each fiber. Our approach will be to prove
that Z → Grn(W ) is a vector bundle. It will then follow that f is an isomorphism
of vector bundles and hence a homeomorphism.

For each n-dimensional subspace F ⊆ W with chosen complement W ′ let
UF,W ′ ⊆ Grn(W ) be the subspace of n-planes J for which πF (J) = F . In a previous
proof we showed that these are open subsets, and clearly they cover Grn(W ). (In
fact we only need one choice of W ′ for each F , but that fact will not be used). We
also showed that if b1, . . . , bn is a basis for F then the map φb : (W ′)n → UF,W ′

given by (w′1, . . . , w
′
n) 7→ Span(b1 + w′1, . . . , bn + w′n) is a homeomorphism.

Given a pair (F,W ′), choose a basis b for F . For convenience write ZF,W ′ =

π−1
1 (UF,W ′) = Z ∩ (UF,W ′ ×W ). Consider the diagram

(W ′)n × Rn LC //

∼=φb×id

��

ZF,W ′ // // UF,W ′ ×W
id×πF
��

UF,W ′ × Rn
id×LCb
∼=

// UF,W ′ × F.

Here LCb is the map r 7→∑
i ribi, and LC is the map (w′, r) 7→ (φb(w

′),
∑
i ri(bi +

w′i)). All of the maps are obviously continuous and the diagram is readily checked
to commute. Also, LC is clearly a set-theoretic bijection. It then follows imme-
diately that LC is a homeomorphism, as the inverse is given by going around the
other side of the diagram (using the inverses of the maps we already know are
homeomorphisms).

We have produced a homeomorphism π−1
1 (UF,W ′) = ZF,W ′ ∼= UF,W ′ × Rn,

namely the map (φb × id) ◦ LC−1 in the above diagram. This is the desired lo-
cal trivialization, showing that Z → Grn(W ) is indeed a vector bundle. �

The standard inclusions Rn ↪→ Rn+1 ↪→ Rn+2 ↪→ · · · give an induced system of
maps

Grn(Rn) ↪→ Grn(Rn+1) ↪→ · · · ↪→ Grn(R∞)

and similarly for the V In and γn constructions.

Proposition 13.8. The canonical maps colims V In(Rs) → V In(R∞),
colims Grn(Rs) → Grn(R∞), and colims γn(Rs) → γn(R∞) are all homeomor-
phisms.

Proof. Consider the following three directed systems and their abutments:

(Rn)n // (Rn+1)n // (Rn+2)n // · · · // (R∞)n

V In(Rn)

pn
����

//
OO

OO

V In(Rn+1)

pn+1

����

//
OO

OO

V In(Rn+2)

OO

OO

pn+2

����

// · · · // V In(R∞)

OO

OO

p
����

Grn(Rn) // Grn(Rn+1) // Grn(Rn+2) // · · · // Grn(R∞).

It is trivial that in each case the map from the colimit to the rightmost entry is a
continuous bijection, but a little work is required to check that these are homeo-
morphisms.
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By Corollary B.18 we have that (R∞)n is the colimit of the top directed system.
The intersection of V In(R∞) with (Rk)n is V In(Rk), and this is open in (Rk)n

because it is the set of n×k matrices with at least one non-vanishing n×nminor. So
V In(R∞) is open in (R∞)n and is the colimit of the middle system. Finally, suppose
U ⊆ Grn(R∞) is such that its intersection with each Grn(Rs) is open in Grn(Rs).
Then p−1

s (U ∩Grn(Rs)) is open in V In(Rs), but this set is also p−1(U)∩ V In(Rs).
Therefore p−1(U) is open in V In(R∞), and hence U is open. This confirms that
Grn(R∞) is the colimit of the bottom system.

Finally, we turn to the map colims γn(Rs)→ γn(R∞). For this consider the two
directed systems

V In(Rn)× Rn // //

����

V In(Rn+1)× Rn // //

����

· · · // // V In(R∞)× Rn

����
γn(Rn) // γn(Rn+1) // · · · // γn(R∞)

Since Rn is locally compact and Hausdorff the colimit of the top row is the space
on the right; this uses Exercise A.1 together with what we have already proven
about V In. It then follows formally that the induced map V In(R∞) × Rn →
colims γn(Rs) is quotient map (see Exercise A.2). The quotient relations are the
same as the ones that define γn(R∞), so we deduce that colims γn(Rs)→ γn(R∞)
is a homeomorphism. �

The bundle γn(R∞) → Grn(R∞) allows us to construct the natural transfor-
mation ΘX : [X,Grn(R∞)] → Vectn(X) sending f 7→ f∗γn (for X paracompact
Hausdorff).

Lemma 13.9. For X paracompact Hausdorff the map ΘX is a surjection.

Proof. Let π : E → X be a rank n vector bundle. By Proposition 9.13 we know
that there is a fiberwise embedding of bundles j : E ↪→ X×R∞. Define the function
f : X → Grn(R∞) by f(x) = π2(j(Ex)). We need to check that f is continuous.
This can be done locally on X, and so we can assume E is trivial. In that case
Proposition 13.4 says that the map j is determined by a continuous map X →
V In(R∞). The composite of this map with the projection to Grn(R∞) is precisely
f , and this verifies continuity.

Consider the map (fπ, π2j) : E → Grn(R∞) × R∞. This is clearly continuous,
and its image lands in the subspace γn(R∞) (this uses ???). The diagram

E

((

''

''
f∗γn(R∞) //

��

γn(R∞)

��
X

f // Grn(R∞)

gives us an induced map E → f∗γn which is readily seen to be an isomorphism on
each fiber and hence an isomorphism of bundles. So the map f is a preimage for E
under ΘX . �

Remark 13.10. Note in the above proof that if X were actually compact then the
bundle embedding could be chosen to be E ↪→ X × Rs for some s < ∞, and then
f maps to the finite Grassmannian Grn(Rs).
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Proposition 13.11. Let jev, jodd : R∞ → R∞ be given by jev(x1, x2, ...) =
(0, x1, 0, x2, ...) and jodd(x1, x2, ...) = (x1, 0, x2, 0, ...). Then jev ' id and jodd ' id,
via homotopies H having the property that each Ht is a linear embedding. Conse-
quently, the maps jev, jodd : Grn(R∞)→ Grn(R∞) are homotopic.

Proof. We prove the claim for jev; the proof for jodd is analogous. Define a homo-
topy H : R∞×I → R∞ by H(x, t) = tjev(x)+(1−t)x. This is continuous using that
R∞×I is the colimit of the Rk×I (Exercise A.1). This is clearly a homotopy between
jev and id. It remains to be shown that this is a homotopy through linear embed-
dings. Let t ∈ (0, 1) and suppose that H(x, t) = 0. We need to show that x = 0.
Our assumption yields 0 = ((1− t)x1, tx1 + (1− t)x2, (1− t)x3, tx2 + (1− t)x4, ...).
Therefore (1− t)xi = 0 for all odd i; but since t 6= 1, this means that xi = 0 for all
odd i. Likewise, observe that txn + (1− t)x2n = 0 for all n ∈ N. So xn = 0 implies
x2n = 0. Since we have xi = 0 for all odd i and every natural number n can be
written in the form n = 2e · (odd), it follows that x = 0.

The last statement in the proposition follows from Lemma 13.2 �

Corollary 13.12. Any two linear embeddings f, g : R∞ → R∞ are homotopic
through linear embeddings, and therefore induced homotopic maps on Grn(R∞).

Proof. By Proposition 13.11 the map f is homotopic to jev ◦ f , and the map g is
homotopic to jodd ◦g. So we may assume that im(f) ⊆ R∞ev and im(g) ⊆ R∞odd. Now
consider the map H : R∞ × I → R∞ given by H(x, t) = tf(x) + (1− t)g(x). �

Theorem 13.13. The map φ : [X,Grn(R∞]→ Vectn(X) is a bijection when X is
paracompact and Hausdorff.

Proof. Surjectivity was established in Lemma 13.9, so only injectivity remains to
be shown. Assume f, g : X → Grn(R∞) are such that f∗(γn) ∼= g∗(γn) as vector
bundles over X. We will show that f is homotopic to g. By Proposition 13.11, we
may replace f by jev ◦ f and g by jodd ◦ g. In doing so, we are effectively assuming
that f(x) ⊆ R∞ev and g(x) ⊆ R∞odd, for each x ∈ X.

Let α : f∗γn → g∗γn be a choice of isomorphism. Define a map H : X × I →
Grn(R∞) by the formula

H(x, t) = {tv + (1− t)α(v) | v ∈ f(x)}.
It is easy to see that H(x, t) is indeed an n-dimensional subspace of R∞, using that
f(x) ⊆ R∞ev and g(x) ⊆ R∞odd. Also H(x, 0) = g and H(x, 1) = f by definition. It
only remains to check continuity of H. This is a local issue, so we can restrict to
an open set U ⊆ X on which f∗γn is trivializable.

Choose an isomorphism A : nU → f∗γn|U and let B = α ◦ A. The composite
U × Rn A−→ (f∗γn)|U ↪→ U × R∞ is a fiberwise embedding and so corresponds to
a map f̃ : U → V In(R∞) by Proposition 13.4, and the image of f̃ actually lies in
V In(R∞ev). Likewise, the composite U × Rn B−→ (g∗γn)|U ↪→ U × R∞ corresponds
to a map g̃ : U → V In(R∞) that factors through V In(R∞odd).
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The assignment (u, t) 7→ tf̃(u) + (1− t)g̃(u) gives a continuous map J : U × I →
V In(R∞). To check continuity just refer to the diagram

V In(R∞ev)× V In(R∞odd)× I //
��

��

V In(R∞)
��

��
(R∞)n × (R∞)n × I // (R∞)n

where the bottom map is (a, b, t) 7→ ta + (1 − t)b and is cleary continuous. The
image of the top left corner in (R∞)n lands in V In(R∞) by algebra, and so we get
the induced dotted arrow. The map J is obtained just by precomposing the dotted
arrow with (f̃ , g̃).

The projection of J down to Grn(R∞) is exactly H|U×I . This verifies continuity
of H and completes the proof. �

13.14. Representing operations on vector bundles. If C is a category then
a map f : W → Z in C induces a map of representable functors f∗ : C(−,W ) →
C(−, Z). The Yoneda lemma says this in fact gives a bijection between C(W,Z)
and the set of natural transformations C(−,W )→ C(−, Z). In particular, this im-
plies that natural transformations Vectn(X)→ Vectr(X) correspond to homotopy
classes of maps maps Grn(R∞)→ Grr(R∞).

A simple example of this is the assignment E 7→ E ⊕ 1, regarded as a natural
transformation Vectn(X)→ Vectn+1(X). The corresponding map P1 : Grn(R∞)→
Grn+1(R∞) (really, just a homotopy class) can be described as the composite

Grn(R∞) −→ Grn+1(R⊕ R∞)
∼=−→ Grn+1(R∞)

where the first map sends an n-planeW to 〈e0〉⊕W , where e0 is the standard basis
for the added copy of R. The second map is the one induced by any linear homeo-
morphism R⊕R∞ → R∞ (they all induced homotopic maps on the Grassmannisn
by Corollary 13.12). For specificity let us choose the linear homeomorphism that
sends ei 7→ ei+1 for all i. To check that P1 really does induce the “⊕1” natural
transformation, just verify that P ∗1 γn+1

∼= γn ⊕ 1; this is routine.
As another example consider the direct sum operation Vectn(X)×Vectk(X)→

Vectn+k(X), sending (E,E′) 7→ E ⊕E′. This will be induced by a homotopy class
of maps Grn(R∞)×Grk(R∞)→ Grn+k(R∞). Such a map can be constructed as

Grn(R∞)×Grk(R∞)
⊕−→ Grn+k(R∞ ⊕ R∞)

∼=−→ Grn+k(R∞)

where the first map sends a pair of subspaces (J1, J2) to J1 ⊕ J2 and the second is
induced by any linear homeomorphism R∞⊕R∞ → R∞ (they all induce homotopic
maps by Corollary 13.12. For example, choose any bijection α : Z+×Z+ → Z+ and
then use the linear map that sends ei ⊕ ej 7→ eα(i,j). Again, to justify that P does
represent the direct sum map one verifies that P ∗γn+k

∼= γn⊕̂γk, which is an easy
exercise.

Continuity of the ⊕ map requires some comment. If the product Grn(R∞) ×
Grk(R∞) is given the compactly-generated topology then it may be identified with
colims,t[Grn(Rs)×Grk(Rt)] and then continuity of the map is immediate. However,
one can also verify continuity when the domain has the product topology. Start
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with the composite

V In(R∞)× V Ik(R∞) // // (R∞)n × (R∞)k (R∞ × {0})n × ({0} × R∞)k
��

��
(R∞ ⊕ R∞)n+k

and observe that the image lands inside V In+k(R∞ ⊕ R∞). Next consider the
diagram

V In(R∞)× V Ik(R∞) //

��

V In+k(R∞) // Grn+k(R∞)

Grn(R∞)×Grk(R∞).

22

The maps V In(R∞) → Grn(R∞) and V Ik(R∞) → Grk(R∞) are fiber bundles
and therefore are open quotient maps. The product of two open quotient maps
is again an open quotient map (exercise!). The quotient relations for V In(R∞) ×
V Ik(R∞)→ Grn(R∞)×Grk(R∞) are satisfied by the composite (*), so this yields
the dotted arrow in the diagram. This arrow is readily verified to by ⊕.

For a third method of verifying the continuity of ⊕, see Exercise13.17.

There are many examples similar to the previous two where one constructs ex-
plicit maps on classifying spaces representing some algebraic construction. Let us
do just one more. Given any vector space V we know how to construct the exterior
product ΛkV and this is functorial. An n-plane J ⊆ R∞ therefore gives an

(
n
k

)
-

plane ΛkJ ⊆ ΛkR∞. Choosing a linear homeomorphism ΛkR∞ ∼= R∞ therefore
gives the map L obtained as the composite

Grn(R∞)
Λk−→ Gr(nk)

(ΛkR∞)
∼=−→ Gr(nk)

(R∞).

Given a rank n bundle E → X we could define its kth exterior product to be the
bundle represented by L ◦ f , where f is any representing map for E.

Exercise 13.15. Verify continuity of the Λk map in the above composite. [Hint: It
suffices to show that the map preserves convergent sequences. Use the fiber bundle
V In(R∞)→ Grn(R∞).]

Exercise 13.16. Think about some of the pros and cons of constructing ΛkE in
the above manner, compared to the construction that chooses a local trivialization
of the bundle and applies Λk to each patch.

Exercise 13.17. Prove that Grn(R∞)×Grk(R∞) is sequentially determined, and
then prove that the map⊕ : Grn(R∞)×Grk(R∞)→ Grn+k(R∞⊕R∞) is continuous
by proving that it preserves convergent sequences. [Hint: Consult Proposition 13.6
and Exercise A.7(g).]

13.18. Stabilization of vector bundles. Here is a simple application of classi-
fying spaces that we will occasionally find useful. Fix a space X. If E → X is a
vector bundle of rank n, then of course E ⊕ 1 is a vector bundle of rank n+ 1. We
get a sequence of maps

Vect0(X)
⊕1−→ Vect1(X)

⊕1−→ Vect2(X)
⊕1−→ · · ·
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Are these maps injective? Surjective? Are there more and more isomorphism
classes of vector bundles as one goes up in rank, or is it the case that all “large”
rank vector bundles actually come from smaller ones via addition of a trivial bundle?
A homotopical analysis of classifying spaces yields some partial answers here. We
handle both the case of real and complex bundles:

Proposition 13.19. Let X be a finite-dimensional CW-complex. For real vector
bundles, Vectn(X)→ Vectn+1(X) is a bijection for n ≥ dimX+1 and a surjection
for n = dimX. For complex bundles, VectCn(X) → VectCn+1(X) is a bijection for
n ≥ 1

2 dimX and a surjection for n ≥ 1
2 (dimX − 1).

Proof. The map Vectn(X) → Vectn+1(X) is represented by a map of spaces
f : Grn(R∞)→ Grn+1(R∞). One model for this map is the one that sends a sub-
space V ⊆ R∞ to R⊕V ⊆ R⊕R∞ and then uses a fixed isomorphism R⊕R∞ ∼= R∞
to obtain a point in Grn+1(R∞). To establish the proposition we must analyze when
[X,Grn(R∞)]

f∗−→ [X,Grn+1(R∞)] is injective/surjective.
Now, the inclusion Grn(R∞) ↪→ Grn+1(R∞) is n-connected. This can be argued

in different ways, but one way is to examine the Schubert cell decompositions of
each space and observe that they are identical until one reaches dimension n + 1.
This connectivity result implies that [B,Grn(R∞)] → [B,Grn+1(R∞)] is bijective
for CW-complexes with dimB ≤ n − 1, and surjective for CW-complexes with
dimB = n. We simply apply this to B = X.

For the complex case, Grn(C∞) ↪→ Grn+1(C∞) is now (2n + 1)-connected. So
we get the analogous bijection for CW-complexes B of dimension at most 2n, and
the surjection when dimB = 2n+ 1. �

◦ Exercises ◦

Exercise 13.20. Consider the natural transformation Vect1(X) × Vect1(X) →
Vect1(X) given by (L1, L2) 7→ L1 ⊗ L2. This is represented by a map m : RP∞ ×
RP∞ → RP∞. Prove that the induced map m∗ on H∗(−;Z/2) sends the generator
x ∈ H1(RP∞;Z/2) to x ⊗ 1 + 1 ⊗ x. [Note that since RP∞ is a K(Z/2, 1) this
characterization completely determines the homotopy class of m.]

Exercise 13.21. If L → X is a real line bundle then L ⊗ L is trivial. Give three
proofs of this fact, using the following strategies:
(i) Equip L with an inner product and then construct a nonzero section of L⊗L

by patching local sections together.
(ii) Prove that if L is any line bundle then the evaluation homomorphism L⊗L∗ →

1 is an isomorphism, and then use that L ∼= L∗.
(iii) Write down a model for the map f : RP∞ → RP∞ that represents the natural

transformation Vect1(X)→ Vect1(X) given by L→ L⊗ L, and prove that f
is homotopic to the identity.

14. Topological K-theory

For a compact and Hausdorff space X, let KO(X) denote the Grothendieck
group of (finite rank) real vector bundles over X. Swan’s Theorem gives that
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KO(X) ∼= Kalg(C(X)), where the latter denotes the Grothendieck group of finitely-
generated projectives. We can repeat this definition for both complex and quater-
nionic bundles, to define groups KU(X) and KSp(X), respectively. The group
KU(X) is most commonly just written K(X) for brevity. In this section we start
to develop the general theory of these groups, mostly concentrating on KO(X)
because the story is very analogous in the three cases.

The main point is that KO(X) is the 0th group in a generalized cohomology
theory (and likewise for KU(X) and KSp(X)). We will sketch the construction of
this theory, though some key elements will be postponed until later.

Until we explicitly mention otherwise, all spaces in this section are assumed to
be compact and Hausdorff.

14.1. Initial observations on KO. Observe that KO(−) is a contravariant func-
tor: if f : X → Y then f∗ : KO(Y ) → KO(X) sends [E] to [f∗E]. In particular,
the squash map p : X → ∗ yields a split-inclusion p∗ : KO(∗)→ KO(X), where the
splitting is induced by any choice of basepoint in X. One has KO(∗) ∼= Z, so Z is a
direct summand of KO(X). To analyze the complement we can take two different
approaches:

Definition 14.2. For x ∈ X let K̃O (X,x) = ker[KO(X)
i∗−→ KO(x)] where

i : {x} ↪→ X. Further, define KOst(X) = KO(X)/p∗KO(∗).

The group K̃O (X,x) is called the reduced KO-group of the pointed space X.
We call KOst(X) the Grothendieck group of stable vector bundles on X.
The reason for the latter terminology will be clear momentarily. These two groups
are isomorphic; algebraically, this is coming from the split-exact sequence

0 −→ KO(∗) p∗−→ KO(X) −→ KOst −→ 0.

If i : {x} ↪→ X is the inclusion then i∗ is a splitting for the first map in the sequence.
One gets an isomorphism between KOst(X) and ker i∗ in the evident way, by
sending a class [E] to [E]− p∗i∗[E]. This isomorphism is used so frequently that it
is worth recording more visibly:

KOst(X) ∼= K̃O (X,x) via [E] 7→ [E]− [rankx(E)].(14.3)

Remark 14.4. Both KOst(X) and K̃O (X,x) appear often in algebraic topology,
and topologists are somewhat cavalier about mixing them up. We give here one
example where this can cause confusion.

Tensor product of bundles makes KO(X) into a ring, via the formula [E] · [F ] =

[E ⊗ F ] and extending linearly. Then K̃O (X,x) is an ideal of this ring. Therefore
KOst(X) may be given a product via the above isomorphism, but this product
is not [E] · [F ] = [E ⊗ F ]. Indeed, it is clear that this definition would not be
invariant under E 7→ E ⊕ 1. The product on KOst(X) is instead [E] · [F ] =
[E ⊗ F ]− (rankE)[F ]− (rankF )[E] + (rankE)(rankF ).

We offer the following alternative description of KOst(X). Let Vect(X) be the
set of isomorphism classes of vector bundles on X, and impose the equivalence
relation E ' E ⊕ 1 for every vector bundle E. The set of equivalence classes is
obviously a monoid under direct sum, but it is actually more than a monoid: it
is a group. To see this, recall that if E is any vector bundle over X then there
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exists an embedding E ↪→ N for sufficiently large N (Proposition 9.10). If Q is the
quotient then we have the exact sequence 0→ E → N → Q→ 0, which is split by
Proposition 9.2. So E ⊕ Q ∼= N . Yet N = 0 under our equivalence relation, and
so E has an additive inverse. It is easy to see that KOst(X) is precisely this set of
equivalence classes.

Finally, here is a third description of KOst(X). Consider the chain of maps

Vect0(X)
⊕1−→ Vect1(X)

⊕1−→ Vect2(X)
⊕1−→ · · ·

When X is path-connected the colimit is the set of equivalence classes described
in the preceding paragraph, and therefore coincides with KOst(X). Note that if
X were not path connected then we would only be getting the monoid of vector
bundles of constant rank on X. Recall that Vectn(X) = [X,Grn(R∞)], and one
easily sees that the ⊕1 map is represented by the map of spaces

Grn(R∞) −→ Grn+1(R⊕ R∞) = Grn+1(R∞)

that sends a subspace U ⊆ R∞ to R ⊕ U ⊆ R ⊕ R∞. Let Gr∞(R∞) denote the
colimit of these maps

Gr1(R∞)
⊕1−→ Gr2(R∞)

⊕1−→ Gr3(R∞)
⊕1−→ · · ·

(we really want the homotopy colimit, if you know what that is, but in this case
the colimit has the same homotopy type and is good enough). You might recall
that Grn(R∞) is also called BOn, and likewise Gr∞(R∞) is also called BO.

Then for compact, path-connected Hausdorff spaces X we have a bijection

colim
n

[X,Grn(R∞)] −→ [X,Gr∞(R∞)].

So we have learned that KOst(X) ' [X,BO].
If X has a basepoint then we can consider [X,BO]∗ instead of [X,BO]. There

is the evident map [X,BO]∗ → [X,BO]. Typically there would be no reason for
this to be a bijection, but BO is a path-connected H-space: and in that setting the
map is a bijection. So in fact we can write

KOst(X) ' [X,BO]∗ (X path-connected).

Applying this in particular to X = Sk we have that for k ≥ 1

K̃O (Sk) ∼= KOst(Sk) ∼= [Sk, BO] ∼= [Sk, BO]∗ = πk(BO) = πk−1(O).

The calculations of Bott therefore give us the values of K̃O (Sk). For k = 0 observe
that KO(S0) = KO(∗ t ∗) ∼= Z⊕ Z, so we have K̃O (S0) ∼= Z. This lets us fill out
the table:

Table 14.4. Reduced KO-theory of spheres

k 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
K̃O (Sk) Z Z/2 Z/2 0 Z 0 0 0 Z Z/2 Z/2 0 · · ·

Now let X be an arbitrary CW-complex, not necessarily compact or connected.
We define

KO(X) = [X+,Z×BO]∗ = [X,Z×BO],

where X+ denotes X with a disjoint basepoint added. For a pointed space X we
define K̃O (X) = [X,Z×BO]∗.
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As we have seen before, Bott Periodicity shows that the homotopy groups of Z×
BO are 8-fold periodic. This is a consequence of the following stronger statement:

Theorem 14.5 (Bott Periodicity, Strong version). There is a weak equivalence of
spaces Z×BO ' Ω8(Z×BO).

Using Bott Periodicity we can then calculate that for every pointed space X one
has

K̃O (Σ8X) = [Σ8X,Z×BO]∗ = [X,Ω8(Z×BO)]∗ = [X,Z×BO]∗ = K̃O (X).

Remark 14.6. In the complex case, Bott Periodicity gives the weak equivalence
Z×BU ' Ω2(Z×BU). Consequently one obtains K̃(Σ2X) ∼= K̃(X) for all pointed
spaces X.

14.7. K-theory as a cohomology theory. WhenX is compact and Hausdorff we
have seen that KO(X) ∼= [X+,Z×BO]∗, where X+ is X with a disjoint basepoint
added. The point of this isomorphism is that it immediately gives us several tools
for computing KO(X) that we didn’t have before. These are tools that work for
homotopy classes of maps in reasonable generality, so let us discuss them in that
broader context.

Let X and Z be pointed spaces. Then [X,Z]∗ is just a pointed set, but if we
suspend the space in the domain then we get a bit more structure: [ΣX,Z]∗ is a
group, where ΣX is the reduced suspension of X. One way to see this is to collapse
the equatorial copy of X in ΣX, to get ΣX ∨ ΣX; write this collapse map as

∇ : ΣX → ΣX ∨ ΣX.

The operation on [ΣX,Z]∗ is defined by precomposing the wedge of two homotopy
classes with ∇. With some trouble one checks that ΣX is a cogroup object in the
homotopy category of pointed spaces, which yields that [ΣX,Z]∗ is a group.

Here is another way to think about this, which relates it to something we already
know. Let F (X,Z) be the set of functions fromX to Z, equipped with the compact-
open topology. We can write

[ΣX,Z]∗ = [S1, F (X,Z)]∗ = π1(F (X,Z))

where the basepoint of F (X,Z) is the map sending all of X to the basepoint of Z.
Now just use that π1(F (X,Z)) is a group.

When k ≥ 2 then we have [ΣkX,Z]∗ = πk(F (X,Z)) by a similar argument, and
so [ΣkX,Z]∗ is an abelian group. Alternatively, one proves that now ΣkX is a
cocommutative cogroup object in the homotopy category.

Similar results are obtained by putting conditions on Z rather than X. If Z is
a loop space, say Z ' ΩZ1, then [X,Z]∗ ∼= [X,ΩZ1]∗ ∼= [ΣX,Z1]∗, and this is a
group by the above arguments. Similarly, if Z is a k-fold loop space for k ≥ 2, say
Z ' ΩkZ1, then [X,Z]∗ ∼= [Σk, Z1]∗ and this is an abelian group.

Homotopy classes of maps into a fixed space Z always give rise to exact sequences:

Proposition 14.8. Let X,Y be pointed spaces, and let f : X → Y be a pointed
map. Consider the mapping cone Cf and the natural map p : Y → Cf . For any
pointed space Z, the sequence of pointed sets [X,Z]∗ ← [Y, Z]∗ ← [Cf,Z]∗ is exact
in the middle (meaning that anything in [Y,Z]∗ which is sent to the basepoint is in
the image of the previous map).
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Proof. Let h : Y → Z and suppose h ◦ f is homotopic to the constant map. Choose
a pointed homotopy H : X × I → Z so that H(X × {1}) = ∗. Then H induces a
map CX → Z. Let g : Cf → Z be given by H on CX and h on Y . Then clearly
g ◦ p = h. �

Given f : X → Y we form the mapping cone Cf , which comes to us with an
inclusion j0 : Y ↪→ Cf . Next form the mapping cone on j0, which comes with an
inclusion j1 : Cf ↪→ Cj0. Keep doing this forever to get the sequence of spaces
X → Y → Cf → Cj0 → Cj1 → · · · depicted below:

Note that Cj0 ' ΣX and Cj1 ' ΣY (this is clear from the pictures). Up to sign
the map Cj0 → Cj1 is just Σf , so that the sequence of spaces becomes periodic:

X → Y → Cf → ΣX → ΣY → Σ(Cf)→ Σ2X → . . .

This is called the Puppe sequence. Note that the composition of two subse-
quent maps is null-homotopic, and that every three successive terms form a cofiber
sequence.

Now let Z be a fixed space and apply [−, Z]∗ to the Puppe sequence. We obtain
the sequence of pointed sets

[X,Z]∗ ← [Y,Z]∗ ← [Cf,Z]∗ ← [ΣX,Z]∗ ← [ΣY,Z]∗ ← [Σ(Cf), Z]∗ ← . . .

By Proposition 14.8 this sequence is exact at every spot where this makes sense
(everywhere except at [X,Z]∗). At the left end this is just an exact sequence of
pointed sets, but as one moves to the right at some point it becomes an exact
sequence of groups (namely, at [ΣY,Z]∗). As one moves further to the right, it
becomes an exact sequence of abelian groups by the time one gets to [Σ2Y, Z]∗.

If Z ' ΩZ1 then we can extend the above sequence a little further to the left,
by noticing that the sequences for [−, Z1]∗ and [−, Z]∗ mesh together:

[X,Z1]∗ [Y,Z1]∗oo [Cf,Z1]∗oo [ΣX,Z1]∗oo [ΣY, Z1]∗oo [Σ(Cf), Z1]oo oo

[X,ΩZ1]∗ [Y,ΩZ1]∗oo [Cf,ΩZ1]oo oo

[X,Z]∗ [Y,Z]∗oo [Cf,Z]oo oo

Note that the leftmost cycle of the original sequence, which we had thought con-
sisted just of pointed sets, in fact consisted of groups! If in turn we have Z1 ' ΩZ2

then we can play this game again and extend the sequence one more cycle to the
left, and so forth. If we are really lucky then we can do this forever:
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Definition 14.9. An infinite loop space is a space Z0 together with spaces
Z1, Z2, Z3, . . . and weak homotopy equivalences Zn ' ΩZn+1 for all n ≥ 0.

Note that if Z is an infinite loop space then we really do get a long exact
sequence—infinite in both directions—consisting entirely of abelian groups, hav-
ing the form

· · · ← [Cf,Zi+1]∗ ← [X,Zi]∗ ← [Y,Zi]∗ ← [Cf,Zi]∗ ← [X,Zi−1]∗ ← · · ·
where it is convenient to use the indexing convention Z−n = ΩnZ for n > 0.

This situation is very reminiscent of a long exact sequence in cohomology, so let
us adopt the following notation: write

EiZ(X) = [X+, Zi]∗ =

{
[X+, Zi]∗ i ≥ 0,

[Σ−i(X+), Z0]∗ i < 0.

For an inclusion of subspaces j : A ↪→ X write

EiZ(X,A) = [Cj, Zi]∗ =

{
[Cj, Zi]∗ i ≥ 0,

[Σi(Cj), Z0]∗ i < 0.

It is not hard to check that this is a generalized cohomology theory. So we get a
generalized cohomology theory whenever we have an infinite loop space. (You may
know that it works the other way around, too: every generalized cohomology comes
from an infinite loop space. But we won’t need that fact here.)

For us the importance of all of this is that by Bott’s theorem we have

Z×BO ' Ω8(Z×BO) ' Ω16(Z×BO) ' . . . .
Thus, Z×BO is an infinite loop space and the above machinery applies. We obtain
a cohomology theory KO∗. Moreover, periodicity gives us that KOi+8(X,A) ∼=
KOi(X,A), for any i.

This all works in the complex case as well. There we have Z×BU ' Ω2(Z×BU),
so Z×BU is again an infinite loop space. We get a cohomology theory K∗ that is
2-fold periodic.

14.10. Afterward. The point of this section was to construct the cohomology
theories KO and K, having the properties that when X is compact and Hausdorff
the groups KO0(X) and K0(X) coincide with the Grothendieck groups of real and
complex vector bundles over X. We have now accomplished this! We will spend
the rest of these notes exploring what one can do with such cohomology theories,
i.e., what they are good for. We have already said that one thing they are good
for is calculation; we close this section with an example demonstrating the benefits
and limitations here.

Let us try to compute KO(RP 2). Recall the ubiquitous decomposition
KO(RP 2) = Z ⊕ K̃O (RP 2) = Z ⊕ KOst(RP 2). Next use the fact that RP 2

can be built by attaching a 2-cell to RP 1 = S1, where the attaching map wraps S1

around itself twice. That is, RP 2 is the mapping cone for S1 2−→ S1. The Puppe
sequence for this map looks like

S1 2−→ S1 −→ RP 2 −→ S2 2−→ S2 −→ · · ·
hence we have an exact sequence

← · · · ← K̃O (S1)← K̃O (S1)← K̃O (RP 2)← K̃O (S2)← K̃O (S2)← · · ·
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Note that this is just the long exact sequence for the pair (RP 2,RP 1) in K̃O -
cohomology, where we are using the identification K̃O (S2) = K̃O 0(S2) =

K̃O−1(S1).
We know K̃O (Sk) for all k ≥ 0, so the above sequence becomes

Z/2← Z/2← K̃O (RP 2)← Z/2← Z/2
where both maps Z/2 ← Z/2 are multiplication by 2, i.e. the 0 map. Hence we
have a short exact sequence

0← Z/2← K̃O (RP 2)← Z/2← 0,(14.11)

and so K̃O (RP 2) is either (Z/2)2 or Z/4. It remains to decide which one.
The short exact sequence in (14.11) is really

0←− K̃O (S1)
i∗←− K̃O (RP 2)

p∗←− K̃O (S2)←− 0.

We have previously seen that the generator of K̃O 0(S1) = KOst(S1) corresponds
to the Mobius bundle [M ], and the generator of K̃O (S2) = KOst(S2) is [O(1)],
the rank 2 bundle whose clutching map is the isomomorphism S1 → SO(2). The
image of [O(1)] in K̃O 0(RP 2) is p∗O(1), where p : RP 2 → S2 is the projection.

We happen to know one bundle on RP 2, the tautological line bundle γ. When
we restrict γ to RP 1 we get M , and so [γ] is a preimage for [M ] under i∗. We need
to decide if 2[γ] = 0 in KOst(RP 2); if it is, then K̃O (RP 2) ∼= (Z/2)2 and if it is
not then K̃O (RP 2) ∼= Z/4. So the question becomes: is γ ⊕ γ stably trivial?

The answer turns out to be that γ ⊕ γ is not stably trivial; this is an elemen-
tary exercise using characteristic classes (Stiefel-Whitney classes), but we have not
discussed such techniques yet—see Section 26.9 below for complete details. For
now we will just accept this fact, and conclude that K̃O (RP 2) ∼= Z/4. Note that
this calculation demonstrates an important principle to keep in mind: often the
machinery of cohomology theories get you a long way, but not quite to the end,
and one has to do some geometry to complete the calculation.

There is a better way to think about this calculation, and we can’t resist pointing
it out even though it won’t make complete sense yet. But it ties in to intersection
theory, which is our overarching theme in these notes. In our discussion above we
used KOst(RP 2) as our model for K̃O (RP 2), but let us change perspective and
use the model that is the kernel of KO(RP 2) → KO(∗), for some chosen base-
point. Recall that [E] in KOst(RP 2) corresponds to [E] − rank(E) in K̃O (RP 2);
so the class we wrote as [γ] is [γ] − 1 in the shifted perspective, and we need to
decide if 2([γ]− 1) = 0 in KO(RP 2). The element 1− [γ] should be thought of as
corresponding to a chain complex of vector bundles

0→ γ → 1→ 0,

and thinking of it this way one finds that it plays the role of the K-theoretic
fundamental class of the submanifold RP 1 ↪→ RP 2. Then (1 − [γ])2 represents
the self-intersection product of RP 1 inside RP 2, which we know is a point by the
standard geometric argument (shown in the picture below, depicting an RP 1 and
a small perturbation of it)):
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RP 2

RP 1

In particular, the self-intersection is not empty. This translates to the statement
that (1− [γ])2 6= 0. But

(1− [γ])2 = 1− 2[γ] + [γ2] = 1− 2[γ] + 1 = 2(1− [γ])

where we have used that γ ⊗ γ ∼= 1 (this is true for any real line bundle, over any
base); so this explains why 2(1 − [γ]) 6= 0. Again, we understand this argument
doesn’t make much sense yet. We will come back to it in Section ?????. For the
moment just get the idea that it is the intersection theory of submanifolds in RP 2

that is ultimately forcing K̃O (RP 2) to be Z/4 rather than (Z/2)2.

Remark 14.12. It seems worth pointing out that in fact for every n one has
K̃O (RPn) ∼= Z/2k for a certain value k depending on n. We will return to this
calculation (and complete it) in Section 37.

Exercise 14.13. It is a good idea for the reader to try their hand at similar
calculations, to see how the machinery is working. Try calculating some of the
groups below, at least for small values of n:

• K(CPn) (reasonably easy)
• KO(CPn) (a little harder)
• K(RPn) (even harder)
• KO(RPn) (hardest).

Don’t worry if you can’t completely determine some of the groups; just see how far
the machinery takes you.

14.14. K-theory for non-compact spaces. The reader will perhaps have noticed
that for arbitrary spaces X we now have two competing definitions:

KOGrt(X) = Grothendieck group of vector bundles over X

KO0(X) = [X,Z×BO].

In older literature the second group is sometimes called representable KO-
theory. When X is compact and Hausdorff we have seen that these groups are
isomorphic. What about more generally?

For X paracompact and Hausdorff we get a natural map Φ: KOGrt(X) →
KO0(X). To explain this we might as well assume that X is path-connected as
well. Recall from Proposition 9.2 that all short exact sequences of vector bun-
dles are split. From this it follows that KOGrt(X) is the group completion of the
monoid Vect(X) of isomorphism classes of vector bundles. To a rank n vector bun-
dle E → X we assign the pair (n, j ◦f) where f is a classifying map X → Grn(R∞)
and j : Grn(R∞) ↪→ Gr∞(R∞) is the standard inclusion. The map f involves a
choice, but it is well-defined up to homotopy. So this assignment gives a map
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of monoids Vect(X) → [X,Z × BO], and since the latter is a group it induces
KOGrt(X)→ KO0(X).

We know that Φ is an isomorphism when X is compact. We also know that
both the domain and range are homotopy invariant, and so we can generalize this
slightly.

Definition 14.15. A space is homotopically compact if it is weakly equivalent to
a finite cell complex. A pair (X,A) is homotopically compact is there is a finite
CW-complex Y and subcomplex B for which there is a zig-zag of weak equivalences
between (X,A) and (Y,B).

Proposition 14.16. If X is a homotopically compact CW-complex then Φ is a
bijection.

Proof. Since X is a CW-complex, homotopically compact implies that X is homo-
topy equivalent (not just weakly equivalent) to a finite cell complex X ′. Then the
map ΦX is isomorphic to ΦX′ , and the latter is a bijection since X ′ is compact
Hausdorff. �

The map Φ is in general neither injective nor surjective. Here is an example
where the latter fails:

Example 14.17. We claim that the map KGrt(RP∞) → K0(RP∞) is not sur-
jective. Let L → RP∞ be the tautological bundle, and let J = cL be its com-
plexification. With some trouble one can completely analyze VectCn(RP∞) =
[RP∞, BU(n)], and one finds that it consists of the bundles rJ ⊕ (n− r) for
0 ≤ r ≤ n. Conseqeuntly, KGrt(RP∞) = Z⊕ Z, with the summands generated by
1 and [J ]. In contrast, K0(RP∞) ∼= Z ⊕ Z∧2 where the second summand denotes
the 2-adic integers. The completion is a phenomenon that often arises when deal-
ing with homotopy classes of maps out of infinite complexes. Using the standard
skeletal filtration of RP∞ by finite projective spaces, one has an associated Milnor
exact sequence of the form

0 −→ lim
n

1K−1(RPn) −→ K0(RP∞) −→ lim
n
K0(RPn) −→ 0.

In this case the lim1 term turns out to vanish, the K0(RPn) groups are all of the
form Z ⊕ Z/2?? with the exponents increasing with n, and so one obtains Z ⊕ Z∧2
for the inverse limit.

Elements of this example can be generalized to BG, for any finite group G.
There is a map RepC(G) → KGrt(BG) induced by sending a representation V to
the bundle EG×G V → BG. This map is not always an isomorphism, but it is so
when G is a p-group (ref?).

Let I(G) be the kernel of the dimension map dim: RepC(G) → Z, which is
typically called the augmentation ideal. The Atiyah-Segal completion theorem
[AS] says that K0(BG) = RepC(G)∧I . We get the diagram

RepC(G) //

��

RepC(G)∧I

∼=
��

KGrt(BG)
Φ // K0(BG).
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When G is a p-group the left vertical map is an isomorphism, the top horizontal map
is injective, and so the bottom horizontal map is injective as well [JO, Corollary
1.9].

Let us explore what the above says when G = Z/2. Here there are two irreducible
representations, namely the trivial and sign representations on C. If we denote the
latter as x then RepC(G) = Z[x]/(x2 − 1). The augmentation ideal is I = (x− 1).
If we set R = RepC(G) then RepC(G)∧I is the inverse limit of

· · ·� R/I3 � R/I2 � R/I.

One quickly finds that R/I = Z (generated by 1), R/I2 = Z⊕ Z/2 where the first
summand is generated by 1 and the second by x− 1, and R/I3 = Z⊕Z/4 with the
same generators. To find the order of x− 1 in R/In we use the division algorithm
in Z[x] to write

(x− 1)n = (x2 − 1)f(x) + (linear polynomial)

and observe that since both (x − 1)n and (x2 − 1) vanish for x = 1, so must the
linear polynomial. Hence we have

(x− 1)n = (x2 − 1)f(x) + k(x− 1)

for some k, or equivalently

(x− 1)n−1 = (x+ 1)f(x) + k.

We can obtain k by plugging in x = −1, and so k = (−2)n−1. Thus one finds that
R/In = Z ⊕ Z/2n−1, with the first summand generated by 1 and the second by
x− 1. The completion R∧I is therefore Z⊕ Z∧2 , as desired.

15. Vector fields on spheres

It is a classical problem to determine how many independent vector fields one
can construct on a given sphere Sn. This problem was heavily studied throughout
the 1940s and 1950s, and then finally solved by Adams in 1962 using K-theory.
It is one of the great successes of generalized cohomology theories. In this section
we discuss some background to the vector field problem. We will not tackle the
solution until Section 38, when we have more tools at our disposal.

15.1. The vector field problem. Given a nonzero vector u = (x, y) in R2, there
is a formula for producing a (nonzero) vector that is orthogonal to u: namely,
(−y, x). However, there is no analog of this that works in R3. That is, there is
no single formula that takes a vector in R3 and produces a (nonzero) orthogonal
vector. If such a formula existed then it would give a nonvanishing vector field on
S2, and we know that such a thing does not exist by elementary topology.

Let us next consider what happens in R4. Given u = (x1, x2, x3, x4), we can
produce an orthogonal vector via the formula (−x2, x1,−x4, x3). But of course this
is not the only way to accomplish this: we can vary what pairs of coordinates we
choose to flip. In fact, if we consider

v1 =


−x2

x1

−x4

x3

 , v2 =


−x3

x4

x1

−x2

 , v3 =


−x4

−x3

x2

x1

 .
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then we find that v1, v2, and v3 are not only orthogonal to u but they are orthogonal
to each other as well. In particular, at each point of S3 we have given an orthogonal
basis for the tangent space.

We aim to study this problem for any Rn. What is the maximum k for which
there exist formulas for starting with u ∈ Rn − {0} and producing k orthogonal
(nonzero) vectors, with u as the first of the set? The following gives a different
phrasing for essentially the same question:

Question 15.2. On Sn, how many vectors fields v1, v2, . . . , vr can we find so that
v1(x), v2(x), . . . , vr(x) are linearly independent for each x ∈ Sn?

In colloquiual usage we will sometimes drop the phrase “linearly independent”
and leave it to be understood. So for example, if we talk about constructing two
vector fields on S5 it is implicit that we mean independent vector fields, as otherwise
the problem would be trivial!

Note that by the Gram-Schmidt process we can replace “linearly independent”
by “orthonormal.” If n is even, the answer is zero because there does not exist even
a single nonvanishing vector field on an even sphere. To start to see what happens
when n is odd, we look at a couple of more examples.

Let u ∈ S5 have the standard coordinates. We notice that the vector v1 =
(−x2, x1,−x4, x3,−x6, x5) is orthogonal to u. However, a little legwork shows that
no other pattern of switching coordinates will produce a vector that is orthogonal
to both u and v1. Of course this does not mean that there isn’t some more elaborate
formula that would do the job, but it shows the limits of what we can do using our
naive constructions.

For u ∈ S7 we can divide the coordinates into the top four and the bottom four.
Take the construction that worked for S3 and repeat it simultaneously in the top
and bottom coordinates—this yields a set of three orthonormal vector fields on S7,
given by the formulas

(−x2, x1,−x4, x3,−x6, x5,−x8, x7),(15.2)
(−x3, x4, x1,−x2,−x7, x8, x5,−x6),

(−x4,−x3, x2, x1,−x8,−x7, x6, x5).

This idea generalizes at once to prove the following:

Proposition 15.3. If there exist r (independent) vector fields on Sn−1, then there
also exist r vector fields on Skn−1 for all k.

For example, since there is one vector field on S1 we also know that there is at
least one vector field on S2k−1 for every k. Likewise, since there are three vector
fields on S3 we know that there are at least three vector fields on S4k−1 for every
k.

We have constructed three vector fields on S7, but one can actually make seven
of them. This can be done via trial-and-error attempts at extending the patterns in
(15.2), but there is a slicker way to accomplish this as well. Recall that S3 is a Lie
group, being the unit quaternions inside of H. We can choose an orthonormal frame
at the origin and then use the group structure to push this around to any point,
thereby obtaining three independent vector fields; in other words, for any point
x ∈ S3 use the derivative of right-multiplication-by-x to transport our vectors in
T1S

3 to TxS3. The space S7 is not quite a Lie group, but it still has a multiplication
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coming from being the set of unit octonions. The multiplication is not associative,
but this is of no matter—the same argument works to construct 7 vector fields on
S7. Note that this immediately gives us 7 vectors fields on S15, S23, etc.

Based on the data so far, one would naturally guess that if n = 2r then there
are n− 1 vector fields on Sn−1. However, this guess turns out to fail already when
n = 16 (and thereafter). To give a sense of how the numbers grow, we give a
chart showing the maximum number of vector fields that exist on low-dimensional
spheres:

n 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n− 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

v.f.onSn−1 1 3 1 7 1 3 1 8 1 3 1 7 1 3 1 9

Notice that we have explained how to construct the requisite number of vector
fields until we get to S15—there we have shown how to make seven of them, but
the claim is that one more can be made. Once we know how to make eight on S15

we automatically know how to make eight on S31, but the claim is again that one
more can be made beyond this. By the end of this section we will know how to
construct all of these.

Okay. Now that we have a basic sense of the problem let us explain the numerol-
ogy behind the answer.

Definition 15.4. If n = m · 2a+4b where m is odd, then the Hurwitz-Radon
number for n is ρ(n) = 2a + 8b− 1.

Theorem 15.5 (Hurwitz-Radon). There exist at least ρ(n) independent vector
fields on Sn−1.

Consider n = 32 = 25 = 21+4·1. In the terms of Definition 15.4 we have a = b =
1, so that ρ(32) = 21 + 8(1) − 1 = 9. That is, there are at least 9 vector fields on
S31. If n = 1024 = 210 = 22+4·2 then ρ(n) = 22 + 8 · 2 − 1 = 19; one can make 19
independent vector fields on S1023. One should of course notice that these numbers
are not going up very quickly.

We will prove the Hurwitz-Radon theorem by a slick, modern method using
Clifford algebras. But it is worth pointing out that the theorem can be proven
through very naive methods, too (it was proven in the 1920s). All of the Hurwitz-
Radon vector fields follow the general patterns that we have seen, of switching
pairs of coordinates and changing signs—one only has to find a way to organize the
bookkeeping behind these patterns.

15.6. Sums-of-squares formulas. Hurwitz and Radon were not actually thinking
about vector fields on spheres. They were instead considering an algebraic question
about the existence of certain kinds of “composition formulas” for quadratic forms.
For example, the following identity is easily checked:

(*) (x2
1 + x2

2) · (y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2.

Hurwitz and Radon were looking for more formulas such as this one, for larger
numbers of variables:

Definition 15.7. A sum-of-squares formulas of type [r, s, n] is an identity

(x2
1 + x2

2 + . . .+ x2
r)(y

2
1 + y2

2 + . . .+ y2
s) = z2

1 + z2
2 + . . .+ z2

n
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in the polynomial ring R[x1, . . . , xr, y1, . . . , ys], where each zi is a bilinear expression
in x’s and y’s.

We will often just refer to an “ [r, s, n]-formula”, for brevity. For what values of r,
s, and n does such a formula exist? This is currently an open question. There are
three formulas that are easily produced, coming from the normed algebras C, H,
and O. The multiplication is a bilinear pairing, and the identity |xy|2 = |x|2|y|2 is
the required sums-of-squares formula. These algebras give formulas of type [2, 2, 2],
[4, 4, 4], and [8, 8, 8]. (Check that the [2, 2, 2] formula that comes from C is exactly
formula (*) above). In a theorem from 1898 Hurwitz proved that these are the
only normed algebras over the reals, and in doing so ruled out the existence of
[n, n, n]-formulas for n /∈ {1, 2, 4, 8}. The question remained (and remains) about
other types of formulas. See [Sh] for a detailed history of this problem.

Exercise 15.8. Use the multiplication table for H to write down the corresponding
[4, 4, 4] formula.

Perhaps surprisingly, most of what is known about the non-existence of sums-
of-squares formulas comes from topology. To phrase the question differently, we
are looking for a function φ : Rr ⊗ Rs → Rn such that |φ(x, y)|2 = |x|2 · |y|2 for all
x ∈ Rr and y ∈ Rs. The bilinear expressions z1, . . . , zn are just the coordinates of
φ(x, y).

Write z = φ(x, y) =
∑
xjAjy, where the Aj ’s are n × s matrices of real

numbers. The sum of squares formula says that zT z = (xTx) · (yT y). But
zT z =

∑
i,j

(yTATj xj)(xiAiy), hence

yT

∑
i,j

xixjA
T
j Ai

 y = zT z = (xTx)(yT y) = yT
(

(xTx)I
)
y

for all y. The first and last expressions are quadratic forms in y, and they are equal
only if

∑
i,j

xixjA
T
j Ai = (xTx)I =

∑
x2
i I. This must hold for all x, so equating

coefficients of the monomials in x we find that
• ATi Ai = I (that is, Ai ∈ On) for every i, and
• ATj Ai +ATi Aj = 0 for every i 6= j.

The case s = n turns out to be significantly simpler to address than the general
case. If s = n we may set Bi = A−1

1 Ai = AT1 Ai. Then B1 = Id and the conditions
to satisfy for i ≥ 2 become

• BTi = B−1
i

• B2
i = −In

• BiBj = −BjBi for all i 6= j.
Note that the first two conditions imply BTi = −Bi, and using this the third
condition can be rewritten as BTj Bi +BTi Bj = 0. So by replacing the A’s with the
B’s we have proven the following:

Corollary 15.9. If an [r, n, n]-formula exists, then one exists where A1 = I and
ATi = −Ai for i ≥ 2.

In the setting of the corollary, the necessary conditions on the matrices
A2, A3, . . . , Ar become that A2

i = −I and AiAj = −AjAi.
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Corollary 15.10. If an [r, n, n]-formula exists, then there exist r − 1 independent
vector fields on Sn−1.

Proof. Assume the Ai are chosen as in Corollary 15.9. If y ∈ Sn−1 then φ(ei, y) ∈
Sn−1 for i = 1, 2, . . . , r: this follows from the identity |φ(ei, y)|2 = |ei|2 · |y|2. We
also have that φ(e1, y) = y since A1 = I. We claim that φ(ei, y) ⊥ φ(ej , y) if i 6= j.
To see this, note that by the norm formula

|φ(ei + ej , y)|2 = |ei + ej |2 · |y|2 = 2|y|2.
On the other hand,

|φ(ei + ej , y)|2 = |φ(ei, y) + φ(ej , y)|2

= |φ(ei, y)|2 + |φ(ej , y)|2 + 2φ(ei, y) · φ(ej , y)

= 2|y|2 + 2φ(ei, y) · φ(ej , y).

We conclude φ(ei, y) · φ(ej , y) = 0. Therefore we have established that φ(e2,−),
φ(e3,−), . . . , φ(er,−) are orthonormal vector fields on Sn−1. �

15.11. Clifford algebras. We have seen that we get r − 1 independent vector
fields on Sn−1 if we have a sums-of-squares formula of type [r, n, n]. Having such
a formula amounts to producing matrices A2, A3, . . . , Ar ∈ On such that A2

i = −I
and AiAj + AjAi = 0 for i 6= j. If we disregard the condition that the matrices
be orthogonal, we can encode the latter two conditions by saying that we have a
representation of a certain algebra:

Definition 15.12. The Clifford algebra Clk is defined to be the quotient of the
tensor algebra R〈e1, . . . , ek〉 by the relations e2

i = −1 and eiej + ejei = 0 for all
i 6= j.

The first few Clifford algebras are familiar: Cl0 = R, Cl1 = C, and Cl2 = H.
After this things become less familiar: for example, it turns out that Cl3 = H×H
(we will see why in just a moment). It is somewhat of a miracle that it is possible
to write down a precise description of all of the Clifford algebras, and all of their
modules. Before doing this, let us be clear about why we are doing it:

Theorem 15.13. An [r, n, n]-formula exists if and only if there exists a Clr−1-
module structure on Rn. Consequently, if there is a Clr−1-module structure on Rn
then there are r − 1 independent vector fields on Sn−1.

Before giving the proof, we need one simple fact. The collection of monomials
ei1 · · · eir for 1 ≤ i1 < i2 < · · · < ir ≤ k give a vector space basis for Clk, which
has size 2k (note that we include the empty monomial, corresponding to 1, in the
basis). This is an easy exercise. This is the “standard basis” for Clk.

Proof of Theorem 15.13. The forward direction is trivial: Given an [r, n, n]-
formula, Corollary 15.9 gives us such a formula with A1 = I, A2

i = −I, and
AiAj = −AjAi for i, j ≥ 2. Then define a Clr−1-module structure on Rn by letting
ei act as multiplication by Ai+1, for 1 ≤ i ≤ r − 1.

Conversely, assume that Clr−1 acts on Rn. We can almost reverse the proce-
dure of the previous paragraph, except that there is no guarantee that the ei’s act
orthogonally on Rn—and we need Ai ∈ On to get an [r, n, n]-formula.
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Equip Rn with a positive-definite inner product, denoted x, y 7→ x · y. This
inner product probably has no compatibility with the Clifford-module structure.
So define a new inner product on Rn by

〈v, w〉 =
∑

1≤i1<i2<···<ij≤r−1

(eIv) · (eIw),

where eI = ei1ei2 · · · eij and the sum runs over all 2r−1 elements of the standard
basis for Clr−1. Basically we are averaging out the dot product. Our inner product
〈v, w〉 is a symmetric bilinear form, and it is positive definite because the dot
product is positive definite. It also has the property that it is invariant under the
Clifford algebra action: 〈eiv, eiw〉 = 〈v, w〉 for all i.

Now let v1, . . . , vn be an orthonormal basis for Rn with respect to our new inner
product. Let Ai be the matrix for ei with respect to this basis. Then the Ai’s
are orthogonal matrices, and the relations A2

i = −I and AiAj + AjAi = 0 are
automatic because they are satisfied in Clr−1. In this way we obtain the desired
[r, n, n]-formula. �

Remark 15.14. Most modern treatments of vector fields on spheres go straight
to Clifford algebras and their modules, without ever talking about sums-of-squares
formulas. But the sums-of-squares material is an interesting part of this whole
story, both for historical reasons and for its own sake.

From now on we can focus on the following question: For what values of n do we
have a Clr−1-module structure on Rn? This is one of the most intriguing parts of
the story, because on the face of things it doesn’t seem like we have accomplished
anything by shifting our perspective onto Clifford algebras. We have, after all, just
rephrased the basic question. But a miracle now occurs, in that we can analyze all
the Clifford algebras by a simple technique.

15.15. Clifford algebras over general rings. To make it clear that our analysis
doesn’t use anything special about R, let us change our ground right to any ring
R not of characteristic two. Define Cln(R) to be the algebra generated over R
by symbols e1, . . . , en that commute with elements of R and satisfy the relations
e2
i = −1 and eiej = −ejei for i 6= j. It turns out that these algebras show an
interesting pattern that depends on the residue of n mod 8, reflecting how the
elements ei interact.

Here Cln(R) is a free R-module of rank 2n with a basis consisting of the
monomials ei1 · · · eik with i1 < · · · < ik. Also recall that if S is a ring then
S[e]/(e2 − 1) ∼= S × S via the isomorphism f(e) 7→ (f(1), f(−1)). Our deriva-
tion will proceed by finding elements in the Clifford algebras that square to 1 and
commute with certain others.

In this discussion it will be convenient to abbreviate Cln(R) as just Rn. Also, if
S is a ring then we will abbreviate the matrix algebra Mn×n(S) as just S(n).

Here are a series of observations:
(1) (e1 · · · en)2 = (−1)(

n+1
2 ). So the product squares to 1 when n is 0 or 3 mod 4,

and to −1 when n is 1 or 2 mod 4.
(2) e1 · · · en commutes with all of e1, e2, . . ., en−1 precisely when n is odd.
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(3) When n ≡ 3 mod 4 then e1 · · · en squares to 1 and commutes with all elements
of Rn−1 and so we conclude that Rn ∼= Rn−1 ×Rn−1. Let us restate this as

R4k+3
∼= R4k+2 ×R4k+2.

(4) In R4k+r consider the elements γi = e1 · · · e4ke4k+i for i ≤ 1 ≤ r. Then
γ2
i = −1, γi anticommutes with γj for i 6= j, and each γi commutes with

elements of Cl4k(R). This proves that

R4k+r
∼= R4k ⊗R Rr.

So once we know Ri for i ≤ 4 we can derive all of the others.
(5) R4

∼= R2(2). We can derive an isomorphism as follows. If we think of the ring
R3 = R2 × R2 as sitting inside R2(2) as the diagonal matrices, then what we
are missing are the anti-diagonal matrices. The obvious anti-diagonal matrix
that squares to −1 is f =

[
0 −1
1 0

]
. Note that f anticommutes with elements

diag(a,−a) for a ∈ R2. So define φ : R4 → R2(2) by the formulas e1 7→
diag(e1,−e1), e2 7→ diag(e2,−e2), e3 7→ diag(e1e2,−e1e2), and e4 7→ f . The
images satisfy the defining relations for the Clifford algebra, so φ is an algebra
map. One readily checks that φ is surjective (this uses that char(R) 6= 2),
then since the domain and codomain are free modules of the same rank it is an
isomorphism.

At this point we can make the following partial table of Clifford algebras over
R, and could continue on ad infinitum:

n Cln(R)
0 R
1 R1

2 R2

3 R2 ×R2

4 R2(2)
5 (R2 ⊗R R1)(2)
6 (R2 ⊗R R2)(2)
7 (R2 ⊗R R2)(2)× (R2 ⊗R R2)(2)
8 (R2 ⊗R R2)(4)

In fact we can simplify this table a bit, because we can identify the algebras R2⊗RR1

and R2 ⊗R R2. However, this requires a few more tools.

(6) Cln(R) is a Z/2-graded algebra where the even part is the R-linear span of
monomials in the e’s having an even number of factors, and similarly for the
odd part. The algebra Cln(R) also has a canonical automorphism α given by
ei 7→ −ei for all i; α2 = 1 and the above even and odd parts of Cln(R) are the
+1 and −1 eigenspaces of α.

(7) There is also an anti-automorphism of Cln(R) that sends ei1 · · · eik 7→ eik · · · ei1 .
This is called the transpose and written x 7→ xt. Observe that (ab)t = btat

for all a and b. Note that the transpose map on R1 is just the identity.
(8) Using the transpose we can construct algebra maps θn : Cln(R)⊗R Cln(R)→

EndR(Cln(R)) via a ⊗ b 7→ [x 7→ axbt] (note that it would not be an algebra
map without the transpose). Note here that EndR(Cln(R)) denotes the algebra
of R-module endomorphisms, so it is isomorphic to R(2n). The domain and
codomain of θn are both free R-modules of rank 22n. The θ maps are not always
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isomorphisms, e.g. when n = 1 one has θ(e1 ⊗ 1) = θ(1 ⊗ e1). But sometimes
they are, as we are about to see.

Proposition 15.16. θ2 is an isomorphism, so R2 ⊗R R2
∼= R(4). If R is com-

mutative then the restriction of θ2 to R2 ⊗R R1 ⊆ R2 ⊗R R2 is an isomorphism
R2 ⊗R R1

∼= R1(2).

Proof. We prove the second claim first. It concerns the map α : R2 ⊗R R1 →
EndR(R2) given by

a⊗ b 7→ [x 7→ axbt].

Since R is commutative, R1 is also commutative. It follows that the map x 7→ axbt

is R1-linear when we give R2 the action of R1 via right multiplication. So in fact
α is a map R2 ⊗R R1 → EndR1(R2). Both the domain and codomain are free
R1-modules of rank 4, and α is R1-linear, so it suffices to prove that α is surjective.
Recalling that we treat R2 as a right R1-module, and choosing the R1-basis 1, e2,
we identify EndR1

(R2) with 2 × 2 matrices over R1. Then we compute by hand
that the elements 1⊗ 1, e1 ⊗ 1, e2 ⊗ 1, and e1e2 ⊗ 1 map to the matrices[

1 0
0 1

]
,

[
e1 0
0 −e1

]
,

[
0 −1
1 0

]
,

[
0 −e1

−e1 0

]
.

For example, e1 ⊗ 1 becomes the map 1 7→ e1, e2 7→ e1e2 = −e2e1, giving us the
second matrix. As these four matrices are clearly a spanning set for R1(2), this
verifies the surjectivity of α.

To prove that θ2 is an isomorphism we can use a similar strategy, but here we
would need 4× 4 matrices over R and it would be nice not to have to write down
16 of them. We can simplify things somewhat by using the above observation
that R2 ⊗R R1 maps into the subspace of R1-linear endomorphisms, as well as the
parallel observation that R2 ⊗R (e2R1) maps into the subspace of R1-antilinear
endomorphisms (those such that f(xe1) = −f(x)e1). Since EndR(R2) is the direct
sum ofR1-linear andR1-antilinear subspaces, we are reduced to checking thatR2⊗R
(e2R1) → EndR1−anti(R) is an isomorphism. Again representing endomorphisms
via matrices in the usual way, the images of the basis elements 1 ⊗ e2, e1 ⊗ e2,
e2 ⊗ e2, and e1e2 ⊗ e2 are[

0 −1
1 0

]
,

[
0 −e1

−e1 0

]
,

[
−1 0
0 −1

]
,

[
−e1 0

0 e1

]
.

Again, these are a basis for M2×2(R1) and the proof is complete. �

We can use Proposition 15.16 to simplify our table of Clifford algebras. For
convenience we show both the table for general R and also the special case R = R:

Note that with the appearance of R(16) in spot 8 the rest of the table becomes
periodic, using the isomorphisms R4k+r

∼= R4k ⊗R Rr. So R9
∼= R1(16), R10

∼=
R2(16), and so on: we just add “ (16)” to each of the terms in the above table.

So we have calculated all of the Clifford algebras!

Exercise 15.18. For the ground ring R = C prove that R1
∼= C×C and R2

∼= C(2),
and observe that the resulting table of Clifford algebras actually has its 8-fold quasi-
periodicity absorbed into a 2-fold quasi-periodicity.



A GEOMETRIC INTRODUCTION TO K-THEORY 139

Table 15.17. Clifford algebras

n Cln(R)
0 R
1 R1

2 R2

3 R2 ×R2

4 R2(2)
5 R1(4)
6 R(8)
7 R(8)×R(8)
8 R(16)

r Clr(R)
0 R
1 C
2 H
3 H×H
4 H(2)
5 C(4)
6 R(8)
7 R(8)× R(8)
8 R(16)

15.19. Modules over Clifford algebras. Now that we know all the Clifford al-
gebras, it is actually an easy process to determine all of their finitely-generated
modules. We need three facts:

• If A is a division algebra then all finitely-generated modules over A are free;
• By Morita theory, the finitely-generated modules over A(n) are in bijective

correspondence with the finitely-generated modules over A. The bijection
sends an A-module M to the A(n)-module Mn.

• If R and S are algebras then modules over R × S can all be written as
M ×N where M is an R-module and N is an S-module.

In the following table we list each Clifford algebra Clr and the dimension of its
smallest nonzero module.

Table 15.20. Dimensions of Clifford modules

r Cl+r Smallest dim. of a module over Clr
0 R 1
1 C 2
2 H 4
3 H×H 4
4 H(2) 8
5 C(4) 8
6 R(8) 8
7 R(8)× R(8) 8
8 R(16) 16
9 C(16) 32
10 H(16) 64

Note that the third column has a quasi-periodicity, where row k + 8 is obtained
from row k by multiplying by 16.

After all of this, we are ready to prove the Hurwitz-Radon theorem about con-
structing vector fields on spheres. Recall that if Clr−1 acts on Rn then there are
r − 1 independent vector fields on Sn−1. Going down the rows of the above table,
we make the following deductions:



140 DANIEL DUGGER

Cl1 acts on R2, therefore we have 1 vector field on S1

Cl2 acts on R4, therefore we have 2 vector fields on S3

Cl3 acts on R4, therefore we have 3 vector fields on S3

Cl4 acts on R8, therefore we have 4 vector fields on S7

Cl5 acts on R8, therefore we have 5 vector fields on S7

Cl6 acts on R8, therefore we have 6 vector fields on S7

Cl7 acts on R8, therefore we have 7 vector fields on S7

Cl8 acts on R16, therefore we have 8 vector fields on S15.

It is not hard to deduce the general pattern here. The key is knowing where the
jumps in dimension occur, and then just doing bookkeeping. To this end, note that
the smallest dimension of a nonzero module over Clr is 2σ(r) where

σ(r) = #{s : 0 < s ≤ r and s ≡ 0, 1, 2, or 4 mod (8)}
(the numbers 0,1,2,4 mod 8 are the rows where the jumps occur in the third column
of Table 15.19). Our analysis has shown that we can construct r independent vector
fields on S2σ(r)−1.

Proof of Theorem 15.5 (Hurwitz-Radon Theorem). First note that we know much
more about Clifford modules than is indicated in Table 15.20. For each Clifford
algebra Clr we know the complete list of all isomorphism classes of finitely-generated
modules, and their dimensions are all multiples of the dimension listed in the table.
This is important.

Given an n ≥ 1, our job is to determine the largest r for which Clr acts on Rn.
We will then know that there are r vector fields on Sn−1. If we write n = 2u · (odd)
it is clear from Table 15.20 and the previous paragraph that the only way Clr could
act on Rn is if it actually acts on R2u . Moreover, the quasi-periodicity in the table
shows that if we add 4 to u then the largest r goes up by 8. It follows at once
that if u = a + 4b then the formula for the largest r is 8b+??? where the missing
expression just needs to be something that works for the values a = 0, 1, 2, 3. One
readily finds that r = 8b+ 2a − 1 does the job.

So we know that there are 8b + 2a − 1 vector fields on Sn−1, where n has the
form (odd) · 2a+4b. �

Remark 15.21 (First connection with KO∗). Return to Table 15.20 and look at
the column with the smallest dimensions of the modules. As one reads down the col-
umn, consider where the jumps in dimensions occur: we have “jump-jump-nothing-
jump-nothing-nothing-nothing-jump,” which then repeats. This is strangely remi-
niscent of the periodic sequence

Z2 Z2 0 Z 0 0 0 Z . . .
At first blush this feels like quite an amazing and unexpected connection! We will
eventually see, following [ABS], that there is a very direct connection between the
groups KO∗ and the module theory of the Clifford algebras. For now we leave it
as an intriguing coincidence, but see Section ??? for more discussion.
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15.22. Adams’s Theorem. So far we have done all this work just to construct
collections of independent vector fields on spheres. The Hurwitz-Radon lower bound
is classical, and was probably well-known in the 1940’s. The natural question is,
can one do any better? Is there a different construction that would yield more
vector fields than we have managed to produce, or is the bound provided by the
Hurwitz-Radon construction the best possible? People were actively working on
this problem throughout the 1950’s. Adams finally proved in 1962 [Ad2] that the
Hurwitz-Radon bound was maximal, and he did this by using K-theory:

Theorem 15.23 (Adams). There do not exist ρ(n) + 1 independent vector fields
on Sn−1.

This is a difficult theorem, and it will be a long while before we are able to prove
it. We are introducing it here largely to whet the reader’s appetite. Note that it is
far from being immediately clear how a cohomology theory would help one prove
the result. There are several reductions one must make in the problem, but the
first one we can explain without much effort:

Proposition 15.24. If there are r − 1 vector fields on Sn−1 then the projection
RPun−1/RPun−r−1 → RPun−1/RPun−2 ∼= Sun−1 has a section in the homotopy
category, for every u > 2r−2

n .

The existence of a section in the homotopy category is something that can per-
haps be contradicted by applying a suitable cohomology theory E∗(−). See Exer-
cise 15.25 below for a simple example.

We close this section by sketching the proof of Proposition 15.24. Recall that
the Stiefel manifold of k-frames in Rn is the space

Vk(Rn) = {(u1, . . . , uk) |ui ∈ Rn and u1, . . . , uk are orthonormal}.
Consider the map p1 : Vk(Rn)→ Sn−1 which sends (u1, . . . , un) 7→ u1. There exist
r vector fields on Sn−1 if and only if there is a section of p1 : Vr+1(Rn)→ Sn−1.

We need a fact from basic topology, namely that there is a cell structure on
Vk(Rn) where the cells look like

ei1 × · · · × eis
with n− k ≤ i1 < i2 < · · · < is ≤ n− 1 and s is arbitrary. We will not prove this
here: see Hatcher [Ha, Section 3.D] or Mosher-Tangora [MT, Chapter 5].

The cell structure looks like[
en−k ∪ en−k+1 ∪ · · · ∪ en−1

]
∪
[
(en−k+1 × en−k) ∪ (en−k+2 × en−k) ∪ · · ·

]
∪ · · ·

If n − 1 < (n − k + 1) + (n − k) (these are the dimensions of the last cell in the
first group and the first cell in the second group) then the (n − 1)-skeleton just
consists of the cells en−k through en−1. This looks like the top part of the cell
structure for RPn−1, and indeed it is. To begin to see this, start with the map
ρ : RPn−1 → O(n) that sends a line ` ⊆ Rn to the reflection in the hyperplane `⊥.
Let f : RPn−1 → Vk(Rn) be the composite

RPn−1 ρ−→ O(n)
p≤k−→ Vk(Rn)

where p≤k sends a matrix A ∈ O(n) to the tuple of its first k columns. The subspace
RPn−k−1 ⊆ RPn−1 consisting of points [0 : · · · : 0 : xk+1 : · · · : xn] is all sent to the
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standard frame (e1, . . . , ek) under f , so we obtain the induced map

f̃ : RPn−1/RPn−k−1 −→ Vk(Rn).

If r is a reflection in a hyperplane H then r(v)− v lies in H⊥ for every vector v. So
one can recover H⊥ from any vector v such that r(v) 6= v. Using this, it is easy to
see that f̃ is an injection. The cell structure on Vk(Rn) (which we have kept in a
black box) is defined in such a way that the image of f̃ is indeed the (n−1)-skeleton
when n+ 2 > 2k.

We will need one more fact about this situation. The composite map

RPn−1/RPn−k−1 f̃−→ Vk(Rn)
p1−→ Sn−1 sends the subspace RPn−2 = {[0 :

x2 : · · · : xn]} to e1 and so factors through RPn−1/RPn−2. The induced map
RPn−1/RPn−2 → Sn−1 is a homeomorphism, using the same considerations de-
scribed above for proving that f̃ is injective. So we have a commutative diagram
of the form

(*) RPn−1/RPn−k−1 // f̃ //

π

��

Vk(Rn)

p1

��
RPn−1/RPn−2 ∼= // Sn−1.

Proof of Proposition 15.24. If there exist r − 1 vector fields on Sn−1 there also
exist r − 1 vector fields on Sun−1 for any u (see Proposition 15.3). Then
p1 : Vr(Run) → Sun−1 has a section s. By the cellular approximation theorem
the map s is homotopic to a cellular map s′. So s′ factors through the (un − 1)-
skeleton of Vr(Run), which by the above remarks is RPun−1/RPun−r−1 provided
u is large enough so that un + 2 > 2r. From diagram (*) we deduce that the
composition

Sun−1 s′−→ RPun−1/RPun−r−1 π−→ RPun−1/RPun−2 ∼= Sun−1.

is homotopic to ±id. If it happened to be − id, alter s′ by precomposing with a
degree −1 map to fix this. �

Exercise 15.25. Use singular cohomology to prove that RPn−1/RPn−3 → Sn−1

does not have a section when n is odd. Deduce that an even sphere does not have
a non-vanishing vector field (which you already knew).

Exercise 15.26 (For those who know Steenrod operations). Use Steenrod opera-
tions to prove that there do not exist two independent vector fields on S5, by proving
that the projection π : RP 5/RP 2 → S5 does not have a section. [See Section 38.4
for further discussion of this method.]

◦ Exercises ◦

The following exercises take us through another approach to computing the
Clifford algebras over R. For this we will need slight generalization of Clifford
algebras, one that will also be very useful later on (???).

Given a real vector space V and a quadratic form q : V → R, define
Cl(V, q) = TR(V )/〈v ⊗ v = q(v) · 1 | v ∈ V 〉.
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For Rk with q(x1, . . . , xk) = −(x2
1 + · · · + x2

k) this recovers the algebra Clk. For
q(x1, . . . , xk) = x2

1 + · · · + x2
k this gives a new algebra we will call Cl−k . It will be

convenient to temporarily rename Clk as Cl+k . Of course there are other quadratic
forms on Rk, but these will be the only two we need for our present purposes.

Exercise 15.27. Prove that there are isomorphisms of algebras Cl±k
∼=

Cl±2 ⊗R Cl∓k−2. [Hint: Make some suitable guesses for where to send each algebra
generator ei and then just prove that it works.]

Exercise 15.28. We have already remarked that Cl+0
∼= R, Cl+1

∼= C, and Cl+2
∼= H.

Prove that Cl−0
∼= R, Cl−1

∼= R×R, and Cl−2
∼= R(2). [To get the last isomorphism,

note that Cl−2 is generated by e1 and e2 subject to the relations e2
1 = 1, e2

2 = 1, and
e1e2 = −e2e1. The conditions e2

i = 1 might make you think of reflections, and we
can try to realize the skew-commutativity relation by using two reflections through
carefully chosen lines `1 and `2 in R2. Get an algebra homomorphism Cl−2 → R(2)
by sending ei to the matrix for reflection in `i, and then prove that this map is an
isomorphism.]

Exercise 15.29. Use the previous two exercises to prove that Cl+3
∼= H × H,

Cl+4
∼= H(2), Cl−3

∼= C(2), and Cl−4
∼= H(2). Then continue with the same method

to show

Cl+5
∼= (H⊗R C)(2), Cl+6

∼= (H⊗R H)(2), Cl−5
∼= H(2)×H(2), Cl−6

∼= H(4).

Miller [M] describes this process as being like lacing up a shoe.

Exercise 15.30. The algebras H ⊗R C and H ⊗R H can be written in a simpler
form: in fact we have H⊗R C ∼= C(2) and H⊗R H ∼= R(4). Find where we already
proved these in this section and write down explicit isomorphisms.

Exercise 15.31. Now continue “lacing up the shoe” and deduce that

Cl+7
∼= R(8)× R(8), Cl+8

∼= R(16), Cl−7
∼= C(8), Cl−8

∼= R(16).

Note that coincidence of Cl+8
∼= Cl−8

∼= R(16), and convince yourself that the
interlacing process now yields the 8-fold quasi-periodicity.

For future reference we give the entire table of our generalized Clifford algebras:

Table 15.32. The Clifford algebras Cl±r

r Cl+r Cl−r
0 R R
1 C R× R
2 H R(2)
3 H×H C(2)
4 H(2) H(2)
5 C(4) H(2)×H(2)
6 R(8) H(4)
7 R(8)× R(8) C(8)
8 R(16) R(16)
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Part 3. K-theory and geometry I

At this point we have seen that there exist cohomology theories K∗(−) and
KO∗(−). We have not proven their existence, but we have seen that their existence
falls out as a consequence of the Bott periodicity theorems Ω2(Z×BU) ' Z×BU
and Ω8(Z× BO) ' Z× BO. If the only cohomology theory you have even seen is
singular cohomology, this will seem like an amazing thing: suddenly you know three
times as many cohomology theories as you used to. But a deeper study reveals that
cohomology theories are actually quite common—to be a little poetic about it, that
they are as plentiful as grains of sand on the beach. What is rare, however, is to
have cohomology theories with a close connection to geometry: and both K and
KO belong to this (vaguely-defined) class. In the following sections we will begin
to explore what this means.

To some extent we have a “geometric” understanding of K0(−) and KO0(−)
in terms of Grothendieck groups of vector bundles, at least for compact Hausdorff
spaces. We also know that any Kn(−) (or KOn(−)) group can be shifted to a
K0(−) group using the suspension isomorphism and Bott periodicity. One often
hears a slogan like “The connection between K-theory and geometry is via vector
bundles”. This slogan, however, doesn’t really say very much; our goal will be to
develop a more detailed story along these lines.

One way to encode geometry into a cohomology theory is via Thom classes for
vector bundles. Such classes give rise to fundamental classes for submanifolds and
a robust connection wth intersection theory. In the next section we begin our story
by recalling how all of this works for singular cohomology.

16. Thom classes, Thom isomorphism, and Thom spaces

The theory of Thom classes begins with the cohomological approach to orienta-
tions. Recall that

H∗(Rn,Rn − 0) ∼= H∗(Dn, Sn−1) ∼= H̃∗(Sn) ∼=
{
Z if ∗ = n,

0 otherwise.

Moreover, an orientation on Rn determines a generator for Hn(Rn,Rn − 0) ∼= Z.
(For a review of how this correspondence works, see the proof of Lemma 17.2 in
the next section).

Now consider a vector bundle p : E → B of rank n. Let ζ : B → E be the zero
section, and write E−0 as shorthand for E−im(ζ). We know thatHn(Ex, Ex−0) ∼=
Z, and an orientation of the fiber gives a generator. We wish to consider the problem
of giving compatible orientations for all the fibers at once; this can be addressed
through the cohomology of the pair (E,E − 0).

For a neighborhood V of x, let EV = E|V = p−1(V ). If EV is trivial, then
there is an isomorphism EV ∼= V × Rn, and (EV − 0) ∼= V × (Rn − 0). Hence,
H∗(EV , EV − 0) ∼= H∗(V × Rn, V × (Rn − 0)). If V is contractible (which we will
temporarily assume), this gives that

H∗(EV , EV − 0) ∼= H∗(Rn,Rn − 0) ∼=
{
Z if ∗ = n,

0 otherwise.

Pick a generator UV ∈ Hn(EV , EV − 0) ∼= Z. For all x ∈ V the inclusion
jx : (Ex, Ex−0) ↪→ (EV , EV −0) gives a map j∗x : H∗(EV , EV −0)→ H∗(Ex, Ex−0).
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Since we are assuming that V is contractible, j∗x is an isomorphism. So UV gives
rise to generators in Hn(Ex, Ex − 0) for all x ∈ V . We think of UV as orienting all
of the fibers simultaneously.

Even when V is not contractible the conclusions of the last paragraph still hold.
One has that H∗(V ×Rn, V ×(Rn−0)) ∼= H∗(V )⊗H∗(Rn,Rn−0) by the Künneth
Theorem, and so

Hi(V × Rn, V × (Rn − 0)) ∼= Hi−n(V )⊗Hn(Rn,Rn − 0) ∼=
{
Hi−n(V ) if i ≥ n,
0 if i < n.

Let UV ∈ Hn(EV , EV −0) be an element that corresponds to 1 ∈ H0(V ) under the
above isomorphism. Then one checks that j∗x(UV ) is a generator for Hn(Ex, Ex−0)
for every x ∈ V .

Next suppose that we have two open sets V,W ⊆ B where E is trivializable over
each one, together with classes UV ∈ Hn(EV , EV − 0) and UW ∈ Hn(EW , EW − 0)
that restrict to generators (orientations) on the fibers Ex for every x ∈ V and every
x ∈W , respectively. We would like to require that these orientations match: so we
require that the images of UV and UW in Hn(EV ∩W , EV ∩W −0) coincide. Consider
the (relative) Mayer-Vietoris sequence:

Hn−1(EV ∩W , EV ∩W − 0)

��
Hn(EV ∩W , EV ∩W − 0)

Hn(EV , EV − 0)⊕
Hn(EW , EW − 0)

oo Hn(EV ∪W , EV ∪W − 0)oo

Under our requirement of compatibility between UV and UW , the class UV ⊕ UW
maps to zero; so it is the image of a class UV ∪W . SinceHn−1(EV ∩W , EV ∩W−0) = 0
(see the computation in the previous paragraph), the class UV ∪W is unique. Note
that the Mayer-Vietories sequence also shows that H∗(EV ∪W , EV ∪W − 0) = 0 for
∗ < n, which leaves us poised to inductively continue this argument. In other
words, the argument shows that we may patch more and more U-classes together,
provided that they agree on the regions of overlap. This is the kind of behavior one
would expect for orientation classes.

The above discussion suggests the following definition:

Definition 16.1. Given a (constant) rank n bundle E → B, a Thom class for E
is an element UE ∈ Hn(E,E − 0) such that for all x ∈ B, j∗x(UE) is a generator
in Hn(Ex, Ex − 0). (Here jx : Ex ↪→ E is the inclusion of the fiber).

There is no guarantee that a bundle has a Thom class. Indeed, consider the
following example:

Example 16.2. Let M → S1 be the Möbius bundle. Take two contractible open
subsets V and W of S1, where V ∪ W = S1. We can choose a Thom class for
M |V , and one for M |W , but the orientations won’t line up correctly to give us a
Thom class for M . In fact, notice that by homotopy invariance H∗(M,M − 0) is
the cohomology of the Möbius band relative to its boundary. But collapsing the
boundary of the band gives an RP 2
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RP 2

Möbius band

and we know H1(RP 2) = 0. So a Thom class cannot exist in this case.

If a bundle E → B has a Thom class then the bundle is called orientable. Said
differently, an orientation on a vector bundle E → B is simply a choice of Thom
class in Hn(E,E − 0;Z). One can readily prove that this notion of orientability
agrees with other notions one may have encountered, and we leave this to the reader.

One can also talk about Thom classes with respect to the cohomology theories
H∗(−;R) for any ring R. Typically one only needs R = Z and R = Z/2, however.
In the latter case, note that any n-dimensional real vector space V has a canonical
orientation in Hn(V, V − 0;Z/2). It follows that local Thom classes always patch
together to give global Thom classes, and so every vector bundle has a Thom class
in H∗(−;Z/2).

Finally, note that we can repeat all that we have done for complex vector spaces
and complex vector bundles. However, a complex vector space V of dimension n
has a canonical orientation on its underlying real vector space, and therefore a
canonical generator in H2n(V, V − 0). Just as in the last paragraph, this implies
that local Thom classes always patch together to give global Thom classes; so every
complex vector bundle has a Thom class.

The following theorem summarizes what we have just learned:

Theorem 16.3. Suppose that B is connected.
(a) Every complex bundle E → B of rank n has a Thom class in H2n(E,E − 0).
(b) Every real bundle E → B of rank n has a Thom class in Hn(E,E − 0;Z/2).

The Mayer-Vietoris argument preceding Definition 16.1 shows that if p : E → B
is a rank n orientable real vector bundle then H∗(E,E − 0) vanishes for ∗ < n
and equals Z for ∗ = n. A careful look at the argument reveals that it also gives
a complete determination of the cohomology groups for ∗ > n. We describe this
next.

For any z ∈ H∗(B), we may first apply p∗ to obtain an element p∗(z) ∈ H∗(E).
We may then multiply by the Thom class UE to obtain an element p∗(z) ∪ UE ∈
H∗+n(E,E − 0). This gives a map H∗(B)→ H∗(E,E − 0) that increases degrees
by n.

Theorem 16.4 (Thom Isomorphism Theorem). Suppose that p : E → B has a
Thom class UE ∈ H∗(E,E − 0). Then the map H∗(B)→ H∗(E,E − 0) given by

z 7→ p∗(z) ∪ UE

is an isomorphism of graded abelian groups that increases degrees by n.

Proof. If the bundle is trivial, then E = B × Rn, and E − 0 = B × (Rn − 0). Here
one just uses the suspension and Künneth isomorphisms to get

H∗(B × Rn, B × (Rn − 0)) ∼= H∗−n(B).

One readily checks that the map from the statement of the theorem gives the
isomorphism.
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For the case of a general bundle one uses Mayer-Vietoris and the Five Lemma to
reduce to the case of trivial bundles. The argument is easy, but one can also look
it up in [MS]. �

Exercise 16.5. Write out the details for the above proof.

16.6. Thom spaces. The relative groups H∗(E,E − 0) coincide with the reduced
cohomology groups of the mapping cone of the inclusion E−0 ↪→ E. This mapping
cone is sometimes called the Thom space of the bundle E → B, although that
name is more commonly applied to more geometric models that we will introduce
next (the various models are all homotopy equivalent). For the most common model
we require that the bundle have an inner product (see Section 8.30).

Definition 16.7. Suppose that E → B is a bundle with an inner product. Define
the disk bundle of E as D(E) = {v ∈ E | 〈v, v〉 ≤ 1}, and the sphere bundle of
E as S(E) = {v ∈ E | 〈v, v〉 = 1}.

If E has rank n over each component of B, note that D(E)→ B and S(E)→ B
are fiber bundles with fibers Dn and Sn−1, respectively. Note also that we have
the following diagram:

E − 0 // // E

S(E) // //
OO

'

OO

D(E)

OO
'

OO

This diagram shows that E − 0 ↪→ E and S(E) ↪→ D(E) have weakly equivalent
mapping cones. Unlike E−0 ↪→ E, however, the map S(E) ↪→ D(E) is a cofibration
(under the mild condition that B is a CW-complex, say): so the mapping cone
is weakly equivalent to the quotient D(E)/S(E). This quotient is what is most
commonly meant by the term ‘Thom space’:

Definition 16.8. For a bundle E → B with inner product, the Thom space of E
is ThE = D(E)/S(E).

Remark 16.9. The notation BE is also commonly used in the literature to denote
the Thom space.

Note that if B is compact then ThE is homeomorphic to the one-point com-
pactification of the space E. To see this it is useful to first compactify all the fibers
separately, which amounts to forming the pushout of B ← S(E) → D(E). The
inclusion from B into the pushout P is the ‘section at infinity’, and the quotient
P/B is readily seen to be the one-point compactification of E. But clearly the
quotients P/B and D(E)/S(E) are homeomorphic.

Example 16.10. We will show that Th(nL → RP k) ∼= RPn+k/RPn−1, where L
is the tautological line bundle. First we define a homeomorphism of spaces over
RP k:

RPn+k−RPn−1 ∼= //

π
''

nL∗

||
RP k.
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Consider RPn−1 ↪→ RPn+k as embedded via the last n coordinates. Take a point
` = [x0 : · · · : xk : y1 : · · · : yn] ∈ RPn+k − RPn−1, and note that at least one xi is
nonzero. The map π : RPn+k−RPn−1 → RP k is defined to send ` to [x0 : · · · : xk].

Regard ` as a line in Rn+k+1, and π(`) as a line in Rk+1. The formula
(x0, . . . , xk) 7→ y1 specifies a unique functional π(`) → R (obtained by extending
linearly). Likewise, we obtain n functionals on π(`) via the formulas

(x0, . . . , xk) 7→ y1, . . . (x0, . . . , xk) 7→ yn.

Note also that these functionals are independent of the choice of the homogeneous
coordinates for `: multiplying all the xi’s and yj ’s by λ gives rise to the same
functionals. We have therefore described a continuous map RPn+k−RPn−1 → nL∗,
and this is readily checked to be a homeomorphism.

Since the Thom space is the one-point compactification, we get that

Th(nL∗ → RP k) ∼= (̂nL∗) ∼= (RPn+k − RPn−1)∧ ∼= RPn+k/RPn−1.

We know by Corollary 8.34 that any real vector bundle over a paracompact space
is isomorphic to its dual. So nL∗ ∼= nL, and we have shown that Th(nL→ RP k) ∼=
RPn+k/RPn−1.

Remark 16.11. Note the case n = 1 in the above example: Th(L → RP k) ∼=
RP k+1.

Remark 16.12. A similar analysis to above shows that Th(nL∗ → CP k) ∼=
CPn+k/CPn−1, but note that unlike the real case the dual is important here.

There is another approach to Thom spaces that does not require a metric for the
bundle. If E → B is any vector bundle, let P(E) → B be the corresponding fiber
bundle of projective spaces where the fiber of P(E) → B over a point b is P(Eb)
(see Exercise 8.41). Another definition of Thom space is then

ThE = P(E ⊕ 1)/P(E).

Note that this definition does not require a metric.
To see that our definitions are equivalent, note that if V is a vector space then

there is a canonical inclusion V ↪→ P(V ⊕R) given by v 7→ 〈v⊕ 1〉. A little thought
shows that we get a diagram

V //

��

P(V ⊕ R)

��
V̂

∼= // P(V ⊕ R)/P(V )

where the bottom map is a homeomorphism. Extending this to the bundle setting,
it is clear that the pushout of B ←− P(E) → P(E ⊕ 1) is the fiberwise one-point
compactification of E. Then P(E ⊕ 1)/P(E) is obtained by taking this fiberwise
one-point compactification and collapsing the section at infinity: this clearly agrees
with the other descriptions we have given of the Thom space.

It is sometimes useful to be able to connect the pairs (P(E ⊕ 1),P(E)) and
(E,E − 0) in a way that doesn’t make use of any metric. To do so, observe that
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every vector space V gives rise to a commutative diagram

V − 0
��

��

// // P(V ⊕ R)− ∗
��

��

P(V )
��

��

∼oo

V // // P(V ⊕ R) P(V ⊕ R).

Here ∗ ∈ P(V ⊕ R) is the line formed by the distinguished copy of R, and V →
P(V ⊕ R) is the map v 7→ 〈v ⊕ 1〉. All the other maps are the evident inclusions.
To see that the indicated map is a homotopy equivalence, use the map in the other
direction that projects a line in V ⊕ R down to V ; this is readily checkd to be a
deformation retraction of P(V ⊕ R)− ∗ down to P(V ). The left square is an open
covering diagram (with open sets along the antidiagonal and their intersection in the
upper left corner), and therefore a homotopy pushout. Taking homotopy cofibers
of the three columns therefore yields a zig-zag of weak equivalences between the
homotopy cofiber of V −0 ↪→ V and the homotopy cofiber of P(V ) ↪→ P(V ⊕R). The
latter is weakly equivalent to its cofiber, because P(V ) ↪→ P(V ⊕R) is a cofibration.

Now consider a fiberwise version of the above diagram. If E → B is a real bundle
then we have maps

E − 0
��

��

// // P(E ⊕ 1)−B
��

��

P(E)
��

��

∼oo

E // // P(E ⊕ 1) P(E ⊕ 1).

The only difference worth noting is that B ↪→ P(E⊕1) is the evident section that in
each fiber selects out the distinguished line determined by the trivial bundle 1. The
left square is again a homotopy pushout square, and so taking homotopy cofibers
of the columns gives a zig-zag of weak equivalences between the homotopy cofibers
of E − 0 ↪→ E and P(E) ↪→ P(E ⊕ 1).

16.13. Thom spaces for virtual bundles. Thom spaces behave in a very simple
way in relation to adding on trivial bundles:

Proposition 16.14. For any real bundle E → X one has Th(E⊕n) ∼= Σn Th(E).
For a complex bundle E → X one has Th(E ⊕ n) ∼= Σ2n Th(E).

Proof. We only prove the statement for real bundles, as the case of complex bundles
works the same (and is even a consequence of the real case). Also, we will give
the proof assuming the bundle has a metric, although the result is true in more
generality. Note the isomorphisms

D(E⊕n) ∼= D(E)×Dn, S(E⊕n) ∼= (S(E)×Dn)qS(E)×Sn−1 (D(E)×Sn−1).

From this one readily sees that

D(E ⊕ n)/S(E ⊕ n) ∼= [D(E)/S(E)] ∧ [Dn/Sn−1] ∼= Th(E) ∧ Sn.
�

Proposition 16.14 allows one to make sense of Thom spaces for virtual bundles,
provided that we use spectra. This material will only be needed briefly in the rest
of the book, but we include it here because these Thom spectra play a large role in
modern algebraic topology.
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Assume thatX is compact and let E → X be a bundle. Then by Proposition 9.10
E embeds in some trivial bundle N . Let Q denote the quotient, so that we have
E ⊕Q ∼= N . Assuming that Th(−E) had some meaning then we would expect

Th(Q) = Th(N − E) = ΣN Th(−E).

This suggests the definition

Th(−E) = Σ−N Th(Q),

where the negative suspension must of course be interpreted as taking place in a
suitable category of spectra.

Our definition seems to depend on the choice of embedding E ↪→ N . To see that
this dependence is an illusion, let E ↪→ N ′ be another embedding and let Q′ be
the quotient. Then N ′ ⊕ Q ∼= Q′ ⊕ E ⊕ Q ∼= Q′ ⊕ N . On Thom spaces this gives
ΣN

′
Th(Q) ∼= ΣN Th(Q′), or Σ−N Th(Q) ' Σ−N

′
Th(Q′).

The above discussion can be extended to cover any element α ∈ KO(X). Write
α = E − F for vector bundles E and F , and choose an embedding F ↪→ N . Let
Q denote the quotient N/F . Note that α + N = (E − F ) + (F + Q) = E + Q. If
Th(α) makes sense then we would expect ΣN (Thα) ' Th(α + N) ' Th(E + Q),
and so this suggests the definition

Th(α) = Σ−N Th(E ⊕Q).

Again, one readily checks that up to homotopy this does not depend on the choice
of E, F , N , or the embedding F ↪→ N .

16.15. An application to stunted projective spaces. To demonstrate the use-
fulness of Thom spaces we give an application to periodicities amongst stunted
projective spaces. This material will be needed later, in the solution of the vector
fields on spheres problem presented in Section 38.

Consider the space RP a+b/RP a. This has a cell structure with exactly b cells
(not including the zero cell), in dimensions a + 1 through a + b. The space
RP a+b+r/RP a+r has a similar cell structure, although here the cells are in di-
mensions a+ 1 + r through a+ b+ r. The natural question arises: fixing a and b,
what values of r (if any) satisfy

Σr[RP a+b/RP a] ' RP a+b+r/RP a+r?

One can use singular cohomology and Steenrod operations to produce some neces-
sary conditions here. For example, integral singular homology easily yields that if
if b ≥ 2 then r must be even. Use of Steenrod operations produces more stringent
conditions (we leave this for the reader to think about).

We will use Thom spaces to provide some sufficient conditions for a stable ho-
motopy equivalence between stunted projective spaces. We begin with a simple
lemma:

Lemma 16.16. The element λ = [L] − 1 ∈ K̃O(RPn) satisfies λ2 = −2λ and
λn+1 = 0. Consequently, λk = (−2)k−1λ for all k, and 2nλ = 0.

Proof. The square of any real line bundle is trivializable (Exercise 13.21), so L2 ∼= 1.
This immediately yields λ2 = −2λ. The second statement follows from the fact
that RPn may be covered by n + 1 contractible sets U0, . . . , Un. (With respect to
homogeneous coordinates [x0 : · · · : xn] on RPn, one may take Ui to be the open
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set xi 6= 0). The element λ ∈ KO(RPn, ∗) lifts to a class λi ∈ KO(RPn, Ui), and
therefore λn+1 is the image of λ0λ1 · · ·λn under the natural map

KO(RPn, U0 ∪ · · · ∪ Un)→ KO(RPn).

But since ∪iUi = RPn, the domain of the above map is zero; hence λn+1 = 0.
Finally, since λ2 = −2λ it follows that λe = (−2)e−1λ for all e. In particular,

(−2)nλ = λn+1 = 0. �

Proposition 16.17. Let r be any positive integer such that r([L] − 1) = 0 in
K̃O(RP b−1). Then there is a stable homotopy equivalence

Σr[RP a+b/RP a] ' RP a+b+r/RP a+r.

Proof. The assumption that r([L] − 1) = 0 implies that rL ⊕ s ∼= r ⊕ s for some
s ≥ 0. We have

RP a+b/RP a ∼= Th

(
(a+1)L

↓
RP b−1

)
' Σ−r−s Th

(
(a+1)L⊕r+s

↓
RP b−1

)

' Σ−r−s Th

(
(a+1+r)L⊕s

↓
RP b−1

)

' Σ−r Th

(
(a+1+r)L

↓
RP b−1

)
' Σ−r

[
RP a+b+r/RP a+r

]
.

The first and last steps use the identification of stunted projective spaces with a
corresponding Thom space—see Example 16.10 for this. �

Combining Lemma 16.16 and Proposition 16.17 we see that stunted projective
spaces with b cells have a periodicity of 2b−1:

Σ2b−1[
RP a+b/RP a

]
' RP a+b+2b−1

/RP a+2b−1

(here ' means stable homotopy equivalence). However, this is not the best result
along these lines: we will get a better result by finding the exact order of [L]− 1 in
K̃O(RP b−1). This was determined by Adams; see Theorem 37.14

17. Thom classes and intersection theory

In this section we will see how Thom classes give rise to fundamental classes for
submanifolds, and we will develop the connection between products of such classes
and intersection theory.

Let E → B be a real vector bundle of rank n. In general, E may not have a
Thom class; and if it does have a Thom class, it actually has two Thom classes
(since Hn(E,E − 0) ∼= Z by the Thom Isomorphism Theorem). The situation is
familiar, as it matches the usual behavior of orientations. It is, of course, possible—
and necessary!—to do geometry in a way that includes keeping track of orientations
and computing signs according to whether orientations match up or not. But it is
easier if we are in a situation where we don’t have to keep track of quite so much,
and there are two situations with that property: we can work always with mod 2
coefficients, or we can work in the setting of complex geometry. In either case we
have canonical Thom classes all the time. In this section, and for most of the rest
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of these notes, we choose to work in the setting of complex bundles and complex
geometry. But it is important to note that almost everything works verbatim for
real bundles if we use Z/2 coefficients, and that many things can be made to work
for oriented real bundles if one is diligent enough about keeping track of signs.

For a rank n complex bundle E → B we have a canonical Thom class UE ∈
H2n(E,E − 0). The following result gives two useful properties:

Proposition 17.1.
(a) (Naturality) Suppose E → B is a rank n complex vector bundle, and f : A→ B.

Consider the pullback

f∗E
f̄ //

��

E

��
A

f // B.

Then f̄∗ : H2n(E,E − 0) → H2n(f∗E, f∗E − 0) sends UE to Uf∗E; that is,
f̄∗(UE) = Uf∗E

(b) (Multiplicativity) Suppose that E → B is a rank n complex vector bundle, and
E′ → B is a rank k complex vector bundle, with Thom classes UE ∈ H2n(E,E−
0) and UE′ ∈ H2k(E′, E′−0). Then UE×UE′ = UE⊕E′ in H2n+2k(E×E′, (E×
E′)− 0).

Proof. Recall that the Thom class of a rank n complex bundle E → B is the unique
class in H2n(E,E− 0) that restricts to the canonical generator in H2n(Ex, Ex− 0)
for every fiber Ex. Part (a) follows readily from this characterization. Using the
same reasoning, part (b) is reduced to the case where B is a point; this is checked
in the lemma below. �

Lemma 17.2. Let V and W be two real vector spaces, of dimensions n and k,
respectively. Assume given orientations on V and W , and let V ⊕ W have the
product orientation. Let UV ∈ Hn(V, V − 0), UW ∈ Hk(W,W − 0), and UV⊕W ∈
Hn+k(V ⊕W, (V ⊕W )−0) be the corresponding orientation classes. Then UV⊕W =
UV × UW .

Proof. Let v1, . . . , vn be an oriented basis for V , and let σV : ∆n → V be the affine
simplex whose ordered list of vertices is 0, v1, . . . , vn. Let σtV denote any translate
of σ that contains the origin of V in the interior. Then [σtV ] is a generator for
Hn(V, V − 0), and any relative cocycle in C∗sing(V, V − 0) that evaluates to 1 on
σtV is a generator (in fact, the same generator) for Hn(V, V − 0). This is how an
orientation of V determines a generator of Hn(V, V − 0).

Now let w1, . . . , wk be an oriented basis for W . Let σV⊕W : ∆n+k → V ⊕W
be the affine simplex whose ordered list of vertices is 0, v1, . . . , vn, w1, . . . , wk (note
that omitting 0 gives an oriented basis for V ⊕ W ). Again, let σtV⊕W denote a
translate of σV⊕W that contains the origin in its interior.

Recall that UV × UW = (π1)∗(UV ) ∪ (π∗2)(UW ), where π1 : V × W → V and
π2 : V ×W →W are the two projections. The definition of the cup product gives

(UV × UW )(σtV⊕W ) = (π∗1UV )(σtV⊕W [01 · · ·n]) · (π∗2UW )(σtV⊕W [n · · · (n+ k)])

= UV (π1 ◦ σtV⊕W [01 · · ·n]) · UW (π2 ◦ σtV⊕W [n · · · (n+ k)]).
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It is clear that π1 ◦ σtV⊕W [01 · · ·n] gives a simplex in the same homology class as
σtV , and so UV evaluates to 1 on this simplex. Similarly, π2 ◦ σtV⊕W [n · · · (n + k)]

gives a simplex in the same homology class as σtW , and so UW evaluates to 1 here.
Since 1 · 1 = 1, we see that UV × UW satisfies the defining property of UV⊕W .

Given that a picture is worth a thousand words, here is a picture showing what
is happening in the smallest nontrivial case:

v1

w1

V V

W W

σV⊕W

σtV⊕W π1σ
t
V⊕W [01]

π2σ
t
V⊕W [12]

0 1

2

�

17.3. Fundamental classes. Next we use the Thom isomorphism to define fun-
damental classes for submanifolds. Let M be a complex manifold, and let Z be
a regularly embedded submanifold of complex codimension c. By “regularly em-
bedded” we mean that there exists a neighborhood U of Z and a homeomorphism
φ : U → N between U and the normal bundle N = NM/Z , with the property that
φ carries Z to the zero section of N . The neighborhood U is called a tubular
neighborhood of Z. Keep in mind the following rough picture:

M Z

U

In the above situation we have that H∗(U,U −Z) ∼= H∗(N,N − 0). Notice that
N → Z is a complex bundle of rank c, with Thom class UN ∈ H2c(N,N − 0), and
so by the Thom Isomorphism we get Hi−2c(Z) ∼= Hi(N,N − 0). Also, by excision
one has H∗(M,M − Z) ∼= H∗(U,U − Z). So we have isomorphisms

Hi−2c(Z)
Thom−→ Hi(N,N − 0) ∼= Hi(U,U − Z)

∼=←− Hi(M,M − Z).

Now consider the long exact sequence for the pair (M,M−Z), but use the above
isomorphisms to rewrite the relative groups H∗(M,M − Z) and H∗−2c(Z):
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· · · H∗(M − Z)oo H∗(M)oo H∗(M,M − Z)oo

∼=
��

· · ·oo

H∗(U,U − Z)

∼=
��

H∗(N,N − 0)

H∗−2c(Z)

∼=

OO

j!

PP

If j : Z ↪→M is the inclusion, then the indicated composition in the above diagram
is denoted j! and called a pushforward map or Gysin map. We can rewrite
the long exact sequence to get the Gysin sequence, also called a localization
sequence by algebraic geometers:

· · · Hi(M − Z)oo Hi(M)oo Hi−2c(Z)
j!oo Hi−1(M − Z)oo · · ·oo

Definition 17.4. Let Z be a regularly embedded, codimension c submanifold of
the complex manifold M . Let j! be the Gysin map described above. We define the
fundamental class of Z to be [Z]M = j!(1) ∈ H2c(M), where 1 ∈ H0(Z) is the
unit. We also define the relative fundamental class [Z]rel ∈ H2c(M,M − Z)
to be the image of 1 under the chain of isomorphisms from H0(Z) to H2c(M,M −
Z). Note that j∗([Z]rel) = [Z], where j∗ denotes the induced map in cohomology
associated to the inclusion (M, ∅) ↪→ (M,M − Z).

On an intuitive level one should think of [Z] as being the Poincaré dual of the
usual fundamental class of Z in H∗(M). The point, however, is that we don’t need
to think through the hairiness of the Poincaré duality isomorphism; this has been
replaced with the machinery of vector bundles and Thom classes.

One must of course prove a collection of basic results showing that the classes
[Z] really do behave as one would expect fundamental classes to behave, and have
the expected ties with geometry. We will do a little of this, just enough to give the
reader the idea that it is not hard. Before tackling this let us do the most trivial
example:

Exercise 17.5.
(a) Check that the relative fundamental class of the origin in Cd is the canonical

generator: i.e., [0]rel ∈ H2d(Cd,Cd − 0) is the canonical generator provided by
the complex orientation on Cd.

(b) Let M be a d-dimensional complex manifold. If a, b ∈ M are path-connected,
verify that [a] = [b]. Hint: Reduce to the case where a and b belong to a
common chart U of M , with U ∼= Cd. Let I be a line joining a and b inside of
U , and consider the diagram

H∗(M,M − a)

∼=
��

∼= // H∗(M,M − I)

∼=
��

H∗(M,M − b)
∼=
��

∼=oo

H∗(U,U − a)
∼= // H∗(U,U − I) H∗(U,U − b).∼=oo
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Using an argument similar to that in the proof of Lemma 17.2, show that
[a]rel,U and [b]rel,U map to the same element in H∗(U,U − I).

(c) SupposeM is compact and connected. Verify that if a ∈M then [a] ∈ H2d(M)
is a generator. (Use that the mapH2d(M)→ H2d(M,M−a) is an isomorphism
in this case).

The following theorem connects our fundamental classes to intersection theory.
It is far from the most general statement along these lines, but it will suffice for
our applications later in the text. The diligent reader will find that the proof
readily generalizes to tackle more complicated situations, for example where the
intersection is not discrete.

Theorem 17.6. Let M be a connected complex manifold. Suppose that Z and W
are regularly embedded submanifolds of M that intersect transversely in d points.
Assume also that W is connected (this is mostly for convenience in the statement
of (b)). Then
(a) [Z]M ∪ [W ]M = d[∗]M
(b) j∗([Z]M ) = d[∗]W , where j : W ↪→M .

Proof. We begin by proving (a). Suppose that dimZ = k and dimW = `, so that
dimM = k + `. Let Z ∩W = {p1, . . . , pd}, and for each i let Ui be a Euclidean
neighborhood of pi such that Ui∩Uj = ∅ for i 6= j. Consider the following diagram:

Hk(M,M − Z)⊗H l(M,M −W ) //

∪rel
��

Hk(M)⊗H l(M)

∪
��

Hk+l(M,M − (Z ∩W )) // Hk+l(M)

Hk+l(M,M − {p1, . . . , pd})

⊕rHk+l(M,M − {pr})

∼=

OO

88

Since [Z] and [W ] lift to relative classes [Z]rel and [W ]rel, it will suffice to show that
if we take [Z]rel∪[W ]rel and take its projection to the rth factorHk+l(M,M−{pr})
of the summand then we get [pr]rel. From this it will follow from the diagram that
[Z]∪ [W ] = [p1]+ . . .+[pd] in Hk+l(M). Since we have already seen in Exercise 17.5
that [pi] = [pj ] for any i and j, this will complete the proof of (a).

Next, fix an index r and consider the second diagram

Hk(Ur, Ur − Z)⊗H l(Ur, Ur −W )

∪rel
��

Hk(M,M − Z)⊗H l(M,M −W )

∪rel
��

oo

Hk+l(Ur, Ur − {pr}) Hk+l(M,M − {p1, . . . , pd})oo

Hk+l(M,M − {pr}).

OO
∼=

kk
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Thanks to this diagram, it is enough to replace M by Ur, Z by Z ∩ Ur, and W by
W ∩ Ur, and to prove that [Z]rel ∪ [W ]rel = [pr]rel.

But now M is just Ck+l. By choosing our neighborhood small enough, we
can find local coordinates so that Z is just Ck × {0} and W is just {0} × Cl,
intersecting transversely at the origin (we will write Ck× 0 and 0×Cl for brevity).
We need to compute [Ck × 0]rel ∪ [0 × Cl]rel ∈ Hk+l(Ck+l,Ck+l − 0). By writing
Ck+l = Ck × Cl one sees that [Ck × 0]rel coincides with the Thom class for the
bundle l → Ck. Likewise, [0× Cl]rel coincides with the Thom class for the bundle
k → Cl. These are trivial bundles, so they are pulled back from Cl → ∗ and
Ck → ∗ along the projection maps Ck → ∗ and Cl → ∗, respectively. In particular,
by Proposition 17.1(a) we can write

[Ck × 0]rel ∪ [0× Cl]rel = π∗1(U1) ∪ π∗2(U2)

where U1 ∈ H2l(Cl,Cl−0) and U2 ∈ H2k(Ck,Ck−0) are the canonical classes and
π1 : Ck+l → Cl, π2 : Ck+l → Ck are the projection maps. But π∗1(U1)∪π∗2(U2) is the
external cross product U1×U2, and so Lemma 17.2 says that this is the same as the
canonical generator in H2k+2l(Ck+l,Ck+l − 0). This canonical generator is [0]rel,
by Exercise 17.5(a). We have therefore shown that [Ck × 0]rel ∪ [0×Cl]rel = [0]rel,
and this completes the proof of (a).

The proof of (b) is very similar. One considers the diagram

Hk(W ) Hk(M)
j∗oo

⊕rHk(W,W − pr)
∼= // Hk(W,W − {p1, . . . , pd})

OO

��

Hk(M,M − Z)oo

OO

��
Hk(W ∩ Ur, (W ∩ Ur)− pr) Hk(Ur, Ur − pr)oo

where r is an arbitrary choice of index. The top square implies that it suffices
to show that the projection of j∗([Z]rel) to Hk(W,W − pr) equals [pr]rel, for any
choice of r. The bottom square then allows us to replace M by Ur and Z and W
by Z ∩Ur and W ∩Ur. That is, we are again reduced to the case where M = Ck+l,
Z = Ck × 0, and W = 0× Cl. Here we are considering the map

H2l(Cl,Cl − 0)
j∗←− H2l

(
Ck × Cl, (Ck × Cl)− (Ck × 0)

)
and must show that the image of [Ck×0]rel is the canonical generator in the target.
But if we identity Ck×Cl with the bundle l→ Ck then [Ck×0]rel is just the Thom
class U, and the map j∗ is restriction to the fiber over 0 ∈ Ck; so it becomes the
canonical generator by definition of the Thom class. �

Exercise 17.7. If W were not assumed to be connected in Theorem 17.6, what
would need to change in the statement of part (b)?

It is important to notice that for the most part the above proof used nothing
special about singular cohomology—we only used the basic properties of Thom
classes, together with generic properties that hold in any cohomology theory. In
the proof of Lemma 17.2 we apparently used particular details about the definition
of the cup product, but in fact what we needed could have been written in a way
that doesn’t reference the peculiar definition of the cup product at all. Indeed, we
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have the identifications H∗(Cn,Cn − Ck) = H∗(Ck × Cn−k,Ck × (Cn−k − 0)) =

H∗(Cn−k,Cn−k − 0) = H∗(D2n−2k, ∂D2n−2k) ∼= H̃∗(S2(n−k)) (for the second
identification we use the map induced by projection Ck × Cn−k → Cn−k, and
for the third identification we use the induced map of any orientation-preserving
embedding of the disk into Cn−k). Similarly, we have a canonical identification
H∗(Cn,Cn − Cn−k) = H̃∗(S2k) . Considering the commutative diagram

H∗(Cn,Cn − Ck)⊗H∗(Cn,Cn − Cn−k)
µ // H∗(Cn,Cn − 0)

H̃∗(S2(n−k))⊗ H̃∗(S2k)
µ // H̃∗(S2n)

where µ denotes our product, the property needed for the proof of Lemma 17.2
boils down to the requirement that

σ2(n−k)(1)⊗ σ2k(1)
µ−→ σ2n(1).

In other words, the computation comes down to the fact that the product behaves
well with respect to the suspension isomorphism.

Example 17.8. To demonstrate Theorem 17.6 we will be content with the usual
first example. Let Z ↪→ CPn be a codimension c complex submanifold. Then
[Z] ∈ H2c(CPn) ∼= Z. A generator for this group is [CPn−c], so [Z] = d[CPn−c]
for a unique integer d. This integer is called the degree of the submanifold Z.
A generic, c-dimensional, linear subspace of CPn will intersect Z transversely in
finitely many points, say e of them. Theorem 17.6 gives that [Z] ∪ [CP c] = e[∗],
but we also have d[CPn−c] ∪ [CP c] = d[∗] since [CPn−c] ∪ [CP c] = [∗] (again by
Theorem 17.6). So d = e, and this gives the geometric description of the degree:
the number of intersection points with a generic linear subpace of complementary
dimension.

The following result is the evident generalization of Theorem 17.6.

Theorem 17.9. Let M be a connected complex manifold. Suppose that Z and W
are regularly embedded submanifolds of M that intersect transversely. Then
(a) [Z]M ∪ [W ]M = [Z ∩W ];
(b) j∗([Z]M ) = [Z ∩W ], where j : W ↪→M .

Outline of proof. We omit the details here, since the proof is largely similar to that
of Theorem 17.6. For (a) use the relative fundamental classes [Z]rel and [W ]rel,
and show that [Z]rel ∪ [W ]rel = [Z ∩ W ]rel in H∗(M,M − (Z ∩ W )). For this,
restrict to a tubular neighborhood and then show that both classes restrict to the
canonical generators on the fibers of the normal bundle. For [Z ∩W ]rel this is the
definition, and for [Z]rel ∪ [W ]rel this is a computation with the cup product. The
proof of (b) is similar. �

17.10. Topological intersection multiplicities. We can now use our machinery
to give a topological definition of intersection multiplicity. Suppose that Z and W
are complex submanifolds of the complex manifold M , and that Z and W have
an isolated point of intersection at p. Let k denote the complex codimension of Z
in M , and l denote the complex codimension of W in M . Let d be the complex
dimension of M .

Let U be a Euclidean neighborhood of p that contains no other points of Z ∩W .
Consider the classes [Z]rel ∈ H2k(M,M −Z) and [W ]rel ∈ H2l(M,M −W ). Then
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the cup product [Z]rel ∪ [W ]rel lies in the group H2(k+l)(M,M − (Z ∩W )). This
group is zero if k + l 6= d, and in this case we define the intersection multiplicity
i(Z,W ; p) to be zero. In the case where k + l = d we have that

H2(k+l)(M,M − (Z ∩W )) = H2d(M,M − {p}) = Z,
which has the preferred generator [p]rel. Here we define i(Z,W ; p) to be the unique
integer such that

[Z]rel ∪ [W ]rel = i(Z,W ; p)[p].

The same proof as for Theorem 17.6 shows that when Z and W intersect trans-
versely at p we have i(Z,W ; p) = 1.

The final subject we turn to is the invariance of the intersection multiplicity
under small deformations. There are different ways one might approach this; we
just give one version. Assume given a Euclidean neighborhood E of p in which the
normal bundle of Z is trivializable, and a closed disk D = D2d ⊆ E where p is in
the interior. Let ZD = Z ∩D and WD = W ∩D. Next suppose we have a nonzero
smooth section s of the normal bundle of ZD, and consider the associated homotopy
h : ZD× I → D given by h(z, t) = ts(z). Let S be the image of h and let Z ′D be the
image of s. Assume that S ∩W ⊆ int(D) and that Z ′D ∩W has only finitely-many
points q1, . . . , qr. The following picture shows an example of this setup:

b
Zp

W

D

S
Z ′
Db b

The space Z ′D need not be a complex submanifold of M , but we can still define
the intersection multiplicities i(Z ′D,W ; qj). For these we only need a Thom class
for the normal bundle of Z ′D inM , which itself is determined by a consistent choice
of local orientations along the fibers. For each x ∈ ZD we can use the path hx
(t 7→ h(x, t)) to transport the normal orientation for ZD to Z ′D.

Proposition 17.11. In the above setting, we have

i(Z,W ; p) =

r∑
i=1

i(Z ′D,W ; qi).

In particular, if Z ′D is a complex submanifold of M and meets W transversely at
each point qi then i(Z,W ; p) = r.
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Proof. We give a sketch and leave some of the details to the reader. Consider the
following diagram:

H2k(D,D − ZD)⊗H2l(D,D −W )

��

∪ // H2d(D,D − p)

��

// H2d(D, ∂D)

H2k(D,D−S)⊗H2l(D,D−W )
∪ // H2d(D,D − (S ∩W )) // H2d(D, ∂D)

H2k(D,D − Z ′D)⊗H2l(D,D −W )

OO

∪ // H2d(D,D − {q1, . . . , qr})

OO

// H2d(D, ∂D)

Note that in the middle line we are using that S∩W does not meed ∂D. In the top
left corner we have [Z]rel ⊗ [W ]rel, and in the bottom left corner we have [Z ′]rel ⊗
[W ]rel. The diagram shows that these map to the same element in H2d(D, ∂D) =
Z, provided that [Z]rel and [Z ′]rel map to the same element in H2k(D,D − S).
Assuming this for the moment, along the top row the class maps to i(Z,W ; p) and
along the bottom row the class maps to

∑
j i(Z,W ; qj) (using the same argument

as in the proof of Theorem 17.6).
So it only remains to analyze the two maps

H2k(D,D − ZD) −→ H2k(D,D − S)←− H2k(D,D − Z ′D)

and see that [Z]rel and [Z ′]rel map to the same element in the middle. Note that
in our setup the inclusions D− S ↪→ D−ZD and D− S ↪→ D−Z ′D are homotopy
equivalences, so the above two maps are isomorphisms. Pick any point z ∈ ZD and
let Nz ⊆ D be the fiber of the normal bundle to Z. Consider the diagram

H2k(D,D − ZD)
∼= //

∼=
��

H2k(D,D − S)

��

H2k(D,D − Z ′D)
∼=oo

∼=
��

H2k(Nz, Nz − 0)
∼= // H2k(Nz, Nz − (Nz ∩ S)) H2k(Nz, Nz − (Nz ∩ Z ′D))

∼=oo

where the indicated maps are all isomorphisms (and therefore every map is an
isomorphism). The elements [Z]rel and [Z ′]rel map to the orientation classes in the
left and right groups from the bottom row, and these map to the same class in the
middle precisely because we oriented the normal directions to Z ′ in the way that
was determined by the given orientation on the normal spaces of Z. �

18. Thom classes in K-theory and Koszul complexes

In the last section we saw how Thom classes for complex vector bundles give
rise to cohomological fundamental classes for submanifolds, and we saw that these
fundamental classes have the expected connections to geometry. The discussion was
carried out in the case of singular cohomology, but very little specific information
about this cohomology theory was actually used. In fact, once we showed that
Thom classes existed everything else followed formally. So let us now generalize a
bit:

Definition 18.1. A multiplicative generalized cohomology theory is a coho-
mology theory E equipped with product maps

µ : Ep(X,A)⊗ Eq(Y,B) −→ Ep+q(X × Y,X ×B ∪A× Y )
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satisfying the following requirements:
(1) Naturality in both (X,A) and (Y,B);
(2) There exists a two-sided unit 1 ∈ E0(pt, ∅) = E0(pt);
(3) The pairings are associative;
(4) The pairings are compatible with the connecting homomorphisms, in the

sense that when (X,A) and (Y,B) are CW-pairs the following two diagrams
commute:

Ep(A)⊗ Eq(Y,B)
µ //

δ⊗id

��

Ep+q(A× Y,A×B)

Ep+1(X,A)⊗ Eq(Y,B)

µ ++

Ep+q(X ×B ∪A× Y,X ×B)

∼=

OO

δ
��

Ep+q+1(X × Y,X ×B ∪A× Y )

Ep(X,A)⊗ Eq(B)
µ //

(−1)p id⊗δ
��

Ep+q(X ×B,A×B)

Ep(X,A)⊗ Eq+1(Y,B)

µ ++

Ep+q(X ×B ∪A× Y,A× Y )

∼=

OO

δ
��

Ep+q+1(X × Y,X ×B ∪A× Y )

(the vertical δ maps are the connecting homomorphisms for the evident
triples).

Let E be a multiplicative generalized cohomology theory.

Definition 18.2. Let E → B be a rank n complex vector bundle. A Thom class
for E is an element UE ∈ E2n(E,E − 0) such that for all x ∈ B one has i∗(UE)
mapping to 1 under the string of isomorphisms

E2n(Ex, Ex\0) ∼= E2n(Cn,Cn−0) ∼= E2n(D2n, ∂D2n) ∼= Ẽ2n(S2n) ∼= Ẽ0(S0) = E0(pt).

In the above definition note that the first isomorphism depends on an identifica-
tion Ex ∼= Cn, which is equivalent to a choice of basis in Ex. However, any two such
bases give homotopic maps of pairs (Cn,Cn − 0)→ (Ex, Ex − 0) (since GLn(C) is
path-connected) and therefore induce the same map on E∗.

Definition 18.3. A complex orientation for E is a choice, for every rank n
complex bundle E → B, of a Thom class UE ∈ E2n(E,E − 0) such that

(1) (Naturality) Uf∗E = f∗(UE) for every map f : A→ B;
(2) (Multiplicativity) UE⊕E′ = UE · UE′
A given cohomology theory may or may not admit a complex orientation—

most likely, it will not. The complex-orientable cohomology theories are a very
special class. Note that once a complex orientation is provided one gets the Thom
isomorphism, Gysin sequences, and fundamental classes for complex submanifolds
just as before—as well as the same connections to intersection theory.

Our goal in this section is the following:
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Theorem 18.4. Complex K-theory is a multiplicative cohomology theory that ad-
mits a complex orientation.

Actually, it will take us many more sections to complete the details of our dis-
cussion of this result. But in this section we set down the basic ideas.

We will spend a long time exploring the geometric consequences of Theorem 18.4
(essentially all of Part 4 of this book), but let us go ahead and give one example
right away. Let Z ↪→ CPn be a complex submanifold of codimension c. The above
theorem implies that we have a fundamental class [Z] ∈ K2c(CPn), just as we did
in the case of singular cohomology. Whereas H2c(CPn) ∼= Z and only results in
one integral invariant, we will find that K2c(CPn) ∼= Zn+1. This is a much larger
group, and so there is suddenly the potential for detecting more information: the
K-theoretic fundamental class [Z] is an (n+ 1)-tuple of integers rather than just a
single integer. Of course it might end up that all of these new invariants are just
zero, or some algebraic function of the invariant we already had—we will have to
do some computations to find out. But this demonstrates the general situation: K-
theory has an inherent ability to detect more information than singular cohomology
did.

To prove Theorem 18.4 we need to give a construction, for every rank n complex
vector bundle E → B, of a Thom class in K2n(E,E − 0). By Bott periodicity this
group is the same as K0(E,E − 0). Our first step will be to develop some tools for
producing elements in relative K-groups.

18.5. Relative K-theory. Let A ↪→ X be an inclusion of topological spaces.
When we talked about algebraic K-theory back in Part 1, we defined the relative
K-group K0(X,A) using quasi-isomorphism classes of chain complexes that were
exact on A (Section 5.13). We will make a similar construction in the topological
case, with some important differences.

Definition 18.6. Let F(X,A) be the free abelian group on isomorphism classes of
bounded chain complexes of vector bundles E• on X that are exact on A (meaning
that for every x ∈ X the complex of vector spaces (Ex)• is exact). Define K(X,A)
to be the quotient of F(X,A) by the following relations:
(1) [E• ⊕ F•] = [E•] + [F•];
(2) [E•] = 0 whenever E• is exact on all of X;
(3) If E• is a boundex complex of vector bundles on X × I that is exact on A × I

then [E|X×0] = [E|X×1].

Note that pullback of vector bundles makesK(X,A) into a contravariant functor.
Relations (1) and (2) are familiar from Part 1, although the reader might be

surprised that (1) only deals with direct sums and not short exact sequences. We
will say more about this in a moment. Let us first make some remarks on relation
(3), since in our work on algebraic Grothendieck groups we did not encounter
relations of this type.

If d : E → F is a map of vector bundles over X there is a clear, intuitive notion
of a deformation of d. One way to make this rigorous is to consider the subspace
VB(E,F ) ⊆ Top(E,F ) consisting of the vector bundle maps; then a deformation of
d is just a continuous map I → VB(E,F ) that sends 0 to d. If π : X×I → X is the
projection, a little thought shows that the above notion of deformation is the same
as a map of vector bundles π∗E → π∗F over X × I that restricts to d on X × {0}.
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Likewise, a deformation of a chain complex E• over X can be thought of in two
ways. One way involves a collection of deformations for all the maps of E•, having
the property that at any given time t the maps in the deformation assemble into
a chain complex. The other way is simply as a chain complex structure on the set
of vector bundles {π∗Ei} which when restricted to X × {0} is isomorphic to E•.
These notions are equivalent.

The point here is that if (E•, d) is a given chain complex and d′ is a deformation
of the differential on d, then relation (3) implies that [(E•, d)] = [(E•, d

′)]. (To be
precise, there is an exactness condition required for the deformation, namely that
at every time t the differential dt is exact on A). Moreover, if X is paracompact
Hausdorff then by Corollary 11.2(b) every bundle on X × I is isomorphic to the
pullback of a bundle from X; it follows that every relation from (3) can be recast
in this form. That is to say, for paracompact Hausdorff spaces it is equivalent to
replace (3) by
(3’) [(E•, d)] = [(E•, d

′)] for any bounded chain complex (E•, d) that is exact on A
and any deformation d′ of d (where each dt is also required to be exact on A).

The following important lemma will help give a feeling for the idea of deforming
a chain complex:

Lemma 18.7. Let E• be a bounded complex of vector bundles on X that is exact
on A. Then [E•] = −[ΣE•] in K(X,A), where ΣE• is the shifted complex having
Ei in degree i+ 1 and dΣE = −dE.
Proof. First note that if V• and W• are exact complexes of vector spaces and
f : V• → W• is any map, then the mapping cone Cf is still exact. This follows
by the long exact sequence on homology. Consequently, if E• → F• is a map be-
tween complexes of vector bundles on X, each of which is exact on A, then the
mapping cone is also exact on A.

Let C denote the mapping cone of the identity map E•
id−→ E•. We depict this

complex as follows:

· · · // E3

⊕

// E2

⊕

// E1

⊕

// E0

· · ·

>>

// E2
//

id

>>

E1
//

id

>>

E0

id

>>

The arrows depict the various components of the differentials in the mapping cone;
recall that d(a, b) = (da+ id(b),−db) for (a, b) ∈ En⊕En−1, where we have written
id(b) instead of b just to indicate the role of the original chain map.

Consider the deformation of C obtained by putting a t in front of all the diagonal
arrows and letting t 7→ 0. That is, C(t) is the mapping cone for t(id) : E• → E•.
Then C(t) is exact on A for every t, and when t = 0 we have C(0) = E•⊕ΣE•. So
[C] = [C(1)] = [C(0)] = [E•] + [ΣE•] in K(X,A).

But C is exact on all of X, being the mapping cone of an identity map. So
[C] = 0 in K(X,A), and hence [E•] = −[ΣE•]. �

Exercise 18.8. Let E• and F• be complexes of vector bundles on X that are exact
on A and let f : E• → F• be any map, with Cf denoting the mapping cone. Use
the ideas in the above proof to show that [Cf ] = [F•]− [E•] in K(X,A).
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Our next task is to analyze exact complexes, and see that just as in homological
algebra they split up into basic pieces.

Definition 18.9. An elementary complex is one of the form

[0→ · · · → 0→ E
id−→ E → 0→ · · · → 0]

where E is a vector bundle on X and the E’s occur in some dimensions i and i+1.
Denote this complex as Di(E).

Proposition 18.10. Let X be a paracompact Hausdorff space. If E• is a bounded
complex of vector bundles on X that is exact, then E• is a direct sum of elementary
complexes.

Proof. The proof is really the same as in homological algebra. Assume without
loss of generality that Ei = 0 for i < 0. Then E1 → E0 is a surjection, so the
kernel K1 is a vector bundle by Proposition 9.3. By Proposition 9.2 the sequence
0→ K1 → E1 → E0 → 0 is split-exact, and a choice of splitting allows us to write
E1 = K1 ⊕ Q1 where the composite Q1 ↪→ E1 → E0 is an isomorphism. Noting
that E2 → E1 has image contained in K1, the complex E• splits as the direct sum
of D0(E0) and a complex that is zero in dimensions smaller than 1. Now continue
inductively, replacing E• with this smaller factor, until the nonzero degrees of E•
have been exhausted. �

Remark 18.11. Observe now that relation (2) of Definition 18.6 could be replaced
with the relation that [Di(E)] = 0 for any vector bundle E on X and any i ∈ Z.
This fact is sometimes useful.

The next result explains why we were able to forego short exact sequences in
relation (1) from Definition 18.6.

Proposition 18.12. Let X be paracompact and Hausdorff, and let A ⊆ X. Assume
given a short exact sequence 0 → E′• → E• → E′′• → 0 of complexes of vector
bundles on X, where each complex is exact on A. Then [E•] = [E′•] + [E′′• ] in
K(X,A).

Proof. Let C• be the mapping cone of E′• ↪→ E•, and recall that there is a natural
map C• � E′′• . Let K• be the kernel, which is a chain complex of vector bundles
by Proposition 9.3. Elementary homological algebra (applied in each fiber) shows
that K• is exact on X. By Lemma 18.13 below the inclusion K• ↪→ C• is split, and
so C• ∼= K•⊕E′′• . So [C•] = [K•] + [E′′• ] = [E′′• ] in K(X,A). Yet Exercise 18.8 gives
[C•] = [E•]− [E′•]. �

Lemma 18.13. Let X be a paracompact Hausdorff space. Let j : K• ↪→ C• be an
inclusion between bounded complexes of vector bundles on X, and assume that K•
is exact. Then the map j admits a splitting χ : C• → K•.

Proof. Without loss of generality assume that Ki = 0 = Ci for i < 0. By Propo-
sition 18.10 we can write K = ⊕Ni=0Di(Ai) for some vector bundles A0, . . . , AN on
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X. The inclusion j looks as follows:

...

id��

...

��
A2 ⊕ A1

id��

// C2

��
A1 ⊕ A0

id��

// C1

��
A0

// C0

Starting at the bottom, choose a splitting χ0 for the inclusion A0 ↪→ C0, using
Corollary 9.9. Likewise, choose a splitting α1 for the inclusion A1 ↪→ C1/A0 (note
that C1/A0 is a vector bundle by Proposition 9.3). Define χ1 : C1 → A1⊕A0 to be
the sum of C1 → C1/A0

α1−→ A1 and C1 → C0
χ0−→ A0. It is readily checked that

χ1 is a splitting for j1 and that dχ1 = χ0d. Continue inductively to define χ at all
levels. �

The groups K(X,A) are readily seen to be homotopy invariant constructions,
essentially because this was built into the definition:

Proposition 18.14. For any map of pairs f : (X,A) → (Y,B) that is part of a
homotopy equivalence (of pairs), the induced map f∗ : K(Y,B) → K(X,A) is an
isomorphism.

Proof. If j0, j1 : (X,A) ↪→ (X × I,A× I) are the evident inclusions then it is clear
that j∗0 = j∗1 , by relation (3) in Definition 18.6. It then follows by category the-
ory that homotopic maps (X,A) → (Y,B) induce the same map upon applying
K(−,−). Consequently, if f : (X,A)→ (Y,B) is part of a relative homotopy equiv-
alence then it induces an isomorphism on K-groups. �

Before finishing with our basic exploration of the group K(X,A), let us note the
following simple result:

Proposition 18.15. For any paracompact Hausdorff space X there is an iso-
morphism K(X, ∅) → K0

Grt(X) given by the formula [E•] →
∑
i(−1)i[Ei], where

K0
Grt(X) is the Grothendieck group of vector bundles on X.

Proof. It is immediate that the indicated formula gives a group homomorphism
χ : K(X, ∅) → K0

Grt(X); the only nontrivial part is verifying relation (3), but here
one uses that if F is a vector bundle on X × I then F |X×0

∼= F |X×1 by Proposi-
tion 9.2.

There is also the evident map j : K0
Grt(X)→ K(X, ∅) sending a vector bundle E

to the chain complex E[0] consisting of E in degree 0 and zeros in all other degrees.
Certainly χ ◦ j = id.

If E• is any chain complex of vector bundles on X then we may deform E• to
the complex with zero differentials, by putting a t in front of all the d maps and
letting t 7→ 0. So [E•] = [(E•, d = 0)] =

∑
i[Σ

iEi] in K(X, ∅). But by Lemma 18.7
we know [ΣiEi] = (−1)i[Ei]. This proves that j ◦ χ = id. �

Let E• and F• be bounded chain complexes of vector bundles on X. Let E•⊗F•
denote the usual tensor product of chain complexes, giving another complex of
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vector bundles on X. In contrast to this, there is also an external tensor product.
If G• is a complex of vector bundles on a space Y , define

E•⊗̂G• = π∗1(E•)⊗ π∗2(G•)

where π1 : X × Y → X and π2 : X × Y → Y are the two projections. Note that if
∆: X → X ×X is the diagonal map then E• ⊗ F• ∼= ∆∗(E•⊗̂F•).

The internal and external tensor products induce pairings on the K-groups de-
fined above, taking the form

⊗ : K(X,A)⊗K(X,B)→ K(X,A ∪B)

and
⊗̂ : K(X,A)⊗K(Y,B)→ K(X × Y, (A× Y ) ∪ (X ×B)).

The main point is that if V• and W• are bounded exact sequences of vector spaces
and V• is exact, then V•⊗W• is exact. It follows that if E• is exact on A and F• is
exact on B, then E•⊗F• is exact on A∪B, with a similar analysis for the external
case. Note again that the internal and external tensor products are connected by
the formula

[E•]⊗ [F•] = ∆∗
(
[E•]⊗̂[F•]

)
.

The following theorem is essentially due to Atiyah, Bott and Shapiro [ABS].

Theorem 18.16. There is a natural transformation of functors χ : K(X,A) →
K0(X,A) such that when A = ∅ one has χ(E•) =

∑
i
(−1)i[Ei], and all such nat-

ural transformations agree on pairs (X,A) where both X and A are homotopically
compact. Moreover, χ is a natural isomorphism on pairs that are homotopy equiva-
lent to a finite CW-pair. Also, χ is compatible with (external and internal) products
in the sense that χ(E• ⊗ F•) = χ(E•) · χ(F•) for pairs (X,A) and (Y,B) that are
either finite CW-complexes or are homotopically compact with A being open in X
and B being open in Y .

The proof of Theorem 18.16 involves some technicalities that would be a distrac-
tion at this particular moment, so we postpone the proof until Section 22 below.
See, in particular, Section 22.43 for the final proof.

In light of the above theorem, it is unclear how well-behaved the groups K(X,A)
are for pairs (X,A) that are not homotopy equivalent to a finite CW-pair. This is
unfortunate, because we have already seen that we need to work with groups like
K0(E,E− 0) (E a vector bundle) and K0(X,X −Z) (Z a closed subvariety of X).
The above result does not allow us to replace these with the analogous K groups.
Still, we do have a map from the latter to the former, and that is often enough for
us. Essentially, the K construction is good for producing elements and relations in
the K0 groups, even when it is not good for computing them explicitly.

From now on we assume that a specific natural transformation χ has been chosen,
but the indeterminancy in this choice will not effect any arguments we ever need
to make.

18.17. Koszul complexes. Now that we know how to produce classes in relative
K-theory, we will put this knowledge to good use.

Let V be a complex vector space of dimension n. For any v ∈ V consider the
chain complex

0 // Λ0V
v∧− // Λ1V

v∧− // · · · v∧−// Λn−1V
v∧− // ΛnV // 0.
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Denote this chain complex by JV,v. It is easy to see that this is exact when v 6= 0:
indeed, pick a basis e1, . . . , en for V where e1 = v, then use the usual induced basis
for the exterior products. It is clear that if e1 ∧ ω = 0 then all the basis elements
appearing in ω have an e1 in them.

Exercise 18.18. Check that JV,v ⊗ JW,w ∼= JV⊕W,v⊕w, and the isomorphism is
canonical.

For various reasons we will need to consider the dual of JV,v. Recall the existence
of a natural isomorphism Λk(V ∗) → (ΛkV )∗: for any φ1, . . . , φk ∈ V ∗ it sends
φ1 ∧ · · · ∧ φk to the functional on ΛkV given by

v1 ∧ · · · ∧ vk 7→
∑
σ∈Σk

(−1)σφ1(vσ(1))φ2(vσ(2)) · · ·φk(vσ(k)).

If e1, . . . , en is a basis for V , let e∗1, . . . , e∗n denote the dual basis for V ∗. As a basis
for ΛkV use the standard basis of wedge products ei1···ik = ei1 ∧ · · · ∧ eik where
i1 < · · · < ik, and write e∗i1···ik for the corresponding elements of the dual basis for
(ΛkV )∗. One readily checks that our map sends e∗i1 ∧ · · · ∧ e∗ik to the functional
e∗i1···ik , which shows that we have an isomorphism.

Using these isomorphisms, the dual complex of JV,v has the form

0→ ΛnV ∗
dv−→ Λn−1V ∗

dv−→ · · · dv−→ Λ1V ∗
dv−→ Λ0V ∗ → 0

We denote this by J∗V,v, and it is called a Koszul complex. Here is a description
of the differential:

Proposition 18.19. Let e1, · · · , en be a basis for V and write v =
∑
viei. Let

e∗1, . . . , e
∗
n be the dual basis for V ∗. Then the differential in J∗V,v is given by

dv(e
∗
i0 ∧ · · · ∧ e∗ik) =

k∑
j=0

(−1)jvije
∗
i0 ∧ · · · ∧ ê∗ij ∧ · · · ∧ e

∗
ik
,

where the hat indicates that that term is omitted from the wedge.

Proof. Left to the reader. �

Example 18.20. Prove that JV,v and J∗V,v are isomorphic as chain complexes. A
good exercise is to try to do this without any help, starting with a specific map
Λ0V → ΛnV ∗ and figuring out what the other maps would have to be to get
a map of complexes. This essentially leads one to discover the so-called “Hodge
star-operator”. But for good measure we also give an outline of how to do this.

Fix a basis e1, . . . , en of V , and let ω = e1 ∧ · · · ∧ en ∈ ΛnV . For I = (i1, . . . , ik),
let Î = (j1, . . . , jn−k) denote any tuple of indices for which eI ∧ eÎ = ω. Note that
eÎ ∈ Λn−k(V ) only depends on eI ∈ Λk(V ) and not the choice of ordering in either
tuple. Define S : Λk(V )→ Λn−kV ∗ by

S(eI) = (−1)(
k
2) · e∗

Î
.

A few examples are: S(1) = ω, S(e1) = e∗2···n, S(e2) = −e∗1···n, and S(e12) =
−e∗3···n. Prove that S gives the desired isomorphism of complexes. (Note that the
isomorphism between JV,v and J∗V,v is not canonical, though, as it depends on the
chosen basis of V .)
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Recall that K-theory is largely about ‘doing linear algebra fiberwise over a base
space’. Anything canonical that we can do for vector spaces can be done for vector
bundles as well. So let E → B be a rank n complex vector bundle, and let s : B → E
be a section. We get a chain complex of vector bundles

0 // Λ0E
s∧− // Λ1E

s∧− // · · · s∧−// Λn−1E
s∧− // ΛnE // 0

which we will denote JE,s. For x ∈ B this chain complex is exact over x provided
that s(x) 6= 0. Thus it determines an element in K0(B,B−s−1(0)). We can just as
well consider the dual complex, which also determines a (likely different) element
[J∗E,s] ∈ K0(B,B − s−1(0)).

Now let V be a complex vector space of dimension n. Consider the vector bundle
π1 : V × V → V , with section given by the diagonal map ∆: V → V × V . Our
Koszul complex J∗V×V,∆ is exact on V − 0, and so defines an element

β(V ) = [J∗V×V,∆] ∈ K0(V, V − 0).

Example 18.21. One readily checks that β(C) is the complex

1
·z //

��

1

��
C

where the fiber over z ∈ C is the chain complex 0 → C z−→ C → 0 (multiplication
by z). The Koszul complex β(C2) has the form

1
A //

��

2
B //

��

1

��
C2

,

where over a point (z, w) ∈ C2 we have

A =

[
−w
z

]
and B =

[
z w

]
.

Finally we look at β(C3), which has the form

1
A // 3

B // 3
C // 1

where the fiber over (z, w, u) ∈ C3 has

A =

 u
−w
z

 , B =

−w −u 0
z 0 −u
0 z w

 , C =
[
z w u

]
.

Let us return to our element β(V ) ∈ K0(V, V − 0). If we pick a basis for V then
we get isomorphisms

K0(V, V − 0) ∼= K0(Cn,Cn − 0) ∼= K0(D2n, ∂D2n) ∼= K̃0(S2n)

∼= K̃−2n(S0) = K−2n(pt).
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Moreover, one checks that any two choices of basis for V give rise to the same
isomorphism (essentially because a C-linear automorphism of Cn is orientation-
preserving). So we may regard β(V ) as giving us an element of K−2n(pt). Using
Exercise 18.18 we have β(V ⊕W ) = β(V ) · β(W ).

When we first learned about K-theory as a cohomology theory, we set ourselves
the goal of having explicit generators for K∗(pt). We can now at least state the
basic result:

Theorem 18.22.
(a) K0(Cn,Cn − 0) ∼= K−2n(pt) ∼= Z and β(Cn) = (β(C))n is a generator.
(b) K∗(pt) = Z[β, β−1], where β = β(C) ∈ K−2(pt).

The element β = β(C) ∈ K−2(pt) is often called the Bott element, although
sometimes this name is applied to β−1 ∈ K2(pt) instead. This theorem is best
regarded as part of Bott periodicity. And just as for the periodicity theorem, we
again postpone the proof in favor of moving forward and seeing how to use it. The
proof can be found in ????.

Let p : E → B be a rank n complex vector bundle. Consider the pullback p∗E,
which is π1 : E×BE → E. This bundle has an evident section given by the diagonal
map ∆: E → E ×B E, and we may consider the Koszul complex with respect to
this section. Since ∆ is nonzero away from the zero-section of E, this gives us an
element in K0(E,E − 0): we define

UE = [J∗p∗E,∆] ∈ K0(E,E − 0).(18.23)

Note that if x ∈ B and jx : Ex ↪→ E is the inclusion of the fiber, it is completely
obvious that j∗x(UE) = β(Ex) ∈ K0(Ex, Ex − 0).

The element UE is not quite our desired Thom class, since the Thom class is
supposed to live in K2n(E,E−0) rather than K0(E,E−0). Of course these groups
are the same because of Bott periodicity. To be completely precise, we should define
our Thom class to be UE = β−n · [J∗p∗E,∆]. However, it is common practice to leave
off the factors of β and just do constructions in K0. We will often follow this
practice, but sometimes we will put the factors of β back into the equations in
order to emphasize a point. Hopefully this won’t be too confusing.

We have now completed our outline of the proof that K-theory admits Thom
classes, modulo Theorems 18.16 and 18.22 whose proofs will come in Sections 22
and ???, respectively.

18.24. Koszul complexes in algebra. Now that we have seen Koszul complexes
in geometry it seems worthwhile to also see how they appear in algebra. They turn
out to be very important tools in homological algebra.

Let R be a commutative ring, and let x1, . . . , xn ∈ R. Define the Koszul complex
K(x1, . . . , xn;R) to be the complex

0 // ΛnRn
d // Λn−1Rn

d // · · · d // Λ2Rn
d // Λ1Rn

d // Λ0Rn // 0,

where the differential d is given by

d(ei0 ∧ · · · ∧ eik) =

k∑
j=0

(−1)jxij (ei0 ∧ · · · ∧ êij ∧ · · · ∧ eik).
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Note that d is the unique derivation such that d(ei) = xi. Define the Koszul
homology groups as H∗(x1, . . . , xn;R) = H∗(K(x1, . . . , xn;R)). We will often
abbreviate the sequence x1, . . . , xn to just x, and write K(x;R) and so forth. It is
easy to see that H0(x;R) = R/(x1, . . . , xn).

In some cases the Koszul complex K(x;R) is actually a resolution of
R/(x1, . . . , xn), and this is perhaps the main reason it is useful. To explain when
this occurs we need a new definition. The sequence x1, . . . , xn is said to be a reg-
ular sequence if xi is a non-zero-divisor in R/(x1, . . . , xi−1) for every 1 ≤ i ≤ n
(in particular, x1 is a non-zero-divisor in R). For example, in the polynomial ring
C[z1, . . . , zn] the indeterminates z1, . . . , zn are a regular sequence.

Theorem 18.25. Let x1, . . . , xn ∈ R.
(a) If x1, . . . , xn is a regular sequence, then Hi(x;R) = 0 for all i ≥ 1.
(b) Suppose R is local Noetherian and x1, . . . , xn ∈ m, where m is the maximal

ideal. Then x1, . . . , xn is a regular sequence if and only if Hi(x;R) = 0 for all
i ≥ 1.

Proof. The subalgebra of Λ∗Rn generated by e1, . . . , en−1 is a subcomplex of
K(x1, . . . , xn;R), and is isomorphic to K(x1, . . . , xn−1;R). The quotient complex
has a free basis consisting of wedge products that contain en; and in fact the pro-
cess of ‘wedging with en’ gives an isomorphism between K(x1, . . . , xn−1;R) and
this quotient complex that shifts degrees by one. We can summarize this by saying
that there is a short exact sequence of chain complexes
(18.26)

0→ K(x1, . . . , xn−1;R) ↪→ K(x1, . . . , xn;R)� ΣK(x1, . . . , xn−1;R)→ 0.

Denote the sequence x1, . . . , xn by x and x1, . . . , xn−1 by x′.
Our short exact sequence induces a long exact sequence in homology groups:

· · · → Hi(x
′;R)→ Hi(x;R)→ Hi−1(x′;R)

d−→ Hi−1(x′;R)→ Hi−1(x;R)→ · · ·
and one easily checks that the connecting homomorphism is multiplication by ±xn
(we leave this as Exercise 18.27).

Our proof of part (a) now proceeds by induction on the length of the sequence

n. When n = 1 the Koszul complex is 0 // R
x1 // R // 0 , so H1(x;R) =

AnnR x1 = 0 since x1 is a non-zero-divisor.
Now assume that we know part (a) for all regular sequences of length n− 1. By

the induction hypothesis and the above long exact sequence, it is easy to see that
Hi(x;R) = 0 for i ≥ 2. So we only need to worry about H1(x;R), for which we
have

H1(x′;R)→ H1(x;R)→ H0(x′;R)
±xn−→ H0(x′;R)→ H0(x;R)→ 0

By induction H1(x′;R) = 0, and we know H0(x′;R) = R/(x1, . . . , xn−1). Since xn
is a non-zero-divisor in this ring, the kernel of the map labelled ±xn is zero—hence
H1(x;R) = 0 as well. This completes the proof of (a).

For (b), the point is that the above argument is almost reversible. For n = 1 the
other direction works without any assumptions on R, because H1(x;R) = Ann(x).
So assume by induction that the result holds for sequences of length n − 1. It
follows from the long exact sequence we saw in part (a) that there are short exact
sequences

0→ Hi(x
′;R)/xnHi(x

′;R)→ Hi(x;R)→ AnnHi−1(x′;R)(xn)→ 0.
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The assumption that Hi(x;R) = 0 implies that xnHi(x
′;R) = Hi(x

′;R). But
xn ∈ m, so by Nakayama’s Lemma this yields Hi(x

′;R) = 0. This holds for all
i ≥ 1, so induction gives that x′ is a regular sequence. The assumption Hi(x;R) = 0
also yields (using the other half of the above short exact sequence) that xn is a non-
zero-divisor on Hi−1(x′;R); so for i = 1 this says that xn is a non-zero-divisor on
R/(x1, . . . , xn−1). Hence, x is a regular sequence. �

Exercise 18.27. In the above proof, work through the definition of the connecting
homomorphism for the short exact sequence (18.26) to check that it is multiplication
by ±xn (the sign can be determined, we just don’t care about it).

We can use our knowledge of Koszul complexes to prove the Hilbert Syzygy
Theorem:

Theorem 18.28 (Hilbert Syzygy Theorem). Let L be a field. Then every finite-
generated module over L[x1, . . . , xn] has a finite projective resolution.

Proof. We first prove the result in the graded case. Let R = L[x1, . . . , xn], and
grade R by setting deg(xi) = 1. Assume that M is a finitely-generated, graded R-
module. We construct the so-called “minimal resolution” of M : Start by picking a
minimal set of homogeneous generators w1, . . . , wk for M . Define F0 = Rk, graded
so that the ith generator has degree equal to deg(wi). Let d0 : F0 → M be the
map sending ei to wi, and let K0 be the kernel. Then d0 preserves degrees, so K0

is again a graded module. Repeat this process to construct F1 � K0, let K1 be
the kernel, repeat to get F2 � K1, and so forth. This constructs a free resolution
F• →M of the form

· · · → Rb2 → Rb1 → Rb0 →M → 0

Each differential has entries in the ideal (x1, . . . , xn): this follows from the fact that
at each stage we chose a minimal set of generators.

Next, form the complex F• ⊗R R/(x1, . . . , xn) and take homology. Tensoring
with R/(x1, . . . , xn) kills all the entries of the matrices and changes every R to an
L; so we have

Lbi ∼= Hi(F• ⊗R R/(x1, . . . , xn)) = Tori(M,R/(x1, . . . , xn)).

Now we use the fact that we can also compute Tor by resolving R/(x1, . . . , xn)
and tensoring with M . Yet by Theorem 18.25(a) R/(x1, . . . , xn) is resolved
by the Koszul complex, which has length n: so this immediately yields that
Tori(M,R/(x1, . . . , xn)) = 0 for i > n. It follows that bi = 0 for i > n, which
says that F• was actually a finite resolution.

Now we prove the general case, for modules that are not necessarily graded.
Choose a presentation of the module

Rb1
A // Rb0 // // M

where A is a matrix with entries in R. Now introduce a new variable x0 and
homogenize A to Ã: that is, multiply factors of x0 onto the monomials ap-
pearing in the entries of A so that all the entries have the same degree. Put
S = L[x0, . . . , xn] = R[x0], and let M̃ be the cokernel of Ã:

Sb1
Ã // Sb0 // M̃ // 0 .

Note that M̃ is a graded module over S, and M̃ ⊗S S/(1− x0) ∼= M .
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What we have already proven in the graded case guarantees a finite S−free
resolution F̃ • → M̃ → 0. Let F• = F̃ • ⊗S (S/(1 − x0)). This is an R-free chain
complex, and H0(F•) ∼= M . Note that Hi(F ) = TorSi (M̃ , S/(1− x0)), and the Tor-
module can again also be computed by resolving S/(1−x0). We use the resolution
0→ S

1−x0−→ S → 0 and immediately find that Hi(F ) = 0 if i ≥ 2. We also have that
H1(F ) ∼= AnnM̃ (1− x0), but such an annihilator is zero for any finitely-generated,
graded module. So F• →M is a finite free resolution over R. �

Remark 18.29. In the above proof, the deduction of the general case from the
graded case was taken from [E, Corollary 19.8].
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19. Interlude: More algebraic geometry

In preparation for some arguments in the next section we need to develop a little
more algebraic geometry: we need the concepts of schemes and coherent sheaves,
as well as some experience with specific examples. The good news is that we only
require the basic ideas here. An extremely brief summary is:
(i) The category of affine schemes is the opposite category of commutative rings.

Affine algebraic geometry is just commutative algebra.
(ii) Schemes are affine schemes that have been pasted together along open inclu-

sions, analogously to the way one passes from open subsets of Euclidean space
to manifolds.

(iii) Here is an SAT-style analogy:

[R : R-modules] :: [X : quasi-coherent OX -modules].

That is, the category of quasi-coherent OX -modules is the algebraic geometers’
version of the category of R-modules. When X = SpecR the categories
are equivalent. Coherent OX -modules are the analog of finitely-presented R-
modules, but we will always deal with Noetherian situations and so one might
as well read finitely-generated here. If you know and love the theory of modules
over a ring, the theory of quasi-coherent OX -modules will soon be your good
friend.

This section will give an introduction to these topics, and along the way will
introduce blowup varieties and a few other geometric concepts.

19.1. Getting started. Let us start by recalling what we have learned so far about
the correspondence between geometry and algebra:

Geometry Algebra
Cn or AnC C[x1, . . . , xn] = R

Points (q1, . . . , qn) in An Maximal ideals (x1 − q1, . . . , xn − qn)
Algebraic sets Radical ideals

Irreducible algebraic sets Prime ideals
subvarieties X = V (P ) ⊆ An C[x1, . . . , xn]/P = R/P

(Closed) Points in X Maximal ideals in R/P
Algebraic subsets V (I) ⊆ X Radical ideals in R/P

Irreducible algebraic sets V (Q) ⊆ X Prime ideals in R/P
algebraic vector bundles E on X f.g. projective R/P -modules E

fiber Ex at the closed point x ∈ X E/mxE where mx is the maximal
ideal corresponding to x

One of the questions we aim to answer is this: if finitely-generated R/P -
projectives on the Algebra side correspond to algebraic vector bundles on the Ge-
ometry side, what do more general finitely-generated R/P -modules correspond to?
The answer will be that they represent “coherent sheaves”, but our job will be to
figure out what these are.

Here is a related issue that will drive our discussion. Once we have the idea
that a chain complex of projectives corresponds to a chain complex of algebraic
vector bundles, we immediately notice an issue: exactness in the module setting
does not match our usual fiberwise notion of exactness in the geometric setting.
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Recall that the most basic example is the map of trivial bundles f : 1 → 1 on A1

that corresponds to the map C[x]
·x−→ C[x]. So on the fiber over t ∈ C this map is

multiplication by t. On fibers these are isomorphisms for every t 6= 0, but at t = 0
we have both a kernel and a cokernel. We might draw the following picture:

bb

0 0

·t

b bb b

t t

Notice that on the module side C[x]
x−→ C[x] we have a cokernel, namely Q =

C[x]/(x), but zero kernel. In other words, regarding these maps as chain complexes
concentrated in degrees 0 and 1, the complex on the module side is exact in degree
1 but the complex on the geometric side is not. The module Q satisfies Q/mQ = 0
for every maximal ideal m ⊆ C[x] other than m = (x), and Q/(x)Q = C. So the
“fibers” of Q are matching the cokernel in our picture, but something is not lining
up when we look at kernels.

The fix for this—that is to say, the way to get the geometry to better match the
algebra—is that we need to be looking at stalks rather than fibers. So let us pause
for a moment to say what these are.

If p : E → X is an algebraic vector bundle and x ∈ X, then the stalk E(x)

is the vector space of germs of sections of p: that is, it consists of pairs (U, s)
where U is a Zariski neighborhood of x and s : U → X is a section of p, subject to
the identification (U, s) = (V, s′) if s|U∩V = s′|U∩V . Note that the stalk contains
much more information about sections than the fiber does: the fiber just records
the values of sections, but the stalk remembers all of the local information (for
example, the values of all of the derivatives). For our example of E = 1 on A1, the
stalk E(t) may be identified with the localization C[x](x−t).

Returning to our map of bundles f : E → E on A1, on the stalk over t we have

C[x](x−t)
·x−→ C[x](x−t).

When t 6= 0 the element x is a unit in C[x](x−t), therefore this map is an
isomorphism—kernel and cokernel are both zero. When t = 0 we have the map
C[x](x)

x−→ C[x](x), which has cokernel C but which is an injective map.
The lesson is that if we are to create a geometric version of the category of

modules, which in some way expands on our existing picture of algebraic vector
bundles, we need to be paying attention to stalks and not just fibers. This provides
some motivation for the notions of sheaves and quasi-coherent OX -modules that we
survey below.

19.2. Crash course on schemes. We start with the category of affine schemes
over C, which is defined to be the opposite of the category of C-algebras. For R a
C-algebra we define SpecR to be the associated affine scheme. Maps from SpecR to
SpecT are the same as maps of C-algebras from T to R. We define the underlying
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topological space of SpecR to be the set of prime ideals in R, equipped with the
Zariski topology.

It will be most convenient for us to build up the category of schemes by working
backwards. So let us assume given a category of objects called “C-schemes” which
will be our preferred setting for doing algebraic geometry. It should contain the
affine schemes over C as a full subcategory, but it should also contain any Zariski
open subset of an affine variety. The category should also contain objects, like
complex projective space, that are constructed by gluing affine varieties together
in certain allowable ways. We will have the property that for any C-scheme X
and any point p ∈ X there is a neighborhood of p that is affine. Denote this
imagined category by Sch/C. Since we will be working entirely over C throughout
this section, we shorten C-scheme to just “scheme” and write Sch instead of Sch/C.

Let A1 = SpecC[t]. We have maps A1 × A1 → A1 called addition and multi-
plication, corresponding to the maps of rings C[t] → C[t1, t2] given by t 7→ t1 + t2
and t 7→ t1t2. For any scheme X we can consider Sch(X,A1), which is a ring via
the operations induced by the above two maps. We denote this ring as O(X) and
call it the “ring of algebraic functions” on X. For any open covering {Ui} of X we
would expect to have an isomorphism

O(X)
∼=−→ lim

[∏
i

O(Ui)⇒
∏
i,j

O(Ui ∩ Uj)
]

(19.3)

where the top map sends a tuple (fi)i to (fi|Ui∩Uj )ij , and the bottom map sends
the same tuple to (fj |Ui∩Uj )ij . The isomorphism captures the notion that functions
patch well: giving an algebraic function defined on all of X is the same as giving
functions defined on each Ui which agree on the pairwise intersections.

Observe that when X = SpecR we have

O(X) = Sch(X,A1) = C−Alg(C[t], R) = R.

That is, the ring of algebraic functions on SpecR is just R.
The isomorphism of (19.3) is called a descent condition. It is useful to consider

other assignments satisfying these conditions, so define a presheaf F onX to be an
assignment U 7→ F (U) that maps each open set U ⊆ X to a set (or abelian group,
or ring) F (U), together with restriction maps F (V ) → F (U) whenever U ⊆ V .
Say that a presheaf F is a sheaf if it satisfies the descent condition saying that for
every open covering {Ui} of X the natural map

F (X)
∼=−→ lim

[∏
i

F (Ui)⇒
∏
i,j

F (Ui ∩ Uj)
]

(19.4)

is an isomorphism. The functor O, when restricted to open subsets of X, is usually
written OX . It is a sheaf of rings on X. More generally, for any scheme Z the
functor U 7→ Sch(U,Z) will give a sheaf on X.

For any presheaf F and any point x ∈ X, define the stalk of F at x to be

F(x) = colim
x∈Uopen⊆X

F (U),

where the colimit is taken over the inverse system of Zariski neighborhoods of x in
X. The stalk represents the truly local information in F near x. The stalk (OX)(x)

is usually written as OX,x and called the ring of germs of algebraic functions
at x.
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Starting with a presheaf F , there is a universal way to impose the descent con-
dition, resulting in a universal map F → F̃ where F̃ is a sheaf. This is called
the sheafification of F . We will not explain the construction, but it is not hard
(consult any introductory text on sheaf theory, e.g. [Br]). In addition to the uni-
versality, the main property is that F(x) → F̃(x) is an isomorphism for every point
x. So F and F̃ contain the same local information.

One can mimic the definition of topological vector bundle and define an algebraic
vector bundle to be a map of schemes p : E → X with certain extra structures,
that is locally trivial in the evident way. We omit the details only because it is
cumbersome to write them all out. For U an open subset of X write ΓE(U) for the
subset of Sch(U,E) consisting of sections of p. Then ΓE will be a sheaf on X. Even
more, each ΓE(U) will be an abelian group under pointwise addition from the fibers
of E, and an OX(U)-module under pointwise multiplication. Let us generalize this
scenario and define a sheaf of OX-modules to be a sheaf of abelian groups F on
X together with maps OX(U) ⊗ F (U) → F (U) that make F (U) into an OX(U)-
module and are compatible with the restriction maps in OX and F . Often one just
says “OX -module” as shorthand for “sheaf of OX -modules”.

Observe that ΓE isn’t just any OX -module, but it has the additional property
of being locally-free: for any point x in X there is an open set x ∈ U such that
ΓE(U) ∼= OX(U)⊕(n) where n is the rank of E. Consequently, note that for any
point x ∈ X one has an isomorphism of stalks (ΓE)(x)

∼= OnX,x.
Now assume X = SpecR is an affine scheme, and let M be an R-module. For

any open set U ⊆ X we have the map of rings R = OX(X) → OX(U), and so we
can define

FM (U) = OX(U)⊗RM.

This might not be a sheaf, but one can sheafify it to obtain F̃M . This will be a sheaf
of OX -modules. We will write M̃ instead of F̃M . For a prime ideal P ∈ SpecR

one has a natural isomorphism M̃(P )
∼= MP . That is, the stalks of M̃ are the usual

localizations of M .
If X is a scheme, define a quasi-coherent sheaf on X to be a sheaf F of OX -

modules such that for every x ∈ X there is an affine open neighborhood x ∈ U

such that F |U is isomorphic to M̃ for some OX(U)-module M . See Remark 19.5
below for a more intrinsic characterization. One can prove that when X = SpecR
the category of quasi-coherent sheaves on X is equivalent to the category of R-
modules, via the functor M 7→ M̃ . A coherent sheaf is a quasi-coherent sheaf
that is locally isomorphic to M̃ for M a finitely-generated OX(U)-module (recall
that by convention all of our rings are Noetherian).

Let qcModX and cModX denote the categories of quasi-coherent and coherent
OX -modules, respectively. These are both abelian categories, for any scheme X.

Remark 19.5. Here are equivalent versions of the definitions that in some ways
are more appealing in that they don’t explicitly refer back to the categories of rings
and modules on an affine chart. They also don’t require any Noetherian conditions.
A sheaf of OX -modules F is quasi-coherent if for each x ∈ X there is an open
neighborhood x ∈ U such that F |U is a cokernel of free sheaves of OX -modules:⊕

i∈I

(OX)|U −→
⊕
j∈J

(OX)|U −→ F |U −→ 0.
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A sheaf of OX -modules F is finite-type if for each x ∈ X there is an open neigh-
borhood x ∈ U , an n ≥ 0, and a surjection (OX)n|U � F |U . Finally, a sheaf of
OX -modules F is coherent if it is finite-type and for every open set U , every n ≥ 0,
and every surjection (OnX)|U � F , the kernel is also finite-type.

We will not need these conditions, but include them to give the reader some
assurance that the theory we are outlining can all be worked out in rigorous detail
and in quite general settings.

The analog of Swan’s theorem says that the assignment E 7→ ΓE gives an equiv-
alence of categories between algebraic vector bundles over X and the locally-free
coherent sheaves on X. In this context it is often called the Serre-Swan Theo-
rem. Note that when X = SpecR this is an equivalence between algebraic vector
bundles on X and finitely-generated projective R-modules. Thus, one may regard
the category of quasi-coherent sheaves as an expansion of the category of algebraic
vector bundles into an abelian category, analogous to the way the category of R-
modules is an expansion of the category of finitely-generated projectives. It is often
useful to think of a quasi-coherent sheaf as being like a vector bundle but where
there can be certain kinds of “jumps” in the fibers.

The category of quasi-coherent sheaves on a schemeX is the algebraic geometer’s
version of the category of modules over a ring. It is an abelian category with enough
injectives, and so one can do homological algebra. When the scheme is not affine the
locally free sheaves are not necessarily projective (see Exercise ??), but they are flat
and for all the schemes we will consider there are “enough” of them: any coherent
sheaf is a quotient of a locally free sheaf, and so one can produce resolutions by
locally free sheaves and thereby define left derived functors of tensor product. In
short, most of the constructions of commutative algebra carry over from modules
to quasi-coherent (or coherent) sheaves, though sometimes requiring a little extra
care. See Exercises 20.13 through 20.15 at the end of the section for some experience
with this.

At this point we must face up to the fact that we have not explicitly defined the
category Sch. Nevertheless, we have established the main ideas. The usual way
to construct it is to take the basic properties we have learned and essentially force
them into the definitions. One defines a locally-ringed space to be a topological
space with a sheaf of rings for which the stalks are rings with unique maximal
ideals. Given a ring R one can construct a locally-ringed space (SpecR,OSpecR),
and then a scheme is defined to be a locally-ringed space that is locally isomorphic
to one of these affines. Consult any basic text on algebraic geometry for details,
e.g. [H] or [Sha2].

Example 19.6. Like the category of topological spaces, the category of schemes
admits certain pathological objects. Here is just one example. Take two copies of
An and glue them together along the open set An − 0, via the identity map. This
gives a perfectly fine scheme: every point has an affine neighborhood, namely one
of the two An’s. But it is a weird object, usually referred to as “affine n-space
with the origin doubled”. Working over C and giving the closed points the analytic
topology would yield a non-Hausdorff space, typically not something we want to
consider. We will sometimes want to rule out such oddities, and the technical word
here is that this is a “non-separated” scheme. See Section 19.10 below for this term
and others.
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19.7. Projective space. Continuing at a fairly intuitive and non-rigorous level,
let us consider what CPn will be like as a scheme. The closed points will of course
correspond to points [x0 : · · · : xn] with xi ∈ C and not all xi equal to zero, subject
to the usual relation that [x0 : · · · : xn] = [λx0 : · · · : λxn] for any nonzero λ. There
should be Zariski open sets Ui corresponding to the condition xi 6= 0, and these
will cover CPn.

Note that the fractions xj
xi

represent algebraic functions defined on Ui. We ex-
pect O(Ui) to be the polynomial ring C[x0

xi
, . . . , xnxi ], reflecting the fact that Ui is

isomorphic to An.
It is somewhat cumbersome, but one can define the scheme Pn to be the result

of pasting the affine schemes U0, . . . , Un together along their evident intersections.
For example, P1 consists of the two affines SpecC[x0

x1
] and SpecC[x1

x0
] glued together

along the identity map of SpecC[x0

x1
, x1

x0
]; or said differently, this is two copies of

SpecC[t] glued together along the map SpecC[t, t−1] → SpecC[t, t−1] that sends
t 7→ 1

t .
To give a quasi-coherent sheaf on Pn we need to give, for each i, an O(Ui)-

module, in such a way that certain compatibility conditions are satisfied. One
evident way to do this is to start with a graded C[x0, . . . , xn]-module M , and to
define FM (Ui) to be the degree zero elements in M [x−1

i ]. The compatibilities then
become automatic.

Let R denote the graded ring C[x0, . . . , xn]. Consider the graded module M =
R(d), which is a copy of R but with the generator 1 shifted into degree −d (so
that Mk = Rk+d). Then the degree 0 piece of M [x−1

i ] is the span of the degree d
monomials in x0, . . . , xn, x

−1
i . These monomials are the same as algebraic sections

of the line bundle (L⊗d)∗ → CPn, where L→ CPn is the tautological bundle: the
monomial m corresponds to the section that sends [x0 : · · · : xn] to the functional
given by x⊗· · ·⊗x 7→ m(x), where x = (x0, . . . , xn). Note that the functional that
sends λx⊗· · ·⊗λx 7→ m(λx) is the same functional, so that this is well-defined. We
claim that the OCPn -module FM is locally free and corresponds to the line bundle
(L∗)⊗d.

Lkewise, now consider M = R(−d), with the generator 1 up in degree d. Then
the degree 0 piece ofM [x−1

i ] consists of degree−dmonomials in x0, . . . , xn, x
−1
i , and

these correspond to algebraic sections of L⊗d → CPn: a monomial m corresponds
to the section sending [x0 : · · · : xn] to the point m(x) ·x⊗· · ·⊗x (d tensor factors).
Again, note that in this description [λx0 : · · · : λxn] is sent to the same point,
because a λd from the tensors cancels the λ−d from the monomial.

Algebraic geometers use the notation O(d) for the coherent sheaf corresponding
to R(d), which plays the role of (L∗)⊗d, and O(−d) for the sheaf corresponding to
R(−d), playing the role of L⊗d.

19.8. The secret behind gradings. Why do graded rings and modules appear
when considering projective space? This is often a source of puzzlement when first
learning this subject. Here is a sketch of an explanation.

Consider the scheme A1− 0 = SpecC[t±1]. There is a multiplication map (A1−
0) × (A1 − 0) → A1 − 0 making this into a group scheme: the dual map of rings
is C[t±1] 7→ C[t±1

1 , t±1
2 ] given by t 7→ t1t2. The unit is the point SpecC → A1 − 0,

corresponding to the map of rings C[t±1]→ C sending t→ 1. When thought of as
a group one often writes this scheme as Gm, for the “multiplicative group”.
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The scheme CPn should be obtained from An+1 − 0 by quotienting out by the
evident Gm-action. So we can try to understand CPn via the projection map
π : An+1 − 0 → CPn. For example, algebraic functions on U ⊆ CPn should be
algebraic functions on π−1(U) that are invariant under the Gm-action.

Let X = SpecR be an affine scheme with a Gm-action. We claim that the
action induces a natural grading on R (and in fact is equivalent to a grading). The
action is a map µ : Gm ×X → X, which on the level of rings is µ∗ : R→ R[t, t−1].
Write µ∗(r) =

∑
rnt

n. The fact that the action is unital translates to the condition∑
n rn = r, and the action being associative translates into the condition that (rn)k

is rn if k = n and 0 otherwise. Setting Rn = {rn| r ∈ R} then gives a grading for
R.

Let f ∈ R, and regard this as a function f : X → A1. This map is equivariant
(with A1 having the trivial action) if the following diagrams commute:

Gm ×X
µ //

π2

��

X

f

��

R[t, t−1] R
µ∗oo

X
f // A1 R

i

OO

C[t]

f∗

OO

f∗oo

(the second diagram is the dual of the first). In the second diagram t maps to∑
n fnt

n along the up-top route, and to f along the bottom-up route. So f is
equivariant precisely when fn = 0 for all n 6= 0, or equivalently f ∈ R0. More
generally, f ∈ Rn corresponds to the condition that can be written as f(λx) =
λnf(x) for all λ ∈ C− 0 and x ∈ X.

Exercise 19.9. Verify the last sentence of the above remark.

Now let R =
⊕

n≥0Rn be a graded ring. Then X = SpecR has a Gm-action
and we can try to construct an associated projective space ProjR. Note that R0

is a retract of R and therefore SpecR0 is a retract of X. This subspace has trivial
Gm-action and plays the role of an “origin” inside X, which we will want to ignore
when constructing the projective space. The subvarieties of ProjR will correspond
to subvarieties of X that are invariant under the Gm-action, but excluding the
“irrelevant” subvarieties of SpecR0. This translates to prime ideals of R that are
graded (equal to the direct sum of their homogeneous pieces) and that do not
contain the ideal R+ =

⊕
n≥1Rn. So as a set we define ProjR to be the set of such

graded prime ideals, and we equip this with the usual Zariski topology where the
closed sets are of the form V (I) for I ⊆ R a graded ideal. To describe ProjR as a
scheme we need to give the sheaf of regular functions OProjR, but it is enough to
describe this on a basis of open sets. For a homogeneous element f ∈ R let D(f)
be the set of primes in ProjR that do not contain f , which is a Zariski open. The
ring OProjR(D(f)) will then be defined to be the ring of degree 0 elements in the
localization Rf (note that these correspond to functions on SpecRf ⊆ X that are
invariant under the Gm-action).

We have gone quickly through the details of the construction of ProjR because
we will only need that such a thing exists, and very little about the intricacies
behind it.

As two basic examples we note that if k is a field and R = k[x0, . . . , xn] with the
xi in degree 1 then ProjR is projective space Pnk . If R = k[x1, . . . , xn, y0, . . . , yr]
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with the xi in degree 0 and the yi in degree 1, then ProjR is Ank × Prk. We will see
further examples in Section 19.14 where we talk about blowups.

19.10. Properties of schemes. We collect here a few common properties of
schemes that will be useful to us.

integral : every affine open is Spec of an integral domain (equivalently, X is
nonempty, connected, and every point has an affine open neighborhood that is
Spec of a domain).

locally Noetherian: every point has an affine open neighborhood that is Spec of a
Noetherian ring (equivalently, every affine open is Spec of a Noetherian ring).

Noetherian: the scheme admits a finite cover by open affines that are each Spec of
a Noetherian ring (equivalently, the scheme is locally Noetherian and also quasi-
compact as defined below.)

regular : every point has an affine open neighborhood that is Spec of a regular Noe-
therian ring (equivalently, X is locally Noetherian and all its local rings are regular;
equivalently, every affine open is Spec of a Noetherian regular ring).

Similarly to the category of topological spaces, the category of schemes admits
plenty of pathological objects. The following terms are largely about eliminating
pathologies of various types:

quasi-compact : the underlying topological space is compact (equivalently, X has a
finite cover by affine opens).

quasi-compact morphism: X → Y is quasi-compact if the inverse image of every
quasi-compact open is quasi-compact (equivalently, Y has an affine open covering
{Ui} such that each f−1(Ui) is quasi-compact).

separated morphism: X → Y is separated if the diagonal map X → X ×Y X is a
closed immersion. [This should be thought of as an analog of the Hausdorff condi-
tion in topology; it removes the pathology of having two points that are “infinitely
close” to each other.]

quasi-separated morphism: X → Y is quasi-separated if the diagonal map X →
X ×Y X is quasi-compact.

finite-type morphism: X → Y is quasi-compact and for every x ∈ X there is an
affine neighborhood SpecS = U ⊆ X and an affine open SpecR = V ⊆ Y such
that f(U) ⊆ V and the associated map R → S exhibits S as a finitely-generated
R-algebra.

The following term is not about ruling out pathologies, but rather is an attempt
to capture the topological idea of a map with compact fibers:
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proper morphism: a morphism that is separated, finite type, and universally closed.

Remark 19.11. The above definition of proper morphism feels esoteric, and it can
be difficult to see the meaning here. It is a good idea to look up the topological
notions of separated and proper maps in Appendix A for comparison. In topol-
ogy “separated” is the relative form of the Hausdorff property, and “proper” is the
relative form of compactness. Note, however, that in algebraic geometry the term
“proper” is the analog of what topologists would call “separated and proper”. This
can be more than a little confusing.

Standard examples of proper morphisms are inclusions of closed subschemes,
projection maps PnX → X, as well as maps built up from these via compositions or
pullbacks.

Schemes over a field

When k is a field one can consider the overcategory Sch ↓ Spec k. The objects are
called schemes over the field k. The following terminology is used in this setting:

projective: a scheme that is isomorphic to a closed subscheme of some projective
space Pnk .

quasi-projective: a scheme that is isomorphic to an open subscheme of a projective
scheme.

variety : an integral scheme such that the map X → Spec k is separated and of
finite type.

complete variety : a variety such that X → Spec k is proper.

smooth variety : this is a condition about nondegeneracy of certain Jacobian ma-
trices formed from the equations defining the scheme, and can also be described in
terms of sheaves of differentials. Over characteristic zero fields it is equivalent to
the variety being regular, and so we will use the two terms interchangeably in this
context.
Remark 19.12. At its most fundamental level, algebraic geometry is about under-
standing solutions sets of algebraic equations. This perhaps gives the impression
that all schemes of interest are quasi-projective, and it should be warned that
this is not the case. In dimension three and above it is very easy to glue quasi-
projective schemes together in mild ways and end up with something that is not
quasi-projective. See [Sha2, Chapter 6.2.3] for a nice discussion.
19.13. Pulling back and pushing forward OX-modules. If R → S is a map
of rings then there are two associated functors on the categories of modules. The
“extension-of-scalars” functor (−) ⊗R S : ModR → ModS takes finitely-generated
modules to finitely-generated modules and is right exact. The “restriction-of-
scalars” functor ModS → ModR, that takes an S-module and regards it as an
R-module, is exact but only preserves finite-generation if S is module-finite over R.

For a map of schemes f : Y → X one has the pullback functor f∗ : qcModX →
qcModY , that locally is modeled by the tensor product. That is to say, if F is
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a quasi-coherent OX -module and SpecR = V ⊆ X is an affine open with an R-
module M and an isomorphism M̃ ∼= F|V , and SpecS = U ⊆ Y is an affine open
such that f(U) ⊆ V , then there is an isomorphism ˜(S ⊗RM) ∼= (f∗F)|V . The
pullback functor is right exact, and when X and Y are locally Noetherian it sends
coherent OX -modules to coherent OY -modules.

If f : Y → X is slightly nice (quasi-compact and quasi-separated, see Sec-
tion 19.10)) there is also the corresponding direct-image functor fX : qcModY →
qcModX . In general this does not preserve coherence, but it does in the case where
X is locally Noetherian and f is proper [EGA3, Theorem 3.2.1].

Schemes have open and closed subschemes, which restrict to the usual notions
for affine schemes. If i : Z ↪→ X is a closed subscheme then in an affine chart
U = SpecR for X, Z corresponds to SpecR/I for some ideal I. In this case the
direct image functor i∗ is the analog of taking an R/I-module and thinking of it as
an R-module. If F is a quasi-coherent sheaf on Z then the stalks of i∗F satisfy

(i∗F)(x) =

{
F(x) if x ∈ Z,
0 if x /∈ Z.

For this reason i∗F is also called the “extension-by-zero” of F (note that for in-
clusions of non-closed subschemes the direct image and the extension-by-zero are
different, so be careful).

The structure sheaf OZ is a sheaf on Z, and the direct image i∗OZ is often also
written as OZ , by abuse. (This is the analog of taking the ring R/I and denoting
it by the same symbol when thinking of it as an R-module).

19.14. Blowups. In the next section we will need to use blowup varieties, so in
preparation we discuss them here. Even if one is mostly interested in affine schemes,
blowups are an important tool and the full power of general schemes is needed to
discuss them.

Let X be a smooth complex variety and let A ↪→ X be a closed subvariety, which
for convenience we assume to be smooth as well. The blow-up BlA(X) of X at A is
an algebraic variety that homotopically corresponds to removing A and then sewing
in a copy of the projectived normal bundle in its place. That is, let V be a tubular
neighborhood of A, with associated homeomorphism V ∼= NX/A. Then there is a
homotopy equivalence

(19.15) BlA(X) ' (X −A)q(V−A) P(N)

Here the map V − A → P(N) is the map N − 0 → P(N) that sends any nonzero
element of a fiber Na to the corresponding line it spans, regarded as an element
of P(Na). The homotopy equivalence in (19.15) can in fact be upgraded to a
homeomorphism, but the usual point-set model for the blowup is a little different
and so this can create confusion. We describe the usual model next.

Let us start with the case X = Cn and A = {0}. The idea of the blowup
Bl0 Cn is that away from 0 it is exactly Cn − {0}, but the point 0 is “blown up”
into a whole family of points representing the normal directions around 0. We can
construct this blowup by doing something clever with projective space. Begin by
observing that given a point x ∈ Cn and a line [Y ] ∈ CPn−1 then x ∈ [Y ] if and
only if xiYj = xjYi for all pairs 1 ≤ i, j ≤ n. To see this, note that for x = 0 both
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conditions are vacuous; but if instead some xi 6= 0 then the equations are equivalent
to Yi 6= 0 and xj = Yj · xiYi for all j.

Define B = Bl0 Cn to be the subset of Cn × CPn−1 consisting of pairs (x, [X])
such that x ∈ [X], or equivalently xiXj = xjXi for all i, j. Observe that when
x 6= 0 then [X] is determined uniquely and is equal to [x], whereas when x = 0
then [X] can be any line in Cn. The point x = 0 has been “blown up” into an entire
CPn−1 in B. Note that B, being defined by algebraic equations, is a subvariety of
Cn × CPn−1.

The projection map π1 : Cn × CPn−1 → Cn restricts to give π : B → Cn, called
the standard projection associated to the blowup. Observe that the fiber over 0
is E = CPn−1; this is usually called the exceptional divisor (we discuss this
terminology in a moment). Also note that we have the pushout diagram

E //

��

B

π

��
{0} // Cn.

That is, squashing E back down to a point recovers the original space Cn.
Exercise 19.16. It is useful to think about the case n = 2. Consider the sequence
pn = ( 1

n ,
3
n ), which of course converges to (0, 0) in C2. This sequence lifts uniquely

into B. What is the limit in B?

Exercise 19.17. Let B̃ = {x ∈ Cn | 1 ≤ |x|} ∪S2n−1 CPn−1, where each x ∈ S2n−1

is identified with the associated point [x] ∈ CPn−1. This is the first description
we gave of the blowup, see (19.15), where one takes out a tubular neighborhood
and sews in a copy of the projectivized normal bundle. Define a map f : B̃ → B as
follows: {

f(x) =
(
(|x| − 1)x, [x]

)
for x ∈ Cn with |x| ≥ 1,

f([x]) = (0, [x]) for [x] ∈ CPn−1.
Verify that f is a homeomorphism.

Returning to general properties of B = Bl0 Cn, consider the region of B defined
by Xi 6= 0. This is an open set Ui; it consists of all points x where xi 6= 0 together
with the pairs (0, [X]) where Xi 6= 0. The equation xi = 0 therefore cuts out E∩Ui
inside of Ui. That is to say, E is defined by a single equation inside of Ui. Since this
holds for each i, we see that E is locally cut out by a single equation—algebraic
geometers call such an object a divisor .

Remark 19.18. There is a clever way of encoding the equations xiXj = xjXi.
Introduce a formal variable t and setXi = xit; then the validity of those equations is
automatic. This technique proves useful when talking about more general blowups,
as we will see below. For now, let us just introduce the algebra behind it. If R is a
ring and I is an ideal, the Rees ring is defined to be the graded ring

R[It] = R⊕ It⊕ I2t2 ⊕ · · · ⊆ R[t]

That is, R[It] consists of polynomials in t where the coefficient of each tr lies in
Ir. One can check that when R = k[x1, . . . , xn] and I = (x1, . . . , xn) then R[It] is
isomorphic to the quotient ring k[x1, . . . , xn, X1, . . . , Xn]/(xiXj − xjXi | 1 ≤ i, j ≤
n) via Xi = xit, where each xi has degree 0 and each Xi has degree 1. Taking Proj
of this graded ring yields the blowup Bl0 Cn.
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Let us take another look at Bl0 C3 ⊆ C3 × CP 2 (taking n = 3 just to keep the
numbers small), this time keeping the Rees ring in mind. Points of the blowup are
pairs ((x, y, z), [X : Y : Z]). We can think of x, y, and z as being functions on the
original space C3, with the corresponding X, Y , and Z functions on the normal
space to 0. What is confusing is that in some sense x and X are the same function,
but with an artificial distinction being thrown in regarding their domains: x is a
function on C3 whereas X is a function on N0C3 (which happens to be another copy
of C3). As soon as one allows for this distinction one can write down functions like
xX, x2yZ3, and so forth. Note that x2, xX, and X2 are all different.

The way this plays out in the Rees ring is that rather than distinguishing the two
types of functions via lowercase and uppercase letters, one introduces the artificial
symbol t that says “regard this as a function on the normal space”. So we have
the functions x and xt (formerly called X), and then (for example) the functions
x2, x(xt) = x2t, and (xt)(xt) = x2t2. The Rees ring is simply the universal ring
constructed in this way, consisting of the original elements of a ring R together
with elements of an ideal I that are “promoted” to having a separate existence,
here regarded as functions on the normal spaces to V (I).

Now let us return to more advanced blowups. Increasing our level of sophisti-
cation, let us keep X = Cn and now let A be the linear subspace defined by the
equations x1 = x2 = · · · = xc = 0. Each point on A has a normal space of dimen-
sion c, and we will blow up that normal space at the origin—in fact, we will do
this simultaneously at all the points of A. Here define BlA Cn to be the subset of
Cn × CP c−1 consisting of pairs (x, [X]) such that xiXj = xjXi for all 1 ≤ i, j ≤ c.
Again observe that for any x not in A there is exactly one possible [X], namely
[X] = [x1 : · · · : xc], whereas for x in A any [X] is possible.

Again, we can keep track of the equations xiXj = xjXi by introducing a formal
variable t and setting Xi = txi for all i. The blowup BlA Cn is Proj of the Rees
ring R[It] where R = C[x1, . . . , xn] and I = (x1, . . . , xc).

Finally, for an arbitrary pair (X,A) consisting of a smooth complex variety and a
smooth subvariety of codimension c, at each point in A we can find local coordinates
in which A is defined by the vanishing of the first c of them. So we can build the
blowup BlAX by doing the above construction locally around each point in A and
patching the results together. In an affine chart SpecR on X the subvariety is of
the form A = V (I), and the blowup is defined to be ProjR[It].

The key facts about BlAX are that it comes with a projection map π : BlAX →
X, the map π−1(X−A)→ X−A is a homeomorphism, the fibers π−1(a) for a ∈ A
are projective spaces CP c−1, and moreover π−1(A) is precisely the projectivized
normal bundle of A in X. The closed subscheme π−1(A) ⊆ BlAX is locally cut
out by a single equation (i.e., it is a divisor) and is called the exceptional divisor .
Finally, we have a pushout square

P(NX/A) π−1(A) //

��

BlAX

π

��
A // X.

We have described the construction of the blowup in the setting of complex
manifolds because that is the best for building intuition, but in fact all of this can
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be done entirely in the realm of algebraic geometry and without the smoothness
conditions. If X is any scheme and A ↪→ X is a closed subscheme there is a blowup
BlAX with similar properties to what we described above. Without smoothness one
does not have a normal bundle, but one always has a normal cone. For X = SpecR
and A = V (I), I an ideal of R, the blowup BlAX is defined to be ProjR[It], and
for general schemes one patches together these local constructions. The idea behind
the Rees ring to keep in mind is that we have the functions on the original variety
(this is the R) and then additional functions on the normal directions: these are the
functions ft for f ∈ I, and products of such. Recall that ‘ft’ is not a true product,
and the t just plays the formal role of distinguishing the f that is a function on the
normal directions from the f that is a function on X.

20. Exactness and fiberwise exactness

Suppose X is a scheme and L• is a chain complex of locally free OX -modules
of finite rank. We know this corresponds to a chain complex of algebraic vector
bundles on X, and we have discussed the fact that exactness in a certain degree,
when regarded as a complex of sheaves (or modules in the case X is affine), is
not equivalent to fiberwise exactness in that degree. We now explore the relations
between these concepts in more detail.

Start by recalling some algebra. If R is a commutative ring, M a finitely-
generated R-module, and P ⊆ R a prime ideal, then the following are equivalent:
(1) MP = 0,
(2) Mf = 0 for some f ∈ R− P ,
(3) Ann(M) 6⊆ P , i.e. P /∈ V (Ann(M)).
Thinking in terms of sheaves on SpecR, the second condition is equivalent to saying
that the sheaf is identically zero on some Zariski neighborhood of P ; this is because
the open sets D(f) = SpecR − V (f) for f ∈ R − P are cofinal in all Zariski
neighborhoods of P in SpecR.

The support of M is the Zariski closed set

Supp(M) = V (Ann(M)) = {P ∈ SpecR |MP 6= 0}.
One readily extends this to the sheaf setting: if F is a sheaf on X define

Supp(F) = {P ∈ X |F(P ) 6= 0}.
If F is a coherent OX -module, then locally it corresponds to a finitely-generated
module and so Supp(F) is closed in each piece of an affine cover of X—hence it is
closed in X.

Returning to the setting of finitely-generated modules, here is another useful set
of equivalent statements:
(1) M = 0,
(2) MP = 0 for all prime ideals P ,
(3) Mm = 0 for all maximal ideals m,
(4) M/mM = 0 for all maximal ideals m.
Note that the equivalence of (3) and (4) follows from M/mM = Mm/mMm and
Nakayama’s lemma. Rephrasing things geometrically and generalizing to schemes,
if F is a coherent sheaf on a scheme X then the following are equivalent:
(1) F is the zero sheaf,
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(2) All stalks of F are zero,
(3) All stalks of F at closed points are zero,
(4) All fibers of F at closed points are zero.

Now let us look at complexes of OX -modules and their homology sheaves. If F•
is a complex of OX -modules and p is a point of X, we will say that F• is exact at
p in degree s if the complex of stalks (F•)(p) is exact in degree s.

Proposition 20.1. Assume X is a locally Noetherian scheme and F• is a complex
of coherent OX-modules. Let n ∈ Z. Then the following statements are equivalent:
(1) Hn(F)(p) = 0;
(2) F• is exact at p in degree n;
(3) There exists a Zariski open affine neighborhood U of p such that the complex

Γ(U,F•) is exact in degree n.

Proof. Stalks are computed by directed colimits, and such colimits commute with
taking homology. So Hn(F(p)) = Hn(F)(p) and this yields (1)⇐⇒ (2). The impli-
cation (3)⇒(2) follows from the fact that localization is exact: ifM ′ →M →M ′′ is
a sequence of modules that is exact in the middle then so is M ′p →Mp →M ′′p . For
(2)⇒(3) we can take an affine neighborhood V = SpecR of p, where R is Noether-
ian, and our complex of sheaves corresponds to a complex M• of finitely-generated
R-modules. The assumption implies that (Mn+1)p → (Mn)p → (Mn−1)p is exact in
the middle. Then Hn(M)p = 0 and since Hn(M) is finitely-generated there exists
an f ∈ R− P such that Hn(M)f = 0. Therefore Mf is exact in degree n. But Mf

is exactly the complex Γ(U,F) where U = D(f) = SpecR − V (f), and U is open
in SpecR and therefore also open in X. �

Corollary 20.2. Assume X is a locally Noetherian scheme and F• is a complex of
coherent OX-modules. Let n ∈ Z. Then the following statements are equivalent:
(1) F• is exact in degree n;
(2) F• is exact in degree n at all points of X;
(3) F• is exact in degree n at all closed points of X.

Proof. These are just the statement that Hi(F) = 0 if and only if Hi(F)(p) = 0 for
all points p, if and only if Hi(F)(p) = 0 for all closed points p. �

Now that we have a good understanding of exactness and its stalkwise-
characterization, let us turn to fiberwise exactness. For complexes of algebraic
vector bundles the slogan to remember is that “fiberwise exactness implies stalk-
wise exactness, but not vice versa”.

Proposition 20.3. Let X be a locally Noetherian scheme and let L• be a chain
complex of locally free coherent OX-modules. Let x be a closed point of X. Then if
L• is fiberwise-exact over x in degree s then L• is exact at x in degree s.

Since the issues are local around x one immediately reduces to a problem in
commutative algebra. Here is the version in local algebra:

Proposition 20.4. Let (R,m) be a local ring, let A, B, and C be free modules
of finite rank, and let A f−→ B

g−→ C be maps such that gf = 0. If A/mA →
B/mB → C/mC is exact in the middle then the original sequence is exact in the
middle.
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Proof. By doing row and column operations we can assume that the matrix for
g has the form [ I 0

0 ∗ ] where the submatrix in the lower right has entries in m. In
other words, we have isomorphisms B ∼= Rj ⊕ B′, C ∼= Rj ⊕ C ′, under these
isomorphisms g takes the form idRj ⊕g′, and the matrix for g′ has entries in m.
Note that B′ and C ′ are free, being direct sums of free modules (and using that
all finitely-generated projectives over local rings are free). Since gf = 0 it must be
that im(f) ⊆ B′. Again doing row and column operations just as above, we find
that there are isomorphisms A ∼= Rs ⊕ A′, B′ ∼= Rs ⊕ B′′, with A′ and B′′ free,
such that under these isomorphisms f takes the form idRs ⊕f ′ with the entries for
any matrix for f ′ having entries in m. This is all to say that our original sequence
is isomorphic to one of the form

Rs
id //

⊕
Rs

⊕

A′
f ′ // B′′

g′ //

⊕

C ′

⊕

Rj
id // Rj

with the matrices for f ′ and g′ having entries in m. After reducing modulo m the
maps f ′ and g′ become zero, and so the only way this sequence could be exact
in the middle is if B′′ = 0. But this implies the original sequence is exact in the
middle as well. �

Proof of Proposition 20.4. Working locally around x we reduce the proposition to
the following result: When Q• is a complex of finitely-generated projectives over a
Noetherian ring R and m is a maximal ideal, then if Q/mQ is exact in degree s
then Qm is also exact in degree s. This follows immediately from Proposition 20.4
using that Q/mQ = Qm/mQm. �

Exercise 20.5. Generalize Proposition 20.4 as follows. Given a bounded below
chain complex of finitely-generated free modules over a local ring, prove that P•
is isomorphic to a direct sum of a split-exact sequence (i.e. a sum of elementary
complexes) and a complex of finitely-generated free modules where the differentials
have matrices in m.

When looking at a specific degree in a chain complex, we have seen that fiberwise
exactness implies stalkwise exactness. The converse is not true, but it is true when
the complexes are bounded below and exactness is considered in all degrees at once:

Proposition 20.6. Let X be a locally Noetherian scheme and let L• be a bounded-
below chain complex of locally free coherent OX-modules. Let x be a closed point of
X. Then L• is fiberwise exact at x if and only if L• is exact at x.

Proof. This reduces to the claim that if R is a Noetherian ring, m is a maximal
ideal, and Q• is a bounded-below complex of finitely-generated projectives, then
Q/mQ is exact if and only if Qm is exact. Since Q/mQ = Qm/mQm one may as
well replace R with Rm and reduce to the case where R is local. The statement
that if Q/mQ is exact then Q is exact follows from Proposition 20.4. For the
other direction, if Q is exact then it decomposes as a direct sum of elementary
complexes (see Lemma 6.3 and the remarks thereafter) and hence Q ⊗R (R/m) is
still exact. �
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While we are on this topic, let us record the following:

Proposition 20.7. Let X be a locally Noetherian scheme and let L• be a bounded
chain complex of locally free coherent OX-modules. Then the set of points p ∈ X
such that L• is exact at p is Zariski open.

Proof. The complement of the set in question is the intersection over all n ∈ Z of
SuppHn(L•). Each SuppHn(L•) is closed, and since L• is bounded there are only
finitely many n where this set is not equal to X. So we have a finite intersection of
closed subsets, which is closed. �

It is useful to define

SuppL• =
⋂
n

SuppHn(L•) = {p ∈ X
∣∣L• is not exact at p}.

Note that ??? implies that the closed points in SuppL coincide with with the closed
points of X over which L• is fiberwise exact.

There are many interesting phenomena relating the geometry of SuppL• to the
algebraic features of L•. Here is one result along these lines:

Theorem 20.8 (The New Intersection Theorem). Let X be a locally Noetherian
scheme and let 0 → Ln → · · · → L0 → 0 be a bounded complex of locally free
coherent sheaves. If SuppL• is zero-dimensional (in particular, nonempty) then
n ≥ dimX.

This result has an interesting history. It immediately reduces to the evident ana-
log in local algebra, and in that context it was originally proved by Peskine-Szpiro
for characteristic p rings [PS1]. Hochster’s work on reduction to characteristic p
allowed the result to be generalized to all equicharacteristic local rings. In the 1980s
Roberts proved the theorem in general using local Chern characters [R1, R4], and
in the 2000s a new proof was given by Piepmeyer and Walker using K-theory [PW].

20.9. Pullbacks and Tor. Let L• be a complex of locally free coherent sheaves
on a scheme X. The complex of fibers over a closed point x ∈ X is an example
of a pullback complex. More generally, if f : Y → X is a map of schemes then we
can consider f∗L• and ask how the homology of this pullback complex relates to
the homology of L•. The pullback complex is constructed by tensoring, and so the
homology is computed by a spectral sequence involving Tor:

Torp(f∗OY , Hq(L•))⇒ Hp+q(f
∗L•).

We will not need this spectral sequence, as our applications will only involve the
simple case where L• is a resolution (i.e. only has homology in degree zero) and
then the spectral sequence is just the single isomorphism

Hn(f∗L•) ∼= Torn(f∗OY , H0(L•)).

But this is motivation for us to develop the basics of Tor. This is done in the
exercises at the end of the section.

◦ Exercises ◦

Proving real theorems in algebraic geometry requires extensive training, but for
some simple things one can get by just with commutative algebra and the basic
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technique of working locally. For example, a map F → G of quasi-coherent OX -
modules is surjective if and only if it is surjective on all stalks, if and only if
every point x ∈ X has an affine open U such that F(U) → G(U) is surjective.
The corresponding statement for modules over a commutative ring is familiar from
commutative algebra, and this is the evident globalization.

The following exercises lead up to the definition and properties of Tor for OX -
modules, and they are good training for the technique of “do commutative algebra
locally”. We will use these results in the next section.

Exercise 20.10. Let X be a locally Noetherian scheme and let F be a coherent
sheaf on X. Suppose that p ∈ X is such that F(p)

∼= (OX,x)n as OX,x-modules,
where n ≥ 0. Prove that there exists an open neighborhood U of p such that
F|U ∼= (OX |U )⊕(n). Conclude that F is locally free if and only if all of its stalks
are free. [Hint: Reduce to the following problem in commutative algebra: if R is
Noetherian, P ⊆ R is prime, and M is finitely-generated such that MP is free over
RP , then there is an f ∈ R− P such that Mf is free over Rf .]

Exercise 20.11. LetX be a locally Noetherian scheme and let f : M→ N be a map
of coherent OX -modules. Prove that if f is fiberwise surjective then f is surjective.
[Hint: Reduce to the commutative algebra statement that if R is a Noetherian ring
and M → N is a map of finitely-generated modules such that M/mM → N/mN
is surjective for every maximal ideal m, then M → N is surjective.]

Exercise 20.12. Over affine schemes, locally free OX -modules are projectives in
the category of quasi-coherent OX -modules. This need not be true for more general
schemes; in fact, it need not even be true that OX is itself projective. When X = P1

with coordinates [x : y] prove that the diagram

O(−1)⊕ O(−1)

(x,y)

��
O

id // O

does not have a lifting, despite the vertical map being a surjection.

Exercise 20.13. In module theory, every module is a quotient of a free module
and every finitely-generated module is a quotient of a free module of finite rank. It
turns out that the analogs in OX -modules do not always hold.

A scheme X is said to have enough locally frees if every quasi-coherent OX -
module is a quotient of a locally free OX -module. (A scheme without this property
will be given in Exercise 20.14 below).

Assume X has enough locally frees.
(a) Prove that every quasi-coherent OX -module has a resolution by locally free

OX -modules.
(b) Locally free OX -modules need not be projective, so we do not have the usual

lifting properties that we need to do homological algebra. Prove the following
local version: given a diagram of quasi-coherent OX -modules

F

v
����

L
u // G
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where v is surjective and L is locally free, there exists a surjection L′ → L with
L′ locally free, and a lifting L′ → F making the evident triangle commute.
[Hint: Form the pullback u∗F and then use the assumption on X.]

(c) Suppose thatM is quasi-coherent and both L• →M and J• →M are resolutions
by locally free OX -modules. If these were projective resolutions we would get a
comparison map from one resolution to another, but that is too much to expect
here. Instead prove that there is a third resolution E• →M by locally free OX -
modules together with surjective quasi-isomorphisms E� L and E� J. [Hint:
This can be done using only the lifting property from (b). It might help to first
find an E where only the quasi-isomorphism E→ L is surjective.]

(d) Define Tori(M,N) = Hi(L• ⊗ N) where L• → M is any resolution by locally
free OX -modules. We need to prove that this is independent of resolution.
(i) Let E• � L• be a surjective map of locally free resolutions of M and let

K• be the kernel. Explain why 0 → K ⊗ N → E ⊗ N → L ⊗ N → 0 is
still a short exact sequence of complexes. Prove that each Ki is locally
free and that the complex K is locally split-exact. Conclude that K⊗ N

is exact, and therefore E⊗N→ L⊗N is a quasi-isomorphism. [Hint: All
of these are an exercise in the art of working locally.]

(ii) Use (c) to complete the proof that Tori(M,N) is well-defined.
(e) Think about the functoriality of Tor in this context and how that can be jus-

tified. Prove that short exact sequences give rise to long exact Tor-sequences,
and that Tor∗(M,N) can be computed by resolving either M or N.

Exercise 20.14. Not all schemes have enough locally frees. The exercise is to
think through, and fill in the details of, the following example. Take two copies of
An and glue them together along An − 0, with the resulting scheme denoted X.
This is called “An with the origin doubled”. On An all locally free modules are
actually free (this is the Quillen-Suslin theorem), and so one readily sees that the
same property holds for X. Any map of free OX -modules will have to have the
same behavior on the fibers over the two origins, by continuity. So any OX -module
that is a cokernel of a map of locally free modules must have the same stalks and
fibers over the two origins. But it is easy to construct quasi-coherent OX -modules
where this fails: for example, take the structure sheaf of one of the origins.

Exercise 20.15. A scheme X is said to have the resolution property if every
quasi-coherent OX -module of finite type (see Remark 19.5) is a quotient of a locally
free OX -module of finite rank. From now on we will abbreviate “locally free of finite
rank” to “finite locally free”. The name “resolution property” is somewhat inapt,
as it is only in certain Noetherian settings that one can iterate the property to
construct resolutions. The name was first used in [T1], in the Noetherian context,
but it has since been appropriated for the more general situation.
(a) Assume that X is a locally Noetherian scheme (see Section 19.10). Assume

as well that X has the resolution property. Prove that every quasi-coherent
OX -module of finite type has a resolution by finite locally free modules.

(b) Let R be a regular local ring of dimension n, let M be a finitely-generated R-
module, and let F• →M be any resolution ofM by finitely-generated free mod-
ules. Let Kn−1 be the kernel of Fn−1 → Fn−2. Prove that Tori(Kn−1, R/m) ∼=
Tori+n(M,R/m) for all i ≥ 1 and use this to deduce that Kn−1 is free.
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(c) Let X be a regular scheme with the resolution property, and let n = dimX.
If M is a coherent sheaf and L• → M is a resolution by finite locally free OX -
modules, let Kn−1 be the kernel of Ln−1 → Ln−2. Prove that Kn−1 is locally
free, so that

0→ Kn−1 → Ln−1 → Ln−2 → · · · → L0 →M→ 0

is also a resolution of M by finite locally free OX -modules.

The example from Exercise 20.14 is clearly pathological, in the sense that one
is not likely to encounter that scheme in the course of ordinary life. In fact, most
reasonable schemes have enough locally frees—and in particular this will include
all schemes that we naturally encounter in this book. To make a precise statement,
the following types of schemes all have enough locally frees:
(1) All affine schemes.
(2) All open subschemes of closed subschemes of projective space PnX where X is

affine.
(3) Any scheme admitting an ample line bundle, as defined in [EGA2, Definition

4.5.3] (see also [EGA2, 4.5.5])
(4) Any scheme admitting an ample family of line bundles, as defined in [SGA6,

II.2.2.4] (see also [TT, Definition 2.1.1]). Such schemes are called divisorial
[SGA6, II.2.2.5].

(5) Any separated, Noetherian, locally factorial scheme (the latter condition in-
cludes regular schemes, since a regular local ring is a UFD).

Note that type (1) is included in (2), type (2) is included in (3), and type (3) is
included in (4). Type (5) is also included in (4) by [SGA6, II.2.2.7]. For discussion
of the fact that schemes of type (4) have enough locally frees, and also satisfy the
resolution property, see [TT, Lemma 2.1.3]. The fact that type (5) schemes have
the resolution property is also in [H, Exercise III.6.8].
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21. The denouement: connecting algebra, topology, and geometry

Although we are far from the end of this book, we have reached the point where
we finally have the tools to bring Serre’s definition of intersection multiplicities
into context. In this section we will show how Serre’s definition is naturally linked,
via K-theory, to topological intersection multiplicities. Conceptually this is fairly
straightforward, but there is one hiccup: when trying to make links between the
algebro-geometric and topological worlds, one inevitably runs into the issue that
the former is much more rigid. Certain techniques that are easy in the topological
world require clever geometric substitutes in the algebro-geometric world. In this
section we will run into exactly this issue, and will encounter a technique called de-
formation to the normal bundle that appears as a substitute for topological tubular
neighborhoods.

The work in this section breaks up into two basic pieces. The first is the local
index theorem, which involves a very specialized analysis of the comparison between
algebraic and topological K-theory. The second is a more global version of this
comparison, where one connects resolutions in algebraic geometry to fundamental
classes in topological K-theory. Once these tools are in place it becomes a simple
matter to relate Serre’s intersection multiplicities to the ones in topological K-
theory.

21.1. The local index. Suppose that E• is a bounded chain complex of vector
bundles on Cn that is exact on Cn−0. Then we get a class [E•] ∈ K0(Cn,Cn−0) ∼=
K−2n(pt). But the Bott calculations say that this group is cyclic, generated by βn.
Thus [E•] = d · βn for a unique integer d. We call this integer the local index of
the complex E•, and we will denote it ind0(E•). The natural question is: how do
we compute this invariant from the data in E•?

I don’t know a simple answer to this question, but the question becomes more
manageable if we assume that the complex E• is algebraic: that is, if we assume
that each Ei is an algebraic vector bundle and the maps Ei → Ei−1 are algebraic.
The phrase “complex of algebraic vector bundles” will always mean such an object.

The following result is an example of an “index theorem”, where a topological
invariant detected by K-theory is described in terms of more rigid (in this case
algebraic) data.

Theorem 21.2. If E• is a bounded complex of algebraic vector bundles on Cn that
is exact on Cn − 0, then the local index is given by

ind0(E•) =
∑
i

(−1)i dimCHi(P•)

where P• is a complex of finitely-generated, projective C[x1, . . . , xn]-modules such
that P•(C) ∼= E•. (Here P 7→ P (C) is the functor that associates to every projective
C[x1, . . . , xn]-module the corresponding vector bundle over Cn; see Section 10.10,
where this was denoted P 7→ PC.)

The proof of Theorem 21.2 comes down to a comparison between algebraic and
topological K-theory groups. Once the machinery for this comparison is in place,
the theorem follows by a simple computation. To set up this machinery we need to
recall some ideas from Part 1 of these notes.

Now let Z ⊆ SpecR = X be Zariski closed. Define K0
alg(X,X − Z) by taking

the free abelian group on bounded chain complexes of algebraic vector bundles on
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X that are exact at every point in X − Z and quotienting by the following two
relations:
(1) [P•] = 0 if P• is exact on all of X, and
(2) [P•] = [P ′•] + [P ′′• ] for every short exact sequence of chain complexes 0→ P ′• →

P• → P ′′• → 0.
Note that K0

alg(X,X − Z) is exactly the same as the group denoted K(R)Z in
Section 5.21; sometimes we will revert to that notation when we want to concentrate
on the underlying algebraic perspective.

Exercise 21.3. Prove that if P• → Q• is a quasi-isomorphism of chain complexes
that are exact on X − Z then [P•] = [Q•] in Kalg(X,X − Z). (We have proven
similar claims on more than one occasion, the exercise is just to remember how the
proof works.)

The assignment P 7→ P (C) from algebraic to topological vector bundles induces
a map of abelian groups

φ : K0
alg(X,X − Z)→ K0(X(C), X(C)− Z(C)).

This first uses Proposition 20.6 to know that if P• is a chain complex that is exact
on X − Z then P•(C) is fiberwise exact at all points in X(C) − Z(C). Then we
need to check that relations (1) and (2) in the definition of K0

alg(X,X − Z) are
preserved, but the first is trivial and the second follows from Proposition 18.12. To
avoid cumbersome notation it will be convenient to write the target group of φ as
K0
top(X,X − Z); it looks much more pleasant to write

φ : K0
alg(X,X − Z)→ K0

top(X,X − Z).

Sometimes we will drop the “top” and just write K0(X,X − Z), but we will never
drop the “alg”.

If M is a finitely-generated R-module, recall that the support of M is

SuppM = {Q ⊆ R |Q is prime and MQ 6= 0}.
This coincides with V (AnnM), the set of all primes containing AnnM . In partic-
ular, SuppM is Zariski-closed. Let G(X)Z (or G(R)Z) denote the Grothendieck
group of finitely-generated R-modules M such that SuppM ⊆ Z.

We have the usual Euler characteristic map χ : K0
alg(X,X − Z) → G(X)Z that

sends [P•] to
∑
i(−1)i[Hi(P )]. The following result should come as no surprise:

Theorem 21.4. If R is regular then χ : K0
alg(X,X − Z) → G(X)Z is an isomor-

phism, for any closed Z ⊆ SpecR.

Proof. The inverse sends a class [M ] to the class [P•] for any finite projective
resolution P• for M over R. The proof that this is well-defined, and that the maps
are inverses, is exactly the same as for Theorem 2.13. �

Our discussion so far has focused on the case where X is affine. Even if one only
cares about this case, certain arguments are going to end up forcing us to consider
more general schemes. To this end, let us just observe that the definition of the
group K0(X,X−Z) can be repeated almost verbatim for any scheme X and closed
subset Z ⊆ X, using bounded complexes of locally free sheaves that are exact (on
stalks) at points in X − Z. Likewise, G(X)Z is defined to be the Grothendieck
group of coherent sheaves on X whose support is contained in Z. For Noetherian
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schemes the Euler characteristic gives a map χ : K0(X,X − Z) → G(X)Z , and
this is an isomorphism if X is regular and nice enough that we are guaranteed the
existence of locally free resolutions.

Theorem 21.5. Assume X is a separated, regular, Noetherian scheme and Z ⊆ X
is a closed subset. Then χ : K0(X,X − Z)→ G(X)Z is an isomorphism.

Exercise 21.6. Prove the above theorem (consult Exercises 20.13, 20.15, and the
subsequent remarks therein).

Now let us restrict to the case where R = C[x1, . . . , xn], so that X is affine n-
space AnC; we will just write X = Cn for convenience. Let Z = {0} = V (x1, . . . , xn)
be the closed set consisting only of the origin. Our aim will be to calculate the
group K0

alg(X,X − Z) = K0
alg(Cn,Cn − 0) in this case.

Let m = (x1, . . . , xn). It is easy to see that the following conditions on a finitely-
generated R-module M are equivalent:
(1) SuppM = {m} ;
(2) AnnM is contained in only one maximal ideal, namely m;
(3) Rad(AnnM) = m;
(4) M is annihilated by a power of m.
Assuming M satisfies these conditions, consider the finite filtration

M ⊇ mM ⊇ m2M ⊇ · · · ⊇ mkM ⊇ mk+1M = 0.

Then in G(R)Z we have [M ] =
∑k
i=0[miM/mi+1M ]. But each quotient is a finite-

dimensional R/m-vector space, so [M ] is just a multiple of [R/m]. This shows
that G(R)Z is cyclic, generated by [R/m]. Moreover, each quotient miM/mi+1M
is finite-dimensional as a C-module (where the module structure is coming from
C ⊆ R). It follows thatM is also finite-dimensional as a C-module. Since dimension
is additive it gives a function

dim: G(R)Z → Z,
which is clearly surjective and hence an isomorphism.

The isomorphism K0
alg(Cn,Cn − 0) → G(Cn){0} from Theorem 21.4 sends the

Koszul complex K(x1, . . . , xn;R) to [R/m], but we have just seen that the target is
isomorphic to Z and [R/m] is a generator. SoK0

alg(Cn,Cn−0) ∼= Z and is generated
by the Koszul complex.

Now consider the following diagram:

K0
alg(Cn,Cn − 0)

φ //

χ∼=
��

K0
top(Cn,Cn − 0)

∼= // Z〈βn〉

G(R){m}
dim
∼=

// Z.

(21.7)

We know by Bott’s calculations (Theorem 18.22) that the target of φ is isomorphic
to Z and is generated by the Koszul complex. Likewise, we have just seen that the
domain of φ is isomorphic to Z and is generated by the algebraic Koszul complex.
Since φ clearly carries the algebraic Koszul complex to the topological one, φ is an
isomorphism. This is important enough to record:
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Proposition 21.8. The comparison map K0
alg(Cn,Cn − 0) → K0(Cn,Cn − 0) is

an isomorphism, and both the domain and codomain are infinite cyclic.

Our desired local index theorem is an immediate consequence of the above dis-
cussion:

Proof of Theorem 21.2. Fill in diagram (21.7) with the map Z〈βn〉 → Z that sends
βn to 1. The diagram then commutes, because one only has to check this on
the Koszul complex that generates K0

alg(Cn,Cn − 0); and here it is obvious. The
commutativity of this diagram is exactly the statement of Theorem 21.2. �

21.9. Resolutions and fundamental classes. Now we’ll use these ideas to do
something a bit more sophisticated. Let Z ↪→ Cn be a closed algebraic subvari-
ety and let I ⊆ C[x1, . . . , xn] = R be the ideal of functions vanishing on Z. So
Z = V (I). Assume that Z is smooth of codimension c. Then we have a relative
fundamental class [Z]rel ∈ K2c(Cn,Cn − Z).

Let P• be a bounded, projective resolution of R/I over C[x1, . . . , xn]. Note that
if Q ∈ SpecR then

Q ∈ Z ⇐⇒ Q ⊇ I ⇐⇒ (R/I)Q 6= 0.

So if Q /∈ Z then (R/I)Q = 0 and therefore (P•)Q is exact. Therefore P• gives
a class [P•] ∈ K0

alg(Cn,Cn − Z). Using our natural transformation K0
alg(Cn,Cn −

Z)→ K0(Cn,Cn − Z) we get a corresponding class [P•] in relative topological K-
theory. We can promote this to a class in relative K2c by multiplying by β−c. It is
reasonable to expect this class to be related to [Z]rel, and that is indeed the case:

Theorem 21.10. In the above situation we have [Z]rel = β−c · [P•].
Note that the β−c factor could be dropped if we regarded [Z]rel as a class in

K0(Cn,Cn − Z) instead of K2c(Cn,Cn − Z).
Theorem 21.10 gives one of the key connections between K-theory and homo-

logical algebra: projective resolutions give fundamental classes in K-theory. To
prove this theorem, recall that [Z]rel is defined by choosing a tubular neighborhood
U of Z in Cn, together with an isomorphism between U and the normal bundle
N = NCn/Z . The class [Z]rel is the unique class that restricts to the Thom class
UN . This is all encoded in the following diagram:

[Z]rel ∈ K2c(Cn,Cn − Z)

∼=excision
��

K0(Cn,Cn − Z)

∼=
��

β−c

∼=oo K0
alg(Cn,Cn − Z)

φoo

K2c(U,U − Z) K0(U,U − Z)
β−c

oo

UN ∈ K2c(N,N − 0) K0(N,N − 0)
β−c

oo K0
alg(N,N − 0).

φoo

Our goal is to take [P•] ∈ K0
alg(Cn,Cn − Z), push it across the top row and

then down, and show that the image is UN . But note that UN is algebraic, as it
is represented by the Koszul complex. So UN lifts to a class in K0

alg(N,N − 0).
In some sense the most natural idea for our proof would be to stay entirely in the
right-most column, and to compare both [P•] and UN on the algebraic side of things.
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Of course one immediately sees the trouble, which is that the neighborhood U is
not algebraic—and so we have a missing group in the third column, obstructing
our proof. With some work we will establish a clever way around this, using a
technique from algebraic geometry called deformation to the normal bundle.

Let X be a smooth scheme over C and let Z ↪→ X be a smooth closed subscheme
(feel free to only think about X = Cn). We begin by considering X × A1:

X × {0} X × {1}

X × A1

Z × {0} Z × {1}

We will work with the blow-up of X × A1 at the subvariety Z × {0}:
B = B`Z×0(X × A1).

Set N = NX/Z and N ′ = NX×A1/Z×{0}. Note that N ′ = N ⊕ 1. Topologically, we
have a homeomorphism

B ∼=
[
(X × A1)− (Z × {0})

]
q(V−0) P(N ′)

where V is a tubular neighborhood of Z × {0} in X × A1.
Let π : B → X×A1 be the projection associated to the blow-up. Let j1 : X ↪→ B

be the map x 7→ (x, 1). Let B0 = π−1(0) and let j0 : B0 ↪→ B be the inclusion. Let
k0 : P(N ⊕ 1) ↪→ B be the inclusion of the exceptional divisor, which actually lands
inside B0. These can be visualized via the following schematic picture:

Z×A1

B

k0 j1

XP(N⊕1)

We claim that π : B → X × A1 has a section f over Z × A1. The definition of
this section is completely clear (and unique) on Z× (A1−0), the only sublety is the
definition on Z × {0}; but here we use the canonical section of P(N ⊕ 1) → Z. A
little effort shows that this gives a well-defined map Z × A1 → B, and it is clearly
a section (indicated in the above picture).

Example 21.11. Consider the case X = Cn and Z = {0}. Then B is the blowup
of Cn × C at the origin, and we can use the model as a subspace of Cn+1 × CPn.
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The map Z× A1 → B on closed points is given by

(0, s) 7→
{

((0, s), [0 : s]) if s 6= 0,
(0, 0), [0 : 1]) if s = 0.

Observe that this is continuous at s = 0.
Algebraically, the blowup is ProjR[It] where R = C[x1, . . . , xn, s] and I =

(x1, . . . , xn, s). Let J ⊆ R[It] be the ideal J = (x1, . . . , xn, x1t, . . . , xnt). Then
R[It]/J = C[s][st] and Proj of this is the line Z × A1, exhibiting this as a closed
subscheme of B.

Observe that B0 = BlZ(X) qP(N) P(N ⊕ 1) is a decomposition as a union of
closed subschemes. The P(N ⊕ 1) is the exceptional divisor, and so of course is
closed in B and therefore also in B0 (since B0 is itself closed in B). For BlZ(X)
we work locally with X = SpecR and Z = V (I), so that the blowup is Proj of the
Rees ring T = (R[s])[(I, s)t] (apologies for the horrible notation). Quotienting out
the ideal (s, st) gives the Rees ring R[It], demonstrating that BlZ(X) is closed in
B (and therefore also in B0).

Consider the following (non-commutative) diagram of pairs of spaces:

(21.12) (X,X − Z)
j1 // (B,B − (Z × A1))

(U,U − Z)

h

OO

(B0, B0 − (Z × {0}))

j0

OO

(N,N − 0)
i // (P(N ⊕ 1),P(N ⊕ 1)− P(1))

k0

OO

Here i is the canonical open inclusion that sends a point v ∈ N to the line spanned
by (v, 1) ∈ N ⊕ 1. Note that all of the maps are algebraic except for the inclusion
h : N ↪→ X (we implicitly identify N with U here). We claim that this diagram
commutes up to homotopy—this homotopy is the so-called “deformation to the
normal bundle”. To see this, let us first examine the case Z = {0} where we can
use the model for the blowup where B ⊆ Cn+1×CPn. Let U be the open unit disk
around Z and consider the homotopy U × I → B given by (x, t) 7→ (t(x, 1), [x : 1]).
At t = 1 this is the embedding j1, and at t = 0 it is the embedding k0. The
following picture depicts what is happening here:

bbc

t = 0 t = 1

As a point x in the neighborhood U (at t = 1) moves towards the origin at t = 0,
along the indicated line, it converges to the point [x : 1] in CPn.

For the case of a general Z, the homotopy is exactly the one above but taking
place in the normal directions to Z. In reference to the crude picture below, each
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fiber of the normal disk bundle U (at t = 1) is collapsed—via the straight-line
homotopy depicted above—to the corresponding point on Z at t = 0, but thereby
converging to the associated points [x : 1] in the blowup.

t = 0 t = 1

UP (N ⊕ 1)

Remark 21.13. The technique of “deformation to the normal bundle”, which is
essentially embodied in the diagram (21.12) and its homotopy commutativity, was
used extensively in papers by Fulton and Macpherson in the 1970s, and has a
prominent role in the book [Fu]. The technique gives a substitute in algebraic
geometry for the role played by tubular neighborhoods in topology.

With the basics of deformation to the normal bundle under out belt, we are now
ready to give the proof of our result:

Proof of Theorem 21.10. Write Cn = X. The argument we will give doesn’t use
anything special about Cn, and actually works for any smooth variety.

Apply K0(−) to the diagram (21.12) to obtain the commutative diagram

K0(X,X − Z)

h∗

��

K0(B,B − (Z × A1))
j∗1oo

k∗0
��

K0(N,N − 0) K0(P(N ⊕ 1),P(N ⊕ 1)− P(1)).
i∗oo

(21.14)

The left vertical arrow is dotted only as a reminder that it is not algebraic. There
is a similar diagram, without the dotted arrow, in which every K0(−) has been
replaced with K0

alg; and this new diagram maps to the one above.
Let Q• be a resolution of OZ×A1 by locally-free OB-modules (see Section 19

for terminology and notation here). Then we have the corresponding class [Q•] ∈
K0
alg(B,B − (Z × A1)). We will show that

(1) j∗1 (Q•) is a resolution of OZ on X, and
(2) (k0 ◦ i)∗(Q•) is a resolution of the structure sheaf of the zero-section on N .

Statement (1) implies that there is a zig-zag of quasi-isomorphisms j∗1 (Q•)
'←−

E•
'−→ P•, where P• is our chosen resolution of OZ on X and E• is some other

bounded locally free resolution of OZ (this follows from Exercises 20.13 and 20.15).
Hence j∗1 ([Q•]) = [P•] in K0

alg(X,X − Z). Statement (2) implies that there is a
similar zig-zag of quasi-isomorphisms between (k0 ◦ i)∗(Q•) and J∗p∗N,∆, since both
give resolutions of the structure sheaf of the zero section onN . Hence i∗(k∗0([Q•])) =
UN in K0

alg(N,N − 0). Now push all of this into topological K0 and use the
commutativity of (21.14) to obtain that h∗([P•]) = UN . But h∗ is an isomorphism,
and [Z]rel was defined to be the unique class in K0(X,X − Z) that maps to UN
via h∗. So [P•] = [Z]rel.
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So the proof reduces to checking the algebraic facts (1) and (2). The geometric
intuition here is that the subscheme Z ×A1 intersects the fibers B0 and B1 cleanly
enough so that exactness of Q• is maintained after pulling back to these fibers.
Algebraically this boils down to certain Tor calculations that we now explain. If
L• → F is a resolution by locally frees, then we have the left derived functor of j∗1
given by (Lrj

∗
1 )(F) = Hr(j

∗
1L•). Apply (j1)∗ and use that this direct image functor

is exact (since B1 is a closed subscheme of B) to write

(j1)∗(Lrj
∗
1 (F)) = (j1)∗Hr(j

∗
1L•) = Hk((j1)∗j

∗
1L•) = Hr(L• ⊗OB OB1

)(21.15)

= TorOBr (F,OB1).

The functor (j1)∗ does not change the stalks at the points of B1, and so Lrj∗1 (F) = 0

if and only if TorOBr (F,OB1) = 0. In particular, (1) is equivalent to the statement
that TorOBr (OZ×A1 ,OB1) = 0 for r > 0.

Observe that j1 factors as X // j̃1 // B \B0
// j // B . HereB\B0 is open inB and

so j∗ is exact. The scheme B \B0 is just X× (A1−0) and j∗(OZ×A1) = OZ×(A1−0).
We therefore need to prove that Lr j̃∗1 (OZ×(A1−0)) = 0 for r > 0, and by the analog of

(21.15) this will be implied by Tor
OX×(A1−0)
r (OX×1,OZ×(A1−0)) = 0. The vanishing

of the Torr sheaf can be checked locally (e.g. on stalks) at each point ofX×(A1−0),
and so in particular we can check it locally on X. That is to say, it suffices to prove
the vanishing where X is an open affine X = SpecR, in which case Z = V (I) and
we are looking at TorR[s,s−1]

r (R[s, s−1]/(s − 1), R/I[s, s−1]). But R[s, s−1]/(s − 1)

is resolved by the complex R[s, s−1]
s−1−→ R[s, s−1] and s − 1 is a nonzerodivior on

R/I[s, s−1], therefore the indicated Torr modules vanish for r ≥ 1 and we are done.
For statement (2) we need to look at the composite

N // i // P(N ⊕ 1) //
k0 // B0

// j // B

and compute the left derived functors of pulling back OZ×A1 along this composite.
Here i is an open inclusion and both k0 and j are closed inclusions. We first claim
that k0i is actually an open inclusion: this is because B0 = BlZ X ∪P(N) P(N ⊕ 1)
and so N = P(N ⊕ 1)− P(N) = B0 − BlZ X, together with the fact that BlZ X is
closed in B0. So (k0i)

∗ is exact, and it is enough to prove that Lrj∗(OZ×A1) = 0
for r > 0.

Now perform the same analysis from (21.15) but with j1 replaced by j and deduce
that Lrj∗(OZ×A1) = 0 if and only if TorOBr (OZ×A1 ,OB0

) = 0. Observe that B0 sits
in the pullback diagram

B0
// j0 //

��

B

��
{0} // A1

(21.16)

So in an open affine chart SpecR on B, the subscheme B0 is Spec of R ⊗C[s]

C[s]/(s) = R/(s). We need to compute TorRr (R/I[s], R/(s)). It will be important
that B is flat over A1, as then the composite SpecR → B → A1 is also flat (since
the first map is an open inclusion, hence flat). For flatness over curves (like A1),
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[H, PropositionĨII.9.7] says this follows from just checking that every irreducible
component has dense image in the curve; that is clearly the case for B → A1.

To wrap up the proof, observe that C[s]/(s) is resolved by C[s]
s−→ C[s]. Since

C[s] → R is flat, R s−→ R is a resolution of R/(s). But s is a nonzerodivisor on
R/I[s], so TorRr (R/I[s], R/(s)) = 0 for r > 0. This completes the calculation. �

As a consequence of Theorem 21.10 we can now obtain Serre’s formula for inter-
section multiplicities:

Corollary 21.17. Let Z and W be smooth, closed subvarieties of Cn such that
Z ∩ W = {0}. Then i(Z,W ; 0) =

∑
(−1)i dimC Tori(R/I,R/J), where R =

C[x1, . . . , xn] and I and J are the ideals of functions vanishing on Z and W , re-
spectively.

Proof. Start with the relative fundamental classes [Z]rel ∈ K2c(Cn,Cn − Z) and
[W ]rel ∈ K2d(Cn,Cn−W ), where c and d are the codimensions of Z and W inside
of Cn. Note that since 0 is an isolated point of intersection we must have c+ d ≥ n
(this is geometrically intuitive, but see Lemma 21.19 below for an algebraic proof).
There are in some sense two cases, depending on whether c + d = n or c + d > n.
In the former case, multiplying our fundamental classes together we get

[Z]rel · [W ]rel ∈ K2n(Cn,Cn − (Z ∩W )) = K2n(Cn,Cn − 0).

Note thatK2n(Cn,Cn−0) ∼= Z and is generated by [0]rel. The topological definition
of i(Z,W ; 0) is that it is the unique integer for which

[Z]rel · [W ]rel = i(Z,W ; 0) · [0]rel.(21.18)

This definition works in any complex-oriented cohomology theory.
If c+d > n then it is clear that Z andW may be moved near 0 (in the topological

setting) so that they do not intersect at all, and therefore [Z]rel · [W ]rel = 0.
Equation (21.18) is still a valid definition, it just yields that i(Z,W ; 0) = 0 here.

The key to the proof is simply realizing that all of our constructions can be lifted
back into K0

alg. Let P• → R/I and Q• → R/J be bounded projective resolutions.
Then [Z]rel = β−c · [P•] and [W ]rel = β−d · [Q•] by Theorem 21.10. So [Z]rel ·
[W ]rel = β−c−d · [P.⊗RQ] ∈ K2(c+d)(Cn,Cn− 0). Recall from Theorem 18.22 that
K0(Cn,Cn − 0) ∼= Z and is generated by the Koszul complex J∗. Recall as well
that [0]rel = β−n · [J∗], by definition. If we write [P ⊗R Q] = s[J∗] for s ∈ Z, then
we have the formula

s · β−c−d · [J∗] = i(Z,W ; 0) · β−n · [J∗].
If c+d = n then the formula implies s = i(Z,W ; 0). If c+d 6= n then the only way
the formula can be true is if both sides are zero, in which case s = 0 = i(Z,W ; 0).
So s = i(Z,W ; 0) in either case.

To conclude the proof we just note that the Local Index Theorem (21.2) gives
s =

∑
i(−1)i dimCHi(P ⊗R Q), and Hi(P ⊗Q) ∼= Tori(R/I,R/J). �

Lemma 21.19. Let k be a field and let R = k[x1, . . . , xn]. Let P and Q be prime
ideals such that Rad(P + Q) is a maximal ideal. Then dimR/P + dimR/Q ≤ n,
or equivalently codimR/P + codimR/Q ≥ n.
Proof. The proof is from [S, Proposition III.17], though we follow the arrangement
given in [Hoc2]. Let µ : R ⊗k R→ R be the multiplication map. This is surjective



200 DANIEL DUGGER

and the kernel is the ideal ∆ = (x1 ⊗ 1 − 1 ⊗ x1, . . . , xn ⊗ 1 − 1 ⊗ xn), so we can
identify R with the quotient (R⊗k R)/∆. Consider the string of isomorphisms

R/(P +Q) ∼= R/P ⊗R R/Q ∼= (R/P ⊗k R/Q)⊗R⊗kR R ∼= (R/P ⊗k R/Q)/∆.

Since ∆ is generated by n elements, quotienting out by ∆ drops the dimension by
at most n. So we obtain

dimR/(P +Q) ≥ dim(R/P ⊗k R/Q)− n.
Since Rad(P + Q) is a maximal ideal we have that dimR/(P + Q) = 0. So the
proof will be completed if we show that dim(R/P ⊗kR/Q) = dimR/P + dimR/Q.
For convenience let us prove the analogous statement for any domains D1 and D2

that are finitely-generated k-algebras.
By Noether normalization there exist polynomial rings B1 ⊆ D1 and B2 ⊆ D2

such that each Di is module-finite over Bi, and dimension theory tells us that
dimDi = dimBi. But then B1 ⊗k B2 → D1 ⊗k D2 is an inclusion (since the
tensors are taken over a field), the extension is module-finite, and B1 ⊗k B2 is a
polynomial ring over k. So dim(D1⊗kD2) = dim(B1⊗k B2) = dimB1 + dimB2 =
dimD1 + dimD2. �

Exercise 21.20. Suppose that Z and W are smooth algebraic subvarieties of Cn
such that Z ∩W = {p1, . . . , pd}.
(a) Choose a polynomial f ∈ C[x1, . . . , xn] such that f(pi) = 0 for i > 1 and

f(p1) 6= 0, and let S = Rf . Let U = SpecRf ⊆ Cn be the corresponding Zariski
open set. Convince yourself that it is reasonable to define the intersection
multiplicity i(Z,W ; p1) by the formula

[Z]rel,U · [W ]rel,U = i(Z,W ; p1) · β−n · [p1]rel,U

where [Z]rel,U is the image of [Z]rel under K∗(Cn,Cn − Z) → K∗(U,U − Z),
and similarly for [W ]rel,U and [p1]rel,U . In particular, convince yourself such
and f exists and that i(Z,W ; p1) is independent of the choice of f .

(b) Next, modify the proof of Corollary 21.17 to show that

i(Z,W ; p1) =
∑

(−1)i dimC Tori(R/I,R/J)f

where I and J are the ideals corresponding to Z and W .
(c) If M is a finitely-generated module over Rf such that SuppM = {p} (p a

maximal ideal of R), prove that M = Mp. Deduce that

i(Z,W ; p1) =
∑

(−1)i dimC Tori(R/I,R/J)p1 .

Corollary 21.17 (and Exercise 21.20) in some sense brings to a close the main
questions we raised at the beginning of this book. We have now seen why Serre’s
alternating sum of Tor definition of intersection multiplicity is a reasonable one,
and how this ties in to the study of K-theory.

Our discussion in this section has been confined to the truly geometric case of
affine algebras over C, but recall that Serre’s definition works over every regular
local ring R. IfM and N are finitely-generated R-modules such that `(M⊗N) <∞
then Serre defines i(M,N) =

∑dimR
j=0 (−1)j`(Torj(M,N)). Serre proved that in this

situation one always has dimM + dimN ≥ dimR and asked if the the following
are true:
(1) i(M,N) ≥ 0;
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(2) i(M,N) = 0 if dimM + dimN < dimR;
(3) i(M,N) > 0 if dimM + dimN = dimR.

Using prime filtrations of M and N one reduces easily to the case M = R/P
and N = R/Q where P and Q are prime. In the case where R is a localization of
a finite-type C-algebra, the agreement with topological intersection multiplicities
that we have established in this section more or less proves (1)–(3) (one has to
do a little to reduced to the case where R/P and R/Q are smooth to tie in with
our above arguments.) However, Serre came up with purely algebraic arguments
that handle the cases where R is equicharacteristic or mixed characteristic and
unramified. In the 1980s Roberts and Gillet-Soulé independently established (2)
using ideas related to K-theory, and in the late 1990s Gabber proved (1) in general.
Note that (3) remains open at the moment. We will return to a discussion of some
of these ideas in ????.
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22. More about relative K-theory

Our aim in this section is to revisit the topic of relative K-theory and give the
proof of Theorem 18.16. Recall that this is a comparison between the geometric
groups K(X,A), defined in terms of chain complexes of vector bundles that are
exact on A, and the group K0(X,A) that comes to us from topology once we have
the K-theory spectrum. The proof is somewhat clunky and frustrating in a way
that requires some apology.

This kind of clunkiness often surfaces when one tries to compare the world of
geometry to the world of homotopy theory. Somehow these subjects inhabit differ-
ent universes, and bringing the homotopical world down to earth turns out to be
an inherently messy undertaking. While we have this beautiful cohomology theory
K∗, at the moment we only have one access to it: that is the connection between
vector bundles and K∗(X). Theorem 18.16 is essentially about building another
access route, but our only technique is to go through the one we already have.
Thus, the clunkiness.

The ideas behind the proof are interesting and have their own intrinsic appeal,
but within the context of this book they hardly ever resurface outside the confines
of this one argument. Once we have this new access route, we just use it and can
largely forget about the trouble that went into constructing it. So this section
should be regarded as giving some technical information that is important, but not
necessary for anything later in the book.

Throughout this section (X,A) will be a pair of spaces. At various points we
will need to assume that the spaces are paracompact Hausdorff, or that A ↪→ X
is a cofibration (e.g. a relative cell complex), and sometimes we will assume that
(X,A) is a finite CW-pair. Recall that the pair (X,A) is said to be cofibrant if A
is cofibrant and A ↪→ X is a cofibration.

Recall the group K(X,A) introduced in Definition 18.6, made from bounded
complexes of vector bundles on X that are exact on A. For specificity we focus
on C-vector bundles, but the same arguments work for the real and quaternionic
cases. We take several steps aimed at analyzing these groups:
(1) Whereas K(X,A) is defined via generators and relations, we know that the

additive inverse of a chain complex is just another chain complex (in fact, its
suspension). So we can construct an isomorphic group just as certain equiva-
lence classes of chain complexes, with the monoid structure induced by direct
sum. We call this construction M∞(X,A). It has the advantage over K(X,A)
of the elements being a bit easier to get our hands on.

(2) Rather than consider all bounded complexes, we consider complexes that are
concentrated in degrees between 0 and n, for some fixed n ≥ 1. This leads
to sets (in fact, monoids) Mn(X,A). We prove that—for nice enough pairs
(X,A)—all choices of n give rise to isomorphic monoids; so in some sense the
use of chain complexes is overkill, as it suffices to just look at complexes of
length 1. (The use of all chain complexes makes for a more natural theory,
however—for example, the tensor product of two complexes of length 1 is a
complex of length 2, and can only be turned back into a complex of length 1
by a cumbersome process).

(3) Finally, and most importantly, we replace our consideration of chain complexes
by that of a related but different construct. Namely, we consider Z-graded
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collections of vector bundles {Ei} together with an exact differential defined
only over the set A (that is, a differential on (E•)|A). Let us call such things
“A-relative exact complexes”. When (X,A) is sufficiently nice it turns out that
every A-relative exact complex may be extended to give an ordinary chain
complex, and the space of all possible extensions is contractible. So homotopi-
cally speaking there is no real difference between the theories obtained from
the two notions. The A-relative exact complexes turn out to give a theory that
is a bit easier to manipulate, essentially because one doesn’t have to deal with
extraneous data.

As one final remark before we get started, it is possible to simplify some of the
arguments in this section by only working with finite CW-pairs (X,A). This is what
is done in [ABS]. The book [At4] generalized the situation somewhat by working
with pairs of compact Hausdorff spaces. Unfortunately, we have seen already in
this book that in applications we often want to consider (Cn,Cn− 0) or (E,E − 0)
(E a vector bundle) or (X,X − Z) (X an algebraic variety and Z a subvariety).
One can often model these pairs, up to homotopy, by finite CW-complexes, but
that involves an extra step that we usually want to sweep under the rug. So we
have endeavored in this section to use constructions that will apply to pairs (X,A)
in as broad a generality as we could manage without making life too difficult.

In outline the arguments in this section largely follow Atiyah’s in [At4, Section
2.6], which were in turn modelled on the ones in [ABS]. However, there are a few
important differences that will be explained in ?????.

22.1. Relative chain complexes. Let (X,A) be a pair of spaces. Let Ch(X,A)
denote the category whose objects are bounded chain complexes of vector bundles
on X that are exact on A. A map in this category is simply a map of chain
complexes of vector bundles. In contrast to this, let Ch(X,A)A denote the category
whose objects are collections {Ei} of vector bundles on X, all but finitely-many of
which are zero, together with maps d : Ei+1|A → Ei|A making the restriction E•|A
into an exact chain complex of vector bundles on A. A map E → E′ in Ch(X,A)A
is a collection of maps Ei → E′i of vector bundles on X that commute with the
maps d where defined (i.e., over the set A). An object in Ch(X,A)A will be called
an A-relative exact complex.

Note the difference between Ch(X,A) and Ch(X,A)A: in the former the dif-
ferentials are defined on all of X, whereas in the latter they are only defined on
A. In both cases the maps between chain complexes are defined on all of X. Ob-
serve that there is an evident functor Ch(X,A)→ Ch(X,A)A, which we will denote
E 7→ E(A); this just restricts all the differentials to A.

Say that two complexes E• and E′• in Ch(X,A) are homotopic if there is an
object E in Ch(X× I, A× I) together with isomorphisms E|X×0

∼= E• and E|X×1
∼=

E′• in Ch(X,A). Write this relation as E• ∼h F•. Likewise, define two complexes E•
and E′• in Ch(X,A)A to be homotopic if there is an object E in Ch(X×I, A×I)A×I
together with isomorphisms E|X×0

∼= E• and E|X×1
∼= E′• in Ch(X,A)A. In each

of these two settings the notion of homotopy is readily seen to be an equivalence
relation. Write ∼h for this relation.

Remark 22.2. Observe that the above notion of homotopy has isomorphisms
built into it: we only required that E|X×0 was isomorphic to E, not equal to it.
So with this definition isomorphic complexes are automatically homotopic, via a
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constant homotopy. The choice to bundle these two relations together rather than
keeping them separate is just for convenience, as it makes some results easier to
state and prove. It would have been equivalent for us to define “strict homotopy”
(with equalities rather than isomorphisms) and then taken the equivalence relation
generated by strict homotopies and isomorphisms.

We will also need a second equivalence relation on chain complexes. Say that two
complexes E• and E′• in Ch(X,A) are stably equivalent if there exist elementary
complexes (see Definition 18.9) P1, . . . , Pr, Q1, . . . , Qs in Ch(X,A) such that

E ⊕ P1 ⊕ · · · ⊕ Pr ∼= E′ ⊕Q1 ⊕ · · · ⊕Qs.
Write this as E• ∼st E′•. We define a similar equivalence relation on the objects of
Ch(X,A)A.

Let Chn(X,A) be the full subcategory of Ch(X,A) consisting of chain complexes
E• such that Ei = 0 when i /∈ [0, n], and let Chn(X,A)A be the analogous subcat-
egory of A-relative complexes. It will be convenient to allow the index n to be ∞
here; note that this still corresponds to bounded complexes, but where there is no
fixed upper bound on the nonzero region.

Let Mn(X,A) denote the set of equivalence classes of objects in Chn(X,A) un-
der the equivalence relation generated by the homotopy relation and the stable-
equivalence relation. Define Mn(X,A)A analogously. The restriction functor
E 7→ E(A) (restrict the maps to A, leave the objects alone) clearly induces a
map of sets Mn(X,A)→Mn(X,A)A.

Note that direct sum of complexes makes Mn(X,A) into a monoid, and simi-
larly for Mn(X,A)A. Also observe that we have the evident maps Mn(X,A) →
Mn+1(X,A) obtained by regarding a complex concentrated in degrees [0, n] as also
concentrated in degrees [0, n+ 1], and the direct limit of these maps is M∞(X,A).
The same holds for the A-relative version.

Exercise 22.3. Suppose that X is paracompact Hausdorff. Prove that the map
M1(X, ∅)→ K0

Grt(X) (the Grothendieck group of vector bundles on X) sending E•
to [E0]− [E1] is an isomorphism of monoids. (One step in the proof will probably
be to show that the domain is actually a group). Repeat for the map Mn(X, ∅)→
K0
Grt(X) that sends E• to

∑
(−1)i[Ei].

Observe that there is a natural map M∞(X,A)→ K(X,A) induced by sending
a chain complex E• to its class in K(X,A), since the definition of K(X,A) has the
∼h and ∼st relations built into it. This is a map of monoids, and in fact is an
isomorphism under mild hypotheses:

Proposition 22.4. The monoid M∞(X,A) is always a group, and when X is
paracompact Hausdorff the natural map M∞(X,A)→ K(X,A) is an isomorphism.

Proof. Suppose E• is a chain complex in Ch∞(X,A) and let C•(t) be the mapping
cone of the multiplication by t map on E•. By the homotopy relation we have
C•(1) = C•(0) in M∞(X,A). But C•(1) is exact on X and so is a direct sum of
elementary complexes: ifX is paracompact Hausdorff one can cite Proposition 18.10
for this, but C•(1) is nice enough that one can also produce the splitting by hand
without any assumptions on X at all (see Exercise 22.5 below). Hence C•(1) ∼ 0
in M∞(X,A). Finally, observe that C•(0) = E• ⊕ΣE•. This shows that E• has an
additive inverse in M∞(X,A), namely ΣE•. Thus, M∞(X,A) is a group.
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For the second claim, consider the assignment that sends a chain complex E• ∈
Ch(X,A) whose lowest nonzero degree is n (n ∈ Z) to (−1)n[ΣnE•] ∈ M∞(X,A).
We will show that this induces a group homomorphism K(X,A) → M(X,A) by
verifying that it respects the defining relations for K(X,A). Relation (3) (the
homotopy relation) is automatic. Relation (2) says that exact complexes are zero,
and here is where we need that X is paracompact Hausdorff: Proposition 18.10 says
that in this setting all exact complexes are isomorphic to direct sums of elementary
complexes.

Finally to check relation (1) we need to verify that if E• and J• are two complexes
whose lowest degrees are n ≤ k then

(−1)n[Σn(E• ⊕ J•)] = (−1)n[ΣnE•] + (−1)k[ΣkJ•]

in M∞(X,A). This follows from what we proved in the last paragraph, since
[ΣnJ•] = (−1)n[J•] = (−1)n−k[ΣkJ•]. Consequently, our assignment induces a
group map K(X,A)→M∞(X,A). This is readily checked to be a two-sided inverse
for the map from the statement of the proposition. �

Exercise 22.5. Let E• be any bounded complex of vector bundles on a space X,
and let C• be the mapping cone of the identity. Prove that C• is a direct sum of
elementary complexes.

Exercise 22.6. Below we will prove that Mn(X,A) is also a group when n ≥ 1
and (X,A) is a cofibrant pair. Try to prove this just for n = 1 and see where you
get stuck.

22.7. Strategy of the proof. Let L(X,A) and L(X,A)A be defined similarly to
the M sets except that we do not include the homotopy relation—so the equiva-
lences are generated by isomorphisms and stable equivalences. There are canonical
surjections from the L-constructions to the corresponding M-constructions.

Consider the following diagram:

M1(X,A) //

(22.11)

��

Mn(X,A) //

(22.11)

��

M∞(X,A)

(22.11) 3
��

(22.4) // K(X,A)

K0(X,A) M1(X,A)A
Doo

(22.22)

1
// Mn(X,A)A

(22.22)

2
// M∞(X,A)A

L1(X,A)A //

(22.46)

OO

Ln(X,A)A //

(22.46)

OO

L∞(X,A)A.

(22.46)

OO

All of the maps are the evident ones except for D, which will need to be constructed
below. By the end of this section we will have proven that all of the maps are
isomorphisms when (X,A) is a cofibrant pair, except for D which requires that
(X,A) is homotopy equivalent to a finite CW-pair. (Many of the isomorphisms
hold in somewhat more generality). The references in the diagram are to the results
that establish the indicated isomorphism.

Our natural transformationK(X,A)→ K0(X,A) will be obtained by zig-zagging
through this diagram. Note that we do not really need the third level with the L-
sets, but these are used in [ABS] and [At4] and it is convenient to include them as
part of the story. As the L and M groups in the diagram end up being isomorphic
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(though this is not obvious) it is a matter of taste whether one uses Mn(X,A)A or
Ln(X,A)A.

Note that once we know that the maps labelled 1 are isomorphisms for all n,
we immediately get the same for 2 by passing to the colimit. So the steps we will
follow are:

• Show that map 3 is an isomorphism.
• Show that map 1 is an isomorphism (for all n).
• Construct and analyze the natural transformation D : M1(X,A)A →
K0(X,A).

The isomorphisms Ln(X,A)A →Mn(X,A)A will fall out of this outline as a simple
corollary.

Remark 22.8. A natural question is why we use K(X,A) or M∞(X,A) at all,
when apparently the connection to K0(X,A) is easier with the A-relative groups
M(X,A)A. So it is worth remarking up front that the tensor product of chain
complexes gives K(X,A)⊗K(Y,B)→ K(X ×Y,A×Y ∪X ×B) (or the same with
M∞), whereas one does not get pairings like these with the A-relative constructions.
If differentials are only defined on A and B then on the tensor product one only
obtains differentials on A×B. So K and M∞ stand out as the spots in the diagram
with naturally-defined pairings. Relating those pairings to the ones on K0 will be
another challenge, undertaken in Section 22.39.

Remark 22.9. Although not in the above diagram, one can introduce a final set
of groups Ln(X,A) consisting of chain complexes defined on all of X, exact on
A, up to isomorphism and stability. However, these are not isomorphic to the
above groups, as shown by the following example. Let X = R and A = ∅. The
chain complexes 1

0−→ 1 and 1
id−→ 1 are homotopic and so represent the same

element in K(X,A), but they do not become isomorphic after taking direct sums
with elementary complexes. In particular, the former complex has homology in
the fiber over 0 whereas the latter does not, and these properties will not change
upon addition of exact complexes. In constrast, note that when we regard these
as objects in Ch(X,A)A they are actually isomorphic, and therefore identified in
L∞(X,A)A.

22.10. Comparing complexes to A-relative complexes. Our first important
result is the following:

Proposition 22.11. Assume that A ↪→ X is a cofibration. Then for any 1 ≤ n ≤
∞ the map Mn(X,A)→Mn(X,A)A is a bijection.

We start with a lemma:

Lemma 22.12. When A ↪→ X is a cofibration the functor Ch(X,A)→ Ch(X,A)A
is surjective on objects. Additionally, if E1 and E2 are objects in Ch(X,A) such
that E1(A) ∼= E2(A) then E1 and E2 are homotopic.

Proof. Given a Z-indexed collection of vector spaces Vi, let Ch-struct(V ) ⊆∏
i Hom(Vi+1, Vi) denote the collection of sequences (di)i∈Z satisfying di ◦ di+1 = 0

for all i. Regard Ch-struct(V ) as a topological space by giving it the subspace
topology. Note that if d ∈ Ch-struct(V ) then t · d ∈ Ch-struct(V ) for any t ∈ C.
Picking any path in C from 0 to 1 (e.g. the standard one along the real line) thereby
gives a contracting homotopy showing that Ch-struct(V ) is contractible.
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Now suppose that {Ei}i∈Z is a collection of vector bundles on X having the
property that only finitely many are nonzero. For x ∈ X write Ex for the collection
{(Ei)x}i∈Z. Let Ch-struct(E) be the set of pairs (x ∈ X, d ∈ Ch-struct(Ex)), topol-
ogized so that the map π1 : Ch-struct(E) → X is a fiber bundle. The assumption
that only finitely many Ei are nonzero implies that each x has a neighborhood over
which all the bundles are trivial, and we use such neighborhoods in the usual way
to define the topology on Ch-struct(E). As the fibers of Ch-struct(E) → X are
contractible this map is a weak homotopy equivalence.

Note that making {Ei} into a chain complex is precisely the same as giving
a section of Ch-struct(E) → X. Likewise, equipping {Ei} with a chain complex
differential over A is the same as giving a section defined over A.

Suppose given an object E in Ch(X,A)A. Consider the diagram

A //
��

��

Ch-struct(E)

'
����

X // X

(22.13)

where the top horizontal map encodes the differentials on E. Since A → X is a
cofibration and Ch-struct(E) → X is an acyclic fibration, there is a lifting X →
Ch-struct(E). This lifting precisely gives a chain complex structure on {Ei}, defined
on all of X, that extends the one defined over A. This proves that the functor
E 7→ E(A) is surjective on objects.

Next observe that if f : Y → X is any map then Ch-struct(f∗E) is canonically
identified with the pullback of Y → X ← Ch-struct(E). This is an easy exercise.
Suppose that (E, s) and (E, s′) are two preimages in Ch(X,A) for the same object
E in Ch(X,A)A. Then s and s′ correspond to two liftings in the square (22.13).
Given this data, form the new diagram

(X × 0)q(A×I) (X × 1) //
��

��

Ch-struct(E)

'
����

X × I π // X

where π : X × I → X is the projection, A × I → Ch-struct(E) is the constant
homotopy, and the top horizontal map equals s and s′ on the two copies of X.
Once again, the diagram has a lifting. The resulting map X × I → Ch-struct(E)
corresponds to a section of Ch-struct(π∗E) → X × I, and so specifies a complex
of vector bundles on X × I. The differentials are constant with respect to ‘time’
on A × I, and so in particular the complex is exact on A × I. So it lives in
Ch(X × I, A× I). By construction it restricts to the two liftings (E, s) and (E, s′)
at times 0 and 1.

Now suppose that E and F are objects in Ch(X,A) and that E(A) ∼= F (A). So
there are isomorphisms ui : Ei → Fi of bundles over X which, when restricted to
A, commute with the differentials d. Let d′i be the composite

Ei
ui−→ Fi

di−→ Fi−1

u−1
i−1−→ Ei−1.

Note that the d′ maps give a chain complex structure on {Ei}; call this new chain
complex E′. We have E′ ∼= F as objects in Ch(X,A). Observe that d′|A = d|A,
and so E(A) = E′(A). It follows by what we have already proven that E and E′
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are homotopic in Ch(X,A). Since E′ and F are (trivially) homotopic, transitivity
gives that E is homotopic to F . �

Remark 22.14. The above proof was written in part to demonstrate the technique
of translating a desired task into a lifting problem. This is a useful technique that
we will need again later in this section. However, it is worth pointing out that in
the case of relative cell complexes the lifting problems could be solved in a very
concrete and simple way. If (Y,B) is a relative cell complex and E• is an object in
Ch(Y,B)B , we extend the differentials from B to all of Y by an induction over the
cells of Y −B. If en is such a cell, we assume inductively that the differentials have
been defined over the boundary. Let f : Dn → Y be the characteristic map of the
cell, and consider the pullback f∗E•. Choose trivializations for all of these bundles
over the disk. Points in the interior of the disk have the form tx for x ∈ ∂Dn and
t ∈ [0, 1). Define the differential over tx to be t times the differential over x. This
clearly gives the required extension.

Proof of Proposition 22.11. We need to prove that Mn(X,A)→ Mn(X,A)A is bi-
jective, and surjectivity is provided by Lemma 22.12. For injectivity, it will suffice
to prove, given two objects E and F in Chn(X,A), that
(1) if E(A) ∼h F (A) then E = F in Mn(X,A), and
(2) if E(A) ∼st F (A) then E = F in Mn(X,A).
For suppose that E(A) and F (A) are identified in Mn(X,A)A. Then there is a finite
chain of objects Ẽ1, Ẽ2, . . . , Ẽr in Chn(X,A)A such that Ẽ1 = E(A), Ẽr = F (A),
and for each i either Ẽi ∼h Ẽi+1 or Ẽi ∼st Ẽi+1. By Lemma 22.12 there are chain
complexes Ei ∈ Chn(X,A) such that Ei(A) = Ẽi, for each i. We can choose E1 = E
and Er = F , and we do so. By iterated applications of (1) and (2) we then know
that E1, E2, . . . , Er are all identified in Mn(X,A), and in particular E and F are
identified. This is what we needed to prove.

We turn to the proofs of (1) and (2). Suppose that E(A) ∼h F (A). Then there
exists an Ẽ ∈ Ch(X × I, A × I)A×I together with isomorphisms Ẽ|X×0

∼= E(A)

and Ẽ|X×1
∼= F (A). By Lemma 22.12 there is an E ∈ Ch(X × I, A × I) such that

E(A) = Ẽ. Then E|X×0(A) ∼= E(A), and so by Lemma 22.12 E|X×0 is homotopic to
E. The same reasoning gives that E|X×1 is homotopic to F . But E|X×0 and E|X×1

are homotopic, so by transitivity E is homotopic to F .
Finally, suppose that E(A) ∼st F (A). So there exist elementary complexes

P1, . . . , Pr and Q1, . . . , Qs in Chn(X,A)A such that E(A)⊕⊕i Pi
∼= F (A)⊕⊕j Qj .

Note that each elementary complex actually lives in Chn(X,A), as its only nonzero
differential is the identity and therefore is defined on all of X.

Let P = ⊕iPi and Q = ⊕jQj . Then (E ⊕ P )(A) ∼= (F ⊕ Q)(A), and so
Lemma 22.12 tells us that E ⊕ P and F ⊕Q are homotopic. Consequently, E ⊕ P
is identified with F ⊕ Q in Mn(X,A). But the stability relation identifies E with
E ⊕ P and F with F ⊕Q, hence E and F are themselves identified. �

22.15. An unusual construction from homological algebra. Our next aim is
to prove that the maps Mn(X,A)A → Mn+1(X,A)A are bijections when n ≥ 1.
This will be based on a strange technique for folding the top group of an exact
complex two terms lower down, to construct a new complex that also happens to
be exact. We now describe this unusual construction.
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Let V be an exact complex of vector spaces and assume that Vi = 0 for i > n.
(The complex could actually consist of projectives over some ring, but let us stick
with the simpler setting). Since the complex is exact there exists a contracting
homotopy: maps e : Vi → Vi+1 such that de + ed = id. Let ΓV be the following
chain complex, concentrated in degrees smaller than n and agreeing with V in
degrees smaller than n− 2:

0 // Vn−1
// Vn−2 ⊕ Vn // Vn−3

// Vn−4
// · · ·

x // (dx, ex)

(a, b) // da.

It is an elementary exercise to prove that ΓV is exact, but this will also follow
directly from the two decompositions we produce next.

Exercise 22.16. Check that the above construction is a chain complex and prove
via naive means that it is exact. Additionally, prove that Vn−1 = d(Vn)⊕ed(Vn−1).

Remark 22.17. We know (e.g. Proposition 18.10) that an exact complex of vector
spaces splits (non-canonically) as a direct sum of elementary complexes. The above
construction is essentially taking the top piece of such a splitting and shifting it
down one degree. The contracting homotopy e encodes the splitting.

For any vector spaceW and any k ∈ Z, recall thatDk(W ) denotes the elementary
chain complex consisting of W in degrees k and k + 1, where the differential is the
identity.

Exercise 22.18. Let V be a bounded chain complex of vector spaces and suppose
e is a contracting homotopy for V .
(a) Prove that Vi = e(ker di−1) ⊕ d(Vi+1) and that di : e(ker di−1) → d(Vi) is an

isomorphism. So the contracting homotopy yields a decomposition of V into a
direct sum of elementary complexes.

(b) Define a splitting for V to be a sequence of vector spaces Li and an isomorphism⊕
iDi(Li) → V . Define two splittings (L, φ) and (L′, φ′) to be equivalent if

there is a collection of isomorphisms Li → L′i making the expected triangle
with φ and φ′ commute. Prove that there is a bijection between the equivalence
classes of splittings of V and the set of contracting homotopies of V .

Returning to our chain complex V with contracting homotopy e, note that for
x ∈ Vn one has ed(x) = x. Using this, we can write down a natural chain map
V → Dn−1(Vn) that is the identity in degree n and the map e : Vn−1 → Vn in degree
n−1. Let Γ̃V be the desuspension of the mapping cone of this map; specifically, Γ̃V
is the following chain complex, concentrated in dimensions at most n and agreeing
with V in dimensions smaller than n− 2:

0 // Vn // Vn−1 ⊕ Vn // Vn−2 ⊕ Vn // Vn−3
// Vn−4

// · · ·
x // (dx,−x) (x, y) // dx

(a, b) // (da, ea+ b)

There is a canonical inclusionDn−2(Vn) ↪→ Γ̃V , and the quotient is V . Moreover,
this inclusion has a canonical splitting χ defined by χ(a, b) = ea + b for (a, b) ∈
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Vn−1 ⊕ Vn = (Γ̃V )n−1 and χ(a, b) = b for (a, b) ∈ Vn−2 ⊕ Vn = (Γ̃V )n−2. This
splitting gives an isomorphism Γ̃V ∼= Dn−2(Vn)⊕ V .

Notice as well that there is an evident map Dn−1(Vn) ↪→ Γ̃V : in degree n
this equals the identity and in degree n − 1 it equals the differential of Γ̃V . The
cokernel of this inclusion is precisely ΓV . Moreover, there is again a canonical
splitting for the inclusion: in degree n it is equal to the identity, and in degree
n− 1 it is the negation of the projection map Vn−1⊕Vn → Vn. This splitting gives
Γ̃V ∼= Dn−1(Vn)⊕ ΓV .

Summarizing, we have produced two split-exact sequences

0→ Dn−2(Vn)→ Γ̃V → V → 0 and 0→ Dn−1(Vn)→ Γ̃V → ΓV → 0

and these induce isomorphisms

Γ̃V ∼= Dn−2(Vn)⊕ V and Γ̃V ∼= Dn−1(Vn)⊕ ΓV.(22.19)

An important point is that the maps in these short exact sequences, their splittings,
and therefore the induced isomorphisms in (22.19) are all canonical in the pair (V, e).

By the way, notice that it follows immediately from the isomorphisms in (22.19)
that the homology groups of ΓV and V coincide; therefore ΓV is exact.

The constructions from above depended on the choice of contracting homotopy
e. As one last remark before getting back to topology, let us consider the space of
all contracting homotopies on an arbitrary chain complex V . Denote this space as
contr-h(V ) ⊆ ∏i Hom(Vi, Vi+1); an element of contr-h(V ) is a collection of maps
{ei : Vi → Vi+1} satisfying de+ ed = id. Of course this space might be empty, but
we claim that it is either empty or contractible. To see this, recall the internal Hom-
complex Hom(V, V ). In degree k this is

∏
i Hom(Vi, Vi+k), and given a collection

{αi : Vi → Vi+k} the differential is the collection of maps {d◦αi−(−1)kαi−1◦d}. A
contracting homotopy for V is just an element e ∈ Hom(V, V )1 satisfying de = id,
and the space of contracting homotopies is just d−1(id). If this space is nonempty
then it is homeomorphic to the space of 1-cycles in Hom(V, V ), which is a vector
space and hence contractible.

Remark 22.20. The Γ- and Γ̃-constructions used in this section seem to have first
appeared in [Do]. Notice that very little about the contracting homotopy e was ever
used—in fact, all we really needed was the component of e in the top dimension,
the map e : Vn−1 → Vn. And all that was important about this map was that it
was a splitting for the differential dn : Vn → Vn−1. Rather than use the space of
contracting homotopies as a parameter space, we could have used the (simpler)
space of splittings for dn. The reader can check that this is again an affine space,
homeomorphic to the vector space of all maps f : Vn−1 → Vn such that fd = 0; in
particular, this parameter space is again contractible.

We have used the space of contracting homotopies because this approach gener-
alizes a bit more easily to the situation of algebraic K-theory. See [FH] and [D3]
for the importance of these contracting homotopies.

22.21. Back to topology. Let E• be a bounded chain complex of vector bundles
on a paracompact Hausdorff space Z, and assume that E• is exact. One can prove
by brute force that E• has a contracting homotopy, by producing a splitting for E•
as in Proposition 18.10 (by successively splitting off the bottom vector bundle) and
then taking the induced contracting homotopy as in Exercise 22.18. But as another
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argument, consider the map contr-h(E) → Z whose fiber over each z ∈ Z is the
space of contracting homotopies for (E•)z. It is easy to see that contr-h(E) → Z
is a fiber bundle, and our remarks in the last section show that the fibers are
contractible. If Z is cofibrant then a lift is guaranteed in the diagram

contr-h(E)

'
����

Z
id // Z,

and this lift precisely gives a contracting homotopy for E•. Moreover, if e and e′ are
two liftings then there is a homotopy Z × I → contr-h(E) between them because
the diagram

(Z × 0)q (Z × 1)
eqe′ //

��

contr-h(E)

'
����

Z × I π // Z,

admits a lifting. This is all we will need, but it is worth observing that one can
say even more here: the space of all liftings, which is the space of contracting
homotopies on E•, is contractible.

If e is a chosen contracting homotopy for E• then we can form the associated
chain complex ΓE by repeating the construction from Section 22.15 but in the
bundle setting. This is a new chain complex of vector bundles that is still exact
on Z. This construction of course depends on the choice of contracting homotopy
e, and so we should probably write ΓeE. But since any two choices for e are
homotopic, it follows that ΓE is well-defined up to homotopy.

We will use the above construction to prove the following:

Proposition 22.22. Assume that A is cofibrant and A ↪→ X is a cofibration. Then
for any n ≥ 2 the map j : Mn−1(X,A)A →Mn(X,A)A is a bijection.

Proof. Let E• be a chain complex in Chn(X,A)A, where n ≥ 2. By the preceding
considerations, since A is cofibrant there exists a contracting homotopy for (E•)|A.
Using such a contraction e we can form ΓeE, which is an object in Mn−1(X,A)A.
Different choices for e are homotopic and therefore give rise to homotopic complexes,
so we get a well-defined function

Γ: Chn(X,A)A →Mn−1(X,A)A.

It is an elementary exercise to check that Γ(E ⊕ J) = Γ(E) + Γ(J), and it follows
from this that if E ∼st E′ then ΓE ∼st ΓE′. Likewise, if E ∼h E′ then pick an
E ∈ Chn(X × I, A× I)A×I with E|X×0

∼= E and E|X×1
∼= E′. Choose a contracting

homotopy e for E|A×I and note that [(ΓeE)X×0] = [ΓE] and [(ΓeE)X×1] = [ΓE′].
It follows at once that [ΓE] = [ΓE′]. Putting everything together, we have shown
that Γ gives a map

Γ: Mn(X,A)A →Mn−1(X,A)A.

It is trivial that Γj = id. We claim that jΓ = id as well, thus establishing that j
is a bijection. This claim almost follows directly from the canonical isomorphisms
(22.19), except there is an important step that must be filled in. We would like to
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say that these isomorphisms globalize to give

Γ̃E ∼= Dn−2(En)⊕ E and Γ̃E ∼= Dn−1(En)⊕ ΓE.(22.23)

This is certainly true if we restrict all the chain complexes to the subspace A. How-
ever, to give an isomorphism in Ch(X,A)A we actually need to give a collection
of isomorphisms for bundles over X (they are only required to commute with the
differentials over A, however). So we must verify that in each degree the isomor-
phisms from (22.19) globalize not just to A but to X. Those isomorphisms were
obtained from split short exact sequences, so we must check that all the maps in-
volved can be extended over X. But we have formulas for all of these maps, and
most of them are inclusions of a summand or projections onto a summand—these
obviously extend to all of X. The one exception is in one of the splittings, where
we used the map χ : En−1 ⊕ En → En given on fibers by (a, b) 7→ ea + b where e
was part of the given contracting homotopy. Since e is only defined on A, this does
not automatically make sense on all of X. However, the particular map e we are
using in this formula is a section over A of the bundle Hom(En−1, En) → X. The
diagram

A //
��

��

Hom(En−1, En)

'
����

X
id // X

must have a lifting, and this gives an extension of e to a bundle map ẽ : En−1 → En
defined on all of X. The formula (a, b) 7→ ẽa + b then gives the desired splitting
that works on all of X. Note: it is important here that the splitting is only required
to commute with the differentials on A, since this is all we have guaranteed.

To summarize, we have indeed justified the isomorphisms in (22.23). These imply
that ΓE and E represent the same class in Mn(X,A)A. In other words, we have
proven that j ◦ Γ = id, and so Γ is a two-sided inverse for j. �

Remark 22.24 (Atiyah’s proof). Atiyah proves a version of Proposition 22.22 in
[At4, Chapter 2.6]; the argument orginally comes from [ABS]. We will explain the
basic ways his proof differs from ours, and why these differences are important.

Let E• be a chain complex in Chn(X,A)A. There is a canonical mapDn−1(En)→
E• which in degree n equals the identity and in degree n− 1 equals the differential
En → En−1. Let E′• = E• ⊕Dn−2(En) and consider the composition

Dn−1(En)→ E• ↪→ E′•.

The map in degree n − 1 is d ⊕ 0: En → En−1 ⊕ En, which is defined only on A.
Atiyah shows via a lifting argument that this can be extended to a monomorphism
of bundles on X. Let Q be the quotient, and observe that by Proposition 9.2 the
sequence 0 → En → E′n → Q → 0 is a split-exact sequence of bundles over X. A
choice of splitting χ : E′n → En then shows that E′• is the direct sum of Dn−1(En)
and a complex

0→ Q→ En−2 ⊕ En → En−3 → En−4 → · · ·(22.25)

This last complex lies in Chn−1(X,A)A, and it represents the same class as E in
Mn(X,A)A. This shows that j : Mn−1(X,A)A →Mn(X,A)A is surjective.
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This argument does not give an inverse for j, however. The complex in (22.25)
depends on a choice (the extension of a certain map to all of X), and so it is not
clear how to use this construction to make an inverse for j.

In our argument we gave a construction ΓE that did not depend on choosing
any such extensions toX. Such extensions did appear, but only in the isomorphisms
showing that our ΓE had the correct properties. By pushing these choices into the
maps rather than the objects, we were able to write down an explicit inverse for j.

In Atiyah’s case he found a clever way around his problem, by instead con-
structing a map Mn(X,A)A → M1(X,A)A that is an inverse to the appropriate
composition of j’s. This is enough to deduce injectivity of all the j maps. Atiyah’s
construction proceeds by choosing Hermitian inner products on all of the bundles
Ei, and then letting α : Ei → Ei+1 be the adjoint of the differential. The map
d+ α :

⊕
i oddEi →

⊕
i evenEi is seen to lie in Ch1(X,A)A, and it clearly has the

desired properties. This element seems to again depend on choices, namely the
choice of inner products; but the space of all such choices is contractible, and so
one indeed gets a well-defined element of M1(X,A)A. The exercises below will give
you enough information to fill in the details of this approach.

The disappointing aspect of Atiyah’s argument is that it does not work in the
related context of algebraic K-theory. In that setting one cannot play a corre-
sponding game with inner products. In contrast, our argument with contracting
homotopies does generalize. See Appendix F.

Exercise 22.26. Assume V is an exact chain complex of finite-dimensional real
vector spaces, and that Vi = 0 for i < 0 and for i > n. Choose an inner product on
each Vi, and let αi : Vi → Vi+1 be the adjoint of di+1 : Vi+1 → Vi. That is, for each
x ∈ Vi and y ∈ Vi+1 one has 〈αx, y〉 = 〈x, dy〉.
(a) Prove that α2 = 0, and so (V, α) is a cochain complex. Observe that this is

isomorphic to the dual complex V ∗, and therefore is exact.
(b) For each i prove that kerαi is the orthogonal complement of im di+1 inside of

Vi. As a corollary, deduce that d restricts to an isomorphism kerαi → im di
and α restricts to an isomorphism im di → kerαi. Produce an example when
n = 1 showing that these isomorphisms need not be inverses.

(c) Observe that Vi = (im di+1)⊕(kerαi) for each i, and confirm that the following
picture shows V decomposing into a direct sum of length 1 complexes:

· · · (im di+1)

⊕
α

ww

(im di)

⊕
α

uu

(im di−1)

⊕
α

uu

· · ·
α

ww
· · · d

77

(kerαi)
d

55

(kerαi−1)
d

55

(kerαi−2)
d

77

· · ·
(d) Let Vodd = ⊕i oddVi and Vev = ⊕i evenVi. Observe that d + α : Vodd → Vev is

an isomorphism, by the following diagram:

α
**

· · · ⊕ (im d)1 ⊕

α

++

(kerα)1 ⊕

d

{{

(im d)3 ⊕

α

**

(kerα)3⊕

d

{{

· · ·

· · · ⊕ (im d)0 ⊕ (kerα)0 ⊕ (im d)2 ⊕ (kerα)2⊕ · · · · · ·
Note: Here we have written (im d)i for the component of im d contained in
degree i; i.e., (im d)i = im di+1, but (kerα)i = kerαi.
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(e) Prove an analog of these results for exact complexes of C-vector spaces, in
which one chooses Hermitian inner products on all of the Vi’s.

Exercise 22.27. Let IPn denote the space of all inner products on Rn. Note
that this may be identified with the space of all positive-definite, symmetric n× n
matrices, which we topologize as a subspace of Mn×n(R). We will prove that IPn
is contractible, for all n.
(a) Prove IP1

∼= R>0.
(b) Consider the process of extending an inner product from Rn−1 to Rn. Let Hn

denote the upper half-space {x ∈ Rn |xn > 0}. Prove that IPn ∼= IPn−1×Hn,
and deduce that IPn is contractible for all n ≥ 1.

(c) Use a similar line of argument to show that the space of Hermitian inner prod-
ucts on Cn is contractible. The analog of Hn is the space (Cn − Cn−1)/S1,
where S1 is the group of unit complex numbers acting via scalar multiplication
on Cn. As part of your argument you will have to show that this orbit space is
contractible.

22.28. Another interlude on where we are headed. Recall that we are trying
to produce a natural map of groups K(X,A) → K0(X,A) such that when A = ∅
the map sends E• to

∑
i(−1)i[Ei]. At this point we have established the chain of

isomorphisms of monoids

M1(X,A)A
∼=−→M∞(X,A)A

∼=←−M∞(X,A)
∼=−→ K(X,A)

for cofibrant pairs (X,A) (recall that this hypothesis ensures, in particular, that
X and A are paracompact and Hausdorff). So for this situation our problem is
equivalent to producing a natural map from any of these gadgets into K(X,A) with
the desired properties. We will call any such natural map an Euler characteristic.

In the next part of the argument we will construct an Euler characteristic on
M1(X,A)A and prove that it is unique on cofibrant pairs where X and A are
homotopically compact.

Let us make one simple but useful observation that falls out of what we have
done already. A priori the sets Mn(X,A)A are only monoids, but the above chain
of isomorphisms shows they are actually groups.

Corollary 22.29. Let (X,A) be a cofibrant pair. Then for all 1 ≤ n ≤ ∞ the
commutative monoid Mn(X,A)A is a group.

22.30. The difference bundle construction. Suppose given a pair (X,A). For
this section we will need to assume that both X and A are paracompact Hausdorff,
as we will need to use homotopy invariance of bundles. Our goal in this section is
to construct a map

χ1 : M1(X,A)A → K0(X,A),

natural in (X,A), and prove that it is an isomorphism when (X,A) is a finite
CW-pair.

Write j : A ↪→ X for the inclusion. Write Cyl(j) for the mapping cylinder,
AT for the copy of A at the top of the mapping cylinder (‘T’ is for top), and
Cone(j) = Cyl(j)/AT for the mapping cone. Let D(X,A,X) denote the double
mapping cylinder , namely

D(X,A,X) = Cyl(j)qAT Cyl(j).
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It will be convenient to denote the left copy of Cyl(j) inside D(X,A,X) as Cyl0
and the right copy as Cyl1. Each of these mapping cylinders contains a copy of X,
which will likewise be denoted X0 and X1. Let ji : Xi ↪→ D(X,A,X) be the two
inclusions, and let π : D(X,A,X)→ X be the evident projection.

In the long exact sequence for the pair (D(X,A,X), X0) the map j∗0 is split by
π∗, hence the sequence breaks up into short exact sequences. At the K0 level this
is

(22.31) 0 −→ K0(D(X,A,X), X0) −→ K0(D(X,A,X))
j∗0−→ K0(X0) −→ 0.

In addition, we have the sequence of isomorphisms

(22.32) K0(D(X,A,X), X0) K0(D(X,A,X),Cyl0)∼=

j∗0oo j∗1
∼=
// K0(Cyl1, AT )

K0(X,A).

π∗∼=

OO

The first and last of these are isomorphisms by homotopy invariance, whereas the
second is by excision and homotopy invariance (we can fatten up the two cylinders
into open sets if we like, intersecting in A × (0, 1)). Note that all of our diagrams
are natural in the pair (X,A).

Given an element in Ch1(X,A)A our strategy will be to produce an element in
K0(D(X,A,X), X0) via a geometric construction and then push it into K0(X,A)
via the above string of isomorphisms.

Suppose E1
d−→ E0 is an object in Ch1(X,A)A, and recall that the map d is

only defined over A. Note that d is an isomorphism (E1)|A → (E0)|A. Construct a
bundle B(E0, E1, d) on D(X,A,X) by taking π∗0(E0) on Cyl0 and π∗1(E1) on Cyl1
and gluing them along the isomorphism

π∗1(E1)|AT = E1
d−→ E0 = π∗0(E0)|AT .

Here we are using Corollary 8.27 for the gluing construction, which works be-
cause the inclusion AT ↪→ D(X,A,X) has the required properties. The bundle
B(E0, E1, d) is called the difference bundle corresponding to E1

d−→ E0.
Consider the element α(E•) = [B(E0, E0, id)]−[B(E0, E1, d)] ∈ K0(D(X,A,X)).

Restricting to X0 sends this class to [E0]− [E0] = 0, therefore by (22.31) α(E•) lifts
to a unique class in α̃(E•) ∈ K0(D(X,A,X), X0). Note that if we restrict α(E•)
to X1 (or equivalently, α̃(E•) to the pair (X1, ∅)) then we get [E0]− [E1].

It is easy to check that D(X,A,X) is paracompact, because X and A are. It
follows at once from Proposition 11.1 (bundles on D(X,A,X) × I restrict to iso-
morphic bundles on D(X,A,X)× {0} and D(X,A,X)× {1}) that if E• ∼h E′• in
Ch1(X,A)A then the corresponding α classes are equal.

We next check that if E• ∼st E′• then α(E•) = α(E′•). To this end, suppose that
J is a vector bundle on X. Then B(E1 ⊕ J,E0 ⊕ J, d ⊕ id) = B(E1, E0, d) ⊕ π∗J ,
and likewise B(E0 ⊕ J,E0 ⊕ J, id⊕ id) = B(E0, E0, id)⊕ π∗J . Therefore

α(E• ⊕D0(J)) = [B(E0, E0, id)] + [π∗J ]−
(
[B(E1, E0, d)] + [π∗J ]

)
= α(E•).

We have therefore proven that α gives a well-defined map M1(X,A)A →
K0(D(X,A,X)), and it is clearly a group homomorphism. The composite j∗0 ◦ α
is zero, and so α factors through K0(D(X,A,X), X0). Define χ1 : M1(X,A)A →
K0(X,A) to be the composition of this map with the sequence of isomorphisms from
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(22.32). Note that some authors also call χ1(E•) the “difference bundle” associated
to E•.

Remark 22.33. Atiyah [At4] gives this construction for pairs (X,A) where both
X and A are compact Hausdorff, and uses X qA X instead of our D(X,A,X).
When A ↪→ X is a cofibration these two spaces are homotopy equivalent. In the
case where we only have compactness, it perhaps takes a bit more thought to see
that gluing two bundles over X together over A actually defines a bundle.

Our construction of χ1 is clearly natural in pairs (X,A) of paracompact Hausdorff
spaces.

Proposition 22.34. The map χ1 : M1(X,A)A → K0(X,A) is an isomorphism
whenever X and A are cofibrant and also homotopically compact (e.g. (X,A) is a
finite CW-pair).

Proof. The proof proceeds in three steps.

Step 1: A = ∅. This step is trivial, since M1(X, ∅)∅ is readily identified with
the Grothendieck group of vector bundles on X (see Exercise 22.3). Since X is
both cofibrant and homotopically compact, it is homotopy equivalent to a finite
CW-complex. So the natural map K0

Grt(X)→ K0(X) is an isomorphism.

Step 2: A = ∗. Here we consider the diagram of groups

0 // M1(X, ∗)∗ α //

χ1

��

M1(X, ∅)∅
β //

χ1

��

M1(∗, ∅)∅
χ1

��

// 0

0 // K0(X, ∗) // K0(X) // K0(∗) // 0.

The bottom row is exact, and the middle and right vertical maps are isomorphisms
by Step 1. It will suffice to show that the top row is exact, since then the left
vertical map is also an isomorphism.

For the remainder of this step let x ∈ X denote the basepoint.
Surjectivity of β is trivial. For exactness at the middle spot, note that

M1({x}, ∅)∅ ∼= Z via (V1, V0) → rankV0 − rankV1. So if E• is in the kernel of
β then rankxE1 = rankxE0, and therefore there certainly exists an isomorphism
(E1)x ∼= (E0)x. Such an isomorphism determines an element of M1(X,x){x} that
is a preimage for E•.

Finally, let E• ∈ Ch(X,x){x} and assume that E• is in the kernel of α. Using
the isomorphism M1(X, ∅)∅ ∼= K0(X), this means that [E1] = [E0] in K0(X). So
there exists a vector bundle Q such that E1 ⊕ Q ∼= E0 ⊕ Q. Adding id : Q → Q
to E• and using this isomorphism, we may assume that E• satisfies E1 = E0. Our
isomorphism of fibers over x is then an element σ ∈ Aut((E0)x) ∼= GLn(C) for n =
rank(E0). As GLn(C) is connected, choose a path from the identity element to σ in
Aut((E0)x). If π : X × I → X is the projection, this path defines an isomorphism
(π∗E0)|{x}×I → (π∗E0)|{x}×I and therefore an object in Ch1(X × I, {x} × I).

Restricting this element to X × {0} and X × {1} shows that E• equals E0
id−→ E0

in M1(X,x){x}. But the latter element is zero, by the stability relation.
[NOTE: When proving the result for R-vector bundles an extra argument is needed
here, because GLn(R) is not path-connected. If σ is in the path component of the
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identity, the argument is the same as above. If not, add the elementary complex
D0(R2) onto E and then use the isomorphism of complexes

E0 ⊕ 2

σ⊕id

��

id⊕t
∼=
// E0 ⊕ 2

σ⊕t
��

E0 ⊕ 2
id
∼=
// E0 ⊕ 2

where t : R2 → R2 is the map that interchanges the standard basis vectors. The
isomorphism σ⊕ t is now in the path component of the identity and so we are back
in the previous case; therefore, our complex represents zero in M1(X,x){x}.]

Step 3: General case. Here we will consider the two squares

M1(X,A)A
π∗ //

χ1

��

M1(Cyl(j), AT )AT

χ1

��

M1(Cone(j), ∗){∗}
χ1∼=
��

p∗oo

K0(X,A)
π∗

∼=
// K0(Cyl(j), AT ) K0(Cone(j), ∗).p∗

∼=
oo

The right vertical map is an isomorphism by Step 2, since Cone(j) is cofibrant and
homotopically compact because X and A were. Here p is the projection Cyl(j)→
Cone(j), and the lower p∗ is an isomorphism because K is a cohomology theory.
Likewise, π is the projection Cyl(j) → X and the lower π∗ is an isomorphism
because of homotopy invariance.

Since p∗ ◦ χ1 is an isomorphism, the upper p∗ is injective. We next show it is
surjective. Let E• be an object in Ch1(Cyl(j), AT )AT . The space Cyl(j) is cofibrant,
since both A andX are. It is also homotopy equivalent toX, which is homotopically
compact. It follows that there exists a bundle Q on Cyl(j) such that E1 ⊕ Q is
trivial. We can add the elementary complex D0(Q) to E• without changing its class
in M1, and in this way we can assume that E1 is trivial, i.e. E1 = n for some n. The
differential d : (E1)|AT → (E0)|AT is therefore a trivialization AT×Cn

∼=−→ (E0)|AT .
Define J to be the pushout in Top of

Cn ←− (E0)|AT ↪→ E0

where the left map is the composite (E0)|AT
d−1

−→ AT × Cn π2−→ Cn. In words, J is
constructed by gluing all of the fibers of E0 above AT together into one, using the
identification provided by the trivialization. Clearly we have the map J → Cone(j),
and this is a vector bundle (see Exercise 8.42).

Consider the element of M1(Cone(j), ∗){∗} given by n
d′−→ J , where d′ is the

isomorphism Cn → J∗ that is built into the definition of J . We claim that [E•] =
p∗([n → J ]). The universal property of pullbacks gives us a dotted arrow in the
diagram

E0

%% ##

%%

p∗J //

��

J

��
Cyl(j)

p // Cone(j),
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where all of the other maps are the evident ones. This arrow is a bundle map and a
fiberwise isomorphism, hence an isomorphism of bundles. Now one readily checks
that n d−→ E0 is isomorphic to p∗ applied to n d′−→ J , hence our complex is in the
image of p∗ and we have proven surjectivity. So the upper p∗ is an isomorphism,
and likewise for the middle χ1.

As our last step we will prove that the upper π∗ is an isomorphism, which implies
the same for the left χ1 map and completes the proof.

Since Cyl(j) → X is part of a homotopy equivalence (and all the spaces are
paracompact Hausdorff, being cofibrant), every bundle on Cyl(X) is isomorphic to
one that is pulled back from X. So any element in M1(Cyl(j), AT )AT is represented
by a complex of the form π∗E1

d−→ π∗E0 for some bundles E1 and E0 on X.
Since (π∗Ei)|AT can be canonically identified with (Ei)|AT , the differential d can
be regarded as a map (E1)|A → (E0)A. Thus we have described an element of
M1(X,A)A, and it is clear that applying π∗ yields our original class. So π∗ is
surjective.

To prove injectivity of π∗ we will construct an explicit left inverse. Suppose
given an object d : E1 → E0 in Ch1(Cyl(j), AT ). Restricting to the cylinder A ×
I ↪→ Cyl(j) gives two bundles on A × I and an isomorphism between them on
A× {0} (we let time 0 denote the top of the cylinder, and time 1 the bottom). By
Proposition 11.8 this isomorphism can be extended to an isomorphism D on A× I,
and then restricted to time 1 to give D1 : (E1)|A×1 → (E0)A×1. The bundle map
(E1)|X D1−→ (E0)|X represents an element α(E•) ∈ M1(X,A)A. Proposition 11.8
also says that a different extension D′ gives an isomorphism D′1 that is homotopic
to D1, therefore α(E•) does not depend on the choice of D.

Adding an elementary complex to E• clearly results in the addition of an elemen-
tary complex to α(E•). Finally, suppose given an element E ∈ Ch1(X×I, A×I)A×I
and set E = E|X×0 and E′ = EX×1. As above we can extend the isomorphism
E|AT×I → E′|AT×I to E|Cyl(A)×I → E′|Cyl(A)×I and then this defines an object in
Ch1(X × I, A× I)A×I The restriction of this object to X × 0 represents α(E•) and
the restriction to X × 1 represents α(E′•), and so α(E•) = α(E′•) in M1(X,A)A.
This shows that α is a well-defined map M1(Cyl(j), AT )AT → M1(X,A)A. It is
clear that α ◦ π∗ = id, so this completes the proof that π∗ is a bijection. It follows
that the left vertical χ1 is a bijection, which is what we needed. �

22.35. Wrapping things up. We can now bring together all of the work in this
section to prove the main results. The hard work has already been done, and now
it is just a matter of fitting together some small details. Let us first start with a
simple lemma:

Lemma 22.36. Suppose that η : K0(X,A)→ K0(X,A) is a natural transformation
defined on all finite CW-pairs (X,A) that is equal to the identity when A = ∅. Then
η is the identity on all pairs.

Proof. Just use the natural isomorphism π∗ : K0(X/A, ∗) → K0(X,A) together
with the natural short exact sequence 0 → K0(X/A, ∗) → K0(X/A) → K0(∗) →
0. �

When (X,A) is a cofibrant pair we have all the tools to construct a map
K(X,A) → K0(X,A). Standard homotopical techniques allow us to reduce to
this case, leading to the following result:
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Proposition 22.37. There is a natural transformation χ : K(X,A) → K0(X,A),
defined for all pairs (X,A), having the property that for A = ∅ one has χ([E•]) =∑
i(−1)i[Ei]. All such natural transformations agree on pairs (X,A) where X and

A are homotopically compact, and are an isomorphism on pairs that are homotopy
equivalent to a finite CW-pair.

Proof. We will use the functorial factorizations on the model category Top, though
this is not strictly necessary. Given a pair (X,A) factor ∅ → A as ∅ � Ã

∼−�
A. Then factor the composite Ã → A → X as Ã � X̃

∼−� X. In this way
we functorially produce a map of pairs (X̃, Ã) → (X,A) where the former is a
cofibration between cofibrant spaces. Define χ : K(X,A) → K0(X,A) to be the
following composite:

K(X,A)

��

χ // K0(X,A)

∼=
��

K(X̃, Ã) M∞(X̃, Ã)
∼=

(22.4)
oo ∼=

(22.11)
// M∞(X̃, Ã)Ã M1(X̃, Ã)Ã

∼=
(22.22)
oo χ1 // K0(X̃, Ã).

This gives a natural transformation of functors. When A = ∅ then Ã = ∅ and it is
easy to check that the composite across the bottom row sends a graded collection
of vector bundles to their alternating sum. It follows that the top map must do the
same thing.

If A′ ↪→ X ′ is a cofibration between cofibrant objects with a map of pairs
(X ′, A′) → (X,A) that is a weak equivalence on both components, then there
is a commutative triangle of weak equivalences

(X ′, A′) //

%%

(X̃, Ã)

��
(X,A).

One readily sees that the map χ defined above by passing through (X̃, Ã) coincides
with the similarly-defined map that passes through (X ′, A′) (just chase around a big
commutative diagram). In particular, the exact choice of (X̃, Ã) does not affect the
definition of χ. As a result, when (X,A) is a finite CW-pair we can take X̃ = X and
Ã = A and so χ is just the composite across the bottom row of the above diagram.
But for finite CW-pairs χ1 was proven to be an isomorphism in Proposition 22.34,
and so χ is also an isomorphism here.

Now suppose that χ′ is any other natural transformation that equals χ when
A = ∅. Since χ is an isomorphism on finite CW-pairs we can define η = χ′ ◦ χ−1

on such pairs, thereby obtaining natural maps η : K0(X,A) → K0(X,A). When
A = ∅ these are identity maps by our assumption on χ′, so by Lemma 22.36 we
must have η = id on all pairs. Therefore χ = χ′ on all finite CW-pairs.

Now assume (X,A) is a pair where both X and A are homotopically compact.
Then by Lemma E.2 there is a finite CW-pair (X ′, A′) and a map of pairs (X ′, A′)→
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(X,A) that is a weak equivalence on each term. The diagram

K(X,A)

��

χ // K0(X,A)

∼=
��

K(X ′, A′)
χ // K0(X ′, A′)

must commute both for χ (shown) and for χ′. Since χ and χ′ are equal for (X ′, A′),
they must also be equal for (X,A).

The only thing left to check is that χ is an isomorphism on pairs (X,A) that
are homotopy equivalent to a finite CW-pair (X ′, A′). Let f : (X ′, A′)→ (X,A) be
part of such a homotopy equivalence and consider the diagram

K(X,A)
χ //

f∗

��

K0(X,A)

f∗

��
K(X ′, A′)

χ // K0(X ′, A′).

Both of the vertical maps are isomorphisms and we have already proven that the
bottom χ is an isomorphism, therefore the top one is as well. �

Remark 22.38. Note that we have not proven that χ is an isomorphism whenever
X and A are homotopically compact. It is not clear whether this is true.

22.39. Compatibility of products. As we have observed before, if E• ∈ Ch(X,A)
and F• ∈ Ch(Y,B) then E•⊗̂F• ∈ Ch(X × Y, (A × Y ) ∪ (X × B)). This is readily
seen to induce pairings

µ : K(X,A)⊗K(Y,B)→ K(X × Y, (A× Y ) ∪ (X ×B)).

It is almost formal that these pairings are compatible (via χ) with the similar
pairings on K0: it is easy to check that they agree when A = B = ∅, and then the
formal properties of cohomology theories allow one to bootstrap up to CW-pairs.

Proposition 22.40. For any CW-pairs (X,A) and (Y,B) the diagram

K(X,A)⊗K(Y,B)

χ⊗χ
��

µ // K(X × Y, (A× Y ) ∪ (X ×B))

χ

��
K0(X,A)⊗K0(Y,B) // K0(X × Y, (A× Y ) ∪ (X ×B))

is commutative, where the bottom horizontal map is the product on K-theory. The
same diagram commutes if (X,A) and (Y,B) are more general pairs but where we
assume A is open in X and B is open in Y (for a more general statement, see
Remark 22.41).

Proof. We first check this when (X,A) and (Y,B) are CW-pairs. It is trivial to
check that the diagram commutes when A = B = ∅. The general case follows
formally from this one using naturality. First check that it works for A = B = ∗
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using the diagram

K0(X, ∗)⊗K0(Y, ∗) //
��

��

K0(X × Y, (X × ∗) ∪ (∗ × Y ))
��

��

K0(X ∧ Y, ∗)∼=oo
tt

tt
K0(X)⊗K0(Y ) // K0(X × Y )

(and the similar one for K(−,−) that maps to it). Here the diagonal map is an
injection (for any cohomology theory) because stably the product X × Y splits as
X ∨ Y ∨ (X ∧ Y ), and consequently the central vertical map is an injection. The
desired commutativity now follows by a diagram chase.

Finally, deduce the general case using the diagram

K0(X,A)⊗K0(Y,B) // K0(X × Y, (A× Y ) ∪ (X ×B)) K0(X/A ∧ Y/B, ∗)

∼=tt

∼=oo

K0(X/A, ∗)⊗K0(Y/B, ∗)

∼=

OO

// K0(X/A× Y/B,X/A ∨ Y/B)

∼=

OO

and its K-analog. The main point here is the square, but the portion of the diagram
to the left of it is there to show that the central vertical map is an isomorphism.
Again, the desired commutativity now follows from an easy diagram chase.

Now suppose that (X,A) and (Y,B) are more general pairs but where addition-
ally A is open in X and B is open in Y . Let (X ′, A′) and (Y ′, B′) be cofibrant
models for the two pairs, which exist as in the proof of Proposition 22.37. The
diagram from the statement of the proposition for (X,A) and (Y,B) maps to the
similar one for (X ′, A′) and (Y ′, B′), and the maps K0(X,A) → K0(X ′, A′) and
K0(Y,B)→ K0(Y ′, B′) are isomorphisms. The desired result will follow from what
has already been proven if we know that

K0(X × Y,A× Y ∪X ×B)→ K0(X ′ × Y ′, A′ × Y ′ ∪X ′ ×B′)
is an isomorphism. The map X ′×Y ′ → X×Y is certainly a weak equivalence, but
it is not clear that the same can be said for the relative term. This is the tricky
point.

For convenience let W = A × Y ∪ X × B and let W ′ = A′ × Y ′ ∪ X ′ × B′.
Consider the following two long exact sequences for the triple (X × Y,W,A × Y )
and its primed analog:

· · · // K0(X × Y,W ) //

��

K0(X × Y,A× Y ) //

∼=
��

K0(W,A× Y ) //

��

· · ·

· · · // K0(X ′ × Y ′,W ′) // K0(X ′ × Y ′, A′ × Y ′) // K0(W ′, A′ × Y ′) // · · ·
The middle map is an isomorphism because X ′×Y ′ → X×Y and A′×Y ′ → A×Y
are weak equivalences. For the third map we consider the square

K0(W,A× Y ) //

��

K0(X ×B,A×B)

∼=
��

K0(W ′, A′ × Y ′) // K0(X ′ ×B′, A′ ×B′)
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where the right vertical map is an isomorphism as above. Under the assumption
that A is open in X and B is open in Y , the top horizontal map is an isomorphism
by excision. The bottom map is an isomorphism for a similar reason, but here all
of the pairs are CW-pairs and so the reasoning is just slightly different. It follows
that the left vertical map is an isomorphism. Going back to our map of long exact
sequences, we now know that two out of every three maps are isomorphisms and so
the five lemma implies the last is also an isomorphism. This is what we needed. �

Remark 22.41. ????

Remark 22.42. Note that the tensor product of complexes does not give a pairing
M∞(X,A)A⊗M∞(Y,B)B →M∞(X×Y,A×Y ∪X×B)A×Y ∪X×B , as the resulting
differential would only be defined on A×B. So for products it is important to use
M(X,A) rather than the A-relative version M(X,A)A.

22.43. The proof of Theorem 18.16. To finally close out our main goal for this
section, let us just observe that Theorem 18.16 is a combination of Proposition 22.37
and Proposition 22.40. So the proof has now been completed.

22.44. The role of homotopy invariance. In [At4] Atiyah uses a version of
our Mn(X,A)A construction but where he leaves out the homotopy relation. To
this end, let Ln(X,A)A be this group: it consists of equivalence classes of objects
in Chn(X,A)A up to isomorphism and stability. We have the natural surjection
Ln(X,A)A �Mn(X,A)A.

Proposition 22.45. Assume that A ↪→ X is a cofibration and X is paracompact
Hausdorff. Then the map L1(X,A)A →M1(X,A)A is a bijection.

Proof. Suppose given an E ∈ Ch1(X × I, A × I)A×I and let E = E|X×0 and E′ =
E|X×1. We need to show that [E] = [E′] in L1(X,A)A. Since X is paracompact
Hausdorff, the bundles on X × I are all isomorphic to ones pulled back along the
projection X × I → X; so we can assume all the bundles in E are of this form. So
E0 = E′0 and E1 = E′1.

Write dA and d′A for the differentials on E and E′, and note that these are
isomorphisms. The homotopy d′A ∼ dA induces a homotopy id ∼ (d′A)−1 ◦ dA.
Consider the fiber bundle Iso(E1, E1)→ X and the following diagram:

(X × 0) ∪ (A× I)
id∪H //

��
'
��

Iso(E1, E1)

����
X × I π // X

where id is the identity section and H is our homotopy on A. This diagram must
have a lift, and restricting to time 1 gives an isomorphism φ : E1 → E1 that restricts
to (d′A)−1dA on A. Thus, we have the following isomorphism in Ch1(X,A)A:

E1
φ

∼=
//

dA
��

E1

d′A
��

E0
id
∼=
// E0.

This proves that [E] = [E′] in L1(X,A)A and we are done. �
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Corollary 22.46. Suppose that (X,A) is a cofibrant pair. Then for all 1 ≤ n ≤ ∞
the map Ln(X,A)A →Mn(X,A)A is a bijection.

Proof. Consider the commutative square

L1(X,A)A //

∼=
����

Ln(X,A)A

����
M1(X,A)A

∼= // Mn(X,A)A.

The left vertical map is an isomorphism by Proposition 22.45 and the lower hor-
izontal map is an isomorphism by Proposition 22.22. It follows that the upper
horizontal map is an injection. But use of the Γ-construction shows easily that the
upper horizontal map is surjective: the argument is a much-simplified form of the
proof of Proposition 22.22, in that we don’t actually need to construct the inverse
map we just need to produce preimages for elements. So the upper horizontal map
is a bijection, which implies the same for the right vertical map. �

Consider now the following diagram:

M1(X,A) //

(22.11)

��

Mn(X,A) //

(22.11)

��

M∞(X,A)

(22.11)

��

(22.4) // K(X,A)

K0(X,A) M1(X,A)A
Doo

(22.22)
// Mn(X,A)A

(22.22)
// M∞(X,A)A

L1(X,A)A //

(22.46)

OO

Ln(X,A)A //

(22.46)

OO

L∞(X,A)A.

(22.46)

OO

With the exception of D, all of the maps are isomorphisms whenever (X,A) is a
cofibrant pair—the labels on the maps give the references, and for the unlabelled
maps it follows by the commutative diagram. The map D is an isomorphism when
X and A are cofibrant and homotopically compact.

Note that the product, defined in terms of tensor product of chain complexes,
only makes sense for M∞(X,A) and K(X,A).
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Part 4. K-theory and geometry II: Applications

In the last several sections we developed the basic connections between K-theory
and geometry. We have seen that K-theory is a complex-oriented cohomology
theory, and we understand “geometric” representatives for the Thom classes and
fundamental classes that come with such a theory; in this case “geometric” means
that we can write down explicit chain complexes of vector bundles representing the
classes. In the following sections our aim is to further explore this general area:
now that the basic picture is in place, where does it take us? The topics we cover
are somewhat of a hodgepodge, but in some sense they they all revolve around the
exploration of fundamental classes.

23. K∗(CPn) and the K-theoretic analog of the degree

If Z ↪→ CPn is a complex submanifold then it has a fundamental class [Z]
in H∗(CPn). Knowing this fundamental class comes down to knowing a single
integer, called the degree of Z. The geometric interpretation of the degree is that
it equals the number of points of intersection between Z and a generically chosen
linear subspace of complementary dimension. In this section we will repeat this
line of investigation but replacing H∗ with K∗. So we must compute K∗(CPn)
and investigate what information is encoded in the fundamental class [Z]K . We
will find that knowing [Z]K amounts to knowing several integers (not just one);
while we can give methods for computing these, their geometric interpretation is
somewhat mysterious.

23.1. Calculation of K∗(CPn). We begin with the following easy lemma:

Lemma 23.2. Let E be any multiplicative cohomology theory. If x1, . . . , xn+1 ∈
Ẽ∗(CPn), then x1 · · ·xn+1 = 0.

Proof. The key is just that CPn can be covered by n + 1 contractible sets. To be
explicit, let Ui = {[z0 : . . . : zn] ∈ CPn | zi 6= 0}. Then Ui is open in CPn and is
homeomorphic to Cn.

Choose our basepoint of CPn to be [1 : 1 : · · · : 1] (or any other point in the
intersection of all the Ui’s). The contractibility of Ui implies that E∗(CPn, Ui)→
E∗(CPn, ∗) is an isomorphism. So we may lift each xi to a class x̃i ∈ E∗(CPn, Ui).

It now follows that x̃1x̃2 · · · x̃n+1 lifts x1 · · ·xn+1 in the map

E∗(CPn, U1 ∪ · · · ∪ Un+1)→ E∗(CPn, ∗).
Since U1∪ · · ·∪Un+1 = CPn, the domain is the zero group. So x1 · · ·xn+1 = 0. �

Recall that H∗(CPn) ∼= Z[x]/(xn+1) where x is a generator in degree 2. It is
not hard to see that we may take x = [CPn−1]. This calculation works for any
complex-oriented cohomology theory:

Proposition 23.3. Let E be a complex-oriented cohomology theory. There is an
isomorphism of rings

E∗(pt)[x]/(xn+1)→ E∗(CPn)

sending xi to [CPn−i].
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Proof. Consider the reduced Gysin sequence (as in Section 17.3) for the submanifold

CPn−1 j
↪→ CPn:

· · · Ẽk(CPn − CPn−1)oo Ẽk(CPn)oo

Ek−2(CPn−1)

j!

OO

Ẽk−1(CPn − CPn−1)oo · · ·oo

Let x = [CPn−1] = j!(1) ∈ Ẽ2(CPn). By Lemma 23.2 we know xn+1 = 0, so
we get a map E∗(pt)[x]/(xn+1) → E∗(CPn). We will show that this map is an
isomorphism via induction on n. The case n = 0 is trivial.

Note that x2 = [CPn−2] by intersection theory (specifically, the E-theory analog
of Theorem 17.9). The same reasoning gives xi = [CPn−i].

The spaces CPn − CPn−1 are homeomorphic to Cn and hence contractible.
So the reduced Gysin sequence considered above breaks up into a collection of
isomorphisms

j! : E
k−2(CPn−1)

∼=−→ Ẽk(CPn).

Taking all k’s together, j! is a map of E∗(pt)-modules and therefore an isomorphism
of such modules. By induction E∗(CPn−1) is a free E∗(pt)-module generated by
the classes 1 = [CPn−1], [CPn−2], [CPn−3], . . . , [CP 0]. Since the pushforward j!
sends [CPn−i] to [CPn−i], we conclude that Ẽ∗(CPn) is a free E∗(pt)-module on
[CPn−1], . . . , [CP 0]. If we add 1 to this collection then we get a free basis for
E∗(CPn) over E∗(pt). This proves that our map E∗(pt)[x]/(xn+1) → E∗(CPn) is
an isomorphism. �

In the case of complex K-theory, we can rephrase the above result as saying
that Kodd(CPn) = 0 and K0(CPn) = Z[X]/(Xn+1), where X = β · [CPn−1]. In
particular, note that additively we have K0(CPn) ∼= Zn+1 with free basis consisting
of the powers of X. Ignoring powers of the Bott element as usual, we can write this
free basis as [CPn], [CPn−1], . . . , [CP 0].

23.4. Fundamental classes in K∗(CPn). Now let Z ↪→ CPn be a complex,
closed submanifold of codimension c. Recall that if we consider fundamental classes
in singular cohomology then we have [Z] = d · [CPn−c] for a unique integer d that
is called the degree of Z. Geometrically, d is the number of points on intersection
of Z with a generically chosen copy of CP c.

We can now play this same game in the context of K-theory. We have a funda-
mental class [Z]K ∈ K0(CPn), and we can therefore write

[Z]K = d0 · [CPn] + d1 · [CPn−1] + · · ·+ dn · [CP 0]

= d0 · 1 + d1X + d2X
2 + · · ·+ dnX

n

for unique integers di. These integers are topological invariants of the embedding
Z ↪→ CPn; our goal will be to explore them further. Multiply the above equation
by Xn to obtain

d0X
n = [Z]K ·Xn = [Z]K · [CP 0] = [Z ∩ CP 0]

where in the last term we mean the intersection of Z with a generically chosen
copy of CP 0. But as long as Z is not all of CPn, this generic intersection will
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be empty—so if Z is codimension at least one then d0 = 0. We then repeat this
argument, but multiplying by Xn−1 instead of Xn: we get

d1X
n = [Z]K · [CP 1] = [Z ∩ CP 1].

Again, if the codimension of Z is at least 2 then the CP 1 can be moved so that it
doesn’t intersect Z at all, hence d1 = 0. Continuing this argument we find that

0 = d0 = d1 = · · · = dc−1 and dc = deg(Z).

The last equality follows because Z intersects a generic CP c in deg(Z) many points.
The situation can be summarized as follows: the first non-vanishing di coincides
with the classical degree of Z, but there is the possibility of the higher di’s being
nonzero. This is what we will investigate next.

Remark 23.5. Notice that what we have done so far works in any complex-oriented
cohomology theory E∗. The fundamental class [Z] can be written as a linear com-
bination of the classes [CPn−i] with coefficients from E∗(pt). The first c of these
coefficients vanish, until one gets to the coefficient of [CPn−c]—which must be equal
to deg(Z). After this things become interesting, in the sense that one has invariants
that are potentially not detected in singular cohomology.

To proceed further with our analysis of the higher di’s in K-theory, we need to
connect our fundamental classes with the vector bundle description of K-theory:

Proposition 23.6. In K0(CPn) one has [CPn−1] = 1 − L where L → CPn

is the tautological line bundle. Consequently, [CPn−k] = (1 − L)k for all k and
K0(CPn) = Z[L]/(1− L)n+1.

Proof. We give two explanations. For the first, consider the map of vector bundles
f : L → 1 defined as follows: in the fiber over x = [x0 : x1 : · · · : xn] we send
(x0, . . . , xn) to x0. Note that this is well-defined, since multiplying all the xi’s by
a scalar λ yields the same homomorphism Lx → C.

The map f is exact on all fibers except those where x0 = 0. The complex
0 → L → 1 → 0 is a resolution of the structure sheaf for CPn−1, and hence 1− L
represents the associated fundamental class in K-theory by Theorem 21.10.

Our second explanation takes place entirely in the topological world. The key
fact is that the normal bundle to CPn−1 inside CPn is L∗. Let U be a tubular
neighborhood of CPn−1, and consider the chain of isomorphisms

K0(CPn,CPn − CPn−1)
∼=−→ K0(U,U − CPn−1) ∼= K0(N,N − 0).

The relative fundamental class [CPn−1]rel is the unique class that maps to the Thom
class UN under the above isomorphisms. But N is a line bundle, and recall from
(18.23) that the Thom class is then the Koszul complex [J∗] = [π∗N∗ → 1] where
π : N → CPn−1. A little thought shows that the complex 0 → π∗N∗ → 1 → 0 is
exactly the restriction of 0→ L→ 1→ 0 on CPn. So this latter complex represents
[CPn−1]rel, and therefore 1− L equals [CPn−1].

The second set of statements in the proposition follow directly from Proposi-
tion 23.3 and Bott periodicity, since those give K0(CPn) = Z[x]/(xn+1) where
x = [CPn−1] and xk = [CPn−1]k = [CPn−k]. �

Example 23.7. Note that it follows from the above lemma that (1 − L)n+1 = 0
in K0(CPn). This relation comes up in many contexts, and it is useful to have a
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different perspective on it. Let R = C[x0, . . . , xn] and consider the Koszul complex
for the regular sequence x0, . . . , xn. It has the form

0→ R(−(n+ 1))→ · · · → R(−2)(
n+1
2 ) → R(−1)n+1 → R→ 0,

and we know from Theorem 18.25 that this complex is exact except in degree zero
where it has H0 = R/(x0, . . . , xn). This implies that if one takes the corresponding
complex of vector bundles on CPn and pulls back along An+1 → CPn then the
resulting complex of bundles is exact except over the origin. So the original sequence
of bundles on CPn is exact, which tells us that

0 = 1− (n+ 1)L+
(
n+1

2

)
L2 − · · ·+ (−1)n+1Ln+1

in K0(CPn). Of course the expression on the right is precisely (1− L)n+1.
As an alternative perspective, the above Koszul complex is the tensor product

(L
x0−→ 1)⊗ (L

x1−→ 1)⊗ · · · ⊗ (L
xn−→ 1).

A tensor product of complexes of vector spaces is exact as long as any factor is
exact, and since any point [x0 : · · · : xn] ∈ CPn has some xi 6= 0 we deduce that
our complex of bundles is exact over every point.

We next compute the K-theoretic fundamental classes in a couple of simple
examples:

Example 23.8. Let Z = V (f) ↪→ CPn be a smooth hypersurface of degree d. Let
R = C[x0, . . . , xn]. The homogeneous coordinate ring of Z is R/(f), which has the
short free resolution given by

0→ R(−d)
·f−→ R→ R/(f)→ 0.

So [Z] = 1−Ld in K0(CPn). To write [Z] as a linear combination of the [CPn−i]’s
we need to write 1− Ld in terms of powers of X = 1− L. This is easy, of course:

[Z] = 1− Ld = 1− [1− (1− L)]d = 1− (1−X)d

= 1− [1− dX +
(
d
2

)
X2 − · · ·+ (−1)dXd]

= dX −
(
d
2

)
X2 +

(
d
3

)
X3 − · · ·

So we find that the higher di’s for a hypersurface are all just (up to sign) binomial
coefficients of d. This is somewhat disappointing, as we are not seeing new topo-
logical invariants—it is just the degree over and over again, encoded in different
ways. This is not actually a surprise, though: it is known that all hypersurfaces of
the same degree are actually diffeomorphic. See [La, 2.3.2], for example.

Things become more interesting in the next example:

Example 23.9. Consider Z = V (f, g) where f, g is a regular sequence of homoge-
neous elements in R = C[x0, . . . , xn]. Let d = deg(f) and e = deg(g). Because f, g
is a regular sequence, R/(f, g) is resolved by the Koszul complex:

0→ R(−d− e)→ R(−d)⊕R(−e)→ R→ R/(f, g)→ 0.
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We can now calculate

[Z]K =
[

0 // Ld+e // Ld ⊕ Le // 1 // 0
]

= 1− (Ld + Le) + Ld+e

= 1− (1−X)d − (1−X)e + (1−X)d+e

=
[(
d+e

2

)
−
(
d
2

)
−
(
e
2

)]
X2 −

[(
d+e

3

)
−
(
d
3

)
−
(
e
3

)]
X3 + · · ·

= deX2 + 1
2de(2− d− e)X3 + . . . .

The classical degree of Z is de, but our ‘higher invariants’ now see more than just
this number. In fact, knowing the expansion of [Z]K as a linear combination of the
Xi’s implies that we know de and de(2−d−e), which implies that we know d+e. But
if we know de and d+e then we know the polynomial (ξ−d)(ξ−e) = ξ2−(d+e)ξ+de,
which means we know its roots. So knowing the expansion of [Z]K is the same as
knowing d and e. This example shows that the K-theoretic fundamental class sees
more topological information than the singular cohomology fundamental class does.

Now that we have seen these simple examples we can return to our main question.
Given Z ↪→ CPn of codimension c, how does one compute the di’s in the equation

[Z]K = (degZ)[CPn−c] + dc+1[CPn−c−1] + dc+2[CPn−c−2] + · · ·
And what do these di’s mean in terms of geometry? We will soon see that one
answer is given by the Hilbert polynomial.

23.10. Review of the Hilbert polynomial. Let R = C[x0, . . . , xn], and regard
this as a graded ring where each xi has degree one. If M is a graded R-module
writeMs for the graded piece in degree s. The Poincaré series ofM is the formal
Laurent series

PM (ξ) =

∞∑
s=−∞

(dimCMs)ξ
s ∈ Z[[ξ]] [ξ−1]

(defined ifM is finitely-generated over R, so that all theMs are finite-dimensional).
Note that this is evidently an additive invariant of finitely-generated, graded
modules: if 0 → M ′ → M → M ′′ → 0 is an exact sequence then clearly
PM (ξ) = PM ′(ξ) + PM ′′(ξ). We may therefore regard the Poincaré series as a
map of abelian groups

P : Ggrd(R)→ Z[[ξ]] [ξ−1]

where Ggrd(R) is the Grothendieck group of finitely-generated graded modules over
R.

We will calculate the Poincaré series of each R(−k), but for this we need the
following useful calculation:

Lemma 23.11. The number of monomials of degree d in the variables z1, . . . , zn
is equal to

(
d+n−1

d

)
.

Proof. Monomials are in bijective correspondence with patterns of “dashes and
slashes” that look like

−−−/−−//−−−−/− .
The above pattern corresponds to the monomial z3

1z
2
2z

4
4z5, and from this the general

form of the bijection should be clear. Monomials of degree d will correspond to
patterns with d dashes, and if there are n variables then there will be n−1 slashes.
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So we need to count patterns where there will be d+ n− 1 total symbols, of which
d are dashes: the number of these is

(
d+n−1

d

)
. �

It is an immediate consequence that PR(ξ) =
∑
s≥0

(
s+n
n

)
ξs. For R(−k) we

simply shift the coefficients and obtain

PR(−k)(ξ) =
∑
s≥k

(
s+n−k
n

)
ξs = ξkPR(ξ).

The power series {ξkPR(ξ) | k ∈ Z} are obviously linearly independent over Q, which
shows that Ggrd(R) has infinite rank as an abelian group.

Proposition 23.12. Ggrd(R) is isomorphic to Z∞, with free basis the set of rank
one, free modules {[R(−d)] | d ∈ Z}.
Proof. The key is the Hilbert Syzygy Theorem. Consider the diagram

Z∞ //

$$

Ggrd(R)

P
��

Z[[ξ]] [ξ−1]

where the horizontal map sends the ith basis element to [R(−i)] and the diagonal
map is the composite. We have already seen that this composite is injective, because
there is no Z-linear relation amongst the images of the basis elements. So Z∞ →
Ggrd(R) is injective, and it only remains to prove surjectivity. But if M is any
finitely-generated, graded R-module then the Syzygy Theorem guarantees a finite,
graded, free resolution

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0.

So [M ] =
∑
i(−1)i[Fi], and each Fi is a sum of elements [R(−k)]. This proves

surjectivity. �

The Hilbert polynomial is a variant of the Poincaré series that keeps track of less
information. At first this might seem to be a bad thing, but we will see that what
it does is give us a closer connection to geometry and topology. Here is the main
result that gets things started:

Proposition 23.13. Let M be a finitely-generated graded module over R =
C[x0, . . . , xn]. Then there exists a unique polynomial HM (s) ∈ Q[s] that agrees
with the function s 7→ dimMs for s� 0. One has degHM (s) ≤ n. The polynomial
HM (s) is called the Hilbert polynomial of M .

Proof. Consider first the case M = R. A basis for Ms consists of all monomials in
x0, . . . , xn of degree s, which Lemma 23.11 calculates to be

(
n+s
s

)
=
(
n+s
n

)
. This is

a polynomial in s of degree n. Next consider M = R(−k). The function s 7→ Ms

is zero for s < k, and then for s ≥ k it coincides with
(
n+s−k
n

)
. This is again a

polynomial in s of degree n.
Finally, consider the case of a general M . By the Hilbert Syzygy Theorem M

has a finite, graded, free resolution

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0.

It follows that

dimMs = dim(F0)s − dim(F1)s + · · ·+ (−1)n dim(Fn)s.
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But each Fi is a direct sum of finitely-many R(−k)’s, and so s 7→ dim(Fi)s has
been shown to agree with a polynomial in s of degree at most n, for s � 0. The
desired result follows at once. �

The following calculation was given in the above proof, but we record it below
because it comes up so often:

Corollary 23.14. When R = C[x0, . . . , xn] and k ∈ Z the Hilbert polynomial for
R(−k) is

(
s+n−k
n

)
.

Example 23.15. Consider a hypersurface M = R/(f), where f ∈ R is homoge-
neous of degree d. We then have the resolution

0 // R(−d)
·f // R // R/(f) // 0

from which we find

HR/(f) = HR −HR(−d) =
(
s+n
n

)
−
(
s+n−d
n

)
= (s+n)···(s+1)

n! − (s+n−d)···(s−d+1)
n! .

Note that the two binomial coefficients have leading terms sn/n!, which therefore
cancel. The coefficient of sn−1 is

1
n! ·
[
n(n+1)

2 − (n−2d+1)n
2

]
= d

(n−1)! .

Note that the degree of HR/(f) is one less than the Krull dimension of R/(f), and
the leading coefficient is the degree of f (the geometric degree of the hypersurface)
divided by (n − 1)!. These are general facts that hold for any module: the de-
gree of HM is one less than the Krull dimension of M , and the leading coefficient
times (degHM )! is always an integer—this integer is called the multiplicity of the
module M . Proofs can be found in most commutative algebra texts.

The Hilbert polynomial is an additive invariant of finitely-generated modules: if
0 → M ′ → M → M ′′ → 0 is an exact sequence then clearly HM (s) = HM ′(s) +
HM ′′(s). We may therefore regard the Hilbert polynomial as a map of abelian
groups

Hilb: Ggrd(R)→ Q[s].

This map is clearly not injective, as it kills any module that is finite-dimensional
as a C-vector space. The subgroup of Ggrd(R) generated by such modules is A =
〈[C(−d)]

∣∣ d ∈ Z〉, where C as an R-module is always interpreted as R/(x0, . . . , xn).
We may regard Hilb as a map

Hilb: Ggrd(R)/A→ Q[s].

The domain of this map is calculated as follows:

Proposition 23.16. The group Ggrd(R)/A is isomorphic to Zn+1, with free basis
R,R(−1), R(−2), . . . , R(−n). The map Hilb: Ggrd(R)/A→ Q[s] is an injection.

Proof. Let B be the subgroup of Ggrd(R)/A generated by [R], [R(−1)], . . . , [R(−n)].
We will show that B is equal to the whole group.

The module C = R/(x0, . . . , xn) is resolved by the Koszul complex
K(x0, . . . , xn;R). This gives the relation in Ggrd(R) of

[C] = [R]− (n+ 1)[R(−1)] +
(
n+1

2

)
[R(−2)] + · · ·+ (−1)n+1[R(−n− 1)].

In Ggrd(R)/A we therefore have [R(−n − 1)] ∈ B. For d > 0 we can tensor
the Koszul complex with R(−d) and then apply the same argument to find that
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[R(−n− 1− d)] ∈ 〈[R(−d)], . . . , [R(−n− d)]〉 ⊆ 〈[R], [R(−1)], . . . , [R(−n− d)]〉. An
inductive argument now shows that [R(−k)] ∈ B for every k ≥ n+ 1.

A similar induction works for d < 0 to show that [R(−d)] ∈ B for all d ∈ Z. In
other words, B = Ggrd(R)/A.

Now consider the map Zn+1 → Ggrd(R)/A that sends the ith basis element ei
to [R(−i)] for 0 ≤ i ≤ n. We have just shown that this map is surjective. Consider,
then, the composite

Zn+1 −→ Ggrd(R)/A
Hilb−→ Q[s].

The images of our basis elements are the polynomials(
s+n
n

)
,
(
s+n−1
n

)
,
(
s+n−2
n

)
, . . . ,

(
s
n

)
.

Evaluating these polynomials at s = 0 gives the sequence 1, 0, 0, . . . , 0. Evaluating
at s = 1 gives n + 1, 1, 0, 0, . . . , 0, and so forth. For s = i the ith polynomial
in the list evaluates to 1 and all the subsequent polynomials evaluate to 0. This
proves that these polynomials are linearly independent over Z, hence the above
composite map is injective. So Zn+1 → Ggrd(R)/A is injective, and therefore is an
isomorphism. Moreover, the map Hilb is injective. �

The reader might suspect that the Zn+1 in the above result is really an incar-
nation of the group K0(CPn). This is the foundation for what we do in the next
section.

Exercise 23.17. We will not need this, but it is a cute fact: Prove that the image
of Hilb: G(R)/A → Q[s] equals the set of polynomials f(s) ∈ Q[s] having the
property that f(Z) ⊆ Z. That is, the image consists of all rational polynomials
that take integer values on integers. (See Section 24 if you get stuck.)

23.18. K-theory and the Hilbert polynomial. We now explain how the Hilbert
polynomial encodes the same information as the K-theoretic fundamental class.

Given Z ↪→ CPn a smooth subvariety of codimension c, recall that we have the
fundamental class [Z] ∈ K0(CPn) and that we may write

[Z] = dc[CPn−c] + dc+1[CPn−c−1] + · · ·+ dn[CP 0].

We know that dc = deg(Z), and our goal is to understand how to compute the
higher di’s.

Proposition 23.6 says that [CPn−k] = (1 − L)k and that these classes for
k = 0, 1, . . . , n give a basis for K0(CPn). Evidently one can also use the basis
1, L, L2, . . . , Ln. We next introduce an algebraic analogue of K0(CPn). Let R =
C[x0, . . . , xn]. Take the Grothendieck group K0

grd(R) of finitely-generated, graded,
projective R-modules (or equivalently, chain complexes of such modules) and quo-
tient by the subgroup Ã generated by all complexes K(x0, . . . , xn;R)⊗ R(−d) for
d ∈ Z. We obtain a diagram

K0
grd(R)/Ã

φ

∼=
//

∼=
��

K0(CPn)

Ggrd(R)/A //
Hilb // Q[s]

(23.19)
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where φ sends [R(−d)] to Ld and where the vertical map is our usual ‘Poincaré
Duality’ isomorphism, in this case sending the class of a projective module to the
class of the same module inGgrd(R)/A. The map φ is an isomorphism by inspection:
we have computed Ggrd(R)/A and K0(CPn), both are Zn+1, and φ clearly maps a
basis to a basis.

Given Z = V (I), we know by Theorem 21.10 that its fundamental class [Z] ∈
K0(CPn) is represented by a finite, graded, free resolution F• → R/I → 0. This
resolution (or the alternating sum of its terms) lifts to K0

grd(R)/Ã, and pushing
this around the diagram into Q[s] just gives us HilbR/I(s). So the above diagram
shows that knowing HilbR/I(s) is the same as knowing [Z].

To say something more specific here, consider first the case Z = CPn−k. Then
R/I = R/(x0, . . . , xk−1), which as a graded ring is just C[xk, . . . , xn]. By Corol-
lary 23.14 the Hilbert polynomial is then

HilbCPn−k(s) =
(
s+n−k
n−k

)
.

So pushing our basis [CPn], [CPn−1], . . . , [CP 0] around diagram (23.19) into Q[s]
yields the polynomials (

s+n
n

)
,
(
s+n−1
n−1

)
,
(
s+n−2
n−2

)
, . . . ,

(
s
0

)
.

If Z = V (I) ↪→ CPn is now arbitrary, then writing

HilbR/I(s) = d0

(
s+n
n

)
+ d1

(
s+n−1
n−1

)
+ d2

(
s+n−2
n−2

)
+ . . .

implies that [Z] = d0[CPn] + d1[CPn−1] + d2[CPn−2] + . . . . In other words, one
obtains the expansion of [Z] as a linear combination of the [CPn−i]’s by writing
HilbZ(s) as a linear combination of the above-listed binomial functions. We record
this fact for future reference:

Proposition 23.20. Let Z ↪→ CPn be a smooth subvariety and let I ⊆ R =
C[x0, . . . , xn] be the corresponding ideal of functions vanishing on Z. Then
HilbR/I(s) =

∑n
i=0 di

(
s+n−i
n−i

)
if and only if [Z]K =

∑n
i=0 di[CP

n−i].

We have shown how to calculate the di’s from the ideal I of equations defining
Z: decompose the Hilbert polynomial into a sum of terms

(
s+n−i
n−i

)
, and take the

resulting coefficients. This is still not exactly a ‘geometric’ description of the di’s,
although it is at least a description that takes place in the realm of algebraic
geometry. We will get another perspective on this material via the Todd genus and
the Grothendieck-Riemann-Roch Theorem, studied in Section 28. See especially
Section 28.28.
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24. Interlude on the calculus of finite differences

If we regard calculus as a set of tools built up from the study of f(x+h)−f(x)
h

where h is an infinitesimal, the calculus of finite differences is the analogous set of
tools that come into play when h is a finite (non-infinitesimal) object. This is a
classical subject whose roots run deep, though it is not exactly a standard part of
modern lore. In this section we will discuss the theory as it applies to polynomials
of one variable, and for us we will always have h = 1. It is somewhat of a surprise
that this subject is so relevant to K-theory.

For a classical text on the calculus of finite differences see [MiT]. A quick intro-
duction similar in sprit to what we do here can be found in [Sta, Section 1.9].

24.1. The finite difference and sum operators. If f ∈ Q[t] let ∆f be the
polynomial given by

(∆f)(t) = f(t+ 1)− f(t).

For example, ∆(t2) = (t+1)2− t2 = 2t+1, and ∆(t3) = (t+1)3− t3 = 3t2 +3t+1.
Note that ∆: Q[t] → Q[t] is a linear map, and that it lowers degrees by one. We
call ∆ the finite difference operator, and we regard it as an analog of the familiar
differentiation operator D : Q[t]→ Q[t].

The opposite of differentiation is integration, and there is an analogous operator
that is the opposite of ∆. If f ∈ Q[t] define Sf to be the function Z→ Q given by

(Sf)(t) = f(0) + f(1) + f(2) + · · ·+ f(t− 1).

For example,

(St)(t) = 0 + 1 + 2 + · · ·+ (t− 1) =
(
t
2

)
= t(t−1)

2

and
(St2)(t) = 02 + 12 + · · ·+ (t− 1)2 = (t−1)t(2t−1)

6 .

(Note that in these formulas we are mixing the roles of t as a formal variable and t
as a parameter, but this should not cause too much confusion.) One should think
of the formula for (Sf)(t) as giving a finite Riemann sum, based on intervals of
width 1. It is not immediately clear that Sf is always a polynomial, nor that it
raises degrees by one, but we will prove these things shortly. The following two
facts are easy, though:

(1) ∆S(f) = f D
∫

(f) = f

(2) S∆(f) = f − f(0)
∫
D(f) = f − f(0).

We have written each identity paired with the corresponding identity for classical
differentiation/integration. Note that, like the usual integral, Sf will always have
zero as its constant term since (Sf)(0) = 0 by definition.

Derivatives and integrals of polynomials are easy to compute because their values
on the basic polynomials tn are very simple. In fact, the point is really that the
operators D and

∫
act very simply on the sequence of polynomials

1, t, t2

2 ,
t3

3! ,
t4

4! , . . .

Of course D carries each polynomial in the sequence to the preceding one, and
∫

carries each polynomial to the subsequent one. In contrast, the operators ∆ and S
are not very well-behaved on this sequence. It is better to use the sequence

1, S(1), S2(1), S3(1), . . .
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so let us compute these. It is easy to see that S(1) = t, and we previously saw that
S2(1) = S(t) =

(
t
2

)
. The following useful lemma implies that S

(
t
k

)
=
(
t

k+1

)
, where

the binomial coefficient stands for the polynomial 1
k! t(t − 1)(t − 2) · · · (t − k + 1).

And so starting with 1 =
(
t
0

)
we get Sk(1) =

(
t
k

)
,

Lemma 24.2. For any d, k ∈ Z with k ≥ 0 one has

∆
(
t+d
k

)
=
(
t+d
k−1

)
, S

(
t+d
k

)
=
(
t+d
k+1

)
−
(
d
k+1

)
.

Proof. The statement about ∆ follows from Pascal’s Identity. Applying S to this
equation gives

S
(
t+d
k−1

)
= S∆

(
t+d
k

)
=
(
t+d
k

)
−
(
d
k

)
and changing k to k + 1 gives the desired identity for S. �

Remark 24.3. The second statement in Lemma 24.2 is equivalent to the identity(
d
k+1

)
+
(
d
k

)
+
(
d+1
k

)
+ · · ·+

(
d+t−1
k

)
=
(
t+d
k+1

)
.

For fun let us give a combinatorial proof of this. Imagine t + d slots labelled 1
through t+ d where we are to place k + 1 asterisks:

∗ ∗ ∗ ∗
We can sort these by where the rightmost asterisk is located. There are

(
d
k+1

)
choices where the rightmost is in the first d slots. If the rightmost asterisk is in
slight d+ 1, there are

(
d
k

)
choices for placing the others. And more generally, there

are
(
d+i−1
k

)
configurations having the rightmost asterisk in spot d + i. Summing

over i ∈ [1, t] yields the desired formula.

Exercise 24.4. Pascal’s triangle contains the binomial coefficients
(
n
k

)
with n ≥ 0

and 0 ≤ k ≤ n. Extending the picture to include all 0 ≤ k just adds an infinite
trail of zeros to the right side of each row. Write down the first few rows of Pascal’s
triangle, then use Pascal’s identity to work backwards to fill in the numbers

(
n
k

)
for

n ≤ 0 and k ≥ 0 (should this be called “Pascal’s half-plane”?). In some ways this
is a silly exercise, but it is worth doing this at least once in your life to watch the
infinite sequences create themselves out of nothing.

The sequence of polynomials

1 =
(
t
0

)
,
(
t
1

)
,
(
t
2

)
,
(
t
3

)
, . . .

is clearly a basis for Q[t], as the kth term has degree equal to k. In relation to the
∆ and S operators, this basis plays the role classically taken by the polynomials
td

d! for D and
∫
. It is now clear that S applied to a polynomial of degree d yields

a polynomial of degree d + 1: a polynomial of degree d is a linear combination
of
(
t
d

)
,
(
t

d−1

)
, . . . ,

(
t
0

)
with the coefficient on the first term nonzero. Applying S

changes each
(
t
k

)
to
(
t

k+1

)
, and it is clear that this yields a polynomial of degree

d+ 1.
For another example of the use of this binomial basis, note the following analog

of the Taylor–Maclaurin explansion for writing polynomials in this basis:

Proposition 24.5. Let f ∈ Q[t]. Then

f =

∞∑
k=0

(∆kf)(0) ·
(
t
k

)
.
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Proof. We know f =
∑N
k=0 ak

(
t
k

)
for some N and some values ak ∈ Q. Plugging in

t = 0 immediately gives f(0) = a0. Now apply ∆ to get ∆f =
∑N=1
k=0 ak+1

(
t
k

)
and

again plug in t = 0: this yields (∆f)(0) = a1. Continue. �

Exercise 24.6. Let Q[t]int ⊆ Q[t] be the set of all polynomials f(t) such that
f(Z) ⊆ Z. Note that Q[t]int is stable under ∆ and S, and use this to prove that
Q[t]int is the Z-linear span of the polynomials

(
t
k

)
, k ≥ 0.

In contrast to the large number of similarities of the pair of operators (∆, S)
to (D,

∫
), there is an important difference when it comes to the product rule. Of

course we have D(fg) = (Df)g+ f(Dg), but one readily checks that this does not
work for ∆. The correct rule is as follows:

Lemma 24.7. For any f, g ∈ Q[t] one has ∆(fg) = (∆f)g + f(∆g) + (∆f)(∆g).

Proof. A simple calculation, left to the reader. �

In the present section we will not have much use for this product rule, but it
is a very important formula whose significance will become larger in subsequent
sections. See Proposition 25.14 for a brief hint at this and Section 31 for a more
thorough discussion.

24.8. Translating between (∆, S) and (D,
∫

). If f ∈ Q[t] and h is any integer
(or even better, a formal variable) we have the Taylor fomula

f(t+ h) =

∞∑
k=0

f (k)(t) · hkk! =

∞∑
k=0

(Dkf)(t) · hkk! .

Note that the sum is really finite, since large enough derivatives of f are all zero.
Taking h = 1 and rearranging somewhat we get

f(t+ 1) =
( ∞∑
k=0

Dk

k!

)
f = (eD)f.

Let us be clear about what this means. The expression
∑∞
k=0

Dk

k! makes perfect
sense as an operator , since evaluating this at any fixed polynomial gives a well-
defined answer. It is sensible to denote this operator as eD.

Taking one more step, we can write (∆f)(t) = f(t+ 1)− f(t) = (eD−1)f where
1 denotes the identity operator. Or even more compactly,

∆ = eD − 1

is an identity of operators on Q[t]. This identity gives us ∆ as a linear combination
of iterates of D.

We are next going to cook up a similar formula for the operator S, but this is
a little harder. One does not wish for a formula using higher and higher powers
of
∫
, as these operators become more and more complicated. Instead, we say to

ourselves that S is very close to being an inverse for ∆ (it is a right inverse, but
not a left inverse). If it were an inverse we might want to write S = 1

eD−1
, but it is

difficult to make sense of the latter expression as an operator—the trouble is that
eD − 1 has no constant term, otherwise we could expand as a power series. While
this didn’t work, we can make sense of the operator

B = D
eD−1

.(24.9)
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By this we mean write x
ex−1 =

∑
akx

k = 1− x
2 + x2

12 − · · · as a formal power series,
and set B equal to

∑∞
k=0 akD

k. It follows purely formally that ∆Bf = Df for any
polynomial f , and by applying S to both sides we find that

Bf − (Bf)(0) = SDf.

Replacing f by
∫
f in the above formula, we get

Sf = SD(
∫
f) = B(

∫
f)− (B

∫
f)(0).

Note that B(
∫
f) is equal to

∫
f − 1

2f + 1
12Df − · · · . So this is as computable as

the series x
ex−1 ; the coefficients of this series are related to the Bernoulli numbers

(see Appendix C). We have

B =

∞∑
k=0

Bk
k! D

k

where the Bk’s are the Benoulli numbers.

24.10. Sums of powers and Bernoulli numbers. The (∆, S) pair of operators
is useful in a variety of mathematical situations. In a moment we will see an
application to determining K-theoretic fundamental classes, but let us first look at
a non-topological example. Almost every math student has seen the formulas

1 + 2 + · · ·+ n = n(n+1)
2 and 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)

6 .

The proof of such formulas by mathematical induction is a common exercise in
elementary proof courses. It turns out that there are also formulas for higher
powers, of the form

1k + 2k + · · ·+ nk = pk(n)

where pk(n) is a polynomial of degree k+1. How does one discover the appropriate
polynomials? This seems to have first been done by Jacob Bernoulli, the coefficients
in these polynomials being closely related to what are now called Bernoulli numbers.

Clearly we may rephrase the problem as that of computing S(tk), the exact
connection being S(tk) = pk(t− 1). In the last section we developed a formula for
S in terms of the usual derivative and integral operators, and we will now use that;
but here it is easiest to use it in the form

SD(f) = Bf−(Bf)(0) =

( ∞∑
j=0

Bj
j! D

j

)
f−(constant term of preceding expression).

We obtain

S(tk) = SD
(
tk+1

k+1

)
= 1

k+1

∞∑
j=0

Bj
j! D

j(tk+1)− (constant term)

= 1
k+1

k∑
j=0

Bj
j! (k + 1)(k)(k − 1) · · · (k + 1− (j − 1))tk+1−j

= 1
k+1

k∑
j=0

Bj ·
(
k+1
j

)
tk+1−j .

Note that the last expression is a polynomial in t, with all of its coefficients clearly
visible.
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Finally, recalling that S(tk) = pk(t− 1) we conclude that

1k + 2k + · · ·+ nk = pk(n) = S(tk)
∣∣
t=n+1

= 1
k+1

k∑
j=0

Bj ·
(
k+1
j

)
(n+ 1)k+1−j .

Exercise 24.11. Check that the above formula gives the familiar identities in the
cases k = 1 and k = 2, and then see what it gives when k = 3. Compare the above
formula to (C.3).

24.12. Back to K-theoretic fundamental classes. Let Z ↪→ CPn be a smooth
hypersurface defined by the homogeneous ideal I ⊆ C[x0, . . . , xn]. We saw in Sec-
tion 23.18 that the coefficients in

[Z]K = d0[CPn]K + d1[CPn−1]K + d2[CPn−2]K + · · ·
are the same as the coefficients in

HilbZ(t) = d0

(
n+t
n

)
+ d1

(
n+t−1
n−1

)
+ d2

(
n+t−2
n−2

)
+ · · ·(24.13)

The sequence of polynomials
(
n+t
n

)
,
(
n+t−1
n−1

)
,
(
n+t−2
n−2

)
, . . . is not quite the standard

basis of binomial coefficients we used above, but it is close. Here is a small lemma
about expanding polynomials in this basis (compare to Proposition 24.5):

Lemma 24.14. If f ∈ Q[t] then f =
∑∞
k=0(∆kf)(−k − 1) ·

(
t+k
k

)
.

Proof. The collection of polynomials
(
t+k
k

)
for k ≥ 0 is clearly a basis for Q[t] for

degree reasons. Write f =
∑
ck
(
t+k
k

)
= c0

(
t
0

)
+ c1

(
t+1

1

)
+ c2

(
t+2

2

)
+ · · · . Plugging

in t = −1 immediately gives f(−1) = c0. Apply ∆ to both sides to get ∆f =∑
ck
(
t+k
k−1

)
= c1 + c2

(
t+2

1

)
+ · · · . Now plugging in t = −2 makes all the expressions

vanish except the first, so c1 = (∆f)(−2). Continue in this way. �

The following corollary is immediate, by applying the above lemma to (24.13):

Corollary 24.15. We have [Z]K =
∑
i di[CP

n−i]K where the coefficients are given
by di = (∆n−i HilbZ)(−n+ i− 1). Alternatively, the coefficient of [CP j ]K in [Z]k
is (∆j HilbZ)(−j − 1).

Example 24.16. Let Z ↪→ CPn be a hypersurface of degree d, and write Z = V (f).
Then R/(f) is resolved by 0 → R(−d) → R where the map is mutiplication by f .
So

HilbZ = HilbR−HilbR(−d) =
(
n+t
n

)
−
(
n+t−d
n

)
.

But then
∆n−i HilbZ =

(
n+t

n−(n−i)
)
−
(
n+t−d
n−(n−i)

)
=
(
n+t
i

)
−
(
n+t−d

i

)
(using Lemma 24.2 for the first equality), and so

di =
(
i−1
i

)
−
(
i−1−d
i

)
=
(
i−1
i

)
+ (−1)i+1

(
d
i

)
where in the last step we have used the identity

(−s
r

)
= (−1)r

(
r+s−1
r

)
. The expres-

sion
(
i−1
i

)
is nonzero only when i = 0, so that we get

di =

{
0 if i = 0

(−1)i+1
(
d
i

)
if i > 0.

This of course agrees with what we found in Example 23.8.
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Just as in the last example, in practice Hilbert polynomials are often computed
by first having a graded free resolution of R/I. Let us look at what happens in
general here, so let the (finite) graded free resolution be

· · · ⊕j R(−e2j)→ ⊕iR(−e1i)→ ⊕uR(−e0u)→ R/I → 0.

Then the Hilbert series is given by

HilbZ(t) =

∞∑
k=0

(−1)k
∑
j

(
t+n−ekj

n

)
(really a finite sum, of course). Then

di = (∆n−i HilbZ)(−n+i−1) =

∞∑
k=0

(−1)k
∑
j

(
i−1−ekj

i

)
= (−1)i ·

∞∑
k=0

(−1)k
∑
j

(
ekj
i

)
where in the last equality we are using

(
i−s
i

)
= (−1)i

(
s−1
i

)
.

Example 24.17. Let Z ↪→ CPn be a complete intersection where the degrees of
the defining equations are d and e. Then R/I is resolved by the Koszul complex,
which looks like 0→ R(−d− e)→ R(−d)⊕R(−e)→ R→ R/I → 0. We conclude
that di = (−1)i

[(
0
i

)
−
(
d
i

)
−
(
e
i

)
+
(
d+e
i

)]
, from which we see that d0 = d1 = 0 and

for i > 1
di = (−1)i+1

[(
d
i

)
+
(
e
i

)
−
(
d+e
i

)]
.

Again, this recovers our calculation from Example 23.9.

Recall that if the codimension of Z ↪→ CPn is equal to c then we have di = 0
for i < c and dc = deg(Z). So any graded free resolution of R/I must satisfy the
identities

(24.18)
∑
k

(−1)k
∑
j

(
ekj
i

)
=

{
0 for i < c

(−1)c deg(Z) for i = c.

In this way we obtain topological conditions on what graded free resolutions can
look like. Conditions such as these seem to have been first observed in [PS1].

Example 24.19. Show that the conditions (24.18) on the free resolution are equiv-
alent to ∑

k

(−1)k
∑
j

eikj =

{
0 for i < c

(−1)c deg(Z) · c! for i = c.

Hint: This is a purely numerical result. Given two lists a1, . . . , ar and b1, . . . , bs
of real numbers, compare the conditions

∑
j

(
aj
i

)
=
∑
j

(
bj
i

)
, 0 ≤ i < c, to the

conditions
∑
j a

i
j =

∑
j b
i
j in the same range. Apply this to our situation by dividing

the ekj into two lists according to the parity of k.

24.20. A digression on the Riemann zeta function. If Z ↪→ CPn then the
values of the polynomial HilbZ(t) only have an a priori significance for t� 0; recall
that these values represent the dimensions of the graded pieces of the homogeneous
coordinate ring of Z. Yet, we saw in Corollary 24.15 that the values of HilbZ(t)
at certain negative integers (encoded as the value of a particular finite difference
∆? HilbZ) are equal to some naturally-occurring topological invariants of Z. The
fact that these negative values have any significance at all is a bit surprising. This
situation is somewhat reminiscent of one involving the Riemann zeta function, that
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coincidentally (or not) is also related to the story of the (∆, S) operators. We are
going to take a moment and talk about this, because of the feeling that it might be
related to topology in a way that is not yet fully understood.

Recall that Riemann’s ζ(s) is defined for Re(s) > 1 by the formula

ζ(s) =

∞∑
n=1

n−s.

Standard results from analysis show that this sum converges for Re(s) > 1, and
defines an analytic function in that range. It is a non-obvious fact that ζ(s) can
be analytically continued to a meromorphic function on the complex plane with its
only pole at z = 1. The values on negative numbers turn out to be computable
and are related to the Bernoulli numbers. We will give an entirely non-rigorous
treatment of this computation. Despite its failure to actually make sense, it is
nevertheless intriguing.

If f ∈ Q[t] then we have seen that eDf makes sense and is equal to the polynomial
f(t+ 1). It readily follows that enDf = f(t+ n) for any integer n ≥ 0. Now write

f(t) + f(t+ 1) + f(t+ 2) + · · · = [I + eD + e2D + e3D + · · · ]f =
[

1
I−eD

]
f.

Of course none of the three expressions between the equals signs make any sense,
but let us pretend for a moment that this is not a problem. Replacing f by Df we
can then write

Df(t) +Df(t+ 1) + · · · =
[

D
I−eD

]
f = −Bf

where B is the Bernoulli operator of (24.9). Evaluating at t = 0 we would obtain

Df(0) +Df(1) +Df(2) + · · · = −(Bf)(0).

Let us next try to apply this fanciful formula to compute ζ(−n) = 1n + 2n +

3n + 4n + · · · . We want Df(t) = tn, and so should take f(t) = tn+1

n+1 . The above
formula then suggests that

ζ(−n) = −B
(
tn+1

n+1

)
(0) = −

[ ∞∑
k=0

Bk
k! D

k
(
tn+1

n+1

)]
(0) = − Bn+1

(n+1)! ·
(n+1)!
n+1 = −Bn+1

n+1 .

Amazingly, this is the correct answer—the same value can be deduced by rigorous
arguments from complex analysis. The challenge is to find some explanation for
why this wacky argument actually leads to something correct.

25. The Euler class

There is a general principle in algebraic topology that all rational cohomology
theories detect the same information. The information is not necessarily detected in
the same way , however, and this makes it hard to formulate the principle precisely.
But here is a nice example of it. If Z ↪→ CPn is a complex submanifold then we
have seen that knowing [Z] ∈ K0(CPn) is the same as knowing the integers di
for which [Z] =

∑
di[CPn−i]. Since K0(CPn) is free abelian, there is no loss of

information in regarding this equation as taking place in K0(CPn) ⊗ Q. By the
above-mentioned principle, the numbers di should be able to be detected in rational
singular cohomology. The Grothendieck-Riemann-Roch Theorem tells us how to
do this, and that will be our next main goal.
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To understand Riemann-Roch we need to first understand characteristic classes.
We will give a very brief treatment, spread over the next two sections. For a more
in-depth exploration some standard references are [MS] and [GH].

The present section deals with the Euler class, which is in some sense the most
“primary” of characteristic classes. We discuss two versions: Euler classes in singular
cohomology and Euler classes in K-theory.

25.1. The Euler class for a vector bundle. We will start with a geometric
treatment that is lacking in rigor but shows the basic ideas, and then we will
give a more rigorous treatment. Don’t worry about verifying all the details in the
following, just get the basic idea.

Start with a real vector bundle E → B of rank k, where B is a smooth manifold
of dimension n. Let ζ denote the zero-section. We will try to construct something
like an intersection product ζ · ζ. To do this, we let s be a section of E that is
a “small-perturbation” of ζ, chosen so that s and ζ intersect as little as possible.
A good example to keep in mind is the Möbius bundle, shown below with two
deformations of the zero section:

ζs

ζ

s

The zero locus s−1(0) ⊆ im(ζ) may, under good conditions, be given the structure
of a cycle—part of this involves assigning multiplicities to the components in a
certain way. If we want multiplicities in Z then we will need to assume the bundle
is oriented, whereas if we are willing to use multiplicities only in Z/2 then we can
use any bundle. The dimension of this cycle is dim ζ + dim ζ − dimE, which is
n + n − (n + k) = n − k. This cycle clearly depends on the choice of s, but a
different choice of s gives a homologous cycle. So the associated class in homology
is independent of our choices, and is an invariant of E. We call it the homology
Euler class of E: for orientable bundles we have

eH(E) = ζ · ζ = s−1(0) ∈ Hn−k(B),

whereas for arbitrary bundles we have eH(E) ∈ Hn−k(B;Z/2). The sections s used
here are usually referred to as “generic sections” of E.

The following are easy properties of the Euler class construction:
(1) If E has a nonvanishing section, then eH(E) = 0.
(2) eH(E ⊕ F ) = eH(E) · eH(F ) (where · is the intersection product).
(3) If L1 and L2 are line bundles on B then eH(L1 ⊗ L2) = eH(L1) + eH(L2).

For (1) we simply note that if σ is a nonvanishing section then the deformation
t 7→ tσ (for t ∈ [0, 1]) allows us to regard σ as a deformation of the zero-section.
Taking s = εσ for small ε, the vanishing locus of s is the same as the vanishing
locus of σ—which is the empytset. So eH(E) = 0.
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For (2), if s is a generic section of E and s′ is a generic section of F then s⊕ s′
is a generic section of E⊕F . The vanishing locus of s⊕ s′ is the intersection of the
vanishing loci of s and s′.

For (3), if s1 and s2 are generic sections of L1 and L2 then s1 ⊗ s2 is a generic
section of L1⊗L2. But s1⊗s2 vanishes at points in B where either s1 or s2 vanish.
So the vanishing locus of s1 ⊗ s2 is the union of the vanishing loci of s1 and s2.

Example 25.2.
(a) For the Möbius bundle M → S1 we have eH(M) = [∗] ∈ H0(S1;Z/2), as is

clearly depicted in the pictures above. Note the necessity of Z/2-coefficients
here.

(b) If B is an orientable, smooth manifold of dimension d, then eH(TB) ∈ H0(B).
So eH(TB) is a multiple of [∗], and this multiple is precisely the Euler char-
acteristic χ(B): a section of TB is just a vector field on B, and so this is the
classical statement that a generic vector field on B vanishes at precisely χ(B)
points. This connection with the Euler characteristic is why eH is called the
Euler class.

(c) Let L → RPn be the tautological line bundle, and recall that L ∼= L∗ (Corol-
lary 8.34). We examine L∗ instead, since it is easier to write down formulas
for sections. Generically choose a tuple α = (α1, . . . , αn) ∈ Rn and consider
the section sα whose value over x = [x0 : · · · : xn] is the functional sending
(x0, . . . , xn) to α0x0 +· · ·+αnxn. The vanishing locus for this section is a linear
subspace of RPn, and of course we know that all such things are homotopic.
So eH(L∗) = [RPn−1].

(d) A similar analysis allows one to calculare eH(L∗) where L → CPn is the tau-
tological line bundle, but here one must be careful about getting the signs
correct. It is clear enough that eH(L∗) = ±[CPn−1], but determining the sign
takes some thought. ?????

(e) Normal bundle of Z ↪→ CPn????

25.3. Cohomology version. As is often the case, working in cohomology instead
of homology allows us to make things completely rigorous while avoiding some of
the thorny geometric issues that arose in our discussion above.

Let E → B be an orientable real bundle of rank k; that is, a bundle with a
Thom class UE ∈ Hk(E,E − 0). Note that B need no longer be a manifold. Let
ζ : B → E denote the zero section, as usual. We may interpret ζ as a map of
pairs (B, ∅) → (E,E − 0), so that pulling back along ζ gives a cohomology class
ζ∗(UE) ∈ H∗(B). Define this to be the (cohomology) Euler class of E:

eH(E) = ζ∗(UE).

As UE plays the role of a (relative) fundamental class for the 0-section ζ, the
pullback ζ∗(UE) captures the spirit of intersecting the 0-section with itself.

The main properties of the Euler class are as follows:

Proposition 25.4. Let E → B be an oriented real bundle. Then
(a) If E has a nonzero section then eH(E) = 0.
(b) eH(E ⊕ F ) = eH(E) ∪ eH(F ) for any oriented bundle F → B.
(c) For any map f : Y → B one has eH(f∗E) = f∗(eH(E)) (naturality under

pullbacks).
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Analogs of the above properties are all true for non-orientable bundles as long as
one uses Z/2-coefficients everywhere.

Proof. Properties (b) and (c) follow from the corresponding properties of Thom
classes. To see (a), let s be a nonzero section. Consider the homotopyH : I×B → E
given by H(t, b) = t · s(b). This can be regarded as a homotopy between maps of
pairs (B, ∅)→ (E,E−0). It follows that eH(E) = ζ∗(UE) = s∗(UE). But s factors
through E − 0, and so s∗(UE) = 0. �

The reader might notice that the above result does not include a formula for
eH(L1 ⊗ L2), as we had seen for the homology version. Don’t worry, it’s coming!
See Proposition 25.8.

Example 25.5.
(1) For the Möbius bundle M → S1 we have eH(M) = [∗] ∈ H1(S1;Z/2). To

prove this note that the Thom space of M is D(M)/S(M) ∼= RP 2, and the
zero section ζ : S1 → Th(M) is just a typical embedding of RP 1 into RP 2.
The Thom class UM ∈ H1(ThM ;Z/2) = H1(RP 2;Z/2) is the unique nonzero
class, and we know restricting along RP 1 ↪→ RP 2 sends this class to the unique
nonzero class in H1(RP 1;Z/2).

(2) Let L → RPn be the tautological bundle. If j : RP 1 ↪→ RPn is the in-
clusion, then j∗L ∼= M . So naturality gives j∗eH(L) = eH(M). But
j∗ : H1(RPn;Z/2) → H1(RP 1;Z/2) is an isomorphism, and so it follows from
(1) that eH(L) must be the unique nonzero class in H1(RPn;Z/2).

(3) LetM be a smooth, oriented manifold of dimension n. Then the tangent bundle
TM → M is a rank n oriented bundle. In this case, eH(TM) ∈ Hn(M ;Z) =
Z〈[∗]〉 and so the problem is to determine the integer d for which eH(TM) =
d[∗]. It is a fact from geometric topology ???? that there is a vector field
s : M → TM with a finite number of vanishing points, and that when counted
with appropriate signs this number is χ(M). Let A = s−1(0) = {p1, . . . , pr} ⊆
M . The deformation t 7→ ts shows that s is homotopic to the zero section ζ,
so that we get the following diagram

Hn(M) Hn(M,M − {p1, . . . , pr})
j∗oo Hn(TM, TM − 0)

s∗oo

where the composite map is ζ∗ = s∗. As is typical in these arguments, we next
use that Hn(M,M−{p1, . . . , pr}) ∼= ⊕iHn(M,M−pi) and that the orientation
of M gives canonical generators [∗] ∈ Hn(M) and [pi] ∈ Hn(M,M − pi). The
map j∗ sends each [pi] to [∗], and so it is really just a fold map Zr → Z. It
remains to see how the Thom class UTM maps to the canonical generators in
Hn(M,M − pi) under s∗, but this is a local problem—by working through
the definitions one sees that UTM 7→ di[pi] where di is the local index of the
vector field at pi. We finally obtain that eH(TM) = (d1 + · · · + dr)[∗], where
d1 + · · ·+ dr is the sum of the local indices and therefore equal to χ(M).

The following property of the Euler class is also useful:

Proposition 25.6. LetM be an oriented manifold and let j : Z ↪→M be a regularly
embedded, oriented submanifold. Let NM/Z be the normal bundle. Then e(NM/Z) =
j∗([Z]).
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Proof. Intuitively the result should make sense, since both e(NM/Z) and j∗([Z])
are modelled by the intersection product of Z with itself inside of M . To give
a rigorous proof, let U be a tubular neighborhood of Z in M and U ∼= N be a
regular homeomorphism. Note that the zero section ζ : Z ↪→ N corresponds with
the inclusion j : Z ↪→ U under this isomorphism.

Let c be the codimension of Z in M . Consider the commutative diagram

H0(Z) // Hc(N,N − 0)

ζ∗ ''

∼= // Hc(U,U − 0)

��

Hc(M,M − Z)
∼=oo

j∗

��

// Hc(M)

j∗

��
Hc(Z) Hc(Z) Hc(Z).

The image of 1 across the top row is [Z], with UN being an intermediate value in
the composite. The image of UN under ζ∗ is e(N), and so the diagram immediately
yields e(N) = j∗[Z]. �

Example 25.7. Consider the usual embedding j : CPn ↪→ CPn+1. We claim that
the normal bundle is L∗ → CPn, the dual of the tautological line bundle. The
proof is that a linear functional φ on the line ` ⊆ Cn+1 determines a “nearby” line
`′ = {(x, φ(x))

∣∣x ∈ `} ⊆ Cn+1, as shown below:

en+2

Cn+1

`

`′

By Proposition 25.6 we find that e(L∗) = j∗([CPn]), and we know the latter is
[CPn−1] by intersection theory. We have shown that e(L∗ → CPn) = [CPn−1].

We next wish to give a formula for the Euler class of a tensor product of line
bundles. At the moment this might seem to be of limited interest, but it turns out
to be very significant. We need to be careful about what context we are working
in, however. All orientable real line bundles are trivial (one can write down an
evident nonvanishing section), and so using the integral Euler class in this context
doesn’t lead to anything interesting. So we should work with mod 2 Euler classes
and arbitrary real line bundles. Alternatively, if we use complex line bundles then
they are automatically oriented and then we can indeed use the integral Euler class
(of the underlying real plane bundle). So we really get two parallel results, one for
the real and one for the complex case:

Proposition 25.8. If L1 and L2 are real line bundles on B then the mod 2 Euler
class satisfies

eH(L1 ⊗ L2) = eH(L1) + eH(L2).

Likewise, if L1 and L2 are complex line bundles on B then the integral Euler class
satisfies the same formula.
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Proof. The proofs of the two parts are basically identical; we will do the complex
case. Let L → CP∞ denote the tautological line bundle, and consider the bundle
π∗1(L) ⊗ π∗2(L) → CP∞ × CP∞, where π1, π2 : CP∞ × CP∞ → CP∞ are the two
projections. Since L is the universal example of a line bundle, π∗1(L)⊗π∗2(L) is the
universal example of a tensor product of line bundles. Write E = π∗1(L)⊗π∗2(L), for
short. There is a classifying map f : CP∞×CP∞ → CP∞ for E, giving a pullback
diagram

E //

��

L

��
CP∞ × CP∞

f // CP∞.
By naturality eH(E) = f∗(eH(L)) = f∗(x) where x ∈ H2(CP∞) is the canonical
generator.

If ∗ is a chosen basepoint in CP∞ then observe that the diagram

CP∞ × {∗}
j2 **

id

((
CP∞ × CP∞

f // CP∞

{∗} × CP∞
j1

44

id

77

commutes up to homotopy. This is because fj1 classifies j∗1 (E), and this bundle is
clearly isomorphic to L; similarly for fj2.

Note that H2(CP∞ × CP∞) is the free abelian group generated by x ⊗ 1 and
1⊗x. So f∗(x) = k(x⊗1)+ l(1⊗x) for some integers k and l. The above homotopy
commutative diagram forces k = l = 1. So we have proven that

eH(E) = eH(L)⊗ 1 + 1⊗ eH(L).

Now let L1 and L2 be two complex line bundles on a space B. There are maps
g1, g2 : B → CP∞ such that L1 = g∗1(L) and L2 = g∗2(L). Then L1 ⊗ L2 = γ∗(E),
where γ is the composite

B
∆−→ B ×B g1×g2−→ CP∞ × CP∞.

We obtain

eH(L1 ⊗ L2) = γ∗(eH(E)) = γ∗
(
eH(L)⊗ 1 + 1⊗ eH(L)

)
= ∆∗

(
eH(L1)⊗ 1 + 1⊗ eH(L2)

)
= eH(L1) + eH(L2).

�

Remark 25.9. One should note that the above proof is not geometric—this turns
out to be important. Rather, the proof in some sense proceeds by showing that
there is really not much choice for what eH(L1 ⊗ L2) could be, given how small
H∗(CP∞ × CP∞) is; there is in fact only one possibility. We will shortly see that
replacing H by other cohomology theories—ones with “more room”, so to speak—
allows for more to happen here. See Proposition 25.14 below.

Corollary 25.10. Let L → CPn be the tautological line bundle. Then eH(L∗) =
[CPn−1] and so

eH((L∗)⊗k) = k[CPn−1] and eH(L⊗k) = −k[CPn−1].
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Proof. The first statement was proven in Example 25.7. All of the other statements
follow directly from the first via Proposition 25.8. For eH(L) use that L⊗ L∗ ∼= 1
and so 0 = eH(1) = eH(L) + eH(L∗). �

A nice consequence of all of the above work is that for complex line bundles the
Euler class gives a complete invariant:

Corollary 25.11. Let L1, L2 be two complex line bundles over a space X. If
e(L1) = e(L2) then L1

∼= L2.

Proof. Let f1, f2 : X → CP∞ be classifying maps for the two line bundles: so
f∗1L

∼= L1 and f∗2L ∼= L2. Then e(L1) = f∗1 e(L) and e(L2) = f∗2 (e(L)), by naturality
of the Euler class. Our assumption is therefore equivalent to f∗1 (e(L)) = f∗2 (e(L)).

But CP∞ is an Eilenberg-MacLane space K(Z, 2), and so [X,CP∞] is naturally
isomorphic to H2(X) via the map f 7→ f∗(z) where z is a chosen generator of
H2(CP∞). Corollary 25.10 gives that e(L) is such a generator, so the fact that
f∗1 (e(L)) = f∗2 (e(L)) implies that f1 is homotopic to f2. But this implies that L1

is isomorphic to L2. �

The following easy corollary will be needed often:

Corollary 25.12. Let j : Z ↪→ CPn be a degree d hypersurface. Then the normal
bundle is isomorphic to j∗

(
(L∗)⊗d

)
.

Proof. By Proposition 25.6 the Euler class of the normal bundle is e(N) = j∗([Z]).
But we know [Z] = d[CPn−1] = e((L∗)⊗d), and so j∗[Z] is the Euler class of
j∗((L∗)⊗d). Now use Corollary 25.11. �

25.13. Euler classes in K-theory. Our construction of the Euler class eH(E) can
be repeated verbatim in any complex-oriented cohomology theory. In particular, it
can be repeated in K-theory. We explore this next.

Let E π−→ X be a C-bundle of rank k. We have a Thom class UE ∈ K0(E,E−0),
and so we can mimic the above construction and define

eK(E) = ζ∗(UE) ∈ K0(X).

This is the K-theory Euler class of E. [Note that it is slightly more appropriate
to regard UE as lying in K2k(E,E − 0) and then eK(E) ∈ K2k(X), but as usual
we take advantage of Bott periodicity to work only in K0.]

Let us unravel the above definition a bit. First, recall that UE is the complex

[ 0 // /\0
(π∗E)

∆∧− // /\1
(π∗E) // . . . // /\k(π∗E) // 0 ]∗

where ∆ is the usual diagonal section as shown in the following diagram:

E ζ∗(π∗E) //

��

π∗E //

��

E

��
X

ζ
// E

π
//

∆

AA

X.

Note that ζ∗(π∗(E)) = E because π ◦ ζ = id. Next let us look at ζ∗(UE). For each
j one has ζ∗(/\j(π∗E)) = /\j(E), and the restriction of ∆ to the image of ζ is just
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the zero section! So the maps in the complex ζ∗(UE) are all zero. In other words,
ζ∗(UE) is the Koszul complex for the zero section on E. Therefore

ζ∗(UE) = J∗E,0

= [ 0 // /\0
E

0 // /\1
E

0 // . . . // /\kE // 0 ]∗

=
∑

(−1)i[/\i(E∗)].

We see immediately that if E has a nonzero section then eK(E) = 0. Indeed,
if s is the nonzero section then we can deform ζ to s, and likewise deform J∗E,ζ to
J∗E,s. But this latter complex is exact, and so represents zero in K0(X).

The analogs of properties (b) and (c) from Proposition 25.4 also hold, as these
are simple consequences of corresponding properties of Thom classes. What about
the analog of Proposition 25.8? If L→ X is a complex line bundle then we have

eK(L) = 1− L∗.
So eK(L1 ⊗ L2) = 1 − L∗1L∗2, which is visibly not the same as eK(L1) + eK(L2).
Indeed, one can check the following more complicated formula:

Proposition 25.14. Let L1 and L2 be complex line bundles on a space X. Then

eK(L1 ⊗ L2) = eK(L1) + eK(L2)− eK(L1)eK(L2).

Proof. We simply observe that 1−L∗1L∗2 = (1−L∗1)+(1−L∗2)−(1−L∗1)(1−L∗2). �

Remark 25.15. The difference between how eH and eK behave on tensor products
of line bundles turns out to have much more significance than one might expect.
In some sense it ends up accounting for all of the differences between H and K, at
least in terms of how they encode geometry. See Section 31 for more discussion.

We end this section with some detailed computations of K-theoretic Euler
classes:

Example 25.16. Let T be the complex tangent bundle to CPn. Our goal will be
to compute eK(T ) from first-principles. Let L denote the tautological line bundle
over CPn. Note that L sits inside of the trivial bundle n+ 1 in the evident way
(if l is a line in Cn+1, then points on l are defacto points in Cn+1). Let L⊥ be the
orthogonal complement to L relative to the usual Hermitian metric on Cn+1. So
we have a short exact sequence of bundles

0→ L ↪→ n+ 1→ L⊥ → 0.(25.17)

Since CPn is paracompact this sequence is split, and hence L⊕ L⊥ ∼= n+ 1.
The basis of our computation is the following geometric fact:

T ∼= Hom(L,L⊥)(25.18)

where Hom(L,L⊥) is the bundle over CPn whose fiber over a point x is the vector
space of linear maps Lx → L⊥x . To understand this isomorphism, if ` is a point in
CPn then think of the tangent space T` as giving “local directions” for moving to
all nearby points around `. The following picture shows the line ` in Cn+1 together
with its orthogonal complement `⊥ and a “nearby line” `′:
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`

`⊥
`′

v

w

Note that `′ determines a linear map ` → `⊥ as shown in the picture: a vector
v ∈ ` is sent to the unique vector w ∈ `⊥ such that v+w ∈ `′. This makes sense as
long as `′ is not orthogonal to `, which will be fine for all nearby lines. We clearly
get a bijection between Hom(`, `⊥) and a certain neighborhood of ` in CPn, and it
is not hard to extrapolate from this to the isomorphism (25.18).

Now take the short exact sequence of (25.17) and apply Hom(L,−) to get the
short exact sequence

0 // Hom(L,L) // Hom(L, n+ 1) // Hom(L,L⊥) // 0.

(To see that this sequence is exact, just check it on fibers—there it is obvious,
because we are just dealing with vector spaces.) For any line bundle L one has
the identity Hom(L,L) = 1: for a one-dimensional vector space V the map C →
Hom(V, V ) mapping 1 to the identity is a canonical isomorphism, so we can do this
fiberwise. Using this, together with the identification T ∼= Hom(L,L⊥), the above
short exact sequence can be written as

(25.18) 0→ 1→ (n+ 1)L∗ → T → 0.

Since there must be a splitting, 1⊕ T ∼= (n+ 1)L∗. Dualizing, we obtain 1⊕ T ∗ ∼=
(n+ 1)L

Recall that eK(T ) =
∑
i(−1)i[/\i(T ∗)]. We will compute /\i(1 ⊕ T ∗) and then

extract formulas for [/\i(T ∗)].
Of course /\0

1 = /\1
1 = 1 and /\j1 = 0 for j ≥ 2. This allows us to calculate

/\j(1⊕ T ∗) = (/\0
1⊗ /\jT ∗)⊕ (/\1

1⊗ /\j−1
T ∗)

= /\jT ∗ ⊕ /\j−1
T ∗.

On the other hand, /\j(1 ⊕ T ∗) = /\j((n + 1)L) =
(
n+1
j

)
(L⊗j). So for every j we

have
[/\j(T ∗)] =

(
n+1
j

)
L⊗j − [/\j−1

(T ∗)]

in K-theory.
The evident recursion now gives that

[/\0
T ∗] = 1

[/\1
T ∗] = (n+ 1)[L]− [1]

[/\2
T ∗] =

(
n+1

2

)
[L⊗2]− (n+ 1)[L] + [1]

[/\3
T ∗] =

(
n+1

3

)
[L⊗3]−

(
n+1

2

)
[L⊗2] + (n+ 1)[L]− [1],
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and so on. The general formula, obtained by an easy induction, is

[/\jT ∗] =

j∑
k=0

(−1)k+j
(
n+1
k

)
[L⊗k].

Taking the alternating sum of these expressions (from j = 0 to j = n) now yields

eK(T ) = (n+ 1)[1]− n
(
n+1

1

)
[L] + (n− 1)

(
n+1

2

)
[L]2 − · · ·+ (−1)n1 ·

(
n+1
n

)
[L]n

= (n+ 1)
(

[1]− n[L] +
(
n
2

)
[L]2 −

(
n
3

)
[L]3 + · · ·+ (−1)n[L]n

)
= (n+ 1)(1− [L])n.

Recall that (1− [L])n = [∗] (Proposition 23.6), and so we have determined that

eK(T ) = (n+ 1)[∗].
Let us now confess that the result of this computation is not unexpected. Indeed,

we saw previously that eH(TM) = χ(M)[∗] for any smooth manifold M , and in
fact the same is true in any complex-oriented cohomology theory (by essentially
the same proof). The “n + 1” in our formula for eK(T ) is just χ(CPn). But
note that we computed this without writing down anything remotely resembling
a cell structure! In fact, the only geometry in the calculation was in the fact
T ∼= Hom(L,L⊥); everything else was some simple linear algebra and then basic
algebraic manipulation. It is useful to remember the overall theme of K-theory: do
linear algebra fiberwise over a base space X, and see what this tells you about the
topology of X. Our computation of eK(TCPn) gives an example of this.

The calculation in the above example is a little clunky. One way to streamline
it is to introduce the formal power series

λt(E) =

∞∑
i=0

ti[/\i(E)] = 1 + t[E] + t2[/\2
(E)] + · · ·

which we regard as living in the ring K(X)[[t]], where E → X was our vector
bundle. Notice that this is actually a polynomial in t, since the exterior powers
vanish beyond the rank of E; we consider it as a power series because in that
context it has a multiplicative inverse, which we will shortly need.

If L is a line bundle then λt(L) = 1 + t[L]. Also, the formula /\k(E ⊕ F ) =⊕
i+j=k /\

i
(E)⊗ /\j(F ) yields the nice relation

λt(E ⊕ F ) = λt(E) · λt(F ).

This is what ultimately simplifies our calculations. Finally, notice that the K-
theoretic Euler characteristic can be written as eK(E) = λt(E

∗)|t=−1.
Returning to the above calculation, the starting point for the algebra was the

bundle isomorphism 1⊕ T ∗ ∼= (n+ 1)L. Applying λt we obtain

λt(1)λt(T
∗) = λt(1⊕ T ∗) = λt((n+ 1)L) = (λt(L))n+1.

But λt(1) = 1 + t and λt(L) = 1 + t[L], so we can write

λt(T
∗) = (1+t[L])n+1

1+t , or eK(T ) = (1+t[L])n+1

1+t

∣∣∣
t=−1

(and here is where we are using that our power series have multiplicative inverses).
Our task is to expand the formula for eK(T ) into powers of t, and then to set
t = −1. The trick is to do this in a clever way.
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We are going to ultimately want to write eK(T ) in terms of powers of (1−L), as
they give our usual basis for K∗(CPn). To this end, regard L as a formal variable
and consider f(L) = (1 + tL)n+1/(1 + t), considered as a formal power series in
two variables (but where we are choosing not to write t in the inputs of f). Let us
expand this in powers of (L− 1) via the usual Taylor series:

f(L) = f(1) + f ′(1)(L− 1) + f ′′(1)
2 (L− 1)2 + · · ·

It is simple to compute the kth derivative f (k)(L) = k!
(
n+1
k

) (1+tL)n+1−ktk

1+t . So the
coefficient of (L− 1)k is

(
n+1
k

)
(1 + t)n−ktk, and we obtain

λt(T
∗) = f(L) =

n+1∑
k=0

(
n+1
k

)
(1 + t)n−ktk(L− 1)k.

Notice that the substitution t = −1 will make the summands vanish for k smaller
than n, and that the term k = n+ 1 vanishes because (L− 1)n+1 = 0 in K(CPn).
So only one term survives and we find that

eK(T ) = λt(T
∗)|t=−1 =

(
n+1
n

)
tn(L− 1)n|t=−1 = (n+ 1)(1− L)n = (n+ 1)[∗].

Example 25.19 (Euler characteristic of a hypersurface). Using the λt operators
introduced above, we will attempt a harder computation of an Euler class. Let
j : Z ↪→ CPn be a smooth hypersurface of degree d. Our goal is to compute the
Euler characteristic χ(Z). If TZ and NZ denote the tangent and normal bundles,
respectively, then TZ ⊕ NZ ∼= j∗TCPn . We know from Corollary 25.12 that NZ ∼=
j∗O(d), so we have

1⊕ TZ ⊕ j∗O(d) ∼= 1⊕ TZ ⊕NZ ∼= 1⊕ j∗TCPn ∼= j∗(1⊕ TCPn) ∼= (n+ 1)j∗O(1),

the final isomorphism by (25.18). Taking duals and applying λt, we obtain

λt(1) · λt(T ∗Z) · λt(j∗Ld) = λt(j
∗L)n+1.

Let X = j∗L. Then we can write

λt(T
∗
Z) = (1+tX)n+1

(1+t)(1+tXd)
.

We wish to compute the Euler class eK(TZ) = λt(T
∗
Z)|t=−1 and then write it in the

form (???) · [∗], in which case the mystery number in parentheses will be χ(Z). The
trick is again to expand in powers of (X − 1), since the powers of 1 − L are our
standard generators for K0(CPn).

Consider the power series in X

λt(T
∗) = f(X) = (1+tX)n+1

(1+t)(1+tXd)
= f(1) + f ′(1)(X − 1) + f ′′(1)

2 (X − 1)2 + · · ·
Note that (1−L)n+1 is zero inK0(CPn) and therefore (1−X)n+1 vanishes inK0(Z).
Even better, (1−L)n = [∗] in K0(CPn) and since j∗[∗] = 0 by intersection theory it
follows that (1−X)n = 0 in K0(Z). So we don’t care about any terms in the above
series beyond (X − 1)n−1. Let us also note at this point that (1− L)n−1 = [CP 1]
in K0(CPn), and therefore (1 −X)n−1 = j∗

(
(1 − L)n−1

)
= j∗([CP 1]) = d[∗]; the

last equality holds by intersection theory, since a generic CP 1 will intersect Z in
exactly d points.
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Before tackling the general calculation let us do the first example, where n = 2.
Here f(X) = (1+tX)3

(1+t)(1+tXd)
and we only need the first two terms of the series. Clearly

f(1) = 1 + t and an easy calculation gives

f ′(X) = 1
1+t ·

(1+tX)2

(1+tXd)2

[
3t(1 + tXd)− (1 + tX)tdXd−1]

so that
f ′(1) = (3− d)t.

Putting everything together,

f(X) = (1 + t) + (3− d)t(X − 1)

and so

eK(TZ) = f(X)|t=−1 = 0 + (d− 3)(X − 1) = (3− d)(1−X) = (3− d) · d[∗].
We conclude that χ(Z) = d(3− d).

For larger n here is how things are going to work. First, we will calculate the
derivatives f (k)(1) for 0 ≤ k ≤ n− 1, and then substitute t = −1 into all of them.
It will turn out (but is far from obvious) that the resulting expressions vanish for
k < n− 1, so that

eK(TZ) = f (n−1)(1)|t=−1 · (X − 1)n−1

= f (n−1)(1)|t=−1 · (−1)n−1 · (1−X)n−1

= f (n−1)(1)|t=−1 · (−1)n−1 · d[∗].
The conclusion will then be that

χ(Z) = f (n−1)(1)|t=−1 · (−1)n−1 · d.(25.20)

Notice that everything comes down to computing the expressions f (k)(1)|t=−1,
which is a purely algebraic problem. Unfortunately we cannot first plug in t = −1,
since our formula for f has a 1 + t in the denominator; we have to first do the hard
work of writing f as a polynomial in t before plugging in. At first glance this work
looks very hairy! Already the formula for f ′(X) was quite complicated, and it only
gets worse for the higher derivatives. The reader might wish to carry this out by
brute force for n = 3, to get a feel for the difficulties.

We are going to sketch the completion of the calculations for the above exam-
ple, but before diving into that we need to make a confession. It is possible to
compute χ(Z) by doing a similar kind of calculation using singular cohomology
instead of K-theory, and in that setting the algebra turns out to be much easier !
There is a trade-off, which is that the computation cannot be done merely with
Euler classes—one needs the complete theory of Chern classes, to be developed in
the next section. See Example 26.8 for the computation of χ(Z) in that context.
This situation is fairly typical of the relationship between K-theory and singular
cohomology. For calculations that can be done in either theory, usually the singular
cohomology version will involve simpler algebra, but more advanced geometric tech-
niques; the K-theory version will involve more advanced algebra, but one needs less
geometry. In some sense we saw this phenomenon already in the case of intersection
multiplicities.

The completion of our calculation will proceed via the following steps:
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(a) Suppose that f(w) ∈ Q[w] has degree k. Then there is an identity of formal
power series

f(0)− tf(1) + t2f(2)− · · · = u(t)
(1+t)k+1

for a unique polynomial u(t). Moreover, the degree of u(t) is at most k and
u(−1) is k! times the leading coefficient of f .

To justify the above claim, write Af =
∑
k≥0(−1)kf(k)tk. Note the formula

(1+t)Af = f(0)−tA∆f where ∆ is the finite difference operator from Section 24.
Check the claim is true when deg f = 0, and then do an induction on the degree.
(Extra credit: Find a formula for u(t) in terms of the numbers ∆kf(0)).

(b) By collecting terms notice that
1

1+tXd
= 1− tXd + t2X2d − · · ·
= 1− t((X − 1) + 1)d + t2((X − 1) + 1)2d − · · ·
= 1

1+t + (X − 1)Γ1 + (X − 1)2Γ2 + · · ·
where

Γk = −t
(
d
k

)
+ t2

(
2d
k

)
− t3

(
3d
k

)
+ · · ·

Applying (a) to f(w) =
(
dw
k

)
= 1

k! (dw)(dw − 1) · · · (dw − k + 1) gives that
Γk = uk(t)

(1+t)k+1 where uk(t) is a polynomial such that u(−1) = dk.

(c) Set fr(X) = (1+tX)r

(1+t)(1+tXd)
. Our goal is to compute the derivatives f (k)

r (1) for
1 ≤ k ≤ r − 2, thus obtaining the coefficients in the Taylor expansion of fr in
powers of (X − 1). But remember we only need to know what happens to the
answer after specializing at t = −1, which will simplify our task.

Notice the recursion relation

fr+1 = (1 + tX)fr = (1 + t((X − 1) + 1))fr = (1 + t)fr + (X − 1)tfr.

So if we know the expansion of fr in terms of powers of X − 1, it is easy to
get the expansion of fr+1. In the following table, row r shows the terms in the
expansion for fr (starting with f0):

r (X − 1)0 (X − 1)1 (X − 1)2 (X − 1)3 · · ·
0 1

(1+t)2
u1

(1+t)3
u2

(1+t)4
u3

(1+t)5 · · ·

1 1
1+t

u1+t
(1+t)2

u2+tu1

(1+t)3
u3+tu2

(1+t)4 · · ·

2 1 u1+2t
(1+t)

u2+2tu1+t2

(1+t)2
u3+2tu2+t2u1

(1+t)3 · · ·

3 1 + t u1 + 3t u2+3tu1+3t2

1+t
u3+3tu2+3t2u1+t3

(1+t)2 · · ·

4 (1 + t)2
(1+t)(u1+3t)+t(1+t) u2 + 4tu1 + 6t2 · · · · · ·

The recursion is that to compute an entry of the table one multiplies the entry
above it by 1 + t and adds the result to t times the entry above-and-to-the-left.

(c) Ignoring the terrible-looking formulas, one important thing is evident from the
table: in the column for (X − 1)r, after row r + 2 we are getting polynomial
multiples of 1 + t. So these entries will all vanish when we specialize to t = −1,
and we see that in fr|t=−1 the first nonzero coefficient appears in the (X−1)r−2
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term. Our job is to calculate this coefficient. In order to do so, notice that it
suffices to just look at all the numerators in the table; the denominators can
basically be ignored. To this end, let gr(W ) be the generating function for
the numerators in row r of the table, specialized to t = −1. For example,
g0(W ) = 1 + dW + d2W 2 + · · · because uk(−1) = dk. The recursion relation
for these numerators gives

gr+1 = gr −Wgr = (1−W )gr.

So of course we will have

gr = (1−W )rg0 = (1−W )r · 1
1−dW = (1−W )r · (1 + dW + d2W 2 + · · · ).

The number we are looking for is the coefficient of W r−2 in this power series,
and it is a simple matter to compute it. The desired coeffient is

dr−2 − dr−3
(
r
1

)
+ dr−4

(
r
2

)
− · · ·+ (−1)r−2

(
r
r−2

)
.

(d) Recalling (25.20) and using what we have just done, we have proven that

χ(Zd ↪→ CPn) = f
(n−1)
n+1 |t=−1 · (−1)n−1 · d

= (−1)n+1d
[
dn−1 − dn−2

(
n+1

1

)
+ · · ·+ (−1)n−1

(
n+1
n−1

)]
= (−1)n+1 1

d ·
[
dn+1 − dn

(
n+1

1

)
+ · · ·+ (−1)n−1d2

(
n+1
n−1

)]
= (−1)n+1 1

d ·
[
(d− 1)n+1 − (−1)n((n+ 1)d− 1)

]
= (1−d)n+1+(n+1)d−1

d .

None of the above formulas are particularly pleasant to look at, and they are
difficult to remember. I like to encode the formula in a different way. Let `
denote the formal “lowering operator” that sends ds to ds−1, for each s. Then
we may write

χ(Zd ↪→ CPn) = d · (`− I)n+1(dn−1)

where I is the identity operator. For example,

χ(Zd ↪→ CP 3) = d · (`4 − 4`3 + 6`2 − 4`+ I)(d2) = d · (6− 4d2 + d3).

26. Chern classes

Fix a certain collection of vector bundles. A characteristic class for this collec-
tion assigns to each vector bundle E → X a cohomology class b(E) belonging to
some cohomology theory; the assignment is required to be natural. We have seen
essentially two examples so far: for the collection of oriented, rank k vector bundles,
we have the Euler classes eH and eK .

The Chern classes are characteristic classes for complex vector bundles, that
generalize the Euler class in a certain way. Like the Euler class, they have close ties
to geometry. Also like the Euler class, there are versions of Chern classes in both
singular cohomology and K-theory—indeed, there are versions in any complex-
oriented cohomology theory (defined in 18.3).

In this section we begin with a purely geometric look at the Chern classes, where
we again forego all attempts at rigor. Afterwards we will pursue a more rigorous
approach, which can even be done axiomatically.
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26.1. Geometric Chern classes in homology. Let B be a complex manifold
of dimension n, and let E → B be a complex vector bundle of rank k. If s is a
generic section of E, then the locus where s vanishes gives a cycle in B that carries
the Euler class eH(E) ∈ H2(n−k)(B). This homology class will now be renamed as
Ck(E) and called the kth homology Chern class of E.

Now let s1 and s2 be two generic sections, chosen so that s1(x) and s2(x) are
linearly independent on as large a subset of B as possible. We can now look at the
degeneracy locus

D(s1, s2) = {b ∈ B
∣∣ s1(b) and s2(b) are linearly dependent}.

Again, for generically chosen s1 and s2 it turns out this gives a cycle on B whose
associated homology class is independent of any choices. The homology class lies in
dimension 2(n−k+ 1), and we call it the (k− 1)st homology Chern class Ck−1(E).

At this point it is clear how to continue. For each j in the range 1 ≤ j ≤ k, let
s1, . . . , sj be sections generically chosen to be as maximally linearly independent as
possible. Consider the degeneracy locus

D(s1, . . . , sj) = {b ∈ B
∣∣ s1(b), . . . , sj(b) are linearly dependent},

which determines a homology class Ck−j+1 ∈ H2(n−k+j−1)(B).
These homology classes can be thought of as obstructions to splitting off a trivial

bundle. If E contains a trivial bundle of rank r then 0 = Ck(E) = Ck−1(E) = · · · =
Ck−r+1(E). This is clear, as by working inside the trivial subbundle we can choose
our “generic sections” so that they are linearly independent everywhere.

The geometric details behind all of this can be found in [GH]. We are skipping
them because they are somewhat difficult and are not needed for the cohomological
version of the theory that we will describe next. The fact that cohomology gives a
shortcut around the dicey geometric issues is part of the magic of homotopy theory,
though it can also feel like part of the subject’s curse.

26.2. Chern classes in singular cohomology. For the cohomological version of
the theory we start by adopting an axiomatic approach. For any complex vector
bundle E → X the Chern classes are cohomology classes ci(E) ∈ H2i(X;Z) for
0 ≤ i <∞ satisfying the following properties:
(1) c0(E) = 1
(2) ci(E) = 0 if i > rank E
(3) ci(f∗E) = f∗ci(E) (naturality under pullback)
(4) The Whitney Formula: ck(E ⊕ F ) =

∑k
i=0 ci(E)ck−i(F ), for any k.

(5) c1
(
L∗ → CP 1

)
= eH(L∗) = [CP 0] = [∗], where L → CP 1 is the tautological

line bundle.

Remark 26.3. The Whitney Formula can be written in a more convenient way
using the total Chern class, namely

c(E) = c0(E) + c1(E) + c2(E) + · · · ∈ H∗(X)

(notice that this is a finite sum by property (2)). Then the Whitney Formula
becomes c(E ⊕ F ) = c(E) · c(F ).

Note that if E → X is a trivial bundle then ci(E) = 0 for i > 0. Indeed, E is
the pullback of a bundle on a point: E ∼= π∗(n) where π : X → ∗ and n = rank(E).
One has ci(Cn → ∗) = 0 for i > 0 because a point has no cohomology in positive
degrees. The fact that ci(E) = 0 then follows from naturality.
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Exercise 26.4. Show that given a theory of Chern classes satisfying the above
axioms then for any n ≥ 1 one has c1(L∗) = [CPn−1] for L→ CPn the tautological
bundle. Then prove that for L → CP∞ one has c1(L) = e(L), and moreoever
the same is true for any line bundle on any space. (Axioms (3) and (5) should be
enough for this).

Before showing the existence of the Chern classes, let us show that they are
uniquely characterized by the above properties:

Proposition 26.5. There is at most one collection of characteristic classes satis-
fying properties (1)–(5) above. Moreover, such a collection has the property that if
E → X is a rank n bundle then the top Chern class cn(E) is equal to the Euler
class e(E).

Proof. Let γ be the tautological k-plane bundle on Grk(C∞). Consider the diagram

π∗1(L)⊕ π∗2(L)⊕ · · · ⊕ π∗k(L) //

��

γ

��
CP∞ × · · · × CP∞ S // Grk(C∞ × · · · × C∞) = Grk(C∞)

with the obvious maps, e.g. S is the map described in ???? that sends a collection
of k lines in C∞ to their direct sum in (C∞)k. Note that there are k copies of
CP∞ and C∞ in the bottom row. Also, πi : CP∞ × · · · ×CP∞ → CP∞ is the ith
projection map. This diagram is a pullback, hence

S∗(γ) ∼= (π∗1L)⊕ · · · ⊕ (π∗kL).

Applying cohomology to the map on the bottom row gives

H∗(CP∞ × · · · × CP∞) H∗(Grk(C∞))
S∗oo .

By the Künneth Theorem,

H∗(CP∞ × · · · × CP∞) ∼= H∗(CP∞)⊗ · · · ⊗H∗(CP∞) = Z[x1, . . . , xk]

where xi = π∗i (x) with x ∈ H2(CP∞) being the canonical generator. There is
an evident action on CP∞ × · · · × CP∞ by the symmetric group Σk. This action
descends in cohomology to give the statement

H∗(CP∞ × · · · × CP∞)Σk ∼=
[
H∗(CP∞)⊗ · · · ⊗H∗(CP∞)

]Σk
= Z[x1, . . . , xk]Σk

= Z[σ1, . . . , σk]

where σi is the ith elementary symmetric function in the xi’s.
Recall that [X,Grk(C∞)] ' Vectk(X). Under this bijection, S corresponds to

the bundle E = ⊕iπ∗i (L). If α ∈ Σk then the map S ◦ α corresponds to the
direct sum of π∗i (L)’s but where the sum is taken in a different order. Since this is
isomorphic to the original bundle E, it must be that S and S ◦ α are homotopic;
in particular, they induce the same map on cohomology. Since this holds for all α,
it follows that S∗ lands inside the Σk invariants. That is, S∗ can be regarded as a
map

H∗(Grk(C∞))
S∗−→
[
H∗(CP∞)⊗k

]Σk
= Z[σ1, . . . , σk].
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It is a theorem that the above map S∗ is an isomorphism. We will not take the
time to prove this, but the idea is simple enough. The Schubert cell decomposition
of Grk(C∞) has all cells in even dimensions, and hence the coboundary maps are
all zero; this computes H∗(Grk(C∞)) additively, and one readily checks that the
groups have the same ranks as in Z[σ1, . . . , σk]. ????

Using the Whitney Formula (iteratively), we can see that

ci(π
∗
1L⊕ · · · ⊕ π∗kL) =

∑
β

c1(π∗β(1)(L)) · c1(π∗β(2)(L)) . . . c1(π∗β(i)(L))

=
∑
β

π∗β(1)(x) · π∗β(2)(x) . . . π∗β(i)(x)

where the sum ranges over strictly-increasing maps β : {1, . . . , i} → {1, . . . , k}, and
in the second sum x = c1(L) ∈ H2(CP∞). But note that if we write xj = π∗j (x)
then the second sum is simply the elementary symmetric function σi in the xj ’s.

It follows from the above that ci(γ) is the unique element of H2i(Grk(C∞)) that
maps to σi under S∗.

Finally, suppose that E → X is any complex vector bundle, say of rank k. Then
there is a map f : X → Grk(C∞) and an isomorphism f∗η ∼= E. It follows that
ci(E) = f∗(ci(η)).

To complete the proof, assume that c∗ and c′∗ are two sets of characteristic classes
satisfying properties (1)–(5). Then ci(η) and c′i(η) must agree, for they each must
be the unique element of H2i(Grk(C∞)) that maps to σi. It then follows from
naturality that ci(E) = c′i(E) for all bundles E. �

By examining the above proof, one finds that we can define the Chern classes
in the following way. First, when γ → Grk(C∞) is the tautological bundle then
for i ≤ k define ci(γ) to be the unique element of H2i(Grk(C∞)) that maps to σi
under S∗, and for i > k define ci(γ) = 0. Second, for an arbitrary bundle E → X
let f : X → Grk(C∞) be a classifying map and define ci(E) = f∗(ci(γ)).

Remark 26.6. For a bundle E → X one can also define K-theoretic Chern classes
cKi (E) ∈ K0(X) (or really in K2i(X), but this is the same by periodicity). We will
not pursue this at the moment, but see Section 33 below.

Example 26.7. Consider the tangent bundle T = TCPn → CPn. We saw in
Example 25.16 that 1⊕ T ∼= (n+ 1)L∗. Then by the Whitney Formula,

c(T ) = c(1) · c(T ) = c(1⊕ T ) = c(L∗)n+1 = (1 + [CPn−1])n+1.

Therefore,
ci(T ) =

(
n+1
i

)
[CPn−i] =

(
n+1
i

)
xi

where x ∈ H2(CPn) is the canonical generator [CPn−1]. Note that the Euler
class is e(T ) = cn(T ) = (n + 1)xn = (n + 1)[∗], and so this again calculates that
χ(CPn) = n+ 1.

Example 26.8. Consider a hypersurface j : Z ↪→ CPn of degree d. Recall from
Corollary 25.12 that the normal bundle of this inclusion is j∗O(d), and we know
TZ ⊕NZ ∼= j∗TCPn . Then applying total Chern classes we get

c(TZ) · c(NZ) = j∗c(TCPn).
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But above we calculated that c(TCPn) = (1 + x)n+1 where x = [CPn−1], and
c(NZ) = c(j∗O(d)) = j∗(c(O(d))) = 1 + d(j∗x). Let z = j∗x, so that we have

c(TZ) = (1+z)n+1

1+dz = (1 + (n+ 1)z +
(
n+1

2

)
z2 + · · · ) · (1− dz + d2z2 − · · · ).

We can compute χ(Z) by finding the top Chern class (the Euler class), which in
this case is cn−1(TZ). A direct computation shows that

cn−1(TZ) = zn−1 ·
((
n+1
n−1

)
−
(
n+1
n−2

)
d+

(
n+1
n−2

)
d2 − · · ·

)
.

Finally, we need to remember that xn−1 = [CP 1] in H∗(CPn) and therefore zn−1 =
j∗(xn−1) = d[∗], since a generic line intersects Z in d distinct points. So we have

cn−1(TZ) = [∗] · d · (
(
n+1
n−1

)
−
(
n+1
n−2

)
d+

(
n+1
n−2

)
d2 − · · ·

)
,

thereby yielding

χ(Z) = d ·
((

n+1
n−1

)
−
(
n+1
n−2

)
d+

(
n+1
n−2

)
d2 − · · ·

)
.

For example, a degree d hypersurface in CP 2 has χ(Z) = d · (3− d) and a degree d
hypersurface in CP 3 has χ(Z) = d · (6− 4d+ d2).

26.9. Stiefel-Whitney classes. One can repeat almost all of our above work in
the setting of real vector bundles, but using Z/2 coefficients everywhere. The
analogs of the Chern classes in this setting are called Stiefel-Whitney classes.
If E → X is a real vector bundle then the Stiefel-Whitney classes are cohomol-
ogy classes wi(E) ∈ Hi(X;Z/2), 0 ≤ i < ∞, satisfying the evident analogs of the
axioms in Section 26.2. Geometrically, these are Poincaré Duals of certain cycles
determined by degeneracy loci, just as in the complex case. In terms of our develop-
ment, most things go through verbatim but the one exception is the computation
H∗(Grk(R∞);Z/2) ∼= Z/2[σ1, . . . , σk]. In the complex case this was fairly easy,
because the standard cell structure on Grk(C∞) has cells only in even dimensions.
This is of course not true for Grk(R∞), and so one must work a bit harder here.
We will not give details; see [MS].

Just as for the Chern classes, we will write w(E) for the total Stiefel-Whitney
class 1 + w1(E) + w2(E) + · · · .
Example 26.10. Here is an example where we can use Stiefel-Whitney classes
to solve a problem that appeared earlier in these notes. Let L → RPn denote
the tautological line bundle, and recall that once upon a time we needed to know
whether L ⊕ L is stably trivial. This came up (for n = 2) in Section 14.10 during
the course of trying to compute KO(RP 2).

If (L⊕ L)⊕N ∼= N + 2 then applying total Stiefel-Whitney classes gives

1 = w(N + 2) = w(L⊕ L⊕N) = w(L) · w(L) · w(N) = w(L)2.

But L is a line bundle, so wi(L) = 0 for i > 1 and w1(L) is the mod 2 Euler class,
which we have previously computed to be the generator x on H1(RPn;Z/2). So
w(L) = 1 + x and therefore w(L)2 = 1 + x2. As long as n ≥ 2 this is not equal to
1, and hence L⊕ L cannot be stably trivial.

Example 26.11. Let T be the tangent bundle of RPn. Just as in Example 25.16
there is an isomorphism 1⊕T ∼= (n+ 1)L∗, where L→ RPn is the tautological line
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bundle. But since we are now in the case of real bundles, L ∼= L∗ by Corollary 8.34;
so we will usually write 1⊕ T ∼= (n+ 1)L. One of course finds that

w(T ) = w(1⊕ T ) = w((n+ 1)L) = w(L)n+1 = (1 + x)n+1,

similarly to the complex case.

26.12. The projective bundle approach. There is another approach to Chern
classes that is due to Grothendieck ????. This approach adapts to any complex-
orientable cohomology theory E with ease, so we now return to that level of gener-
ality.

Given a rank n bundle p : M → X consider the associated projective bundle
π : PM → X. The pullback bundle π∗M has a canonical line-bundle inside of it;
we will denote this LM . To describe this precisely, recall that a point in PM is a
pair (x, `) where ` ⊆ Mx is a line. Then a point in π∗M is a triple (x, `, v) where
` ⊆ Mx and v ∈ Mx. We define LM ⊆ π∗M to be the subspace of triples (x, `, v)
where additionally v ∈ `; that is, the subspace of triples (x, `, v) where v ∈ ` ⊆Mx.

Since LM ⊆ π∗M we can form the quotient, which we will denote as QM . If X
is paracompact and Hausdorff then by Proposition 9.2 we have π∗M ∼= LM ⊕QM
(though not canonically, of course).

Starting with M → X we have produced a map π : PM → X with the property
that π∗M splits off a line bundle. If we now pass to the space PQM → PM → X
then pulling back will result in QM splitting off a line bundle, so that M has split
off a sum of two lines bundles. By iterating this process, after n steps it will be the
case that when we pull back M it will split as a sum of line bundles:

· · · // π∗2(LM )⊕ LQM ⊕QQM

��

// LM ⊕QM //

��

M

p

��
· · · // PQM

π2 // PM π // X.

Now, this by itself is nothing to get excited about; after all, if we pull backM along
a map ∗ → X it also splits as a sum of line bundles. What is special about the
present situation, though, is that each of the horizontal maps in the bottom row
turns out to be an injection on E∗ cohomology whenever E is complex orientable. So
anything interesting about characteristic classes for M—which lie in E∗(X)—will
also be seen in the successive spaces as we pull back. This phenomenon is called
the “splitting principle”:

Proposition 26.13 (The Splitting Principle). Let E be a complex-oriented coho-
mology theory. Let X be paracompact and Hausdorff. Given any rank n complex
bundle M → X there is a paracompact Hausdorff space YX and a map π : YX → X
such that π∗M is an injection on E∗(−) and π∗M splits off a line bundle. By iter-
ating, we can in fact assume that π∗M is isomorphic to a sum of n line bundles.

In the above statement we have suppressed the precise identification of YX as the
projective bundle PM because sometimes when invoking the splitting principle one
doesn’t actually care what the space YX is. But in fact, to prove Proposition 35.11
we will use special facts about PM .

The bundle LM has an Euler class e(LM ) ∈ E2(PM) (this is the E-theory Euler
class, but we suppress the E in the notation). In fact let us just write eM = e(LM )
for short.
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Proposition 26.14. Let E be a complex-oriented cohomology theory and let M →
X be a rank n complex bundle. Then E∗(PM) is free as an E∗(X)-module on
generators 1, eM , e

2
M , . . . , e

n−1
M .

Given the above, there is a unique relation in E∗(PM) of the form

enM = bn + bn−1eM + bn−2e
2
M + · · ·+ b1e

n−1
M

where bi ∈ E2i(X). We define the ith E-theoretic Chern class of M to be cEi (M) =
(−1)i−1bi. With this definition the following corollary is immediate:

Corollary 26.15. E∗(PM) = E∗(X)[eM ]/(enM − cE1 (M)en−1 + cE2 (M)en−2 − · · · ).
Proof. Immediate from Proposition 26.14. �

Remark 26.16. Before proceeding let us discuss some motivation for the above
definition, in particular why it is equivalent to our other definition in the case of
singular cohomology. So let us return to the world where we already have the Chern
classes inH∗. When we pull backM to PM we have the splitting π∗M ∼= LM⊕QM ,
and taking total Chern classes gives

π∗c(M) = c(π∗M) = c(LM ⊕QM ) = c(LM )c(QM ) = (1 + eM )c(QM ).

Thus, we obtain

c(QM ) =
π∗c(M)

1 + eM
= π∗c(M) · (1− eM + e2

M − · · · ).

The power series might be worrisome, and there are two ways to get past that:
(1) assume that X is a finite-dimensonal CW complex, so that PM also is and
therefore high enough powers of eM will vanish; (2) move from H∗(X) = ⊕iHi(X)
into

∏
iH

i(X) (the first injects into the second), and note that the power series
makes sense in the second (all conclusions will be back in ⊕iHi(X), though).

Since QM is rank n− 1 we can now write

0 = cn(QM ) = cn(M)− cn−1(M)eM + cn−2(M)e2
M − · · ·+ (−1)nc0(M)enM

and rearranging gives

0 = enM − c1(M)en−1
M + c2(M)en−2

M − · · ·
which is the desired formula (note that we are suppressing the π∗ maps here, as
ci(M) should really be π∗ci(M), but this practice is consistent with regarding
H∗(PM) as an H∗(X)-module).

27. Comparing K-theory and singular cohomology

We have seen that singular cohomology and K-theory both encode geometry
in similar ways: they have Thom classes, Euler classes, fundamental classes for
submanifolds, etc. They can both be used to compute intersection multiplicities.
One might hope for a natural transformation from one to the other, that allows one
to directly compare what is happening in each theory. Our goal in this section is to
construct such a natural transformation, with some caveats which we will discover
along the way.

Let us imagine that we have a natural transformation φ : K∗(−)→ H∗(−), and
that this is a ring homomorphism. Note first that φ cannot preserve the gradings,
for β ∈ K−2(pt) is a unit whereas there is no unit in H−2(pt). We can fix this
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by formally adjoining a unit of the appropriate degree to H∗: let H∗[t, t−1] be the
cohomology theory X 7→ H∗(X)[t, t−1], where t is given degree −2. Then we can
ask for a natural ring homomorphism φ : K∗(−) → H∗(−)[t, t−1]. Restricting to
∗ = 0 would give a natural ring homomorphism

φ : K0(−)→ Hev(−) = ⊕iH2i(−).

We will investigate what this map can look like.
If L→ X is a complex line bundle then we have the element eK(L) ∈ K0(X), in

some sense representing the intersection of the zero-section with itself. One’s first
guess would be that φ should send eK(L) to eH(L), as the latter represents the
same ‘geometry’ inside of H∗. However, this hypothesis is not compatible with φ
being a ring homomorphism. Recall from Proposition 25.14 that

eK(L1 ⊗ L2) = eK(L1) + eK(L2)− eK(L1)eK(L2),

whereas
eH(L1 ⊗ L2) = eH(L1) + eH(L2).

These formulas are incompatible.
So it cannot be that φ sends eK(L) to eH(L). However, it is guaranteed that

eK(L) must be sent to some algebraic expression involving eH(L). Indeed, this is
obviously so for the tautological bundle L → CP∞, since eH(L) is a generator of
H2(CP∞) and everything else in H∗(CP∞) is a polynomial in this generator; the
case for general line bundles then follows from naturality.

So we know that φ will send eK(L) 7→ f(eH(L)) for some f(x) ∈ Z[[x]]. Note
that when X is compact then sufficiently large powers of eH(L) will be zero, so in
practice f(eH(L)) is really just a polynomial in eH(L). Using a power series allows
us to treat all spaces X at once, without assuming some uniform bound on their
dimensions.

Let f(x) = α0 +α1x+α2x
2 + . . . be the expansion for f . Note that if L→ X is

a trivial bundle then both eK(L) and eH(L) are zero, and from this it follows that
α0 = 0. Next note that if φ is a ring homomorphism then we must have

f(eH(L1) + eH(L2)) = f(eH(L1 ⊗ L2))

= φ(eK(L1 ⊗ L2))

= φ(eK(L1) + eK(L2)− eK(L1)eK(L2))

= f(eH(L1)) + f(eH(L2))− f(eH(L1))f(eH(L2)).

This suggests that we’re looking for f(x) ∈ Z[[x]] such that

f(a+ b) = f(a) + f(b)− f(a)f(b).(27.1)

We can take two approaches to determine the coefficients of such an f .

Approach 1. Substitute f(x) =
∑
i αix

i into (27.1) to get

LHS = α1(a+ b) + α2(a+ b)2 + . . .

and

RHS = [α1a+ α2a
2 + . . . ] + [α1b+ α2b

2 + . . . ]

− [α1a+ α2a
2 + . . . ][α1b+ α2b

2 + . . . ].

By expanding and equating coefficients, we can try to determine the coefficients αi.
It turns out there is no equation determining α1, but looking at the coefficient of
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abn−1 yields nαn = −α1αn−1, or αn = −α1αn−1

n . So by induction αn = (−1)n−1 α
n
1

n! .
Note, in particular, this last equation: it shows that f cannot have integral coeffi-
cients, as we were orginally guessing! So we can only make things work if the target
of φ is Hev(−;Q).

We have been led to the conclusion f(x) = 1−e−α1x, and the reader may readily
check that this does indeed yield a power series f(x) satisfying (27.1).

Approach 2. In case you don’t like the “equating coefficients” approach, one can
also use some basic tools from differential equations to determine f . Recall that we
want f(a+b) = f(a)+f(b)−f(a)f(b). Define functions g and h by g(a, b) = f(a+b)
and h(a, b) = f(a) + f(b)− f(a)f(b). The partial derivatives are readily computed
to be

∂g

∂a
(a, b) = f ′(a+ b) and

∂h

∂a
(a, b) = f ′(a)− f ′(a)f(b).

If g(a, b) and h(a, b) are the same function then the above partial derivatives are
the same, so that f ′(a+ b) = f ′(a)− f ′(a)f(b). Evaluating at a = 0 gives the ODE

f ′(b) = f ′(0)[1− f(b)].

Setting y = f(x), this becomes the separable ODE
dy

dx
= f ′(0)(1− y), or

dy

1− y = f ′(0) dx.

Integrating both sides yields

− ln(1− y) = f ′(0)x+ C, or y = 1−De−f ′(0)x

where C and D are constants. Since f ′(0) = α1, we will write this solution as
f(x) = y = 1 − De−α1x. We did lose some information in the differentiation
process, so let’s make sure this works by plugging this formula back into (27.1). We
get

1−De−α1(a+b) = [1−De−α1a] + [1−De−α1b]− [1−De−α1a][1−De−α1b],

which reduces to
De−α1(a+b) = D2e−α1(a+b).

This implies D = D2, so D = 0 or D = 1. The case D = 0 is uninteresting to us (it
corresponds to f(x) = 1, and we have already noted that the constant term must
be zero for our application). So D = 1 and f(x) = 1− e−α1x.

We now comment on the fact that α1 seems to be able to take on any value
whatsoever. Note that the presence of the grading on H∗(X) immediately gives
rise to a collection of endomorphisms on this theory. Indeed, for any n ∈ Z write
ψn : H∗(X) → H∗(X) for the function that multiplies each Hi(X) by ni. This is
clearly a ring homomorphism, and if we are using rational coefficients then it is even
an isomorphism (provided n 6= 0). Note that with rational coefficients we actually
have maps ψq for any q ∈ Q.

So if we have a natural transformation φ : K∗(−) → H∗(−;Q)[t, t−1] we can
compose it with the natural automorphisms ψq to makes lots of other natural
transformations. We see that such a φ is far from unique. If we had a φ whose
associated power series f was f(x) = 1− e−α1x, then composing with φq gives one
with associated power series 1 − e−qα1x. This is why α1 could not be explicitly
determined.
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We can turn these observations around and use them to our advantage. Since
we can always compose with a ψq, we might as well do so in a way that simplifies
things as much as possible. In particular, if we have a φ with associated power
series f(x) = 1 − e−α1x then we can compose with ψα−1

1
to get one with power

series 1− e−x. We might as well do this, to simplify matters.

Let us summarize what has happened so far. We knew that φ, if it exists, must
send eK(L) to some power series in eH(L), for any line bundle L→ X. The different
equations for e(L1⊗L2) in K-theory versus singular cohomology then forced what
this power series must be: φ(eK(L)) = 1 − e−α1x|x=eH(L), for some α1 ∈ Q. We
then saw that we might as well assume α1 = 1, since by composing with a certain
“trivial” automorphism one can arrange for this.

So now we are looking at an imagined natural transformation φ that sends eK(L)
to 1 − e−x|x=eH(L) for any line bundle L → X. Recall that eK(L) = 1 − L∗, and
so φ(L∗) = e−x|x=eH(L). But eH(L∗) = −eH(L) (use that L ⊗ L∗ ∼= 1, and so
eH(L) + eH(L∗) = eH(1) = 0). So we have φ(L∗) = ex|x=eH(L∗) = ec1(L∗). Since
this must hold for any line bundle L, we might as well just write it as

φ(L) = ec1(L).(27.2)

We next claim that φ is completely determined by formula (27.2). Recall the
direct sum map j : (CP∞)×k → Grk(C∞) from Section 13.14, classifying the bundle⊕

i π
∗
i (L). Consider the diagram

K∗(CP∞ × · · · × CP∞)

φ

��

K0(Grk(C∞))

φ

��

j∗Koo

Hev(CP∞ × · · · × CP∞;Q) Hev(Grk(C∞);Q).
j∗Hoo

We know that j∗γ ∼= π∗1(L)⊕ · · · ⊕ π∗k(L), and therefore we see that

j∗H(φ(γ)) = φ(j∗Kγ) =

k∑
i=1

φ(π∗i (L)) =

k∑
i=1

π∗i (φ(L)) =

k∑
i=1

eπ
∗
i (c1(L)).

Clearly this expression is invariant under the action of Σk, and we have said pre-
viously that j∗H maps its domain isomorphically onto the subring of Σk-invariants.
Thus, φ(γ) is determined by this formula.

Let xi = π∗i (c1(L)). The power sum xr1 + · · ·+ xrk can be written uniquely as a
polynomial Sr(σ1, . . . , σk) in the elementary symmetric functions of the xi’s. Here
Sr is called the rth Newton polynomial; see Appendix D for a review of these.
The first few Newton polynomials are

S1 = σ1, S2 = σ2
1 − 2σ2, S3 = σ3

1 − 3σ1σ2 + 3σ3.

If E → X is a vector bundle then define sr(E) = Sr(c1(E), . . . , ck(E)) ∈ H2r(X),
where k = rankE. This is a characteristic class for bundles, but it doesn’t seem to
have a common name. We have seen that

φ(γ) =

∞∑
k=0

1

k!
sk(γ).
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But if f : X → Grk(C∞) is a classifying map for E then the commutative diagram

K0(X)

φ

��

K0(Grk(C∞))

φ

��

f∗oo

Hex(X;Q) Hev(Grk(C∞);Q)
f∗oo

gives

φ(E) = φ(f∗(γ)) = f∗(φ(γ)) = f∗
( ∞∑
k=0

sk(γ)
k!

)
=

∞∑
k=0

sk(f∗γ)
k! =

∞∑
k=0

sk(E)
k! .

We have, at this point, reasoned as follows. IF there is a natural transformation
of rings φ : K0(−) → Hev(−;Q)[t, t−1] THEN there is one that is given by the
above formula. One can turn this around, by starting with the above formula and
proving that it is a natural transformation of rings. This is not hard, and we will
leave it to the reader. This natural transformation is called the Chern character,
and is usually denoted ch: K0(−)→ Hev(−,Q). The defining formula is

(27.3) ch(E) =

∞∑
k=0

1

k!
sk(E).

Exercise 27.4. Prove directly from the properties of Chern classes that the defi-
nition from (27.3) gives a ring homomorphism K0(X)→ Hev(X;Q).

Since ch is a natural transformation, it of course maps K̃0(X) into H̃ev(X;Q).
Replacing X with ΣX and shifting indices, we get

ch: K−1(X)→ Hodd(X;Q).

By periodicity we might as well regard the Chern character as giving maps

ch: Kn(X)→ ⊕pHn+2p(X;Q).

Perhaps more reasonably, we can regard ch as a map of graded rings K∗(X) →
H∗(X)[t, t−1] where t has degree 2.

Theorem 27.5. The induced maps Kn(X) ⊗ Q → ⊕pHn+2p(X;Q) are isomor-
phisms, for all CW-complexes X.

Proof. We have a natural transformation between two cohomology theories, so it
is sufficient just to check that we have an isomorphism when X is a point. The
isomorphism for general spaces then follows formally using long exact sequences,
homotopy invariance, direct limits, etc.

When s ≥ 0 the map K−s(pt)→ ⊕pH−s+2p(pt;Q) is the same, via the suspen-
sion isomorphism, as K̃0(Ss) → H̃ev(Ss;Q). When s is odd both the domain and
codomain are zero, and when s is even the domain is a copy of Z generated by β

s
2

(by Theorem 18.22). Lemma 27.6 below (which is just a calculation) confirms that
ch is a rational isomorphism in this case.

It remains to prove that ch: Ks(pt)→ ⊕pHs+2p(pt;Q) is a rational isomorphism
when s > 0. If s is odd then both domain and codomain are zero. When s is even
the generator of Ks(pt) is β−

s
2 , and the Chern character must map this to the

multiplicative inverse of ch(β
s
2 ). We have already analyzed this element, and it

follows immediately that ch is a rational isomorphism in this case as well. �
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Lemma 27.6. For any n ≥ 1, the image of ch: K̃0(S2n) → H̃ev(S2n;Q) is pre-
cisely H̃ev(S2n;Z).

Proof. Recall from Theorem 18.22 that K̃0(S2n) is generated by β×n where β =

1−L ∈ K̃0(S2). We can compute that ch(β) = 1−ch(L) = 1−(1+c1(L)) = −c1(L),
but this is a generator of H2(S2;Z). Multiplicativity of the Chern character gives

ch(β×n) =
(
ch(β)

)×n
= c1(L)×n,

but the nth external product of a generator for H2(S2;Z) gives a generator of
H2n(S2n;Z). This completes the proof. �

Of course a natural transformation of cohomology theories immediately extends
to a natural transformation defined on pairs, using the standard techniques. If
(X,A) is a pair let Cj denote the mapping cone of the inclusion j : A ↪→ X, and
let {Uj , Vj} be the open cover of Cj where Uj is the mapping cylinder of j and Vj
is the top half of the cone (so that Uj ' X, Vj ' ∗, and Uj ∩ Vj ' A). Note that
all of these are functorial in (X,A). We have the zig-zag of natural isomorphisms

K∗(X,A)
∼=−→ K∗(Uj , Uj ∩ Vj)

∼=←− K∗(Cj , Vj)
∼=−→ K∗(Cj , pt) = K̃∗(Cj)

and likewise for H∗(−;Q)[t, t−1]. Starting with our existing map ch: K̃∗(Cj) →
H∗(Cj ;Q)[t, t−1] we define ch: K∗(X,A) → H∗(X,A;Q)[t, t−1] to be the unique
map that is compatible with the above isomorphisms.

This raises the following interesting question. Suppose E• is a complex of vec-
tor bundles on X that is exact on A. Then ch([E•]) is a well-defined element of
H∗(X,A;Q). How does one describe what this element is? We will return to this
question in the future. ?????

The existence of the Chern character, as a multiplicative natural transforma-
tion between cohomology theories, immediately has an interesting and unexpected
consequence:

Proposition 27.7. If X is any (2n− 1)-connected cofibrant space and E → X is
a complex vector bundle then cn(E) ∈ H2n(X;Z) is a multiple of (n− 1)!.

Proof. We first verify the result when X = S2n. Note that if E → S2n is a complex
vector bundle then ch(E) = 1

n! · sn(E), by definition of the Chern character. The
Newton identities from Lemma D.1 show that sn(E) = (−1)n+1n · cn(E), since
in this case c1(E), . . . , cn−1(E) must all vanish. By Lemma 27.6 we know that ch

takes its image in H2n(S2n;Z), and so ncn(E)
n! is integral; that is, cn(E) is a multiple

of (n− 1)!.
Now letX be any (2n−1)-connected cofibrant space. ReplacingX by a homotopy

equivalent space, we can assume X has a cell structure with no cells of degree
smaller than 2n; that is, the 2n-skeleton is a wedge of 2n-spheres. Consider the
cofiber sequence ∨S2n ↪→ X → C where C is the cofiber, and the induced maps in
cohomology:

· · · ⊕K̃0(S2n)oo

ch
��

K̃0(X)oo

ch
��

K̃0(C)oo

ch
��

· · ·oo

· · · ⊕H̃ev(S2n;Q)oo H̃ev(X;Q)
j∗oo H̃ev(C;Q)oo · · ·oo
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Given a complex vector bundle E → X we know by the commutativity of the
diagram that j∗(chn(E)) lies in ⊕H̃ev(S2n;Z). But since H2n(C;Q) = 0 the map
j∗ is injective in degree 2n, and it is easy to see that (j∗)−1(H2n(∨S2n;Z)) =
H2n(X;Z) (if a cellular 2n-cochain takes integral values on all of the 2n-cells, it is
integral). So chn(E) is an integral class. The same computation as in the previous
paragraph shows that chn(E) = ± cn(E)

(n−1)! , and this completes the proof. �

The space CP 1 is a complex manifold whose underlying topological manifold is
S2. Can any other spheres be given the structure of a complex manifold? Clearly
this is only interesting for the even spheres. A simple corollary of the previous
result rules out almost all possibilities:

Corollary 27.8. If n ≥ 4 then there is no complex structure on S2n. Even more,
there is no complex vector bundle whose underlying real bundle is the tangent bundle
TS2n (said differently, the tangent bundle TS2n does not admit a complex structure).

Proof. The second statement clearly implies the first. Let T = TS2n and suppose
that T has a complex structure. By Proposition 27.7 we know that cn(T ) is a
multiple of (n− 1)! in H2n(S2n;Z). But cn(T ) is the Euler class of the underlying
real bundle, and therefore it is twice a generator since χ(S2n) = 2. This implies
that 2

(n−1)! is an integer, which clearly cannot happen if n ≥ 4. �

Remark 27.9. It is also known that S4 cannot have a complex structure on its
tangent bundle (and is therefore not a complex manifold); we will give a proof in
Example 28.16 below, using the Todd genus. So the last remaining sphere we have
not yet discussed is S6.

It turns out that the tangent bundle to S6 does admit a complex structure—
one says that S6 is an almost complex manifold . The construction is outlined in
Exercise 27.12. Whether or not S6 admits the structure of complex manifold is a
famous open problem.

We close this section with an example showing how the Chern character can help
us carry out the calculation of K-groups. This example will play an important role
when we study the Atiyah-Hirzebruch spectral sequence.

Example 27.10. Recall that CP 2 is the mapping cone on the Hopf map η : S3 →
S2. Since the suspension of η is 2-torsion (π4(S3) ∼= Z/2), a choice of null-homotopy
for η ◦ 2 gives a map f : Σ3RP 2 → S3 which coincides with η when restricted to
the bottom cell. Let X be the cofiber of f ; this is a cell complex with a 3-cell, a
5-cell, and a 6-cell. The 5-skeleton of X is ΣCP 2. Our goal will be to compute
the groups K̃∗(X). [Note: This choice of X, which seemingly has come out of
nowhere, is motivated by the fact that this is in some sense the smallest space for
which K̃∗(X) and H̃∗(X) have different torsion subgroups—see Remark 34.20 for
a deeper perspective.]

There are two cofiber sequences that we can exploit: S3 ↪→ X → Σ4RP 2 and
ΣCP 2 ↪→ X → S6. We leave it to the reader to compute that K̃0(RP 2) = Z/2
and K1(RP 2) = 0, using that RP 2 is the cofiber of S1 2−→ S1. Using this, the first
cofiber sequence gives

0 K̃0(S3) K̃0(X)oo Z/2oo Zoo K1(X)oo 0oo
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(recall that K1(X) = K−1(X) by periodicity). Note that we immediately deduce
K1(X) ∼= Z, and K̃0(X) is either 0 or Z/2. However, it is not clear how to analyze
the map Z→ Z/2. The second cofiber sequence gives

0 K̃0(X)oo Zoo Z2δKoo K1(X)oo 0oo

where the labelled map is the connecting homomorphism δK : K̃−1(ΣCP 2) →
K̃0(S6). Again, we are left with the task of determining this map; agreement
with the previous (partial) calculation demands that the cokernel either be 0 or
Z/2, and we need to determine which one. The good news is that because the
domain and target are both torsion-free, there is a chance that the Chern character
will give us the information we need. We will examine the commutative square

Z2
∼= // K̃−1(ΣCP 2)

δK //
��

ch
��

K̃0(S6)
��
ch
��

∼= // Z

H̃odd(ΣCP 2;Q)
δH // H̃ev(S6;Q).

The two Chern character maps are injective because they are rational isomorphisms
and the domains are torsion-free.

Recall that K0(CP 2) = Z[Y ]/(Y 3) where Y = 1 − L. Let u be the standard
generator for H2(CP 2), so that c1(L) = −u. We have

ch(Y ) = 1− ch(L) = 1− (1− u+ u2

2 ) = u− u2

2 , ch(Y 2) = ch(Y )2 = u2.

Write Y1 and Y2 for the suspensions of Y and Y 2, lying in K̃1(ΣCP 2); likewise,
write u1 and u2 for the suspensions of u and u2 in H∗(ΣCP 2;Z). Compatibility of
the Chern character with suspension shows that

ch(Y1) = u1 − u2

2 , ch(Y2) = u2.

We must next compute the images of these classes under δH . But this is easy
from the long exact sequence for ΣCP 2 ↪→ X → S6: one finds that δ(u1) = 0 and
δ(u2) is twice a generator in H6(S6). So the subgroup 〈δH(ch(Y1)), δH(ch(Y2))〉 ⊆
H∗(S6;Q) equals the subgroup H6(S6;Z) ⊆ H6(S6;Q). Finally, recall from Propo-
sition 27.7 that the image of ch: K̃0(S6)→ Hev(S6;Q) is also equal to H6(S6;Z).
It follows that δK is surjective, and so the cokernel of δK is zero. This completes
our calculation: K̃0(X) = 0.

To appreciate the significance of this example, note that H̃ev(X) ∼= Z/2 (concen-
trated in degree 6) and H̃odd(X) ∼= Z (concentrated in degree 3). The corresponding
K-groups are K̃0(X) ∼= 0 and K̃1(X) ∼= Z. It is a general fact that all torsion-free
summands inH∗(X) will also appaear inK∗(X), as this follows from Theorem 27.5.
But the present example demonstrates that the torsion subgroups of H∗(X) and
K∗(X) can be different.

Exercise 27.11. If one is willing to work stably, there is a map f : S4 → CP 2

whose cofiber is Σ−1X. The induced map f∗ : K̃0(CP 2) → K̃0(S4) is the map
Z2 → Z from the above example. Use the Chern character to give an alternative
argument that this map is nonzero (“alternative” in the sense of not just quoting
what we have already done, though the steps will be very similar).
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◦ Exercises ◦

Exercise 27.12. In this exercise you will prove that TS6 may be given a complex
structure—that is, that S6 is an almost complex manifold. The construction will
make use of the R-algebra O of octonions. This algebra is not associative but it is
alternative: a(ab) = (aa)b an (ab)b = a(bb) for all a and b. The algebra comes with
an involution x 7→ x∗ that is R-linear and satisfies (xy)∗ = y∗x∗. For any x ∈ O
the element xx∗ is a nonnegative real multiple of the identity element 1, and is zero
only when x = 0. Define ||x|| =

√
xx∗

Define the real part of an octonion by Re(x) = x+x∗

2 , and the imaginary part by
Im(x) = x−Re(x). Note that Re(x∗) = Re(x) for all x. Two important properties
are Re(xy) = Re(yx) and Re(x(yz)) = Re((xy)z) for all x, y, z ∈ O. [Note that this
does not imply, for example, that Re(a(bc)) = Re(a(cb)).]
(a) Define a bilinear form on O by 〈x, y〉 = Re(xy∗). Check that this is symmetric

and positive definite, and the associated norm is || − ||. If p is an imaginary
unit vector check that 〈px, py〉 = 〈x, y〉 for all x, y ∈ O.

(b) Verify that if x ∈ O is an imaginary unit vector then x2 = −1.
(c) Regard S6 as the unit sphere inside the imaginary part of O. Define J : TS6 →

TS6 by Jp(v) = pv. Check that this is well-defined: if p ∈ S6 and v ∈ TpS6

then pv ∈ TpS
6 as well. (Hint: Given that 〈1, v〉 = 0 = 〈p, v〉 prove that

〈1, pv〉 = 0 = 〈p, pv〉.)
(d) Verify that J2 = −Id, so that J gives a complex structure on the tangent

bundle to S6.

28. The topological Grothendieck-Riemann-Roch Theorem

As we present it here, the Grothendieck-Riemann-Roch (GRR) Theorem re-
ally has two components: one that is purely topological, and one that is algebro-
geometric. The topological part is a comparison between the complex-oriented
structures on K-theory and singular cohomology, and gives precise formulas for
how they line up under the Chern character. From the perspective that we have
adopted in these notes, this topological GRR theorem is fairly easy. The algebro-
geometric component, on the other hand, is of a somewhat different nature; in our
presentation it is a comparison between algebraic and topologicalK-theory, showing
that certain topologically-defined maps are compatible with purely algebraic ones
that at first glance appear quite different. This second part of the GRR theorem
lets us see that certain algebraic constructions actually give topological invariants,
whereas the first part leads to precise (although often complicated) topological
formulas for these invariants.

In the present section we discuss the topological GRR theorem and some of its
consequences. The next section will deal with the algebro-geometric version.

28.1. The Todd class. We have seen that for a line bundle L→ X one has

ch(eK(L)) = (1− e−x)|x=eH(L).
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The power series 1− e−x is a multiple of x, which means that the right-hand-side
can be written as eH(L) multiplied by a ‘correction factor’:

ch(eK(L)) = eH(L) ·
[1− e−x

x

]∣∣∣
x=eH(L)

.

It is useful to have a name for this correction factor; for historical reasons, the name
is actually attached to its inverse. We define the Todd class of L to be

Td(L) =
( x

1− e−x
)∣∣∣
x=c1(L)

=
(
1− x

2 + x2

6 − x3

24 + · · ·
)∣∣∣
x=c1(L)

=
(

1 + x
2 + x2

12 − x4

720 + · · ·
)∣∣∣
x=c1(L).

The coefficients in this power series are related to Bernoulli numbers, and we refer
the reader to Appendix C for a review of the basics about these. The Bernoulli
numbers are defined by x

ex−1 =
∑
i
Bi
i! x

i, and so we have

Td(L) =
∑
i

(−1)i Bii! c1(L)i.

Next observe that if E → X is a sum of line bundles L1 ⊕ · · · ⊕ Lk then

ch(eK(E)) = ch(eK(L1) · · · eK(Lk))

= ch(eK(L1)) · · · ch(eK(Lk))

= [eH(L1) · · · eH(Lk)] ·
[1− e−x

x

]∣∣∣
x=c1(L1)

· · ·
[1− e−x

x

]∣∣∣
x=c1(Lk)

= eH(E) ·
∏
i

[1− e−x
x

]∣∣∣∣
x=c1(Li)

.

It therefore makes sense to define Td(E) to be the inverse of the product in the
final formula. More generally, if E is a bundle of rank k then the Todd class of E
is

Td(E) =

k∏
i=1

( xi
1− e−xi

)
where ci(E) = σi(x1, . . . , xk). In other words, take the expression on the right
and write each homogeneous piece as a polynomial in the elementary symmetric
functions. Then replace those symmetric functions with the Chern classes of E,
and one gets the Todd class. For example, if rankE = 2 then we would expand(

1 + x
2 + x2

12 − x4

720 + · · ·
)
·
(
1 + y

2 + y2

12 −
y4

720 + · · ·
)

to get

1 + 1
2 (x+ y) + 1

12 (x2 + y2) + 1
4xy + x2y+xy2

24 − x4+y4

720 + x2y2

144 + · · ·
and then write this as

1 + 1
2σ1 + 1

12 (σ2
1 − 2σ2) + 1

4σ2 + 1
24 (σ1σ2) + 1

720 (−σ4
1 + 4σ2

1σ2 + 3σ4
2).

Then replace each σi with ci(E) to get the formula for Td(E).
The first few terms of the Todd class of an arbitrary bundle are

(28.2) Td(E) = 1 +
c1
2

+
c21 + c2

12
+
c1c2
24

+
−c41 + 4c21c2 − c4 + c1c3 + 3c22

720
+ · · ·
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The homogeneous components of this series are called the Todd polynomials.
The fourth Todd polynomial, seen as the last term in the formula above, gives a
sign of the growing complexity—particularly in the size of the denominators.

We will have more to say about computing the Todd class in Section 28.17 below.
But let us now turn to the study of how it measures the comparison between K-
theory and singular cohomology. As we have remarked above, one should think of
the Todd class as a ‘correction factor’. The most basic formula where it enters is

ch(eK(E)) = eH(E) · Td(E)−1.

In our above analysis we showed this when E is a sum of line bundles, but the
general case readily follows from this one using the splitting principle. A very
similar formula, which actually implies the above one, is the following:

Proposition 28.3. Let E → X be a complex vector bundle. Then

ch(UKE ) = UHE · Td(E)−1.

That is to say, applying the Chern character to a K-theoretic Thom class does
not quite give the H-theoretic Thom class—one needs the Todd class correction
factor. Note, by the way, that it does not matter whether we write UHE · Td(E)−1

or Td(E)−1 ·UHE in the above result, since both the Thom class and the Todd class
are concentrated in even degrees.

Proof. The proof has four steps:

Step 1: If the result is true for sums of line bundles, it is true for all bundles.
Step 2: If the result is true for line bundles, it is true for all sums of line bundles.
Step 3: If the result is true for the tautological line bundle over CP∞, it is true
for all line bundles.
Step 4: The result is true for the tautological line bundle L→ CP∞.

Step 1 is a direct consequence of the splitting principle. Indeed, if E → X is a
line bundle then choose a map p : X̃ → X such that p∗E is a sum of line bundles and
such that p∗ induces monomorphisms in both singular cohomology and K-theory.
If Ẽ = p∗E, the claim follows at once from the commutative square

K0(E,E − 0)
��

��

ch // H∗(E,E − 0)
��

��
K0(Ẽ ,Ẽ − 0)

ch // H∗(Ẽ ,Ẽ − 0).

Step 2 follows from the fact that UL1⊕L2⊕···⊕Lr = UL1
⊗ UL2

⊗ · · · ⊗ ULr and
the fact that ch is multiplicative. Step 3 follows at once from naturality and the
fact that every line bundle is pulled back from the tautological line bundle.

So we are reduced to Step 4, which is a calculation. Consider the zero section
ζ : CP∞ ↪→ L and the composite of natural maps

H∗(L,L− 0)
j∗−→ H∗(L)

ζ∗−→ H∗(CP∞).

Recall that this composite sends UL to the Euler class eH(L). The map ζ∗ is an
isomorphism by homotopy invariance, and the map j∗ is also an isomorphism: the
latter follows from the long exact sequence for the pair (L,L− 0) together with the
fact that as spaces L− 0 ∼= C∞ − 0 and is therefore contractible.
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Consider the two elements ch(UKL ) and UHL ·Td(L)−1 in H∗(L,L− 0). Applying
the composite ζ∗ ◦ j∗ sends the first to ch(eK(L)), by naturality. Likewise, the
second is sent to eH(L) · Td(L)−1. We have already computed that these two
images are the same (indeed, this is how we started off this section); since ζ∗ ◦ j∗
is an isomorphism this means ch(UKL ) = UHL · Td(L)−1. �

28.4. The Grothendieck-Riemann-Roch Theorem for embeddings. Let
j : X ↪→ Y be an embedding of complex manifolds of codimension c. We have
seen that one can construct a push-forward map j! : K∗(X)→ K∗+2c(Y ) and like-
wise in any complex-oriented cohomology theory (for example, in H∗). We will
take advantage of Bott periodicity to write j! as a map K0(X)→ K0(Y ).

Consider the square

K0(X)
j! //

ch

��

K0(Y )

ch

��
Hev(X;Q)

j! // Hev(Y ;Q).

This square does not commute; while this might seem strange, the point is just
that the j! maps are defined using Thom classes and ch doesn’t preserve these. But
since ch almost preserves Thom classes, up to a correction factor, it follows that
the above square almost commutes—up to the same factor. The precise result is
as follows:

Proposition 28.5. Let j : X ↪→ Y be an embedding of complex manifolds. Then
for any α ∈ K0(X) one has

ch(j!α) = j!(Td(NY/X)−1 · ch(α)).

Proof. Simply consider the diagram

K0(X) //

ch

��

K0(N,N − 0)

ch

��

K0(Y, Y −X)

ch

��

∼=oo // K0(Y )

ch

��
Hev(X) // Hev(N,N − 0) Hev(Y, Y −X) //∼=oo Hev(Y )

where all singular cohomology groups have rational coefficients. The left horizon-
tal arrows are the Thom isomorphism maps, and so the leftmost square does not
commute; but the other two squares do. The compositions across the two rows are
the pushforward maps j! in K-theory and singular cohomology, respectively. The
desired result is now an easy application of Proposition 28.3. �

The next result records how the Chern character behaves on fundamental classes:

Corollary 28.6. If j : X ↪→ Y is an embedding of complex manifolds then
ch([X]K) = j!(Td(NY/X)−1) = [X]H + (higher degree terms).

Proof. Recall that [X]K = j!(1), and so the first equality is just Proposition 28.5
applied to α = 1. The second equality then follows directly from the fact that
the Todd class of a bundle has the form 1 + higher degree terms together with
j!(1) = [X]H . �
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Example 28.7. Let j : Z ↪→ CPn be a hypersurface of degree d, and consider the
GRR square

K0(Z)
j! //

ch

��

K0(CPn)

ch

��
Hev(Z;Q)

j! // Hev(CPn;Q).

Recall that K0(CPn) = Z[y]/(yn+1) where y = 1 − L = [CPn−1]K , and that
H∗(CPn;Q) = Q[x]/(xn+1) where x = [CPn−1]H . One has

ch(y) = ch(1− L) = ch(1)− ch(L) = 1− ec1(L) = 1− e−x.
We will determine a formula for [Z]K by using the GRR statement ch([Z]K) =

j!(Td(N)−1). The normal bundle is N = j∗
(
(L∗)⊗d

)
. So

Td(N)−1 = j∗
(

1− e−dx
dx

)
= j∗

(
1− dx

2 + d2x2

6 − d3x3

24 + · · ·
)
.

Recall that for any α one has j!(j∗(α)) = j!(j
∗(α) · 1) = α · j!(1), and of course we

know that j!(1) = dx. We therefore conclude that

ch([Z]K) = dx ·
(
1− dx

2 + d2x2

6 − d3x3

24 + · · ·
)

= 1− e−dx.
We can now work backwards to determine [Z]K . If we write

[Z]K = a1y + a2y
2 + · · ·+ any

n

then

1− e−dx = ch([Z]K) = a1(1− e−x) + a2(1− e−x)2 + · · ·+ an(1− e−x)n.

Let α = e−x; then to determine the ai’s we need to expand 1 − αd in terms of
powers of 1− α. To do this, simply write

1− αd = 1− (1− (1− α))d =

d∑
k=1

(−1)k−1
(
d
k

)
(1− α)k.

We conclude [Z]K = dy −
(
d
2

)
y2 +

(
d
3

)
y3 − · · · .

Of course, we have seen this calculation before in a slightly different form—
see Example 23.8. But notice that GRR allowed us to carry it through without
knowing anything about [Z]K , whereas before we relied on the connection between
K-theoretic fundamental classes and resolutions (and our ability to write down an
appropriate resolution in this case).

28.8. The general GRR theorem and some applications. One can produce a
version of the Grothendieck-Riemann-Roch theorem that works for arbitrary maps
f : X → Y between compact, complex manifolds, not just embeddings. To do this,
we first must extend our definition of pushforward maps. Note that for large enough
N there is an embedding j : X ↪→ CN , and therefore the map f can be factored as

Y × CN

π
����

X

f×j
;;

f // Y
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where π is projection onto the first factor. Let B ⊆ CN be a large disk that contains
j(X). Now consider the composition

K0(X)
j!−→ K0(Y × CN , Y × (CN −B)) ∼= K̃0(Y+ ∧ S2N ) ∼= K−2N (Y ).

Define this composite to be f!. It requires some checking to see that this is inde-
pendent of the choice of factorization of f .

Example 28.9. It is interesting to take Y = ∗. Then the pushforward f! is a map
K0(X) → K−2d(∗) ∼= Z, so f!(1) gives an integer-valued invariant of the complex
manifold X. It is called the Todd genus of X, and we will denote it Td-genus(X).

Example 28.10. We can duplicate the above definition of f! in any complex-
oriented cohomology theory, and therefore we get an associated genus for complex
manifolds (taking values in the coefficient ring of the theory). For singular coho-
mology let us call this the H-genus.

Note that if f : X → Y then f! is a map

f! : H
i(X)→ Hi+2(dimY−dimX)(Y ).

If Y is a point then f! sends Hi(X) to Hi−2 dimX(pt), and so this is the zero map
unless i = 2 dimX. In that dimension the cohomology of X is Z, generated by [∗].
But recall that [∗] = j!(1) for any inclusion j : ∗ ↪→ X, and so

f!([∗]) = f!(j!(1)) = (f ◦ j)!(1) = id!(1) = 1.

We have therefore shown that f! : H
∗(X) → H∗(pt) sends an element α ∈ H∗(X)

to the coefficient of [∗] appearing in its 2 dim(X)-dimensional homogeneous piece.
Usually it will be convenient to just say “f!(α) is the top-dimensional piece of α”.

As far as the H-genus is concerned, recall that it equals f!(1) for f : X → ∗. But
this will be zero unless X = ∗, in which case it is 1. So

H-genus(X) =

{
0 if dimX > 0,

#X if dimX = 0.

This is somewhat of a silly invariant, but it is what the theory gives us.

For the proof of our general version of GRR we will need to know the Todd genus
of CPn, so let us compute this next:

Example 28.11 (Todd genus of CPn). Recall that Td(E ⊕ F ) = Td(E) · Td(F ),
and that 1⊕ TCPn ∼= (n+ 1)L∗. So

Td(TCPn) = Td(TCPn) · Td(1) = Td
(
(n+ 1)L∗

)
=
[
Td(L∗)

]n+1
.

Recall that c1(L∗) = [CPn−1] ∈ H2(CPn). Call this generator x, for short. Then

Td(TCPn) =
( x

1− e−x
)n+1

=
(

1 +
x

2
+
x2

12
− x4

720
+ · · ·

)n+1

.

Let’s look at some examples. When n = 1 we have x2 = 0 and so Td(TCP 1) =
1 + x. When n = 2 we have x3 = 0 and

Td(TCP 2) =
(

1 + x
2 + x2

12

)3

= 1 + 3
2x+ x2.

Finally, for n = 3 we have x4 = 0 and

Td(TCP 3) =
(

1 + x
2 + x2

12

)4

= 1 + 2x+ 11
6 x

2 + x3.
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One discernible pattern in these polynomials is that the leading coefficient is al-
ways 1. This is an amusing exercise that we leave to the reader. It shows that
Td-genus(CPn) = 1 for all n.

Exercise 28.12. Complete the above example by proving that the coefficient of
xn in

(
x

1−e−x
)n+1 is equal to 1, for all n. One method is to interpret the coefficient

as a residue:
Resx=0

(
1

(1−e−x)n+1

)
= 1

2πi

∫
C

1
(1−e−x)n+1 dx

where C is a small counterclockwise circle around the origin. Use the substitution
z = 1− e−x to convert this to a different residue that is easily computed. You will
need to convince yourself that the mapping x 7→ 1− e−x takes C to another small
counterclockwise loop around the origin.

Exercise 28.13. Let Z ↪→ CPn be a smooth hypersurface of degree d. Show that

Td-genus(Z) = d−
(
d
2

)
+
(
d
3

)
− · · ·+ (−1)n

(
d
n

)
.

Conclude that if d ≤ n then Td-genus(Z) = 1.

We now state the general GRR theorem:

Theorem 28.14 (Grothendieck-Riemann-Roch, full version). Let X and Y be com-
pact, complex manifolds and let f : X → Y be a map. Then in the square

K0(X)
f! //

ch

��

K0(Y )

ch

��
Hev(X;Q)

f! // Hev(Y ;Q).

one has
ch(f!α) · Td(TY ) = f!(ch(α) · Td(TX))

for all α ∈ K0(X), where TX and TY are the tangent bundles of X and Y .

Exercise 28.15. Check that when X ↪→ Y is an embedding then the above version
of GRR is equivalent to the version given in Proposition 28.5.

Proof of Theorem 28.14. The proof is via the steps listed below. We will outline
arguments in each case, but leave some of the details to the reader.

Step 1: The result is true when f is an embedding.
Step 2: The result is true when f is CPn → ∗.
Step 3: The result is true when f is the projection Y ×CPn → Y , for any compact
complex manifold Y .
Step 4: The result is true in general.

Step 1 was handled in Proposition 28.5. Step 2 is just a computation, where
one computes both sides of the GRR formula and sees that they are the same.
Use that K0(CPn) is generated by the classes [CP i]. For the left side of GRR use
that [CP i] is mapped to 1 via f!, as Td-genus(CP i) = 1. For the right side use
that ch([CP i]) = (1− e−x)n−i and compute that the coefficient of xn in the series
(1 − e−x)n−i ·

(
x

1−e−x
)n+1 is equal to 1. For this final piece use a method similar

to what we did in Exercise 28.12 above.
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For Step 3 consider the product map K0(Y ) × K0(CPN ) → K0(Y × CPN ).
We claim that this is an isomorphism, for any CW-complex Y . Indeed, consider
the functors (X,A) 7→ K∗(X,A) ⊗ K0(CPN ) and (X,A) 7→ K∗(X × CPN , A ×
CPN ). Our product map gives a natural transformation from the first to the
second, and both functors are generalized cohomology theories (in the second case
this is automatic, but in the first case this uses that K0(CPN ) is free and therefore
flat). One readily checks that the comparison map is an isomorphism when (X,A) =
(pt, ∅), and so it follows that it is an isomorphism for all CW-pairs (X,A).

To complete Step 3 it now suffices to verify the GRR formula on classes of the
form α = (p1)∗(β) · (p2)∗(γ) where β ∈ K0(Y ), γ ∈ K0(CPN ), and p1 and p2 are
the projections of Y × CPN onto Y and CPN , respectively. Use the diagram

Y × CPN
p2 //

p1

��

CPN

π1

��
Y

π2 // ∗
and the formulas

(p1)!

[
p∗1β · p∗2γ

]
= β · (p1)!(p

∗
2γ) = β · π∗2

(
(π1)!γ

)
(as well as the analog of this in singular cohomology), together with Step 2.

Finally, for Step 4 factor f : X → Y as X j−→ Y × CPN π−→ Y where j is an
embedding and π is projection. Use the diagram

K0(X)
j! //

ch

��

K0(Y × CPN )

ch
��

π! // K0(Y )

ch

��
H∗(X;Q)

j! // H∗(Y × CPN ;Q)
π! // H∗(Y ;Q),

where the horizontal composites are f!. We established GRR for the two squares, by
Steps 1 and 3. Deduce the general GRR by putting these two squares together. �

To see one example of GRR, consider the case Y = ∗. Here the GRR the-
orem says ch(f!(1)) = f!(Td(TX)). We will compute both sides independently,
and then see what information this theorem is giving. On the left-hand-side,
f!(1) = Td-genus(X) · 1 ∈ K0(∗) and so ch(f!(1)) = Td-genus(X) · 1 ∈ H0(pt;Q).

To analyze the right-hand-side we recall from Example 28.10 above that
f! : H

ev(X) → Hev(pt) sends a class α to its top-dimensional piece (the compo-
nent in dimension 2 dimX). So GRR says that

Td-genus(X) · [∗] = top-dimensional piece of Td(TX).

One of the surprises here is that the right-hand-side is not a priori an integer
multiple of [∗]: recall that the definition of the Todd class contains complicated
denominators. The resulting integrality conditions can lead to some nonexistence
results in topology, as demonstrated in the following example.

Example 28.16. We claim that there is no complex manifold whose underlying
topological manifold is S4; said differently, the space S4 cannot be given a complex
structure. If S4 were a complex manifold then it would have a Todd genus, which
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we know will be an integer. But GRR tells us that the Todd genus is also the top-
dimensional component of Td(T ), where T denotes the complex tangent bundle
of our fictitious complex manifold. But c1(T ) = 0 because H2(S4) = 0, and
c2(T ) = 2[∗] because c2(T ) is the Euler class and χ(S4) = 2. Plugging into (28.2)
we find that Td(T ) = 1 + c2

12 and so the top-dimensional piece is 1
6 . As this is not

an integer, we have arrived at a contradiction.
A similar argument shows that S4n is not a complex manifold for any n, although

to follow through with this we will need to get better at computing terms in the
Todd class. We return to this problem in Proposition 28.23 below.

28.17. Computing the Todd class. Let a1, a2, . . . be indeterminates and write
Q(x) = 1 + a1x+ a2x

3 + · · · . Let
Q(x) = Q(x1, . . . , xn) = Q(x1)Q(x2) · · ·Q(xn)

where the xi’s are formal variables of degree 1. This gives us a power series that
is invariant under permutations of the xi’s, and so it may be written as a power
series in the elementary symmetric functions σi = σi(x1, . . . , xn), 1 ≤ i ≤ n. Our
goal will be to give a formula, in terms of the ai’s, for the coefficient of any given
monomial m = σm1

1 · · ·σmnn .
Notice that the degree of m is m1 + 2m2 + · · ·+ nmn; call this number N . The

coefficient of m in Q(x) will not involve any terms ai for i > N , so we might as
well just assume that ai = 0 for i > N . In this case write

Q(x) = 1 + a1x+ · · ·+ aNx
N = (1 + t1x)(1 + t2x) · · · (1 + tNx)

as a formal factorization of Q(x) (or if you like, we are working in the algebraic
closure of Q(a1, . . . , an)). Then

Q(x) =

N∏
i=1

Q(xi) =

N∏
i=1

N∏
j=1

(1 + tjxi).

The evident next step is to reverse the order of the products, so let

Qj =

N∏
i=1

(1 + tjxi) = 1 + tjσ1 + t2jσ2 + · · ·+ tNj σN

and observe that Q(x) =
∏N
j=1Qj . Consider the process of multiplying out all

factors in

(1 + σ1t1 + · · ·+ σN t
N
1 ) · (1 + σ1t2 + · · ·+ σN t

N
2 ) · · · (1 + σ1tN + · · ·+ σN t

N
N ).

The first few terms are

1 + σ1[t1] + σ2[t21] + σ2
1 [t1t2] + σ3[t31] + σ1σ2[t1t

2
2] + σ3

1 [t1t2t3] + · · ·
where the bracket notation means to sum the terms in the ΣN -orbit of the monomial
inside the brackets (see Appendix D). Each of these brackets is a polynomial in the
ti’s that is invariant under the symmetric group, and therefore can be written (in
a unique way) as a polynomial in the variables σi(t) = ai. These are the desired
coefficients of Q(x). The general result, whose proof has basically just been given,
is the following:

Proposition 28.18. The coefficient of σm1
1 · · ·σmnn in Q(x) is

[t1t2 · · · tm1
t2m1+1 · · · t2m1+m2

t3m1+m2+1 · · · t3m1+m2+m3
· · · tnm1+···+mn ].
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The bracketed expression in the above result looks horrible, but it is simpler
than it looks. The subscripts can basically be ignored. The idea is to write down a
product of powers of the ti’s where no index i appears more than once and where
the number of ti’s raised to the kth power is mk. For example, here are a few
σ-monomials and their associated coefficients:

σ4 : [t41], σ1σ3 : [t1t
3
2], σ2σ

2
3 : [t21t

3
2t

3
3], σ1σ

2
4σ6 : [t1t

4
2t

4
3t

6
4].

For Proposition 28.18 to be useful one has to write the bracketed expression as
a polynomial in the elementary symmetric functions σi(t) = ai. This is, of course,
an unpleasant process. One case where it is not so bad is for the power sum [tn1 ],
since here we have the Newton polynomials Sn described in Appendix D.

Corollary 28.19. For any k ≥ 1, the coefficient of σk in Q(x) is Sk(a1, . . . , ak),
where Sk is the kth Newton polynomial. By Proposition D.3 this is also equal to
the two expressions

(−1)k ·
[
coeff. of xk in 1− x d

dx

(
logQ(x)

) ]
= (−1)k−1 ·

[
coeff. of xk−1 in

Q′(x)

Q(x)

]
.

Now let us specialize to Q(x) = x
1−e−x =

∑
i(−1)i Bii! x

i. Then writing
Q(x1, . . . , xn) as a power series in the elementary symmetric functions exactly yields
an expression for the Todd class of a rank n vector bundle in terms of its Chern
classes. Let us apply Corollary 28.19 to this situation; to do so we must compute
Q′(x)/Q(x). This is easy enough:

Q′(x) = 1
1−e−x − xe−x

(1−e−x)2 = 1
xQ(x)− e−x

1−e−xQ(x) =
(

1
x + 1− 1

1−e−x
)
·Q(x)

and so
1− xQ

′(x)
Q(x) = 1− x

(
1
x + 1− 1

1−e−x
)

= −x+Q(x).

Specializing Corollary 28.19 to the present situation now gives:

Corollary 28.20. Let E → X be a rank n vector bundle. Then for any 2 ≤ k ≤ n,
the coefficient of ck in the formula for Td(E) is equal to Bk

k! , whereas the coefficient
of c1 is −B1

1! = 1
2 .

Remark 28.21. Note that the above calculation reveals an interesting property
of the coefficients of x

1−e−x : when you put them into the Newton polynomials Sk
the output is unaltered, at least for k ≥ 2. That is, if x

1−e−x =
∑
i aix

i then
Sk(a1, . . . , ak) = ak for k ≥ 2. For example, S4 = a4

1 − 4a2
1 + 4a1a3 + 2aa2 − 4a4

and the first few coeffcients of x
1−e−x are 1

2 ,
1
12 , 0, and − 1

720 . Some grade-school
arithmetic checks that indeed

S4( 1
2 ,

1
12 , 0,− 1

720 ) = − 1
720 .

But this is hardly obvious from just looking at the formula for S4.

28.22. An application of GRR. The following proposition is (mostly) weaker
than what we proved back in Corollary 27.8. Still, we offer it as a sample application
of the Todd genus.

Proposition 28.23. No sphere S4n admits the structure of a complex manifold.
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Proof. Assume S4n is a complex manifold. Then it has a Todd genus, which is
necessarily an integer by definition. This will be the coefficient of [∗] in the top
component of the Todd class Td(T ), where T denotes the complex tangent bundle
to S4n. To compute this Todd class directly from its definition, first note that
ci(T ) = 0 for i < 2n, because H2i(S4n) = 0 in this range. We must also have
cn(T ) = e(T ) = 2[∗], because the Euler characteristic of an even sphere equals 2.
These facts let us easily write down Td(TS4n). Let us consider some examples of
this.

When n = 1 we would have Td(TS4) = 1 + c2
12 . The Todd genus of S4 would

then be 2
12 , which is not an integer. When n = 2 we would have Td(TS8) = 1− c4

720 ,
and so the Todd genus of S8 would be − 2

720 ; again, not an integer. These examples
give the general idea, and the denominators only get worse as n gets larger.

To be specific, one will have TdS4n = 1 + Mc2n where M is a mystery number
that must be computed from the definition of the Todd class. It is a consequence of
Corollary 28.20 that M = B2n

(2n)! . The Todd genus of S4n will then be 2 ·B2n/(2n)!.
By Theorem C.5 the number 3 divides the lowest-terms-denominator of B2n, and
so this expression cannot be an integer. This is our contradiction. �

Remark 28.24. Notice why our proof of Proposition 28.23 does not extend to
cover spheres S4n+2: the Chern class c2n+1 does not appear by itself in the formula
for the Todd class, because the odd Bernoulli numbers are zero. If S4n+2 has a
complex structure one can conclude that its Todd genus is zero, but this by itself
does not produce a contradiction.

28.25. The arithmetic genus. We now discuss the problem of computing the
Todd genus for smooth algebraic subvarieties Z ↪→ CPn. We will see that it can be
described entirely in terms of algebro-geometric data. This material foreshadows
much of what we do in Section 29.

Let p : CPn → ∗ and q : Z → ∗ be the squash maps, and consider the composition

K0(Z)
j!−→ K0(CPn)

p!−→ K0(pt).

The composite is q! and therefore sends 1 to Td-genus(Z) · [∗]. On the other hand,
if we write

j!(1) = [Z] = an−1[CPn−1] + an−2[CPn−2] + · · ·+ a0[CP 0]

then since p!([CPn−i]) = Td-genus(CPn−i) · [∗] = [∗] we have

p!(j!(1)) = (an−1 + an−2 + · · ·+ a0)[∗].
So Td-genus(Z) =

∑
i ai.

Recall that knowing [Z] is the same as knowing the Hilbert polynomial of Z. We
wish to ask the question: how can the Todd genus be extracted from the Hilbert
polynomial? To answer this, start by recalling the diagram

K0
alg(CPn)

φ

∼=
//

∼=
��

K0(CPn)

Ggrd(C[x0, . . . , xn])/〈[C]〉 // Hilb // Q[s]

from Section 23.18. The image of the function Hilb is the Z-submodule of Q[s]

generated by
(
s+n
n

)
,
(
s+n−1
n−1

)
, . . . ,

(
s
0

)
. If one takes [CPn−i] ∈ K0(CPn) and pushes
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it around the diagram, we have seen in Section 23.18 that the corresponding Hilbert
polynomial is

(
s+n−i
n−i

)
.

The Todd genus can be thought of as the unique function K0(CPn)→ Z sending
all the classes [CPn−i] to 1. We look for a similar function im(Hilb)→ Z that sends(
s+n−i
n−i

)
to 1, for all i. A moment’s thought shows that the map “evaluate at s = 0”

has this property. We have therefore proven the following:

Proposition 28.26. Let Z ↪→ CPn be an algebraic subvariety. Then the Todd
genus of Z is HilbZ(0).

In algebraic geometry, the invariant HilbZ(0) is sometimes called the arithmetic
genus. So we have proven that the arithmetic genus and Todd genus coincide.

Remark 28.27. Many authors use the term arithmetic genus for the invariant
(−1)dimZ(HilbZ(0)− 1). This is the definition in both [H] and [GH], for example.
Obviously the two definitions carry the same information, and the difference be-
tween them is only a matter of “normalization”. The invariant HilbZ(0) is sometimes
called the Hirzebruch genus, or the holomorphic Euler characteristic (see Section
??? below for more information about this).

28.28. Fundamental classes and the Todd genus. Again let Z ↪→ CPn be a
complex submanifold of codimension c and consider the fundamental class [Z] ∈
K0(CPn). Write

[Z] = an−c[CPn−c] + an−c−1[CPn−c−1] + · · ·+ a0[CP 0].

We have seen that an−c is the degree of Z, which has a simple geometric interpre-
tation: it is the number of intersection points of Z with a generic linear subspace of
dimension c. But the question remains as to how to give a geometric interpretation
for the other ai’s. We will now explain how the Todd genus gives an answer to this
(although perhaps not an entirely satisfactory one).

As we saw in the last section, Td-genus(Z) =
∑

0≤i ai. But note that multiplying
the equation for [Z] by [CPn−1] gives [Z]·[CPn−1] = an−c[CPn−c−1]+· · ·+a1[CP 0]
and therefore

Td-genus(Z ∩ CPn−1) =
∑
1≤i

ai.

Here Z ∩CPn−1 indicates the intersection of Z with a generic hyperplane in CPn.
Likewise we have [Z] · [CPn−j ] = an−c[CPn−c−j ] + · · ·+ aj [CP 0], and hence

Td-genus(Z ∩ CPn−j) =
∑
j≤i

ai.

So the partial sums
∑
j≤i ai for j = 0, 1, . . . , n− c are the same as the Todd genera

of Z,Z ∩CPn−1, . . . , Z ∩CP c. (This gives another explanation for why an−c is the
degree of Z). We immediately obtain the formulas

ai = Td-genus(Z ∩ CPn−i)− Td-genus(Z ∩ CPn−i−1),(28.29)

where again the intersections are interpreted to be generic. This is our desired
geometric description of the ai’s. Note, however, that whether or not this is indeed
“geometric” depends on whether one feels that this adjective applies to the Todd
genus.
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29. The algebro-geometric GRR theorem

Let X be a compact complex manifold and E → X a complex vector bundle.
If π denotes the projection X → ∗ then we get an element π!([E]) ∈ K0(pt) = Z.
This gives an integer-valued invariant of the bundle E, which we will call the Todd
number of E. We will write it as

Td-numX(E) = π!([E]).

The topological GRR theorem identifies this number as ΘX(Td(TX) · ch(E)), and
so we can calculate it in terms of the Chern classes of E and TX . Note that the
Todd number of the trivial bundle 1 is the Todd genus of X.

If X is an algebraic variety and E → X is an algebraic vector bundle then there
is another way to compute the Todd number of E, in terms of algebro-geometric
invariants. This identification of invariants is an example of the algebro-geometric
GRR theorem. Although the theorem covers far more than just the Todd number,
we will concentrate on this special case before stating the more general result.

29.1. Sheaf cohomology. As we saw in ???? the algebraic vector bundle E → X
gives rise to an associated coherent sheaf on the Zariski space XZar. We also call
this sheaf E, by abuse. Modern algebraic geometry shows how to obtain sheaf
cohomology groups Hi(X;E). The general theory is technical (although not in-
credibly hard), and would take too long to recount here; the level of abstraction
and technicality is roughly comparable to that of singular cohomology. But just as
in the latter case, there are methods for computing the sheaf cohomology groups
that do not require the high-tech definitions.

Suppose we have a Zariski open cover {Uα} of X with the property that each
Uα is affine, and moreover assume that each iterated intersection Uα1

∩ · · · ∩Uαk is
affine (for each k ≥ 1). Write Γ(Uα, E) for the algebraic sections of E defined over
Uα. Then we may form the Čech complex

0→
⊕
α

Γ(Uα, E)→
⊕
α1,α2

Γ(Uα1
∩ Uα2

, E)→ · · ·

and the sheaf cohomology group Hi(X;E) is just isomorphic to the ith cohomology
group of this complex.

Example 29.2 (Cohomology of O(k) on CPn). Let x0, . . . , xn+1 be homogeneous
coordinates on CPn, and for each 0 ≤ j ≤ n let Uj ⊆ CPn be the open subscheme
defined by xj 6= 0. Write Uj1···jr = Uj1 ∩ · · · ∩ Ujr , and note that all of these are
affine. Indeed, Uj is the spectrum of C[x0

xj
, x1

xj
, . . . , xnxj ], Uj,k is the spectrum of the

localization of this ring at xk/xj , and so forth.
Let S = C[x0, . . . , xn], regarded as a graded ring where all xi’s have degree 1.

Let Rj = Γ(Uj ,O) = C[x0

xj
, x1

xj
, . . . , xnxj ]. This is the degree zero homogeneous piece

of the localization Sxj . Further, observe that each O(k) is trivializable over Uj ,
and so Γ(Uj ,O(k)) will be a free Rj-module of rank 1. We can identify Γ(Uj ,O(k))
with the degree k homogeneous component of the localization Sxj ; that is, it is the
C-linear span of all monomials xa00 · · ·xann where aj ∈ Z and all other ai ≥ 0. This
is readily checked to coincide with the cyclic Rj-module xkjRj .

The analogs of the above facts work for any open set Uj = Uj1 ∩ · · · ∩ Ujr .
The sections Γ(Uj ,O(k)) form the degree k homogeneous component of the ring
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Sxj1 ···xjr . We want to examine the Čech complex Č(U•,O(k)) for each value of k,
but it is more convenient to take the direct sum over all values for k and consider
them all at once.

For a collection of indices σ ⊆ {0, . . . , n} let Sσ be the localization of S at the
element

∏
i∈σ xi. Then consider the augmented Čech complex

C• : 0→ S → ⊕iSi → ⊕i<jSij → · · · → S01···n → 0

where the S is in degree −1 and where the differentials are all induced by the
inclusions Sσ ↪→ Sσ′ for σ ⊆ σ′. That is to say, if we have a tuple α = (ασ ∈
Sσ)#σ=r then dα is the tuple whose value at σ′ = {i0, · · · , ir} (with the entries
ordered from least to greatest) is

(dα)σ′ =

r∑
k=0

(−1)kαi0···̂ik···ir .

The Čech complex for computing cohomology is obtained from C• by omitting the
S in degree −1, but we will quickly see why it is convenient to have that S around.

It is easy to compute the cohomology group Hn(C•). The ring S01···̂i···n is
generated as a vector space by monomials xa00 · · ·xann where ai ≥ 0. So the image
of Cn−1 → Cn is the span of all monomials where some ai is nonnegative. The
monomials that are not in the image have the form x−1

0 · · ·x−1
n · (x−b00 · · ·x−bnn )

where all bi ≥ 0. So Hn(C•) only has terms in degree k ≤ −(n + 1), and in such
a degree the group is isomorphic to S−k−(n+1)(Cn+1). This computation will be
subsumed by the more general one in the next paragraph, but it is useful to see
this particular case by itself.

To compute the cohomology of C• in all dimensions it is useful to regard S, and
each of its localizations, as multigraded by the group Zn+1 (by the multidegrees of
monomials). The maps in the complex preserve this multigrading, so we might as
well look at one multidegree a = (a0, . . . , an) ∈ Zn+1 at a time. Let τ = {i0, . . . , iu}
be the complete list of indices for which ai < 0. Note that Sσ is zero in multidegree
a unless σ ⊇ τ : that is, we will only have monomials of multidegree a if we have
inverted the xi’s for i ∈ τ . It is not hard to check that C•a (the portion of C• in
multidegree a) coincides with the augmented simplicial chain complex for ∆n−#τ

with coefficients in C. The point is that the rings Sσ that are nonzero in degree
a correspond to precisely those σ that contain τ , and these correspond in turn
to subsets of {0, 1, . . . , n + 1} − τ . Subsets of {0, 1, . . . , n + 1} − τ also index the
simplices of ∆n−#τ , and we leave it to the reader to verify that the complexes do
indeed coincide.

The augmented simplicial cochain complex for ∆n−#τ has zero cohomology ex-
cept in one extreme case—for when #τ = n + 1 we have the augmented cochain
complex of the emptyset, and this has a single Z in its cohomology. This cor-
responds to those multidegrees a in which all ai < 0; for these the total degree
satisfies

∑
ai ≤ −(n+ 1).

We have seen that C• is exact except in cohomological degree n, and there we
get a single copy of C in every multidegree a for which

∑
ai ≤ −(n+ 1). So for a

fixed integral degree k ≤ −(n+1) the kth homogeneous component of Hn(C) is the
C-linear span of monomials xa where all ai < 0 and

∑
ai = k. This is what we saw

earlier in the argument as well, and it gives us that Hn(C)k ∼= S−k−(n+1)(Cn+1).
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Finally, let us turn to our original Čech complex by removing the S from degree
−1 of C•. In doing so we introduce homology in degree 0, and the graded homology
groups exactly coincide with the homogeneous components of S. That is, the kth
graded piece of H0 is isomorphic to Sk(Cn+1).

We have now proven that

Hi(CPn;O(k)) ∼=


Sk(Cn+1) if i = 0,

S−k−(n+1)(Cn+1) if i = n,

0 otherwise.

The following table shows these sheaf cohomology groups. Note that these vanish
except for 0 ≤ i ≤ n. In the table we write Ok instead of O(k), for typographical
reasons, and we write V = Cn+1. The dth symmetric power of V is denoted SdV ;
note that this is isomorphic to the space of degree d homogeneous polynomials in
x0, . . . , xn.

Table 29.2. Cohomology groups Hi(CPn;O(k))

i O−(n+3) O−(n+2) O−(n+1) O−n · · · O−1 O O1 O2 O3

0 0 0 0 0 · · · 0 C S1V S2V S3V
1 0 0 0 0 · · · 0 0 0 0 0
...

...
...

...
... · · ·

...
...

...
...

...
n−1 0 0 0 0 · · · 0 0 0 0 0
n S2V S1V C 0 · · · 0 0 0 0 0

29.3. Sheaf cohomology and the Todd number. When X is a projective vari-
ety the sheaf cohomology groups we introduced in the last section turn out to have
the following properties:

• They are finite-dimensional over C;
• Hi(X;E) vanishes when i > dimX;
• A short exact sequence of vector bundles 0 → E′ → E → E′′ → 0 gives

rise to a long exact sequence of sheaf cohomology groups.
The first two properties allow us to define the sheaf-theoretic Euler characteristic

χ(X;E) =
∑
i

(−1)i dimHi(X;E).

and the third property yields that χ(X;E) = χ(X;E′) + χ(X;E′′). So χ(X;−)
gives a homomorphism K0

alg(X)→ Z. It will not come as a surprise that this agrees
with the topologically-defined pushforward map π!:

Proposition 29.4. If X is a projective algebraic variety and E → X is an algebraic
vector bundle then

Td-numX(E) = χ(X;E).

This gives us our algebro-geometric interpretation of the Todd number. We
postpone the proof for the moment, prefering to obtain this as a corollary of our
general GRR theorem. But let us at least check the proposition in the important
example of CPn. Recall that K0

alg(CPn) is the free abelian group generated by
[O], [O(1)], [O(2)], . . . , [O(n)]; so we can verify the result for all algebraic vector
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bundles E on CPn by checking it for these particular n+ 1 cases. Luckily we have
already computed the vector spaces Hi(CPn;O(k)). From Table 29.1 we find that

χ(CPn;O(k)) =


dimSkCn+1 if k ≥ 0,
0 if −n ≤ k < 0,

(−1)n dimS−k−(n+1)Cn+1 if k < −n.
We leave the reader to check that all three cases in the above formula can be unified
into the simple statement χ(CPn;O(k)) =

(
n+k
n

)
.

It remains to compute the Todd number of O(k). We use the by-now-familiar
technique from Exercise 28.12:

ΘX

[
Td(TX) · ch(O(k))

]
= Θn

[(
x

1−e−x
)n+1 · ekx

]
= Resx=0

(
1

1−e−x
)n+1 · ekx dx

= Resz=0

(
1

zn+1 · 1
(1−z)k+1 dz

)
= Θn

(
(1− z)−(k+1)

)
= (−1)n

(−(k+1)
n

)
=
(
n+k
n

)
.

Note that the substitution z = 1− e−x was used for the third equality.

30. Interlude: The classical Riemann-Roch theorem

The classical Riemann-Roch theorem relates to the problem of counting dimen-
sions of spaces of meromorphic functions, on a fixed Riemann surface, with pre-
scribed bounds on their zeros and poles. It is certainly not immediately clear how
this is connected to the fancy Grothendieck-Riemann-Rochs theorems we encoun-
tered in the previous two sections. In this section we will explain the classical
problems how their solutions fit into the modern perspective.

Let X be a Riemann surface, i.e. a compact, connected complex manifold of
dimension one. A map X → C is said to be holomorphic if it restricts to a holo-
morphic map on every open set in a coordinate chart for X. There aren’t very
many such maps! In fact we have:

Proposition 30.1. On a Riemann surface all holomorphic maps are constant.

Proof. Let f : X → C be holomorphic. By continuity, the image of f is compact.
By the Open Mapping Theorem from complex analysis, if f is not constant then
its image is open in C (apply the theorem to each coordinate neighborhood of X).
But the image of f cannot be both open and compact, so we have a contradiction.
Hence f must be a constant map. �

Instead of holomorphic functions let us instead consider meromorphic functions.
There are uncountably many of these: for example, on CP 1 we have the functions

1
(z−a)n for every a ∈ C and n ∈ Z. To cut things down to size, let us fix the locations
of the possible poles and also the maximum degree of each pole. To this end, let
us introduce some terminology. A divisor on X is a formal linear combination
D =

∑
mi[Pi] where the Pi are finitely-many points in X and each mi ∈ Z. We

can also write D =
∑
P∈X mP [P ] where it is understood that mP 6= 0 only for

finitely many P . Say that D1 ≥ D2 if mP (D1) ≥ mP (D2) for all points P .
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If f : X → C is meromorphic and not identically zero then in local coordinates
near a point P the function looks like f(z) = akz

k+ak+1z
k+1 + · · · with ak 6= 0, for

some k ∈ Z. Set ordP (f) = k and call this the “order of vanishing of f at P ”. Note
that P is a zero of f if and only if ordP (f) ≥ 1, and P is a pole of f if and only
if ordP (f) < 0. When n ≥ 0 it will be convenient to adopt the following language:
ordP (f) = n will be phrased as “f has n zeros at P ”, and ordP (f) = −n will be
phrased as “f has n poles at P ”.

Define
div(f) =

∑
P∈X

ordP (f)[P ].

Note that div(fg) = div(f) + div(g).

Definition 30.2. For a divisor D, let

L(D) = {f : X → C | f is meromorphic and div(f) ≥ −D}.
Set `(D) = dimL(D) (which a priori might be infinite).

For example, L(5[P ]− 2[Q]) is the set of meromorphic functions having at most
5 poles at P , at least 2 zeros at Q, and no other poles. In general, functions in
L(D) have upper bounds on how many poles they have at each point and lower
bounds on how many zeros they have at each point.

Exercise 30.3. Check that in this language f being holomorphic at a point P is
equivalent to saying that “f has at least 0 zeros at P ”, and also equivalent to saying
that “f has at most 0 poles at P ”. (The former version is a little awkward but
technically okay.)

Proposition 30.4. For any divisor D and point P one has L(D) ⊆ L(D+[P ]), and
moreover dimL(D + [P ])/L(D) ≤ 1. Consequently, `(D) ≤ `(D + P ) ≤ `(D) + 1.

Proof. If f, g ∈ L(D + P )\L(D) then f and g have the same order of vanishing
at P , and so some linear combination af + bg has a zero at P and is therefore in
L(D). �

Corollary 30.5. For every divisor D, L(D) is finite-dimensionsal. Even more,
`(D) ≤ 1 +

∑
mP>0

mP .

Proof. If D ≤ 0 then L(D) consists entirely of holomorphic (hence constant) func-
tions, and so L(D) is either {0} or C. Adding summands [P ] to D can increase the
dimension of L(D) by at most one. �

Our main goal will be to compute `(D) for every divisor D. These numbers give
interesting invariants of the Riemann surface. This is a tall order, though!

Define the degree of a divisor D by deg(D) =
∑
P∈X mP (D).

Proposition 30.6. For any meromorphic function f on X, deg(div f) = 0. (In
other words, f has the same number of zeros and poles).

Proof. This is really a theorem of topology. The map f : X → CP 1 has a topological
degree d ≥ 0, meaning that the induced map f∗ : H2(X) → H2(CP 1) sends the
fundamental class [X] to d[CP 1]. Note that d ≥ 0 because f is locally orientation-
preserving. The degree can be computed locally by counting (with multiplicity) the



A GEOMETRIC INTRODUCTION TO K-THEORY 283

preimages of any point. If mP is the local degree of f at a point P then we have∑
P∈f−1(∞)

mP = d =
∑

Q∈f−1(0)

mQ.

Now just observe that the local topological degree at a zero or pole agrees with
the absolute value of its algebraic order, by a standard computation. So we have
div(f) =

∑
Q∈f−1(0)mQ[Q]−∑P∈f−1(∞)mP [P ], and thus the degree of this advisor

is zero. �

Corollary 30.7. If deg(D) < 0 then `(D) = 0.

Proof. This is easiest to explain via an example. The space L(P +Q−3R) consists
of functions with at least 3 zeros at R, but possible poles only at P and Q and each
of order at most 1. But if there are at least three zeros at R the function must
have at least three poles as well, by Proposition 30.6. So there are no functions in
L(P +Q− 3R) other than the zero function.

In general, if deg(D) < 0 then L(D) consists of functions with more zeros than
poles, and by Proposition 30.6 no such (nonzero) functions exist. �

We also obtain the following improvement to the inequality in Corollary 30.5:

Corollary 30.8. If deg(D) ≥ 0 then `(D) ≤ deg(D) + 1.

Proof. Let P be a point in X and consider E = D − (deg(D) + 1)[P ]. Then
deg(E) < 0, so `(E) = 0 by Corollary 30.7. But then

`(D) = `(E + (deg(D) + 1)[P ]) ≤ `(E) + deg(D) + 1

where the inequality is by repeated application of Proposition 30.4. �

Let us compute `(P ) for any point P in our Riemann surface. Elements of L(P )
are meromorphic functions having at most a single pole, at P . So `(P ) ≥ 1, since
L(P ) constains the constant functions. When X = CP 1 then at a point P = a
we have L(P ) = 〈1, 1

z−a 〉 and thus `(P ) = 2. The following result covers all other
cases:

Proposition 30.9. If the genus of X is positive then `(P ) = 1 for all P ∈ X.
Moreover, `(P −Q) = 0 for all P 6= Q.

Proof. Suppose f ∈ L(P ) is non-constant. Then f : X → CP 1 has degree equal
to 1, and is therefore injective (since the degree can be computed as the number
of elements in the preimage of any point, counted with multiplicity). At the same
time, the image of f must be open and compact (hence closed); therefore f is also
surjective. So f is a homeomorphism and the genus of X is zero.

If X has positive genus we have now shown that L(P ) is the space of constant
functions. But L(P −Q) ⊆ L(P ) is the subspace of functions that vanish at Q, and
such a function is necessarily zero. �

Proposition 30.10. Let f be a meromorphic function on X. Then for any divisor
D, the assignment g 7→ fg is an isomorphism L(D)

∼=−→ L(D − div(f)).

Proof. Immediate, as h 7→ h
f is the inverse. �

Definition 30.11. Divisors D1 and D2 are linearly equivalent, written D1 ∼
D2, if D1 − D2 = div(f) for some meromorphic function f . The divisor class
group (often just called the class group) is Cl(X) = Z〈X〉/〈div(f) | f ∈ Mer(X)〉.
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Proposition 30.12. If D1 ∼ D2 then `(D1) = `(D2).

Proof. Immediate from Proposition 30.10. �

The elements of Cl(X) can be thought of as parameterizing the different “com-
pute `(D)” problems.

Example 30.13. For X = CP 1 the function 1
z−a shows that [a] ∼ [∞]. It follows

that [a] ∼ [b] for every a, b ∈ CP 1, and so Cl(X) ∼= Z via the degree map. Hence,
`(D) depends only on deg(D). We can now compute:

`(D) =

{
0 if deg(D) < 0,

1 + deg(D) if deg(D) ≥ 0.

The case of deg(D) < 0 is by Corollary 30.7. For the other case it suffices to compute
`(n[0]), which counts meromorphic functions whose only pole is at 0 and has order
at most n. One can write down a basis for such functions: 1

zk
for 0 ≤ k ≤ n. So

`(n[0]) = n+ 1.

For X of positive genus it turns out that Cl(X) is always uncountable, so the
CP 1 case is deceptively simple.

30.14. Meromorphic 1-forms. 1-forms on X are constructs ω that look locally in
a coordinate patch like f(z)dz. We will say that ω is holomorphic or meromorphic
when the corresponding f(z) functions are so. For a meromorphic 1-form ω define

div(ω) =
∑
P

ordP (f)[P ].

If ω and η are two meromorphic 1-forms then ω = h · η for a unique meromorphic
function h. Indeed, if in local coordinates ω = f(z)dz and η = g(z)dz then we take
h = f(z)

g(z) . Consequently, we obtain

div(ω) = div(h) + div(η)

and therefore [div(ω)] = [div(η)] in Cl(X). This is called the canonical class of
X, and usually denoted KX or just K.

Example 30.15. On CP 1 we use the standard coordinates given by z near 0 and
w = 1

z near ∞. We have dw = − 1
z2 dz. Let η be the form that is dz = − 1

w2 dw.
Then K = div(η) = −2[∞].

If f is any meromorphic function on X then one has the associated 1-form df . If
f is not a constant map then df is nonzero, and so div(df) represents the canonical
divisor class. For example, if f(z) = z2 on CP 1 then df is the 1-form that is
2zdz on the z-coordinate patch and − 2

w3 dw in the w = 1
z coordinate patch, so

div(d(z2)) = [0] − 3[∞]. Since [0] = [∞] in Cl(CP 1) this divisor class is the same
as −2[∞].

The degree of the canonical class is a numerical invariant of the Riemann surface
X. It will come as no surprise that it is related to the genus:

Proposition 30.16. If X has genus g then deg(K) = 2g − 2 = −χ(X).
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Proof. This is another case where the result is topological. Let f be a non-constant
meromorphic function, regarded as a map f : X → CP 1. Let d be the topological
degree of f , and recall from the proof of Proposition 30.6 that we have

d =
∑

P a pole

(− ordP (f)).

The map f is a branched cover, so we can apply the Riemann-Hurwitz formula.
Let BP be the set of points in X where f branches, and let BL = f(BP ) ⊆ CP 1

be the branch locus. For each y ∈ BP let ram(y) denote the ramification index;
intuitively this is the number of branches that are coming together at y. Then
Riemann-Hurwitz says that

χ(X) = 2d−
∑
y∈BP

[ram(y)− 1].

Let us recall where this formula comes from, since it is simple. If we remove BP
and BL then X − BP → CP 1 − BL is a d-fold cover, and so χ(X − BP ) =
d · χ(CP 1 − BL). Since we are dealing with surfaces, removing a point decreases
the Euler characteristic by 1 (it is like removing a triangle from a triangulation).
So we get

χ(X)−#BP = χ(X −BP ) = d · χ(CP 1 −BL) = d · (2−#BL)

and this becomes

χ(X) = 2d+ #BP −d ·#BL = 2d+ #BP −
∑
y∈BP

ram(y) = 2d−
∑
y∈BP

(ram(y)−1)

where in the second-to-last equality we have used that adding up the ramification
indices in each fiber over a point in BL must yield the number d.

But if f is holomorphic at y then y is a branch point if and only if f ′(y) = 0,
and ram(y) = ordy(f ′) + 1. Likewise, if y is a pole of f then y is a branch point
if and only if ordy(f) ≤ −2, and ram(y) = − ordy(f). So our Riemann-Hurwitz
formula now becomes

2− 2g = χ(X) = 2d−
[ ∑

P pole
ordP (f)≤−2

(− ordP (f)− 1) +
∑

r root of f ′
ordr(f

′)

]

= 2 ·
∑
P pole

(
− ordP (f)

)
+

∑
P pole

ordP (f)≤−2

(ordP (f) + 1)−
∑

r root of f ′
ordr(f

′)

=
∑

P simple
pole

2 +
∑
P pole

ordP (f)≤−2

(− ordP (f) + 1)−
∑

r root of f ′
ordr(f

′)

=
∑
P pole

(− ordP (f) + 1)−
∑

r root of f ′
ordr(f

′)

= −deg(div(df)).

Since div(df) is a canonical divisor, this completes the proof. �

We can now state the classical Riemann-Roch Theorem:
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Theorem 30.17 (Riemann-Roch). For any divisor D on a Riemann surface X,

`(D)− `(K −D) = 1 + deg(D)− g = deg(D) +
χ(X)

2
.

The first equality, with 1 + deg(D) − g, is the classical statement. The second
form of the equality connects better with modern versions of the Riemann-Roch
theorem, with the two terms divided more clearly into contributions from D and
contributions from X.

At first the Riemann-Roch theorem might not appear very useful for our problem,
as it does not appear to calculate `(D). It only gives us a relation between `(D)
and `(K − D), and if we cannot calculate either one of them then we are out of
luck. But sometimes we get lucky. For example, the following is immediate:

Corollary 30.18. If deg(D) > deg(K) then `(D) = 1 + deg(D)− g.
Proof. The hypothesis implies deg(K − D) < 0, and so `(K − D) = 0 by Corol-
lary 30.7. �

To give some additional perspective on the `(K −D) term, consider the vector
spaces

Ω1(D) = {meromorphic 1-forms ω such that div(ω) ≥ D}.
For example, Ω1(5[P ]− 2[Q]) consists of 1-forms that have at least an order 5 zero
at P and at most an order 2 pole at Q (and no other poles).

If ω is a meromorphic 1-form, then the assignment f 7→ fω gives a map L(E)→
Ω1(K − E). Indeed, if div(f) ≥ −E then div(fω) = div(f) + K ≥ K − E. This
map is readily seen to be an isomorphism. Setting E = K − D we can rephrase
this result as follows:

Proposition 30.19. For any divisor D, L(K −D) ∼= Ω1(D) via multiplication by
any meromorphic 1-form ω.

So the Riemann-Roch theorem for Riemann surfaces can also be stated as

dimL(D)− dim Ω1(D) = 1 + deg(D)− g.
30.20. Applications of Riemann-Roch. We still need to prove the Riemann-
Roch theorem, but let us come back to that after seeing a few applications.

Let X be a Riemann surface of genus 1 and choose P ∈ X. Note that
deg(K) = −χ(X) = 0 here. Consequently we obtain `(nP ) = n for any n > 0, by
Corollary 30.18. The following is therefore a sequence of proper inclusions:

L(P ) ( L(2P ) ( L(3P )

(the vector spaces having dimensions 1, 2, and 3, respectively). Choose x ∈ L(2P )
that is not a constant function, and choose y ∈ L(3P )\L(2P ). Define f : X → CP 2

by

u 7→
{

[x(u) : y(u) : 1] if u 6= P ,

[0 : 1 : 0] if u = P .

Note that [x : y : 1] = [xy : 1 : 1
y ] and the two fractions are holomorphic near P , in

fact with zeros at P . So f is well-defined and holomorphic.
The vector space L(6P ) has dimension 6 but contains the functions y2, x3, x2,

xy, x, y, and 1. So there is a linear relation

ay2 + bx3 + cx2 + dxy + ex+ gy + h = 0
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for some a, b, c, d, e, g, h ∈ C. This shows that the image of f lies in the subspace
of CP 2 defined by the homogenization of the above equation, namely

(30.21) az2
1z2 + bz3

0 + cz2
0z2 + dz0z1z2 + ez0z

2
2 + gz1z

2
2 + hz3

2 = 0

where [z0 : z1 : z2] are homogeneous coordinates on CP 2.
We claim that f is also injective. It is clear from the definition that f(P ) cannot

coincide with any f(Q) for Q 6= P , since the former has vanishing third coordinate
whereas the latter does not. So instead consider two distinct points Q and R in
X − {P}. Consider the subspaces

L(3P )

L(3P −Q)
66

66

L(3P −R)
hh

hh

L(3P −Q−R).
66

66

hh

hh

Corollary 30.18 calculates the dimensions as 3, 2, 2, and 1 (proceeding from top
to bottom). So there exists a g ∈ L(3P −Q)\L(3P −Q − R). Then this function
vanishes at Q but not R. Note that 1, x, y ∈ L(3P ) and so L(3P ) = 〈1, x, y〉.
Therefore we can write g = m + nx + sy for m,n, s ∈ C. The fact that g(Q) = 0
then implies that f(Q) belongs to the subspace nz0+sz1+mz2 = 0 of CP 2, whereas
g(R) 6= 0 implies that f(R) does not belong to this subspace. So f(Q) 6= f(R).

We have proven that f maps X injectively into the subvariety of CP 2 defined
by the cubic equation (30.21). Since the image of f is compact, and hence closed,
it must be that f is a homeomorphism onto its image.

As our next application we use Riemann-Roch to prove that the points of X
form an abelian group. Fix a point O in X.

For P,Q ∈ X we will define a new point P ∗Q. We take P ∗O = P and O∗Q = Q,
so assume P 6= O and Q 6= O. Consider L(P + Q − O), which has dimension 1 by
Corollary 30.18. So there exists a meromorphic function g on X having a zero
at O and possibly simple poles at P and/or Q (but no other poles). Recall from
Proposition 30.9 that L(P ) has dimension 1 and therefore consists only of constant
functions, and so L(P − O) = 0 (the only constant function having a zero at O

is the zero function). So g /∈ L(P − O), and therefore g has a simple pole at Q.
Similarly, g has a simple pole at P . Since the number of zeros and poles for g must
be equal (Proposition 30.6), this means g has one extra zero—call it S (and note
that S might be O). Define P ∗Q = S.

Since div(g) = [O] + [S]− [P ]− [Q] we have that [P ] + [Q] = [O] + [S] in Cl(X),
and in fact we could take this as the definition of S. For if [P ] + [Q] = [O] + [T ] in
Cl(X) then there is a meromorphic function h having simple zeros at O and T and
simple poles at P and Q. Then h ∈ L(P +Q− O), but we have already remarked
that this space has dimension 1. So h is a multiple of g, and therefore S = T .

To summarize: P ∗Q is defined to be the unique point S such that [P ] + [Q] =
[O]+[S] in Cl(X). This definition also works when either P or Q is O. Associativity
of the ∗ operation is now immediate, as is the fact that O is the identity. We turn
to the question of inverses.
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Given a point P , consider L(2O− P ). This has dimension 1 by Corollary 30.18,
and L(O− P ) = 0 by Proposition 30.9. So if g ∈ L(2O− P ) is nonzero then g has
a double pole at O. This implies g has exactly two zeros, one at P and one at a
point R (which possibly equals P ). Then [P ] + [R] = [O] + [O] in Cl(X), and so
P ∗R = O.

Exercise 30.22. Write out the proof of associativity that was omitted above.

30.23. Classical proof of the Riemann-Roch theorem. Our aim here is just
to give an outline of the main ideas, as some of the details require a good deal
of work. The modern approach doesn’t exactly short-cut this work, but instead
sweeps it into the sheaf theory technology where some of it gets hidden.

We first concentrate on the case of a divisor D =
∑
mP [P ] where all mP ≥ 0.

Let {P1, . . . , Pr} be the set of points for which mP > 0, and write mi = mPi . Pick
a local coordinate near each Pi, and consider the vector space of “principal parts”
of meromorphic functions having poles of at most order mi at Pi. This is the vector
space with basis 1

z ,
1
z2 , · · · , 1

zmi , so taking the direct sum over all i we get a vector
space PP of dimension deg(D). Consider the sequence of maps

0 // C // L(D) // PP

Cdeg(D)

∼=

OO

Here the leftmost map is the inclusion of the constant functions, and the next
map sends a meromorphic function in L(D) to the collection of its prinicpal parts
around each Pi. Clearly we have exactness at L(D). Riemann was interested in
characterizing the image of L(D) inside of PP . To do this, we need to recall a bit
about residues.

If ω ∈ Ω1
hol(X) and f ∈ L(D) then we can look at the residue

Resz=Pi f(z)ω =
1

2πi

∫
Ci

f · ω

where Ci is a small circle around Pi. Note that∑
i

Resz=Pi f(z)ω = 0

by the Cauchy Integral Formula, since the Ci collectively bound a region on which
f(z)ω is holomorphic. In this way be obtain from ω a linear equation satisfied by
the image of L(D) inside of PP . Specificially, we obtain a linear map Rω : PP →
C sending a collection of principal parts (u1, . . . , ur) to

∑
i ResPi(uiω), and Rω

vanishes on the image of L(D).
Riemann proved that Ω1(X) ∼= Cg, which means the above procedure yields g

linear conditions on the image of L(D) in PP . We can add this to our sequence:

0 // C // L(D) // P.P.
∑
Res // Cg // Cok // 0

Cdeg(D)

∼=

OO

Riemann further proved exactness at the PP term: that is, a set of principal parts
comes from a meromorphic function in L(D) precisely when the g linear conditions
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coming from the elements of Ω1 are satisfied. Note that the Cok term in the above
sequence denotes the cokernel. From this sequence one gets that

0 = 1− `(D) + deg(D)− g + dim(Cok)

or
`(D) = 1 + deg(D)− g + dim(Cok) ≥ 1 + deg(D)− g.

This is Riemann’s part of the Riemann-Roch theorem. Roch, a student of Riemann,
later identified dim(Cok) with `(K −D).

30.24. The modern approach to Riemann-Roch. The vector space L(D) is the
space of holomorphic sections of a holomorphic line bundle OX(D) (or equivalently,
the space of sections of the corresponding rank one coherent sheaf). We construct
this line bundle as follows. Choose a finite collection of coordinate patches {Uα}
that cover X. On each Uα let gα be the meromorphic function defined in the local
coordinate z by

gα(z) =
∏

Pi∈Uα

(z − Pi)mi

where D =
∑
imi[Pi]. Note that this construction ensures that gβ

gα
is holomorphic

and nonzero on Uα ∩ Uβ . Let OX(D) be the line bundle obtained by taking the
trivial bundle on each Uα and gluing (z, w) ∈ Uα × C to (z,

gβ(z)
gα(z) · w) ∈ Uβ × C

for z ∈ Uα ∩ Uβ . This clearly gives a line bundle. If s is a holomorphic section of
OX(D) then let sα : Uα → C be the section written using the local trivialization on
Uα. Then

gβ(z)

gα(z)
sα(z) = sβ(z),(30.25)

or equivalently
sα(z)

gα(z)
=
sβ(z)

gβ(z)
.

for every z ∈ Uα ∩ Uβ . This implies that the sα
gα

functions patch together to
form a single meromorphic function s

g . Since the sα were holomorphic, we have
that div( sg ) ≥ −D. In this way we have obtained a map Γ(X,OX(D)) → L(D),
and it is clearly injective. Surjectivity is just as easy: if h ∈ L(D) then define
sα(z) = h|Uα ·gα, which is necessarily holomorphic by the definition of gα. Equation
(30.25) is readily verified, so that the sα patch together to give a holomorphic section
of OX(D).

Let us take a moment to consider the topological type of the line bundle
OX(D). If we imagine the points Pi in D moving around, this will not change
the isomorphism type of the associated bundle. So we might as well let all
the points come together, so that D approaches a divisor (degD)[∗] (it doesn’t
matter which point we choose here). This shows that the bundles OX(D) and
O(degD) are isomorphic as topological vector bundles. In particular, note that
c1(OX(D)) = c1(O(degD)) = (degD)[∗].

As we have seen in Proposition 29.4, the holomorphic Euler characteristic
χ(X,OX(D)) is a topological invariant:

χ(X,OX(D)) = π!([OX(D)]) ∈ K0(pt) = Z
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where π : X → ∗ and we are looking at the pushforward π! : K
0(X)→ K0(∗). The

Grothendieck-Riemann-Roch theorem says that

χ(X,OX(D)) =
(

ch(OX(D)) · Td(X)
)

[∗]
where the right-hand side denotes the coefficient of [∗] in the top-dimensional piece
of ch(OX(D)) ·Td(X). Since X is a Riemann surface the top-dimensional cohomol-
ogy is H2(X) and we have

ch(OX(D)) = 1 + c1(OX(D)), Td(X) =
c1(TX)

1− e−c1(TX)
= 1 +

c1(TX)

2
.

It follows that

χ(X,OX(D)) =

(
c1(OX(D)) +

c1(TX)

2

)
[∗] = deg(D) +

χ(X)

2
.

In the last equality we have used that c1(OX(D)) = deg(D)[∗] and c1(TX) =
χ(X)[∗].

This does not quite complete our story. The final piece is to identify
dimH1(X,OX(D)) with Roch’s `(K − D) term, and for this we use Serre dual-
ity. The latter says that for any algebraic vector bundle E there is an isomorphism
of vector spaces

Hi(X,E) ∼= H1−i(X,OX(K)⊗ E∗)∗
where OX(K) = T ∗X is the canonical line bundle on X (the dual of the tangent
bundle). This implies that

dimH1(X,OX(D)) = dimH0(X,OX(K)⊗ OX(−D)) = dimH0(X,OX(K −D))

= `(K −D).

Putting everything together, we arrive at

`(D)− `(K −D) = χ(X,OX(D)) = deg(D) +
χ(X)

2
as desired.

Example 30.26. In the following tables we show the dimensions of H0(X,OX(D))
and H1(X,OX(D)) as functions of deg(D) and the genus. Each table shows the
results for a different genus. For convenience let hi(D) denote these dimensions, for
i ∈ {0, 1}. Recall h0(D) = `(D) and h1(D) = `(K −D). The only information we
need to make these tables is that h0−h1 = 1 + deg(D)− g, h0 = 0 for deg(D) < 0,
and that h1 = 0 for deg(D) > 2g − 2 (since h1 = `(K −D)).

Genus zero:

deg(D) -4 -3 -2 -1 0 1 2 3 4
h0(D) 0 0 0 0 1 2 3 4 5
h1(D) 3 2 1 0 0 0 0 0 0

Genus one:

deg(D) -4 -3 -2 -1 0 1 2 3 4
h0(D) 0 0 0 0 A 1 2 3 4
h1(D) 4 3 2 1 A 0 0 0 0
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Here 0 ≤ A ≤ 1 by Corollary 30.8, but the value of A will depend on the divisor.
For D = P −Q one has A = 0 by Proposition 30.9. If we fix P , Q, and R then for
D = P +Q−R− S one usually has A = 0, but for a unique S one gets A = 1.

Genus two:

deg(D) -4 -3 -2 -1 0 1 2 3 4
h0(D) 0 0 0 0 A B C 2 3
h1(D) 5 4 3 2 A+ 1 B C − 1 0 0

By Corollary 30.8 we know A ≤ 1, B ≤ 2, and C ≤ 3. But in fact we can argue
here that C ≤ 2.

31. Formal group laws and complex-oriented cohomology theories

We have spent the past several sections exploring the differences in the way that
geometric information is encoded in singular cohomology versus complex K-theory.
Both of these theories have Thom classes for complex bundles and therefore have
Gysin sequences, fundamental classes, Euler classes, and so forth. A key difference
we observed was in the formula for the Euler class of a tensor product of line bundles:
Proposition 25.8 versus Proposition 25.14. The construction of the Chern character
was built around the differences between these formulas, and this difference also
led directly to the Todd class and the topological Riemann-Roch theorem.

A natural question arises: Are there other complex-oriented cohomology theories
lying around, which would then have these same kind of underlying connections to
geometry? How does one understand the gamut of such theories? A full discussion
of this story is outside the scope of this book, but we want to at least give an
introduction to the key element: the purely algebraic notion of formal group law .
In this section we outline some of the main theory behind what these are and how
they connect to complex-oriented cohomology theories.

31.1. Formal group laws. We start with a purely algebraic development. Let R
be a fixed commutative ring.

Definition 31.2. A (commutative, one-dimensional) formal group law over R
is a power series F (x, y) ∈ R[[x, y]] having the properties that
(1) F (x, y) = F (y, x)
(2) F (x, 0) = x = F (0, x)
(3) F (x, F (y, z)) = F (F (x, y), z).
Each part should be interpreted as an identity of formal power series.

It is sometimes useful to adopt the notation x +F y = F (x, y) and call this the
“formal sum” of x and y. The above three properties are then written
(1) x+F y = y +F x
(2) x+F 0 = x = 0 +F x
(3) x+F (y +F z) = (x+F y) +F z.

One can talk about non-commutative formal group laws by omitting property
(1), but we will not encounter them. Likewise, one can define an n-dimensional
formal group law to be a power series in R[[x1, . . . , xn, y1, . . . , yn]] with properties
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similar to the above. But as we will not use these either, for us the phrase “formal
group law” will always mean one that is commutative and one-dimensional.

The reader will note that will the above axioms encode commutativity, asso-
ciativity, and the identity condition, there is no mention of inverses. It turns out
that in this “formal” setting the existence of inverses is automatic; see Exercise 31.6
below.

Let us write F (x, y) = a0 + a1x+ a2y + a3x
2 + a4xy + a5y

2 + · · · . The identity
F (x, y) = F (y, x) shows that a1 = a2, a3 = a5, and so on. The identity F (x, 0) = x
shows that 0 = a3 and 1 = a1. So this type of reasonsing already shows that we
must have

F (x, y) = x+ y + a4xy + a5x
2y + a5xy

2 + a6x
3y + a7x

2y2 + a6xy
3 + · · ·

Associativity will impose other conditions on the ai, but we will return to that in
a moment.

Example 31.3.
(a) x+F y = x+ y is a formal group law, and certainly the simplest example. It is

called the additive formal group law.
(b) Consider x+F y = x+ y − xy = 1− (1− x)(1− y). This is called the multi-

plicative formal group law. To verify associativity, observe that

1− (x+F y) = (1− x)(1− y)

and so

1− (x+F (y +F z)) = (1− x)(1− (y +F z)) = (1− x)(1− y)(1− z)
= 1− ((x+F y) +F z).

Exercise 31.4.
(a) Verify that x+F y = x+ y + axy is a formal group law, for any a ∈ R.
(b) For a, b ∈ R verify that x+F y = x+ y + axy + bx2y + bxy2 is a formal group

law only if b = 0.
(c) For a, b, c, d ∈ R verify that x+F y = x+y+axy+bx2y+bxy2 +cx3y+dx2y2 +

cxy3 is a formal group law only if b = c = d = 0.
[Warning: Both (b) and (c) can be a bit tedious. Use of a computer algebra
system is recommended.]

Exercise 31.5. Let R = F3[ε]/(ε2). Prove that F (x, y) = x + y + εxy3 satisfies
conditions (2) and (3) of Definition 31.2 but not condition (1). The fact that R
has both torsion and nilpotents is important here: it is a theorem that if R is
torsion-free and reduced then all power series satisfying (2) and (3) also satisfy (1).

Exercise 31.6. Let F (x, y) = x + y +
∑
aijx

iyj be a formal group law over a
commutative ring R. Prove that there exists a power series I(x) ∈ R[[x]] such that
0 = F (x, I(x)). [Hint: Set I(x) = b1x + b2x

2 + · · · , then expand F (x, I(x)) and
start solving the equations needed to make each coefficient vanish.]

In light of Exercise 31.4 one might get the impression that formal group laws
with F (x, y) a polynomial are quite rare, and that is indeed the case. So where do
interesting examples come from? Historically, the first nontrivial examples probably
came from the exploration of elliptic integrals. This is a long story and we will only
give a very brief and streamlined introduction.
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Consider the lemniscate curve given in polar coordinates by r2 = cos(2θ), drawn
here:

1−1

R

This curve seems to have been first investigated in 1694 by Jacob Bernoulli, who
realized that it had some properties similar to an ellipse. The arclength from the
origin to the point with r = R, 0 ≤ R ≤ 1, is given by the integral

∫ R
0

1√
1−r4 dr (see

Exercise 31.9). Work on these integrals led to the discovery of a surprising addition
property, namely

(31.7)
∫ u

0

1√
1− r4

dr +

∫ v

0

1√
1− r4

dr =

∫ f(u,v)

0

1√
1− r4

dr

where

(31.8) f(u, v) =
u
√

1− v4 + v
√

1− u4

1 + u2v2
.

Such formulas were first established by Euler, though there were precursors in the
work of Fagnano. In fact Euler proved such an addition property for any integral
of the form

∫
1√
P (r)

dr where P (r) = 1 + ar2 − r4 for some constant a. These are

examples of a certain class now known as “elliptic integrals”, the name stemming
from the fact that the integral for the arclength of an ellipse was one of the earliest
examples.

One can expand f(u, v) as a formal power series in u and v with rational coef-
ficients, and equation (31.7) shows that this gives a formal group law over Q. The
symmetry and identity properties are obvious, and associativity follows from the
fact that f(u, f(v, w)) and f(f(u, v), w) both give the radius of the point on the
curve where the arclength equals

∫ u
0

1√
1−r4 dr +

∫ v
0

1√
1−r4 dr +

∫ w
0

1√
1−r4 dr.

Exercise 31.9. Start with the arclength integral
∫ √

dx2 + dy2, translate into
polar coordinates via x = r cos θ, y = r sin θ, and finally use the lemniscate equation
r2 = cos2(2θ) to eliminate dθ and write the arclength entirely as a dr-integral. In
this way verify that the arclength is given by

∫
1√

1−r4 dr.

Exercise 31.10. Use a computer algebra system to determine the power series
f(u, v) from (31.8) up through degree 12 (check: there end up being terms only in
degrees 1, 5, and 9). Using only the terms up through degree 12, use the software
to check that the identity f(u, f(v, w)) = f(f(u, v), w) holds up through the same
degree.

There are many more formal group laws than the few we have just seen, although
it is not so easy just to guess what they look like. One source of these gadgets comes
from looking at a 1-dimensional algebraic group in an analytic neighborhood of the
identity. To understand this, let X be an algebraic curve over C (for simplicity)
and let O ∈ X be a point. Assume that there is a map of varieties µ : X ×X → X
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making X into a group with O as identity. A choice of analytic coordinate near
O gives an isomorphism of C[[z]] with the germs of analytic functions at O on X,
and likewise an isomorphism of C[[z1, z2]] with the germs of analytic functions at
(O,O) on X ×X. The map µ induces

µ∗ : C[[z]]→ C[[z1, z2]].

Let F (z1, z2) = µ∗(z). The group axioms for µ imply that F (z1, z2) is a formal
group law.

Example 31.11.
(1) Let X = A1, with group law µ : A1 × A1 → A1 given by µ(x, y) = x + y. On

germs of functions this becomes C[[z]]→ C[[z1, z2]] given by z 7→ z1 +z2, which
is the additive formal group law.

(2) Let X = A1 − 0 with group law µ(x, y) = xy. On rings of functions this is
C[z, z−1]→ C[z1, z

−1
1 , z2, z

−1
2 ] given by z → z1z2. The identity element of X is

1, and a local coordinate near 1 is t = 1− z. One has

µ∗(t) = 1− µ∗(z) = 1− z1z2 = 1− (1− t1)(1− t2) = t1 + t2 − t1t2.
This is the multiplicative formal group law.

(3) We saw in Section 30.20 that any Riemann surface of genus one (i.e., an elliptic
curve) can be given a group multiplication. So any elliptic curve gives rise to a
formal group law. (In particular, a certain elliptic curve gives rise to the formal
group law from (31.8), though we will not explore this here.)

31.12. The universal formal group law. Given a ring homomorphism α : R→ S
and a formal group law F (x, y) over R, we get a formal group law α∗(F ) by applying
α to all the coefficients of F . If we write FGL(R) for the set of formal group laws
over R, then we have just described a map α∗ : FGL(R)→ FGL(S).

Proposition 31.13. There is a universal formal group law. That is, there exists
a ring L and a formal group law F on L having the property that for all rings R,
the map

Ring(L,R) −→ FGL(R), α 7→ α∗(F )

is a bijection. That is to say, the functor FGL(−) on the category of rings is
corepresentable.

Proof. This is easy. We already know that every formal group law looks like

F (x, y) = x+ y + a1xy + a2x
2y + a2xy

2 + a3x
3y + a4x

2y2 + a3xy
3 + · · ·

Let S = Z[a1, a2, . . .]. Equating coefficients in the associativity identity
F (x, F (y, z)) = F (F (x, y), z) yields a collection of polynomial identities in the ai.
Let L be the quotient of S by the ideal generated by these equations. �

Remark 31.14. Note that the ring L can be given a natural grading. Give the
formal variables x and y degree −2, and regard F (x, y) as being homogeneous of
degree −2. Then writing F (x, y) = x+y+a1xy+a2x

2y+a2xy
2 +a3x

3y+a4x
2y2 +

a3xy
3 + · · · requires that a1 have degree 2, a2 have degree 4, a3 and a4 to have

degree 6, and so forth. This defines a grading on S where F (x, y) is homogeneous.
The associativity identity is homogeneous, so it leads to homogeneous relations
amongst the ai. So L inherits the grading on S. (Note: We could have assigned x
and y to have degree -1 instead of -2. The “unnatural” choice of -2 comes from the
way all of this manifests in topology.]
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The above result is rather formal, and gives us no indication of what the ring L
looks like. A very nontrivial theorem of Lazard completes the picture:

Theorem 31.15 (Lazard). There is an isomorphism of graded rings L ∼=
Z[u1, u2, . . .] where the degree of ui is 2i.

Note that the ui from Lazard’s theorem are not equal to the ai that appear in
the proof of Proposition 31.13. We will not include a proof of Lazard’s theorem,
but ones can be found in ????.

31.16. Isomorphism of formal group laws.

Definition 31.17. Suppose F and G are formal group laws over R. A map F → G
is a power series f(x) ∈ R[[x]] such that f(0) = 0 and f(x+F y) = f(x) +G f(y).

Note that if f1 : F → G and f2 : G→ H then the composition f2◦f1 is the power
series composition f2(f1(x)). This is defined because of the condition f1(x) = 0. By
an easy exercise in algebra, the power series f1 has an inverse under composition
if and only if f ′1(0) is a unit. So a map of formal group laws f : F → G is an
isomorphism if and only if f ′(0) in a unit in R.

Example 31.18. Let F (x, y) = x+y−xy = 1− (1−x)(1−y) and G(x, y) = x+y.
To produce a map from F to G we need a power series f(x) such that

f(1− (1− x)(1− y)) = f(x) + f(y).

This suggests the logarithm function, and a moment’s thought shows that f(x) =

log(1−x) = −x− x2

2 − x3

3 − · · · works. However, this requires that we have Q ⊆ R
for this power series to exist in R[[x]]. As the coefficient of x in log(1− x) is 1, we
actually have an isomorphism of formal group laws. So if Q ⊆ R then the additive
and multiplicative formal group laws are isomorphic.

For future reference, we note that f(x) = − log(1 − x) = x + x2

2 + x3

3 + · · · is
also an isomorphism in this example.

Exercise 31.19. Let F (x, y) = x+y−xy and G(x, y) = x+y+axy, where a ∈ R.
If a is invertible, then f(x) = − 1

a · x is an isomorphism between F and G. More
generally, show that F (x, y) = x+y+bxy and G(x, y) = x+y+axy are isomorphic
if b = ua for some unit u ∈ R.

Over the rational numbers, there is really only one formal group law:

Proposition 31.20. If Q ⊆ R then all formal group laws are isomorphic to the
additive formal group law.

Proof. Let F be a formal group law. We look for a power series f(x) ∈ R[[x]] such
that f(F (x, y)) = f(x) + f(y) and f ′(0) = 1. Apply d

dy

∣∣
y=0

to the first equation,
to get:

f ′(F (x, y))|y=0 · Fy(x, 0) = f ′(0) = 1

f ′(F (x, 0)) · Fy(x, 0) = 1

f ′(x) =
1

Fy(x, 0)

f(x) =

∫
1

Fy(x, 0)
dx
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The power series Fy(x, 0) has constant term 1, and so is invertible in R[[x]]. As
long as R ⊇ Q we can then integrate term-by-term to get f(x), and reversing the
above analysis shows that f is the desired isomorphism. �

Example 31.21. Returning to the multiplicative formal group law F (x, y) = x+

y − xy, we have Fy(x, 0) = 1− x, 1
Fy(x,0) = 1 + x+ x2 + · · · and f(x) = x+ x2

2 +

x3

3 + · · · = − log(1− x).

31.22. Formal group laws in topology. Let E be a complex-oriented cohomol-
ogy theory. Generalizing our discussion from Section 25 we will see that every
complex line bundle L→ X has an Euler class—also called the first Chern class—
c1(L) ∈ E2(X), and that there is a formal group law F (x, y) ∈ E∗[[x, y]] such that
c1(L1 ⊗ L2) = F (c1(L1), c1(L2)).

Let us be clear about what we mean by the power series ring in the graded case.
If R is a Z-graded ring and X is a formal variable of degree d, then R[[x]] will
denote the linear span of homogeneous power series with coefficients in R. That is,
R[[x]] = ⊕nPn where Pn = {an + an−dX + an−2dX

2 + · · · | ai ∈ Ri}. One defines
R[[x, y]] similarly. This redefinition of R[[x]] in the graded case takes some getting
used to, but it is very convenient.

Exercise 31.23. Check that in the case of singular cohomology we have
H∗(pt)[[x]] = Z[x] as a graded ring. So we can write H∗(CP∞) ∼= Z[[x]] or
H∗(CP∞) ∼= Z[x], and they mean the same thing.

Likewise, check that if x is of degree 2 then K∗(pt)[[x]] = Z[[βx]] [β, β−1] where
here Z[[βx]] can be interpreted either as graded power series or ungraded power
series (they are the same because both Z and βx are in degree 0).

Exercise 31.24. Chec that if R is a Z-graded ring then our definition of R[[x]]
coincides with limnR[x]/(xn) where the limit is taken in the category of graded
rings.

Let ξ → CP∞ be the tautological line bundle and let ζ : CP∞ ↪→ Th ξ be the
zero section. Consider the composite

Ẽ2(Th ξ)
ζ∗−→ Ẽ2(CP∞) −→ Ẽ2(CP 1) = Ẽ2(S2) = E0(∗).

Let x = ζ∗(Uξ), which is an element in Ẽ2(CP∞) that restricts to 1 under the
above composition.

Given any complex line bundle L→ X, there is a classifying map f : X → CP∞
and a pullback diagram

L //

��

ξ

��
X // CP∞.

Define the E-theory first Chern class (or Euler class) by cE1 (L) = f∗(x). We will
drop the superscript and just write c1(L) when there is no possibility for confusion.

The class x ∈ Ẽ2(CP∞) restricts to a class, which we will also denote by x, in
Ẽ2(CP s) for each s. Since xs+1 = 0 in E∗(CP s) by Lemma 23.2, we obtain an
induced map E∗[z]/(zn+1) → E∗(CP s) sending z to x. We have seen in Propo-
sition 23.3 that this is an isomorphism. We wish to now go further and calculate
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E∗(CP∞). Using that CP∞ = colims CP s, the Milnor sequence gives us

0 −→ lim1
s E

k−1(CP s) −→ Ek(CP∞) −→ limsE
k(CP s) −→ 0.

Since E∗(CP s)→ E∗(CP s−1) is surjective for all s, the lim1 terms are always zero.
So

E∗(CP∞) = lim
s
E∗(CP s) = lim

s
E∗[x]/(xs+1) = E∗[[x]]

(and recall that the right-most term means graded power series).
Similar arguments show (DO THEY?) that E∗(CP∞ × CP∞) = E∗[[x1, x2]]

where x1 = π∗1(x), x2 = π∗2(x), and π1, π2 : CP∞ × CP∞ → CP∞ are the two
projections.

Consider now the external tensor product ξ⊗̂ξ → CP∞ × CP∞. This is a line
bundle, and so is classified by a map g : CP∞ × CP∞ → CP∞:

ξ⊗̂ξ //

��

ξ

��
CP∞ × CP∞

g // CP∞

The map g∗ : E∗(CP∞)→ E∗(CP∞×CP∞) is E∗[[x]]→ E∗[[x1, x2]] and so sends
x to a formal power series F (x1, x2) of degree 2. By definition we have

F (x1, x2) = c1(ξ⊗̂ξ).
So if L1 → X and L2 → X are any two line bundles, with classifying maps
f1, f2 : X → CP∞, we have the diagram

L1 ⊗ L2
//

��

L1⊗̂L2
//

��

ξ⊗̂ξ //

��

ξ

��
X

∆ // X ×X f1×f2 // CP∞ × CP∞
g // CP∞.

Therefore

c1(L1 ⊗ L2) = ∆∗(f1 × f2)∗g∗(x) = ∆∗(f1 × f2)∗(F (x1, x2))

= F (f∗1 (x1), f∗2 (x2))

= F (c1(L1), c1(L2)).

It remains for us to understand why the power series F (x1, x2) is a formal group
law. The group axioms follow immediately from the following commutative dia-
grams in the homotopy category:

CP∞ id×∗ //

id

77CP∞ × CP∞
g // CP∞ CP∞ × CP∞

t
��

g // CP∞

CP∞ × CP∞
g

77
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CP∞ × CP∞ × CP∞
g×id

))

id×g

uu
CP∞ × CP∞

g
))

CP∞ × CP∞
g

uu
CP∞.

To see that these diagram commute (up to homotopy), use that CP∞ is the classify-
ing space for line bundles. The first diagram just reflects the isomorphism L⊗1 ∼= L,
the second diagram reflects that L1 ⊗ L2

∼= L2 ⊗ L1, and the third reflects that
L1 ⊗ (L2 ⊗ L3) ∼= (L1 ⊗ L2)⊗ L3.

Summarizing, we have now proven the following:

Proposition 31.25. Let E be a complex-oriented cohomology theory. Then there
exists a formal group law F over E∗ (of homogeneous degree 2 as a power series)
having the property that F (c1(L1), c1(L2)) = c1(L1⊗L2) for all complex line bundles
L1 and L2.

We have seen in Proposition 25.8 that the formal group law for singular coho-
mology is the additive one, and in Proposition 25.14 that the formal group law for
complex K-theory is the multiplicative one. To be more precise in the latter case,
it is the formal group law over Z[β, β−1] given by x+ y − βxy.

We have not discussed it so far in this book, but there is a cohomology theoryMU
called complex cobordism. In a certain sense this is the universal complex-oriented
cohomology theory. The coefficients are MU∗ = Z[u1, u2, . . .] where |ui| = −2i, by
a classical calculation due to Milnor. Quillen [Q2] proved that the formal group law
forMU is the universal formal group law that we encountered in Proposition 31.13.

31.26. Formal group laws and Leibniz rules. There is another place that for-
mal group laws appear in an unexpected way, but which relates closely to some
of the K-theory calculations we have seen in earlier sections. The differentiation
operator D from calculus obeys the Leibniz rule D(fg) = (Df)g+f(Dg). One can
write this as

D(fg) = µ[Df ⊗ g + f ⊗Dg] = µ[D ⊗ Id+ Id⊗D](f ⊗ g).

Here µ(a⊗ b) = ab, of course.
We saw in Lemma 24.7 that the finite-difference operator ∆ obeys a different

form of the Leibniz rule. Written in the above form, it is

∆(fg) = µ[∆⊗ Id+ Id⊗∆ + ∆⊗∆](f ⊗ g).

One can feel the specter of formal group laws here, and a precise connection can
be made as follows. For an operator J , define a “generalized Leibniz rule” to be a
formula

J(fg) = µ
[∑
i,j

aijJ
i ⊗ Jj

]
(f ⊗ g)

where the aij are coefficients in some underlying ground ring. By setting x = J⊗Id
and y = Id⊗ J , the expression inside the brackets can be written as F (x, y) where
F =

∑
i,j aijx

iyj . The formal group law conditions on F (x, y) are parallels of the
following properties:
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• J(f · 1) = J(f) = J(1 · f)
• J(fg) = J(gf)
• J((fg)h) = J(f(gh))

More precisely, the first FGL condition says that applying the Leibniz rule to J(f ·1)
gives a formula that just reduces to J(f). The second condition says that applying
the Leibniz formula to J(fg) and to J(gf) lead to the same expression, and the
third condition says something similar for applying the Leibniz rule twice to J(fgh)
(in the two different ways).

The connections between algebraic topology and these generalized differentiation
operators has been explored in several papers by Nigel Ray, starting with [Ra1] and
[Ra2]. (EXPLAIN THIS MORE?)

32. Algebraic cycles on complex varieties

Note: The material in this section requires the Atiyah-Hirzebruch spectral se-
quence from Section 34 below.

Let X be a smooth, projective algebraic variety over C. As discussed in Sec-
tion 17.3 every smooth subvariety Z of codimension q has a fundamental class
[Z] ∈ H2q(X;Z). In fact it turns out that the smoothness of Z is not needed here:
every subvariety Z ↪→ X of codimension q has such a fundamental class. This can
be proven either by using resolution of singularities or by more naive methods—we
will explain below.

DefineH2q
alg(X;Z) ⊆ H2q(X;Z) to be the subgroup generated by the fundamental

classes of all algebraic subvarieties. How large are these “algebraic” parts of the even
cohomology groups? Are there examples of varieties X for which the algebraic part
does not equal everything?

The answer to the latter question is provided by Hodge theory: yes, there do
exist varieties X where not all of the even cohomology is algebraic. Hodge theory
gives a decomposition of the cohomology groups Hn(X;C) ∼= ⊕p+q=nHp,q(X), and
the algebraic classes all lie in the Hi,i pieces. The (even-dimensional) cohomology
is entirely algebraic only when Hp,q = 0 for p 6= q and p+ q even. But it is known
that for an elliptic curve E one has H1,0 = C = H0,1, and the Künneth Theorem
in this context says

Ha,b(X × Y ) =
⊕

a=a1+a2
b=b1+b2

Ha1,b1(X)⊗Ha2,b2(Y ).

So for E × E one gets H2,0(E × E) ∼= C ∼= H0,2(E × E) and therefore not all of
H2(E × E) is algebraic.

The problem with Hodge theory is that it cannot see any torsion classes, as the
coefficients of the cohomology groups need to be C. Could it be true that torsion
cohomology classes are always algebraic? A classical theorem of Lefschetz, reproved
by Hodge, says that this holds for classes in H2. But for higher cohomology groups
the answer is again no, and the first proof was given by Atiyah and Hirzebruch
[AH2]. There are three basic components to their proof:
(1) Every algebraic class must survive the Atiyah-Hirzebruch spectral sequence.

The vanishing of the differentials therefore gives a sequence of obstructions for
a given cohomology class to be algebraic.
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(2) The differentials in the spectral sequence can be analyzed in terms of coho-
mology operations. If p is a prime then on a pe-torsion class the first nonzero
differential is d2p−1 and coincides with the operation u 7→ −βP 1(ū) where ū is
reduction modulo p, P 1 is the first Steenrod pth power operation, and β is the
mod p Bockstein. Note that this cohomology operation has degree 2p− 1.

(3) A clever construction of Serre’s shows how to obtain smooth algebraic varieties
whose cohomology contains that of BG through a range of dimensions, for
G any finite group. Using this, one readily finds smooth varieties with even-
dimensional, p-torsion cohomology classes for which βP 1 does not vanish; such
a class cannot be algebraic.

The Atiyah-Hirzebruch proof is no longer the most efficient way to obtain condi-
tions for torsion classes to be algebraic. Resolution of singularities shows that every
algebraic class is actually a pushforward of the fundamental class of a manifold—
i.e., every algebraic class lifts into complex cobordism. In the 1950s Thom had
already obtained some necessary conditions for such a lifting to exist, in terms of
Steenrod operations. Via this method K-theory is not needed at all, and moreover
Thom’s theory yields a stronger set of conditions: all odd degree mod p cohomology
operation must vanish, for every prime p. Note that resolution of singularities was
not proven by Hironaka until 1964 [Hir1], and so of course was not available at the
time of [AH2].

Despite the modern shortcomings of Atiyah and Hirzebruch’s method, we will
spend this section describing it in detail. It sheds some light on the relationship
between K-theory and singular cohomology, and also offers some interesting obser-
vations about algebraic varieties. We will also describe the approach via resolution
of singularities, for comparison.

Remark 32.1. We should mention that [AH2] treats the case of analytic cycles in
addition to algebraic cycles. The proofs are essentially the same, with one or two
key differences. We will not cover the material on analytic cycles here.

Remark 32.2. The modern Hodge conjecture states that any class α ∈ H2n(X;Q)
whose image in H2n(X;C) lies in the Hodge group Hn,n(X) is necessarily
algebraic—that is, it lies in the subgroup H2n(X;Q)alg. When Hodge originally
raised this question he did not explicitly specify rational coefficients. Since any tor-
sion class in H2n(X;Z) would map to zero in H2n(X;C), and therefore lie inside
Hn,n(X), an integral version of the Hodge conjecture would imply that all torsion
classes are algebraic. One of the main points of [AH2] was to demonstrate that this
integral form of the Hodge conjecture does not hold in general.

How complicated does a smooth complex variety need to be in order to violate the
integral Hodge conjecture? The smallest such varieties produced by the methods
of [AH2] were of complex dimension 7. Arguments in [BCC] showed the existence
of such varieties in dimension 3 (in fact sufficiently general hypersurfaces in CP 4 of
large degree), but without producing explicit examples. Examples of dimension 5
were produced in [SV], and then explicit examples of dimension 3 were obtained in
[T2] and later [BO]. This is just a sample of what is a very active area of research.

It turns out that the integral Hodge conjecture does hold for certain special
classes of algebraic varieties, and this remains a topic of current interest. See [T3]
and [V] as just two examples.

Up until Section 32.17 the material in this section closely follows [AH2].
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32.3. Fundamental classes for subvarieties. If X is a smooth algebraic variety
and Y ⊆ X is a smooth subvariety of codimension q then we have seen that complex
orientability yields a fundamental class [Y ] ∈ H2q(X) and a relative fundamental
class [Y ]rel ∈ H2q(X,X−Y ). This comes about by choosing a tubular neighborhood
U of Y that is homeomorphic to the normal bundle, and using the isomorphisms

H2q(X,X − Y ) ∼= H2q(U,U − Y ) ∼= H2q(N,N − 0).

Assuming Y is connected it follows that H2q(X,X − Y ) ∼= Z (by Thom isomor-
phism), and [Y ]rel is defined to be the image of the Thom class UN ∈ H2q(N,N−0).
The fundamental class [Y ] is just the image of [Y ]rel underH∗(X,X−Y )→ H∗(X).
Note that the argument shows that the choice of U and homeomorphism U ∼= N
to be irrelevant: there are only two generators in H2q(X,X − Y ), and ???

If Y is disconnected we define [Y ] to be
∑r
i=1[Yi] where the Yi are the connected

components of Y . Note that in this case H2q(X,X − Y ) ∼= Zr, with the generators
corresponding to the images of the [Yi]rel under H2q(X,X−Yi)→ H2q(X,X−Y ).

We aim to show the existence of fundamental classes [Y ] even when the subvariety
Y is not smooth. The approach we follow is to throw away the singular set and
then observe that because this is in smaller dimension it didn’t matter anyway.

Lemma 32.4. Let X be a smooth algebraic variety and let W ↪→ Y ↪→ X be closed
subvarieties. Assume that Y has codimension q ≥ 1 inside of X, and that W has
codimension at least one inside of Y .
(a) H∗(X)→ H∗(X − Y ) is an isomorphism for ∗ ≤ 2q − 2.
(b) H∗(X,X − Y )→ H∗(X −W,X − Y ) is an isomorphism for ∗ ≤ 2q.
(c) If Y is irreducible then H2q(X,X − Y ) ∼= Z.

Proof. First note that part (a) is true when Y is smooth, using the long exact
sequence for the pair (X,X−Y ), the isomorphism H∗(X,X−Y ) ∼= H∗(N,N −0),
and the Thom isomorphism theorem. For the general case, we can filter Y by
subvarieties

∅ ⊆ Y0 ⊆ Y1 ⊆ · · · ⊆ Ys = Y

where each Yi is the singular set of Yi+1 (so that Yi+1 − Yi is smooth). Since Y0 is
smooth, we can assume by induction that H∗(X)→ H∗(X−Yi) is an isomorphism
for ∗ ≤ 2(codimYi)− 2. Now look at the composition

H∗(X)→ H∗(X − Yi)→ H∗(X − Yi+1) = H∗
(
(X − Yi)− (Yi+1 − Yi)

)
.

Since Yi+1 − Yi is smooth in X − Yi, the second map is an isomorphism for
∗ ≤ 2(codimYi+1) − 2. It follows that the composite is an isomorphism for
∗ ≤ 2(codimYi+1)− 2 as well, and now the desired result follows by induction.

Part (b) follows from part (a) via the long exact sequences

· · · // H∗−1(X − Y ) //

=

��

H∗(X,X − Y ) //

��

H∗(X) //

j∗

��

H∗(X − Y ) //

=

��

· · ·

· · · // H∗−1(X − Y ) // H∗(X −W,X − Y ) // H∗(X −W ) // H∗(X − Y ) // · · ·
By (a) the map labelled j∗ is an isomorphism for ∗ ≤ 2q, and so the result follows
by the five lemma.

Finally, for (c) we let Z be the singular set of Y . ThenH2q(X,X−Y ) ∼= H2q(X−
Z, (X−Z)− (Y −Z)) by (b). But Y −Z is a smooth closed subvariety of X−Z of
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codimension q. Since Y was irreducible, Y −Z is also irreducible [H, Example 1.1.3].
By [Sha2, Theorem 7.1], Y −Z is connected in the complex topology. The remarks
from the beginning of this section then show that H2q(X − Z, (X − Z)− (Y − Z)
is isomorphic to Z, with generator [Y − Z]rel. �

Now let Y ↪→ X be an algebraic subvariety of codimension q, and let Z be the
singular set. Since Y −Z is a smooth subvariety of X −Z, we have a fundamental
class [Y −Z] ∈ H2q(X−Z). But by Lemma 32.4(a) the mapH2q(X)→ H2q(X−Z)
is an isomorphism. We define [Y ] ∈ H2q(X) to be the preimage of [Y − Z] under
this map.

Define H∗alg(X) ⊆ H∗(X) to be the subgroup generated by the fundamental
classes of all the algebraic subvarieties of X.

In the next section it will help to be able to focus on classes [Y ] where Y is
irreducible. To this end, the following is useful:

Lemma 32.5. If Y ↪→ X is a codimension q subvariety with irreducible components
Y1, . . . , Yr then [Y ] =

∑
i[Yi] in H

2q(X). Therefore the subgroup H∗alg(X) is spanned
by fundamental classes of irreducible subvarieties.

Proof. Let Z ⊆ Y be the singular set. This contains the points in each Yi ∩ Yj , so
Y −Z is the disjoint union of the Yi − (Z ∩ Yi). So [Y −Z] =

∑
i[Yi − (Z ∩ Yi)] in

H∗(X − Z). Now consider the two maps

H2q(X) −→ H2q(X − Z)←− H2q(X − (Z ∩ Yi))←− H2q(X).

On the left, [Y ] is the unique class that maps to [Y − Z] =
∑
i[Yi − (Z ∩ Yi)]. On

the right, [Yi] is the unique class that maps to [Yi − (Z ∩ Yi)]. It follows at once
that [Y ] =

∑
i[Yi] in H

2q(X). �

We need one more lemma before moving on:

Proposition 32.6. Let M be a real manifold and let N ↪→ M be a codimension
k real submanifold with a tubular neighborhood. Then M − N ↪→ M is (k − 1)-
connected.

Sketch. ???? �

32.7. Vanishing of differentials on algebraic classes. Let X be a smooth
algebraic variety, and let Y ⊆ X be a subvariety. Let F• be a bounded resolution
of OY by locally-free coherent OX -modules, and write F• for the associated chain
complex of C-vector bundles on X. Then [F•] defines a class in K0(X,X − Y )
which we will denote [Y ]K,rel. Note that when Y is smooth this agrees with the
relative fundamental class provided by the complex orientation of K-theory, by
Theorem 21.10.

Proposition 32.8. One has ch([Y ]K,rel) = [Y ]H,rel + higher order terms.

Proof. We first prove this when Y is smooth. If N denotes the normal bundle for Y
in X, then the result will follow once we know ch(UKN ) = UHN + higher order terms,
since both [Y ]K,rel and [Y ]H,rel are obtained from the Thom classes by applying
natural maps. However, we have already seen in our discussion of Riemann-Roch
that the complete formula is in fact

ch(UKN ) = UHN · Td(N)−1

(see Proposition 28.3). Now just observe that Td(N)−1 = 1 + higher order terms.
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Now let Y be arbitrary. Let Z be the singular locus, and let q denote the
codimension of Y . Consider the diagram

K0(X,X − Y )
j∗ //

ch

��

K0(X − Z,X − Y )

ch

��
H∗(X,X − Y )

j∗ // H∗(X − Z,X − Y ).

Both maps j∗ are simply restriction to an open set, and so j∗([Y ]K,rel) = [Y −
Z]K,rel and j∗([Y ]H,rel) = [Y − Z]H,rel. By Lemma 32.4(b) the bottom map is an
isomorphism for ∗ ≤ 2q. So the desired result for Y follows from the corresponding
result for Y − Z, which has already been proven because Y − Z is smooth in
X − Z. �

Theorem 32.9. Let X be a smooth algebraic variety, and let Y ⊆ X be a sub-
variety. Then [Y ]H survives the Atiyah-Hirzebruch spectral sequence; that is, all
differentials vanish on this class.

Proof. This is now easy. The class [Y ]H is the image of [Y ]H,rel under the natural
map H∗(X,X − Y ) → H∗(X). By naturality of the Atiyah-Hirzebruch spectral
sequence, it suffices to show that all differentials on [Y ]H,rel are zero. This follows
from Proposition 32.8 and ????. �

Corollary 32.10. Let X be a smooth algebraic variety, and let p be a fixed prime.
If a pe-torsion class u ∈ Hev(X) is algebraic then βP 1(u) = 0.

Proof. Proposition 34.21(b) identifies the first possible differential on a pe-torsion
class in the Atiyah-Hirzebruch spectral sequence as u 7→ βP 1(ū). Using this, the
result is immediate from Theorem 32.9. �

32.11. Construction of varieties with non-algebraic cohomology classes.
At this point our job is to construct a smooth, projective algebraic variety X that
has a class u ∈ Hev(X) for which βP 1ū 6= 0, for some prime p. Such a class cannot
be algebraic by Corollary 32.10. It turns out that p can be any prime we like—that
is, for any given p we can find an example of an X and a u. Moreover, u can be
taken to lie in degree 4. The construction comes out of the following three results:

Theorem 32.12 (Serre). Let G be a finite group and let n ≥ 1. Then there exists
a linear action of G on a projective space CPN together with an n-dimensional,
closed, smooth subvariety X ↪→ CPN which is a complete intersection, invariant
under G, and has G acting freely.

Corollary 32.13. If X is a variety having the properties in Theorem 32.12 then
X/G is a smooth projective variety and there is an n-connected map X/G →
CP∞ × BG. In particular, the homotopy (n − 1)-type of X/G is the same as
that of K(Z, 2)×BG.
Proposition 32.14. Let p be a prime. Then there exists a finite group G and a
class u ∈ H4(BG;Z) that is killed by p and is such that βP 1(ū) 6= 0.

We postpone the proofs for one moment so that we can observe the immediate
consequence:
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Corollary 32.15 (Atiyah-Hirzebruch). Fix a prime p. There exists a smooth,
projective, complex algebraic variety X and a class u ∈ Hev(X) that is killed by p
such that u is not algebraic.

Proof. By Proposition 32.14 there exists a finite group G and a p-torsion class
u ∈ H4(BG;Z) such that βP 1(ū) 6= 0. Note that P 1 has degree 2(p − 1) and so
βP 1(ū) ∈ H2p+3(BG;Z/p).

By Corollary 32.13 there is a smooth, projective variety W of dimension 2p+ 3
that admits a (2p + 3)-connected map W → K(Z, 2) × BG. But then H∗(BG;Z)
injects into H∗(W ) up through dimension 2p+ 3, and likewise for Z/p coefficients.
So there is a class w ∈ H4(W ) such that βP 1(w̄) 6= 0, and by Corollary 32.10 this
class cannot be algebraic. �

Theorem 32.12 requires some algebraic geometry, but the proofs of both Corol-
lary 32.13 and Proposition 32.14 are purely topological. We tackle these in reverse
order:

Proof of Proposition 32.14. We start by considering p = 2 (the odd case turns out
to be extremely similar). As a first attempt we might try to take G = Z/2. Then
BZ/2 = RP∞, H∗(RP∞;Z/2) = Z/2[x], and H∗(RP∞;Z) = Z/2[x2]. Note that
we can regard the integral cohomology as being contained in the mod 2 cohomol-
ogy. Unfortunately Sq3 = β Sq2 vanishes on all the integral classes, by an easy
calculation. So this attempt doesn’t work.

Next look at B(Z/2×Z/2) = RP∞×RP∞. The mod 2 cohomology is Z/2[x, y],
and because the integral cohomology is all 2-torsion it coincides with the subring of
H∗(RP∞ × RP∞;Z/2) consisting of all elements whose Bockstein vanishes. Such
elements of course include all polynomials in x2 and y2, but it also includes θ =
x2y + xy2 = β(xy). In fact all the elements of the integral cohomology look like
x2iy2j · θ. Another easy calculation shows that Sq3 applied to such an element is
x2iy2j Sq3(θ), and Sq3(θ) = x4y2 + x2y4 6= 0. This gives us lots of classes that are
not killed by Sq3, however they are all in odd dimensions. So this still doesn’t solve
our problem.

In the preceding paragraph, the reason things didn’t work ultimately came down
to the fact that β(xy) had odd dimension. This gets fixed once we move to
B(Z/2×Z/2×Z/2). The mod 2 cohomology is Z/2[x, y, z], and again the integral
cohomology is 2-torsion and so coincides with the elements in the mod 2 cohomology
where the Bockstein vanishes. One such element is θ = β(xyz) = x2yz+xy2z+xyz2.
It is easy to calculate that Sq3 θ = x4y2z + x4yz2 + · · · 6= 0. So finally we have an
even-dimensional integral cohomology class where Sq3 vanishes.

The argument for odd primes works the same way. Recall that H∗(BZ/p;Z/p) =
Λ(u) ⊗ Fp[v], with |u| = 1, |v| = 2, β(u) = v and P 1(v) = vp. Take G = Z/p ×
Z/p×Z/p. The integral cohomology of BG is all p-torsion and so coincides with the
subring of H∗(BG;Z/p) where the Bockstein vanishes. Look at θ = β(u1u2u3) ∈
H4(BG;Z). A simple calculation shows that βP 1(θ) 6= 0. �

Exercise 32.16. Verify all of the calculations outlined in the above proof.

Next we prove the corollary to Serre’s theorem, again following [AH2]:

Proof of Corollary 32.13. Let X ↪→ CPN be the subvariety provided by Theo-
rem 32.12(a). Since X ↪→ CPN is a complete intersection, the homotopical form of
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the Lefschetz Hyperplane Theorem (e.g. [Mi1, Theorem 7.4]) yields thatX → CPN
is an isomorphism on πi for i < dimX = n and an epimorphism on πdimX . In other
words, the map X → CPN is n-connected.

Let L → CPN be the tautological line bundle CN+1 − 0 → CPN . Note that G
acts on CN+1, and so G acts on the bundle L. Hence G acts on the pullback bundle
j∗L→ X. Since the action of G on X is free we get a line bundle (j∗L)/G→ X/G
which pulls back to j∗L along the projection X → X/G. Let the classifying map
for this line bundle be X/G→ CP∞. The diagram

X //

��

CPN

��
X/G // CP∞

necessarily commutes up to homotopy, as the two compositions classify the same
bundle j∗L. Since X → CPN and CPN → CP∞ are both n-connected, so is the
composite X → CP∞.

Consider the composite map X → X/G→ CP∞. This is a G-equivariant map,
where the target is given the trivial G-action. Since the map is n-connected, so is
the map X × EG→ CP∞ × EG (because EG is contractible). For any connected
space Z the map Z×EG→ (Z×EG)/G = ZhG is a covering space and therefore an
isomorphism on homotopy groups, so it follows that (X×EG)/G→ (CP∞×EG)/G
is also a n-connected. That is, XhG → CP∞hG is n-connected. But since the G-
action on X is free one has XhG ' X/G, and since the action on CP∞ is trivial
one has (CP∞)hG ' CP∞ ×BG. This completes the proof. �

Finally we prove Serre’s theorem, following [S1, Section 20]. Serre credits the
method to Godeaux.

Proof of Theorem 32.12. We first give the proof for G = Z/2. Even though the
general case is basically the same, certain steps can be made more concrete by
restricting to this case.

Recall that our goal is to construct a certain variety X of dimension n. For the
moment, fix M ≥ 1. Eventually we will narrow the choice of M in relation to n,
but for now M is arbitrary.

Let C2M have coordinates x1, . . . , xM , y1, . . . , yM , and let G act trivially on the
x’s and by negation on the y’s. Consider the induced action on P = P(C2M ) =

CP 2M−1. The homogeneous coordinate ring is R = C[x1, . . . , xM , y1, . . . , yM ], and
the ring of invariants S = RG is the subring generated by the xi’s and the yiyj ’s
(including i = j). An easy argument shows that every homogeneous element of
S having even degree is a polynomial in the elements xixj and yiyj . That is, if
S(2) ⊆ S is the C-linear span of all even-dimensional homogeneous elements then
S(2) is generated (as a subring) by elements of degree 2.

Let α1, . . . , αs denote the degree 2 monomials in the xi, in some order. Similarly,
let β1, . . . , βs denote the degree 2 monomials in the yj , and let b = 2s − 1 =

2
(
M+1

2

)
− 1 = M2 +M − 1. Let f : P → CP b be the map

f([x1 : · · · : xM : y1 : . . . : yM ]) = [α1 : . . . : αs : β1 : . . . : βs].
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Clearly f induces a map P/G → CP b. It is easy to see that this is a pro-
jective embedding (???). Its image Z is the closed subvariety whose homoge-
neous coordinate ring is S(2), regarded as a quotient of the polynomial algebra
C[α1, . . . , αs, β1, . . . , βs]. We have dimZ = dimP = 2M − 1.

Let A ⊆ P be the set of fixed points for the Z/2-action. One readily checks that
A is the disjoint union CPM−1 qCPM−1, where the first piece corresponds to the
vanishing of the xi’s and the second piece to the vanishing of the yj ’s. The fibers
of f are sets with at most two elements, and so f(A) ⊆ Z is a subvariety having
the same dimension as A. Note that P −A→ Z − f(A) is a covering space, and so
Z − f(A) is nonsingular.

Let H ⊆ CP b be a generic subspace of dimension b + n − (2M − 1). The
dimension has been chosen so that H ∩ Z will have dimension n, but note that
we will need n < 2M − 1 for H to exist. We can choose H so that it misses the
singular set of Z and intersects Z transversely, and if dim f(A) + dimH < b we can
simultaneously require that H does not intersect f(A). This dimension criterion is
M − 1 + b− (2M − 1) + n < b, or just n < M . So from now on we assume that M
was chosen to be at least this large.

Our choice of H guarantees that Z ∩H is a nonsingular variety of dimension n.
Let X = f−1(Z ∩H). The criterion that H ∩f(A) = ∅ implies that X ∩A = ∅, and
so G acts freely on X and the map f |X : X → Z ∩H is a two-fold covering space.
So X is also nonsingular of dimension n.

The subspace H is defined by the vanishing of linear elements h1, . . . , ht in the
ring S, where t = (2M − 1) − n. Via the inclusion S ⊆ R we can regard these as
elements of R, where they are homogeneous of degree 2. The subvariety X ⊆ P
is the vanishing set of these polynomials. Given that X is of codimension t, we
find that X is a set-theoretic complete intersection: it is the intersection of the t
hypersurfaces defined by each of the hi’s. It remains to show that X is actually
a scheme-theoretic complete intersection: i.e., that the ideal of functions vanishing
on X is generated by a regular sequence.

Since X has codimension t is follows that ht (h1, . . . , ht) = t. By ??? this implies
that h1, . . . , ht is a regular sequence. If we let I = (h1, . . . , ht) then the ideal of
functions vanishing on X is Rad(h1, . . . , ht). We will show that Rad(I) = I, as this
proves that X is a scheme-theoretic complete intersection.

By Macaulay’s Unmixedness Theorem [E, Corollary 18.14], all associated primes
of I are minimal primes of I. So I has a primary decomposition I = Q1 ∩ · · · ∩Qk
where each Qi is primary and Rad(Qi) = Pi is a minimal prime of I. The V (Pi)’s
are the irreducible components of X, and so for each i we can choose a closed point
m ∈ V (Pi) that does not belong to any other component. So m is a maximal ideal
containing Pi, and IRm = QiRm.

Let m′ = f(m) and consider the diagram of local rings

OX,m

��

OZ,m′oo

��
ÔX,m ÔZ,m′ .

∼=oo

The bottom map is an isomorphism because X → Z is a two-fold covering space.
The assumption that H meets Z transversely implies that g1, . . . , gt is part of a
regular system of parameters for OZ,m′ ; that is to say, their images in the Zariski
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cotangent space (m′)/(m′)2 are independent. The same is therefore true in OX,m,
because all maps in the above square induce isomorphisms on the Zariski cotangent
space.

In particular, the fact that h1, . . . , ht is part of a regular system of parameters
in OX,m implies that IRm is prime. So QiRm = IRm = Rad(IRm) = PiRm. This
can only happen if Qi = Pi (if Q is primary with radical P and P ⊆ m, then
QRm = PRm if and only if Q = P ). We have thus proven that Qi = Pi for every
i, and this implies I = Rad(I).

This proof is now completed for the case G = Z/2.
For a general finite group G let V be the regular representation and let P =

P(VM ). Let R be the homogeneous coordinate ring of P , and let S = RG. If
S(d) ⊆ S is the subring spanned by homogeneous elements in degrees a multiple of
d, one can prove that for some value of d the ring S(d) is generated as an algebra
by its elements of degree d. Choose a C-basis f0, . . . , fb for these generators and
let f : P → CP b be the map x 7→ [f0(x) : f1(x) : · · · : fb(x)]. This map induces
a projective embedding P/G ↪→ CP b; call the image Z. Let A ⊆ P be the set of
elements with nontrivial stabilizer under G. For g ∈ G an easy argument shows
that any eigenspace of g acting on V must have dimension equal to at most the
number of right cosets of 〈g〉 in G. So the dimension of the eigenspace is at most
#G/#〈g〉, and therefore is bounded above by #G/2. The eigenspaces of g acting
on VM thus have dimension at most M · #G/2, and from this one derives that
dimA ≤ (M · #G/2) − 1. The rest of the argument proceeds almost identically
to the G = Z/2 case, the only change being that we take H to have dimension
b+ n− (M ·#G− 1) and that we only need to require M > 2n

#G in order to choose
H so that it avoids f(A). �

32.17. Thom’s theory. Although this part of the story doesn’t use K-theory, the
obstructions to algebraicity obtained from resolution of singularities are so simple
that they are worth discussing here.

Theorem 32.18. Let X be a smooth algebraic variety, and let p be a fixed prime.
If u ∈ Hev(X;Z) is algebraic then all odd-degree cohomology operations vanish on
the mod p reduction ū ∈ Hev(X;Z/p). In particular, all of the odd Steenrod squares
vanish on the mod 2 reduction of u.

The above theorem was probably folklore since the 1960s. It explicitly appears
in the beautiful paper [T]. The key to this result is the cohomology theory called
complex cobordism, denoted MU . This was first introduced and studied by Thom.
The definitions are somewhat involved, but the corresponding homology groups
MU∗(X) are formed from classes of manifolds with a certain kind of complex
structure mapping into X, with an equivalence relation coming from bordism of
such things. See ??? for a general introduction. The spectrum MU can be con-
structed without going through the geometrical considerations, and the reader is
taken through that in Exercise 32.22 below. Our discussion will sweep most of these
details under the rug, as we only need a few carefully selected properties of MU .

First, MU is a complex-oriented cohomology theory. In fact it is the universal
such one, in a certain sense. Consequently, there is a map of cohomology theories
MU∗(−) → H∗(−) that is compatible with the complex orientations. So the map
sends Thom classes to Thom classses (i.e. UMU

E 7→ UHE ) and consequently if Y ↪→ X
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is a smooth subvariety it sends [Y ]MU to [Y ]H . We will not explain this claim in
detail, but it is not hard (see Exercise 32.22 below).

The next part of the argument is best explained using the language of spectra.
The above map of cohomology theories comes from a map of spectra MU → HZ.
If Y ↪→ X is a smooth subvariety of codimension q then [Y ]MU ∈ MU2q(X) is
represented by a map X → Σ2qMU , and likewise [Y ]H ∈ H2q(X) is represented by
a map X → Σ2qHZ. In the homotopy category of spectra we have the commutative
diagram

Σ2qMU

��
X

[Y ]MU

;;

[Y ]H

// Σ2qHZ.

Let θ be a cohomology operation of degree r onH∗(−;Z/p). This is a map of spectra
HZ/p → ΣrHZ/p. The application of this operation to the mod p reduction of
[Y ]H enhances our diagram:

Σ2qMU

��

f

++
X

[Y ]MU

;;

[Y ]H

// Σ2qHZ // Σ2qHZ/p
θ
// Σ2q+rHZ/p.

The map labelled f is just the evident composite. Note that f is an element
of Hr(MU ;Z/p). The “miracle” is that we can easily compute this group. The
spaces making up the spectrum MU are just Thom spaces of the universal bundles
γn → BU(n), and their integral cohomology is known by the Thom isomorphism.
We leave the details to the reader (see Exercise 32.22), but the trivial conclusion
here is that H∗(MU ;Z) is free abelian and concentrated in even degrees. It follows
that H∗(MU ;Z/p) vanishes in all odd degrees. In particular, the map f is null
when r is odd! Thus, we have proven Thom’s theorem:

Proposition 32.19 (Thom). Let X be a smooth algebraic variety and let Y ↪→ X
be a smooth subvariety. Fix a prime p. Then all odd degree cohomology operations
vanish on the mod p reduction of the class [Y ]H ∈ H∗(X).

Remark 32.20. It is interesting to note how easy the language of spectra makes
the above argument. As a challenge, try to unwind the argument and rephrase it
without using spectra—it is not so pleasant.

One can deduce Theorem 32.18 from Proposition 32.19 using resolution of sin-
gularities and a little work. We are not going to give complete details, but we give
a rough sketch. Complete details (and much more) can be found in [T].

Sketch of proof of Theorem 32.18. It suffices to prove Theorem 32.18 when u is
the fundamental class of an irreducible subvariety Y ↪→ X, say of codimension q.
Such elements generate all algebraic cohomology classes. By Hironaka there is a
resolution of singularities Ỹ → Y obtained by successively blowing up Y at closed
subschemes. Even more, one can successively blow up X at the same subschemes
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to produce a commutative square

Ỹ // //

��

X̃

π

��
Y // // X

where the horizontal maps are closed inclusions and the vertical maps are compo-
sitions of successive blow-ups (in particular, they are proper). We of course have
the class [Ỹ ]MU ∈ MU2q(X̃), and with a little work one can construct a pushfor-
ward map π! : MU2q(X̃) → MU2q(X). We claim that π!([Ỹ ]MU ) is a lift of the
class [Y ]H . By ???? this can be checked by applying j∗ : H∗(X) → H∗(X − Z)

where Z is the singular set of Y and seeing that j∗(π!([Ỹ ]MU )) = [Y − Z]. This
can in turn be deduced from an appropriate push-pull formula and the fact that
Ỹ − π−1(Y ) → Y − Z is a homeomorphism. In any case, if you accept this last
point then we now have the diagram

Σ2qMU

��
X

π!([Ỹ ]MU )
;;

[Y ]H

// Σ2qHZ

and at this point everything proceeds the same as before. This completes our sketch
of a proof for Theorem 32.18. �

Note that even with this approach, as opposed to the K-theory approach of
Atiyah-Hirzebruch, one still needs to gives examples of algebraic varieties with
nontrivial odd-degree operations on even-dimensional cohomology classes. So the
hard work that went on in Section 32.11 is still necessary.

◦ Exercises ◦

The following exercises introduce the reader to the cohomology theoriesMO and
MU .

Exercise 32.21. Let MO(n) = Th(γn → BO(n)), and note that MO(0) = S0.
(a) Confirm that there is a pullback diagram

γn ⊕ 1 //

��

γn+1

��
Grn(R∞) // Grn+1(R⊕ R∞) Grn+1(R∞)

leading to a canonical (up to homotopy) map ΣMO(n)→MO(n+ 1). Define
MO to be the spectrum made up of the sequence of spaces

MO(0), MO(1), MO(2), · · ·
and having the maps from (a) as structure maps. This is called the real
bordism spectrum.
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(b) Choose once and for all a basepoint in BO(0) and take the corresponding
basepoint in BO(n) for all n. The fibers over these basepoints give canonical
inclusions Sn ↪→ MO(n). Check that these assemble to give a map of spectra
S →MO.

(c) Each MO(n) has a (canonical) Thom class Un ∈ Hn(MO(n);Z/2). These can
be regarded as maps MO(n)→ K(Z/2, n). Verify that these assemble to give
a map of spectra MO → HZ/2, and therefore a map of cohomology theories
MO∗(X)→ H∗(X;Z/2).

Exercise 32.22. Let MU(n) = Th(γn → BU(n)).
(a) Confirm that there is a pullback diagram

γn ⊕ 1 //

��

γn+1

��
Grn(C∞) // Grn+1(C⊕ C∞) Grn+1(C∞)

leading to a canonical (up to homotopy) map Σ2MU(n)→MU(n+ 1).
(b) Verify that there is a spectrum made up of the sequence of spaces

MU(0), ΩMU(1), MU(1), ΩMU(2), MU(2), ΩMU(3), MU(3), . . .

where the structure maps are induced by the maps in (a) and the standard
counit maps ΣΩX → X.
[Note that it feels more natural to just use the sequence MU(0),MU(1),
MU(2), . . . but that this would give a spectrum-like object where the structure
maps involve a two-fold suspension. One can develop such Σ2-spectra and prove
that they give an equivalent theory to regular spectra. While this is somehow
the more pleasing approach, it is more common just to use the regular defini-
tion of spectra and throw in the “odd” spaces ΩMU(n) that are formally forced
into the picture. But it is good to recognize that one can basically ignore those
terms.]

(c) Verify that the Thom classes Un ∈ H2n(MU(n)) give a map of spectra MU →
HZ (see Exercise 32.21(c) for the simpler case).

(d) There are canonical classes Un ∈MU2n(MU(n)), corresponding to the identity
mapsMU(n)→MU2n = MU(n). Verify that these makeMU into a complex-
oriented spectrum and that the map of cohomology theories MU → HZ sends
the MU -Thom class for a bundle to its H-Thom class.

(e) If E is a spectrum then the homology group Hn(E) is defined to be the direct
limit

Hn(E0)→ Hn+1(E1)→ Hn+2(E2)→ · · ·
For MU we can take the cofinal system of every other term and write

Hn(MU) = colim
[
Hn(MU(0))→ Hn+2(MU(1))→ Hn+4(MU(2))→ · · ·

]
where the maps are induced by the maps in (a). Recall that the Thom isomor-
phism gives H̃i(MU(n)) ∼= Hi−n(BU(n)) and that H∗(BU(n)) ∼= Z[c1, . . . , cn]
where the ci are the Chern classes. Verify that H∗(MU) is concentrated only
in even degrees and is free abelian, and conclude the same for H∗(MU) by the
universal coefficient theorem.
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33. K-theoretic Chern classes: the γ-operations

Let E → X be a complex vector bundle of rank n. We will define certain natural
classes γ̃k(E) ∈ K̃0(X) with the following properties:
(1) γ̃k(E) = 0 for k > n and γ̃0(E) = 1,
(2) γ̃k(E ⊕ F ) =

∑
i+j=k γ̃

i(E)γ̃j(F ),
(3) γ̃1(1) = 0,
(4) γ̃n(E∗) = (−1)neK(E), where eK(E) is the K-theoretic Euler class defined in

Section 25.13,
(5) γ̃1(E) = [E]− n.
Properties (1)–(3), and almost (4), are familiar properties of the usual Chern classes
in singular cohomology (in (4) we would not expect the dual or the sign to appear).
But note that properties (1)–(3) are unaffected if we add in the duals and signs, so
this suggests that we should define the K-theoretic Chern classes by

cKi (E) = (−1)iγ̃i(E∗).

These classes now satisfy all of the familiar properties. Below we will see some
further justification of this definition.

There is a bit of a historical oddity here. One could change the historical def-
inition of the γ̃-operations so that the dual is built in, and then the γ̃-operations
would be precisely the K-theoretic Chern classes. On some levels this would be
more satisfying, but we have chosen to follow the historical conventions.

The following is another familiar property of Chern classes, and is a consequence
of the ones above:

Proposition 33.1. Suppose that X is a paracompact Hausdorff space and the rank
n bundle E → X admits r independent sections. Then γ̃n+1−i(E) = 0 = cKn+1−i(E)
for 1 ≤ i ≤ r.
Proof. The r independent sections give an embedding r ↪→ E. If Q denotes the
quotient, then the exact sequence 0→ r ↪→ E → Q→ 0 is split by Proposition 9.2,
and so E ∼= r ⊕Q. Then

γ̃n+1−i(E) =
∑

a+b=n+1−i

γ̃a(r)γ̃b(Q) = γ̃n+1−i(Q).

But since Q has rank n−r, the latter expression vanishes if n+1− i > n−r, which
is when i < r + 1.

Since E splits off a copy of r if and only if E∗ does, we can apply the above
reasoning to E∗ and deduce the vanishing of the cK-classes. �

We still need to construct the γ̃ classes. We are going to write down a direct but
rather unsatisfying definition; then we will spend the rest of the section explaining
where the definition comes from.

Definition 33.2. For E → X a rank n vector bundle define

γ̃k(E) = (−1)k
(
n
k

)
[Λ0E] + (−1)k−1

(
n−1
k−1

)
[Λ1E] + (−1)k−2

(
n−2
k−2

)
[Λ2E] + · · ·

=

k∑
i=0

(−1)k−i
(
n−i
k−i
)
[ΛiE].
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Properties (1), (3), (4), and (5) are immediate from this definition. Property
(2) can be deduced from the isomorphism Λn(E ⊕ F ) ∼=

⊕
a+b=n ΛaE ⊗ ΛbF by

a brute force calculation, but it requires some combinatorial cleverness. We will
instead take a different route which helps us better understand where the above
definition came from.

Proposition 33.3. If E = L1 ⊕ · · · ⊕ Ln is a sum of line bundles then

γ̃k(E) =
⊕

i1<...<ik

(Li1 − 1) · · · (Lik − 1).

Proof. Let x1, . . . , xn be formal variables, and consider the polynomial

Pk =
⊕

i1<···<ik

(xi1 − 1) · · · (xik − 1).

This is a symmetric function and therefore can be written as a polynomial in the
elementary symmetric functions σ1, . . . , σn. The constant term is clearly

(
n
k

)
(−1)k

(put all xi = 0). For s ≤ k a given monomial xr1 · · ·xrs appears in exactly
(
n−s
k−s
)

summands (all k-subsets containing r1, . . . , rs) with coefficient (−1)k−s, so this
gives a summand of Pk of the form (−1)k−s

(
n−s
k−s
)
σs. Thus,

Pk =

k∑
i=0

(−1)k−i
(
n−i
k−i
)
σi.

When we change xi to Li, the σi function is precisely ΛiE. So this completes the
proof. �

Corollary 33.4. If E and F are sums of line bundles then γ̃k(E ⊕ F ) =∑
i+j=k γ̃

i(E)γ̃j(F ).

Proof. Immediate from Proposition 33.3. �

Remark 33.5. Properties (1)–(4) force the definition of the γ̃ classes on sums of
line bundles. By applying the argument in the above proof one is led to Defini-
tion 33.2 in that special case, and it is natural to then extrapolate to the general
case.

Note that we have still not proven property (2), though we are working up to it.
Let us wipe the slate at this point and assume we do not yet have a definition

of the γ̃ classes. Recall the generating function

λt(E) = 1 + t[E] + t[Λ2E] + · · ·
and the fact that λt(E ⊕ F ) = λt(E) · λt(F ). We can introduction the analogous
generating function

γ̃t(E) = 1 + tγ̃1(E) + t2γ̃2(E) + · · ·
and since we want property (2) to hold it is tempting to try to define γ̃t(E) in
terms of λt(E). For L a line bundle we know λt(L) = 1 + t[L], whereas we want
γ̃t(L) = 1 + t([L]− 1) = (1− t) + t[L]. This quickly leads us to write

γ̃t(L) = (1− t)λ t
1−t

(L)

and suggests that for a rank n bundle E we put

γ̃t(E) = (1− t)nλ t
1−t

(E).(33.6)
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That is, we take this as the definition of the γ̃i(E) classes. With this defintion prop-
erties (1)—(3) are immediate; (4) is immediate for line bundles and then is deduced
in general by applying property (2) and using that eK(E ⊕ F ) = eK(E)eK(F ).

Unravelling equation (33.6) leads to

γ̃t(E) = (1− t)n + (1− t)n−1t[E] + (1− t)n−2t2[Λ2E] + · · ·+ tn[ΛnE].

The coefficient of tk is therefore

γ̃k(E) = (−1)k
(
n
k

)
+ (−1)k−1

(
n−1
k−1

)
[E] + (−1)k−2

(
n−2
k−2

)
[Λ2E] + · · ·

which recovers Definition 33.2.
Now we have finally confirmed that our definition of the γ̃ classes satisfies prop-

erties (1)–(5).

Remark 33.7. The more standard approach to this material is to first define
classes γi(E), and to get the γ̃ classes from those. We briefly recount this. For
x ∈ K0(X) define

γt(x) = λ t
1−t

(x),(33.8)

regarded as a power series in t with coefficients in K(X). Note that γt(x ⊕ y) =
γt(x)γt(y) because this property is inherited from the λt-construction. So γt is a
group homomorphism γt : K(X) → 1 + tK(X)[[t]], where the target is the multi-
plicative group of power series with coefficients in K(X) and having leading coeffi-
cient 1. Note that γt(1) = 1 + t

1−t = 1
1−t = 1 + t+ t2 + · · · . One then defines

γ̃t(x) = γt(x− rankx) =
γt(x)

γt(rankx)
= (1− t)rank x · γt(x) = (1− t)rank x · λ t

1−t
(x).

An objection to this approach is that the formula (33.8) seems to come out of
nowhere, whereas our development provided more motivation.

In the literature one almost never finds the γ̃i notation, so let us record the
formula

(33.9) γ̃i(x) = γi(x− rank(x))

that translates from our notation into the classical one. In particular, if x has rank
zero then γi(x) = γ̃i(x) for all i.

Exercise 33.10. If L is a line bundle calculate γt(L) and γ̃t(L), and observe the
differences. Then use the formula γt(1−L) = γt(1)

γt(L) to calculate γi(1−L) = (1−L)i

for all i. Repeat for γ̃t(1− L) = γ̃1(1)
γ̃t(L) to calculate γ̃i(1− L) for all i.

Exercise 33.11. Note that γt(x)γt(−x) = γt(0) = 1. Use this to calculate
that γ1(−x) = −γ1(x) and γ2(−x) = γ1(x)2 − γ2(x). In general prove that
γi(−x) can be expressed as a homogeneous polynomial of degree i in the classes
1, γ1(x), γ2(x), . . . , γi(x), where each γj(x) is regarded as having degree j. In fact
prove that γi(y − x) can be expressed as a homogeneous polynomial of degree i in
the γa(y) and γb(x) classes.

Observe that the analogous result holds for the γ̃i classes as well.
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33.12. Topology and the K-theoretic Chern classes. The inclusion of the
diagonal matrices into Un takes the form (S1)×n ↪→ Un, and induces α : (BS1)×n →
BUn. This can be modeled geometrically by the map (CP∞)×n → BUn that
classifies the direct sum π∗1L ⊕ · · · ⊕ π∗nL where L → CP∞ is the canonical line
bundle. Since permuting the factors gives an isomorphic bundle, ασ ' α for any σ ∈
Σn. For any cohomology theory E it follows that a∗ : E∗(BUn) → E∗((CP∞)×n)
lands in the ring of invariants:

α∗ : E∗(BUn)→
[
E∗((CP∞)×n)

]Σn
.

If E is complex-oriented then E∗(CP∞ × · · ·CP∞) ∼= E∗[[x1, . . . , xn]] (the ring of
graded power series, as in Section 31.22), and so we have

α∗ : E∗(BUn) −→ E∗[[σ1, . . . , σn]]

Here xi is the E-theory Euler class of π∗i (L).
Applying the above to complex K-theory, and pushing everything to K0 using

Bott periodicity, we have the map

K0(BUn) −→ Z[[σ1, . . . , σn]] ⊆ Z[[x1, . . . , xn]] = K0(CPn × · · · × CPn)

where xi = eK(π∗i L) = 1 − π∗i L∗. If γ → BUn is the tautological bundle, then
α∗γ =

⊕
i π
∗
i L. Observe that

α∗
(
cKr (γ)

)
= cKr (π∗1L⊕ · · · ⊕ π∗nL) = (−1)rγ̃r(π∗1L

∗ ⊕ · · · ⊕ π∗nL∗)
= (−1)r

⊕
i1<···<ir

(π∗i1L
∗ − 1) · · · (π∗irL∗ − 1)

=
⊕

i1<···<ir

xi1 · · ·xir

= σr

where the third equality is by Proposition 33.3. This confirms that cKr is the
“correct” analog of the classical rth Chern class in singular cohomology.

33.13. Geometry and the K-theoretic Chern classes. At this point we have
understood the definition of cKr from combinatorial and topological perspectives.
But one would hardly look at any of our definitions—e.g. Definition 33.2—and
immediately see some interesting geometry underlying them. Our next aim is to
see if we can identify some geometry secretly lurking here.

If C is a chain complex of vector spaces, define the dth symmetric product by
the usual formula

Symd(C) = (C⊗(d))/Σd

but note that the Σd-action on the tensor product is via the symmetric monoidal
structure on chain complexes and so involves the Koszul sign rule. If V is a vector
space and V [i] denotes the chain complex with V in dimension i and zeros elsewhere,
then

Symd(V [i]) ∼=
{

(Symd V )[di] if i is even,
(ΛdV )[di] if i is odd.

If C and D are chain complexes then we have the usual canonical isomorphism

Symd(C ⊕D) ∼=
⊕
i+j=d

Symi(C)⊗ Symj(D).(33.14)
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If f : V → W is a map of vector spaces write Cf for the chain complex that
has (Cf)0 = V , (CF )−1 = W , all other chain groups zero, and the differential
(CF )0 → (CF )−1 is equal to f (this is essentially the desuspension of the mapping
cone of f). Our next goal will be to compute the vector spaces H∗(Symd(Cf)). To
this end, observe that we can choose direct sum decompositions V = V1 ⊕ V2 and
W = W2 ⊕W3 in such a way that f(V1) = 0, f(V2) = W2, and f |V2

: V2 → W2 is
an isomorphism. For convenience let g = f |V2 , so that Cf ∼= V1[0]⊕ Cg ⊕W3[−1].
We then get that

Symd(Cf) ∼=
⊕

i+j+k=d

Symi(V1)[0]⊗ Symj(Cg)⊗ (ΛkW3)[−k].

The key observation is that Symj(Cg) is acyclic for all j > 0. Since the tensor
product of an acyclic complex and anything is again acyclic, this means the only
terms in the above sum that contribute to homology are the ones with j = 0. This
gives

(33.15) Symd(Cf) '
⊕
i+k=d

(
Symi(V1)⊗ Λd−i(W3)

)
[−(d− i)].

This decomposition simplifies dramatically if either V1 or W3 is zero:

Proposition 33.16. Let f : V →W be a nonzero map of vector spaces.
(a) If ker f = 0 then the homology of Symd(Cf) is concentrated in dimension −d

and equals Λd(coker f). In particular, Symd(Cf) is exact for d > dim coker(f).
(b) If coker f = 0 then the homology of Symd(Cf) is concentrated in dimension 0

and equals Symd(ker f).

Proof. Immediate from (33.15). �

For us the most important part of the above result is part (a). It shows that if
a map is injective then some associated complexes will be exact. So that starts to
feel like a context where K-theory might provide obstructions.

The above considerations all pass to vector bundles without any trouble. If
f : E1 → E2 is a map of bundles over a space X then one gets the complex of
bundles Symd(Cf). The following result is immediate from the preceding one:

Corollary 33.17. Let f : E1 → E2 be an injective map of bundles. Then for any
d > rank(E2)− rank(E1) the complex Symd(Cf) is exact.

This corollary allows us to write down a collection of K-theoretic obstructions
to the existence of an embedding E1 ↪→ E2. If such an embedding exists then for
appropriate d we get that Symd(Cf) is exact, which implies that the alternating
sum of the terms is zero inK(X). This alternating sum is the same as for Symd(Cz)
where z : E1 → E2 is the zero map, in which case we can use the isomorphism

Symd(Cz)
∼=

d⊕
i=0

(
Symi(E1)⊗ Λd−i(E2)

)
[−(d− i)].

So define the class

σd(E1, E2) = Symd(E1
0−→ E2) =

d∑
i=0

(−1)d−i Symi(E1)⊗ Λd−i(E2) ∈ K0(X)
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where the chain complex E1
0−→ E2 is in degrees 0 and −1. We have proven the

following:

Proposition 33.18. If there is an embedding of bundles E1 ↪→ E2 then
σd(E1, E2) = 0 in K(X) for every d > rank(E2)− rank(E1).

If E is a vector bundle of rank n then the dth Chern class is supposed to be an
obstruction to having n− d+ 1 independent sections, so this suggests that we look
at σd(n− d+ 1, E). Indeed, this unravels to

σd(n− d+ 1, E) =

d∑
i=0

(−1)d−i Symi(n− d+ 1)⊗ Λd−i(E)

=

d∑
i=0

(−1)d−i
(
n+i−d

i

)
Λd−i(E)

where we have used Lemmma 23.11 to calculate the dimension of the symmetric
product. Comparison to Definition 33.2 gives that

σd(n− d+ 1, E) = (−1)dγ̃d(E) = cKd (E∗).

If we had started with γ̃d(E) = (−1)dσd(n − d + 1, E) as the definition of the γ̃-
classes, then of the properties we listed at the beginning of the section all but (2) are
immediate. So is Proposition 33.1, even without (2). But what about property (2)?
It seems natural to expect this to fall out of the behavior of symmetric products on
sums (33.14), but it takes a little more work than that. We start with the following:

Lemma 33.19. Write Symd(r) for the dimension of Symd(V ) where V is a vector
space of dimension r. Then

Symd(k + n− d− 1) =
∑
i+j=d

Symi(k − i) Symj(n− j)

for all values of d, k, and n where the formula makes sense.

Proof. Recall that Symd(r) =
(
r+d−1
d

)
, by Lemma 23.11. Then the identity becomes(

k+n−2
d

)
=
∑
i+j=d

(
k−1
i

)(
n−1
j

)
which is the standard Chu-Vandermonde identity for binomial coefficients, coming
from the natural ways of breaking up a choice of d objects from a set of k − 1 red
objects and n− 1 blue objects. �

Proposition 33.20. Let E and F be bundles of ranks e and f . Then

σd(e+ f − d+ 1, E ⊕ F ) =
∑
i+j=d

σi(e− i+ 1, E)σj(f − j + 1, F ).

Consequently, γ̃d(E ⊕ F ) =
∑
i+j=d γ̃

i(E)γ̃j(F ).

Proof. The definition of σi(e− i+ 1, E) may be rewritten as

σi(e− i+ 1, E) =

i∑
a=0

(−1)a Symi−a(e− i+ 1)ΛaE.
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We will use this version throughout the calculation. Observe that∑
i+j=d

σi(e− i+ 1, E)σf (f − j + 1, F )

=
∑
i+j=d

i∑
a=0

j∑
b=0

(−1)a+b Symi−a(e− i+ 1) Symj−b(f − j + 1)(ΛaE)(ΛbF )

=

d∑
N=0

∑
a+b=N

∑
s+t=d−N

(−1)N Syms(e−a+1−s) Symt(f−b+1−t)(ΛaE)(ΛbF )

=

d∑
N=0

∑
a+b=N

(−1)N Symd−N (e− a+ 1 + f − b+ 1− (d−N)− 1)(ΛaE)(ΛbF )

=
d∑

N=0

∑
a+b=N

(−1)N Symd−N (e+ f − d+ 1)(ΛaE)(ΛbF )

=

d∑
N=0

(−1)N Symd−N (e+ f − d+ 1)ΛN (E ⊕ F )

= σd(e+ f − d+ 1, E ⊕ F ).

In the second equality we are changing the order of the summation and also sub-
stituting s = i− a and t = j − b. In the third equality we used Lemma 33.19. �

33.21. The γ-filtration. To any cohomology group Ep(X) we may attach the
Atiyah-Hirzebruch filtration, defined by

FnE
p(X) = {a ∈ Ep(X)

∣∣ f∗(a) = 0 for every map f : A→ X where A is a
CW-complex with dim(A) < n}.

We have
Ep(X) = F0E

p(X) ⊇ F1E
p(X) ⊇ F2E

p(X) ⊇ · · ·
with Fn+1E

p(X) = 0 if X is a CW-complex of dimension n. Note that when X is
0-connected one has F1E

p(X) = Ẽp(X).
Given a map f : X → Y the induced map f∗ : Ep(Y ) → Ep(X) clearly sends

FnE
p(Y ) into FnEp(X). So the filtration is functorial. When f is a weak homotopy

equivalence the induced map FnE
p(Y ) → FnE

p(X) is readily checked to be an
isomorphism.

When X is a CW-complex it follows from cellular approximation that

FnE
p(X) = ker(Ep(X)→ Ep(Xn−1)).

But note that our original definition of the filtration shows that it is independent
of the choice of CW-structure on X, and indeed does not require a CW-structure
on X at all.

Exercise 33.22. If E is a multiplicative cohomomology theory verify that the
Atiyah-Hirzebruch filtration is multiplicative, in the sense that the pairings

Ep(X)⊗ Eq(Y )→ Ep+q(X × Y )

map the image of FnEp(X) ⊗ FkE
q(Y ) to Fn+kE

p+q(X × Y ), for all n and k.
Consequently, the filtration on E∗(X) is also multiplicative.
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Write Ep for the representing space for Ep(−); that is, Ep(X) = [X,Ep]. Then
we can also define the Atiyah-Hirzebruch filtration using the Whitehead tower for
the space Ep. Write Ep〈n,∞〉 for the (n − 1)-connected cover of Ep, which is the
homotopy fiber of the natural map Ep → Pn−1Ep whose codomain is the (n− 1)st
Postnikov section of Ep. We get a tower of homotopy fiber sequences

K(π2Ep, 2) K(π1Ep, 1) K(π0Ep, 0)

· · · // Ep〈2,∞〉 //

OO

Ep〈1,∞〉 //

OO

Ep

OO

and we can define

FnE
p(X) = image of [X,Ep〈n,∞〉]→ [X,Ep].

At first glance this looks totally different from the Atiyah-Hirzebruch construction,
but in fact they are equal:

Proposition 33.23. For every space X one has FnE
p(X) = FnE

p(X).

Proof. It is immediate that FnE
p(X) ⊆ FnE

p(X), since if A is a CW-complex
with dimA < n then [A,Ep〈n,∞〉] = 0. To see the other direction, first replace
X by a weakly equivalent CW-complex. Given an element f ∈ FnEp(X), we can
represent it by a map X → Ep which is null on Xn−1. But then it extends to
f̃ : X/Xn−1 → Ep. Using that Hi(X/Xn−1;A) = 0 for i < n and all coefficients A,
obstruction theory lets us inductively lift the map f̃ up the tower until it becomes
a map into Ep〈n,∞〉. From there we see that f ∈ FnE

p(X). �

Now let us apply these observations to K0, whose representing space is Z×BU .
Since π∗(Z×BU) is nonzero only in even degrees, notice that the Whitehead tower
approach gives that F2n−1K

0(X) = F2nK
0(X) for all X and all n. Because of

this, it is tempting to only consider the groups F2nK
0(X) and maybe even re-index

them as Fn. We won’t do that, but this observation is useful to keep in mind for
what we are about to discuss.

Following Grothendieck, we will use the γ̃-operations to give an approximation
to the Atiyah-Hirzebruch filtration on K0(X). This is the so-called γ-filtration.
Grothendieck worked in the context of algebraic geometry, and there one has neither
cell decompositions nor Whitehead towers. There are some geometric substitutes
one can attempt to use in place of the former, but sometimes it is hard to prove
things about those. The motivation for the γ-filtration is that it is defined purely
algebraically, and it can be shown to have many of the properties of the Atiyah-
Hirzebruch filtration. Rationally they turn out to be equal, as we will show below.

As a prelude to the γ-filtration we start with the following result:

Proposition 33.24. For any vector bundle E on X one has γ̃k(E) ∈ F2kK
0(X)

for all k.

Proof. First note that γ̃k is a stable operation, in the sense that γ̃k(E⊕1) = γ̃k(E)

for all E. So we may regard it as a map of sets Kst(X)→ K̃0(X), or equivalently
K̃0(X) → K̃0(X). This implies that the operation γ̃k is represented by a map
γ̃k : BU → BU . If E is a bundle of rank less than k then γ̃k(E) = 0, and from

this it follows that the composite BU(k− 1) ↪→ BU
γ̃k−→ BU is null. So γ̃k induces
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a map gk : BU/BU(k − 1) → BU . But H̃∗(BU/BU(k − 1)) vanishes for ∗ < 2k,
and so by obstruction theory gk lifts to a map BU/BU(k− 1)→ (Z×BU)〈2k,∞〉.
Therefore γ̃k lifts as well, and this is what we neeed to prove. �

Define the γ-filtration on K0(X) to be the smallest multiplicative filtration hav-
ing the property that each class γ̃n(E) is in Fn. More specifically, we set

F γnK
0(X) = 〈γ̃i1(E1)γ̃i2(E2) · · · γ̃ir (Er)

∣∣ r ≥ 0, i1 + · · ·+ ir ≥ n〉
where the generators range over all vector bundles E1, . . . , Er on X. (Let us remind
the reader once again that γ̃i(E) = γi(E − rank(E)) as in (33.9), and that the for-
mulas in the literature are usually written in the latter notation). It follows at once
that F γ•K0(X) is a descending filtration that is functorial in X. Proposition 33.24
gives that F γnK0(X) ⊆ F2nK

0(X), for all n. Since γ̃1(E) = E − rank(E) we also
get that F γ1 K

0(X) = K̃0(X), and so F γ1 K
0(X) = K̃0(X) = F1K

0(X) = F2K
0(X).

Keep in mind when comparing the γ- and Atiyah-Hirzebruch filtrations that the
former is indexed at double speed compared to the latter, i.e. we have F γnK0(X) ⊆
F2nK

0(X).
Computing the γ-filtration can feel daunting because one seems to need to know

all of the vector bundles on the space X, which in fact almost never happens. The
following result offers some simplifications:

Proposition 33.25. It is always true that

F γnK
0(X) = 〈γ̃i1(x1)γ̃i2(x2) · · · γ̃ir (xr)

∣∣ r ≥ 0, i1 + · · ·+ ir ≥ n, xi ∈ K̃0(X)〉.
If w1, . . . , wN are additive generators for K̃0(X) then it is also true that

F γnK
0(X) = 〈γ̃i1(wj1)γ̃i2(wj2) · · · γ̃ir (wjr )

∣∣ r ≥ 0, i1+ · · ·+ ir ≥ n,
1 ≤ j1, . . . , jr ≤ N〉.

Proof. Note that the second statement is not immediate from the first, since the
operations γ̃i are not additive.

For the first statement, write In for the group on the right. Since for a vector
bundle E one has γ̃i(E) = γ̃i(E − rank(E)) one certainly has F γn ⊆ In. For the
other direction, observe that a class x ∈ K̃0(X) can be written as x = [E]− [F ] for
some vector bundles E and F . By Exercise 33.11 the class γi(x) can be written as
a homogeneous polynomial of degree i in the classes γa(E) and γb(F ) (where each
γj class is assigned degree j), and from this it follows that γi(x) ∈ F γi . It follows
at once that In ⊆ F γn , and so the two are equal.

For the second statement, let Jn be the group on the right. Note that J• is the
descending multiplicative filtration determined by the conditions that γ̃i(wj) ∈ Ji
for all i, j. We clearly have Jn ⊆ In. For the subset in the other direction, first
note that by Exercise 33.11 the element γ̃i(−wj) is a polynomial of degree i in the
classes γ̃s(wj). It follows at once that γ̃i(−wj) ∈ Ji, for all i and j.

Next we observe that if x ∈ K̃0(X) and γ̃i(x) ∈ Ji for all i, then γ̃k(x±wj) ∈ Jk
for all k. This follows directly from the formulas

γ̃k(x± wj) =

k∑
t=0

γ̃t(x)γ̃k−t(±wj)

together with what has already been proven.
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Finally, a straighforward induction now proves that γ̃i(
∑
sjwj) ∈ Ji for all i

and all s1, . . . , sN ∈ Z. From this it follows directly that In ⊆ Jn, and so the two
sets are equal. �

Example 33.26. Let us compute the γ-filtration on K0(CPn). Recall from Propo-
sition 23.6 that K0(CPn) = Z[x]/(xn+1) where x = 1−L. As an abelian group this
is Zn+1 generated by 1, L, L2, . . . , Ln, and so K̃0(CPn) is generated by the classes
1− Li for i = 1, . . . , n.

By Exercise 33.10 we have γ̃s(1 − Li) = (1 − Li)s, which is a multiple of (1 −
L)s = xs. It follows that F γs ⊆ (xs), for all s (note that we are implicitly using
Proposition 33.25 here). But we also have xs = (1− L)s = γ̃s(1− L) ∈ F γs , and so
in fact F γs = (xs) for all s.

Rationally, the γ- and Atiyah-Hirzebruch filtrations are the same up to this
indexing issue:

Proposition 33.27. For all n ≥ 0, F γnK0(X)⊗Q = F2nK
0(X)⊗Q.

Proof. ??? �

This completes our introduction to the γ-operations on K0(X). As the K-
theoretic analogs of the Chern classes, they can be used in applications for some
of the same purposes that the classical Chern classes are used. Some examples are
discussed in Sections 39 and 40.
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Part 5. Topological techniques and applications

In the next few sections we will mostly ignore the “geometric” perspective on
K-theory that we have developed so far in these notes. Instead we will concentrate
on the topological aspects of K-theory, in particular its use as a cohomology theory
(forgetting about the complex-orientation). We will develop the basic topological
tools for computingK-groups, use them to carry out some important computations,
and then apply these computations to solve (or at least obtain information about)
certain types of geometric, algebraic, and topological problems.

34. The Atiyah-Hirzebruch spectral sequence

Let E be a cohomology theory. Let X be a CW-complex with cellular filtration

∅ = F−1 ⊆ F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ X.
So each Fk/Fk−1 is a wedge of k-spheres, and X =

⋃
k Fk. Since one knows the

cohomology groups E∗(Fk/Fk−1), one can attempt to inductively determine the
cohomology groups E∗(Fk) and thus to eventually determine E∗(X). A spectral se-
quence is a device for organizing all the information in such a calculation, and it has
the surprising feature that one can determine E∗(X) without explicitly determining
each of the steps E∗(Fk). It is somewhat magical that this can be done.

We will not try to teach the theory of spectral sequences from scratch here. For
a thorough treatment the reader may refer to [Mc], for example. We will assume
the reader has some familiarity with this theory, but at the same time we give a
brief review.

34.1. Generalities. Each inclusion Fq−1 ↪→ Fq yields a long exact sequence on
cohomology, and these long exact sequences braid together to yield the following
infinite diagram:

i�� i
��

· · · // Ep−1(Fq)

i
��

j // Ep(Fq+1, Fq)
k // Ep(Fq+1)

i
��

j // Ep+1(Fq+2, Fq+1)
k //

· · · // Ep−1(Fq−1) j //

i

��

Ep(Fq, Fq−1) k // Ep(Fq)

i
��

j // Ep+1(Fq+1, Fq)
k //

· · · // Ep−1(Fq−2)
j //

i

��

Ep(Fq−1, Fq−2)
k // Ep(Fq−1)

i

��

j // Ep+1(Fq, Fq−1) k //

(34.2)

The terms in boxes constitute one long exact sequence: the one for the inclusion
Fq−1 ↪→ Fq. Translating these terms vertically yields an infinite family of long
exact sequences, each linked to the next via two of their three terms. A spectral
sequence is a bookkeeping device for managing diagram chases in this setting. One
obtains a spectral sequence of the form

Ep,q1 = Ep(Fq, Fq−1)⇒ Ep(X).
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Let us explain how this works, and in the course of doing so we will also explain
what it means. By the way, notice that in our particular setup the columns of the
diagram are eventually zero as one proceeds downward, because Fi = ∅ when i is
negative. Notice as well that if X = Fn for some value of n (so the filtration is
finite) then the columns stabilize when moving upwards.

Remark 34.3. There seems to be no standard name for diagrams like the one
above, consisting of families of long exact sequences braided together. But they are
the source of essentially every spectral sequence. Massey defined the more general
notion of an exact couple, but personally I have found that level of generality more
harmful than useful. Briefly, define D = ⊕p,qEp(Fq) and E = ⊕p,qEp(Fq, Fq−1).
So the D groups form two-thirds of the columns in the above diagram, and the
E-groups are the remaining third. The exact couple consists of the maps

D
i // D

j~~
E

k

``

and the requirement of exactness at each vertex. While this is an elegant abstraction
of our situation, the suppression of the gradings can get in the way of understanding
what is happening.

We will refer to our braided long exact sequences as an “exact couple”, even
though this is a slight abuse of terminology. “Bigraded exact couple” might be
more appropriate.

We return to our development of the spectral sequence machinery:

(0). Here is the basic idea for how the spectral sequence operates. Consider an
element x ∈ Ep(Fq, Fq−1), and proceed as follows:
(i) Let x0 = kx.
(ii) If j(x0) = 0 then x0 = i(x1) for some x1 ∈ Ep(Fq+1). We may then look at

jx1.
(iii) If jx1 = 0 then x1 = i(x2) for some x2 ∈ Ep(Fq+2). We may then look at jx2.
(iv) Continuing in this way, we get a sequence of “obstructions” jxu, u = 0, 1, 2, . . ..

Each one only exists if the previous one vanishes. Note that at each stage the
vanishing of jxu doesn’t depend on the choice of xu; however, it may depend
on the choice of xv made at some previous stage v < u. In this sense the
obstructions are not unique: different choices of lifts may lead to different
obstructions later down the line.

(v) Two questions to consider: (A) For each n, can we make a consistent choice
of liftings x1, . . . , xn? In other words, can we lift kx arbitrarily far up in the
diagram? And (B) Can we make a consistent choice of liftings xi for all i ≥ 1?
That is to say, can we lift kx coherently all the way up the diagram? Questions
(A) and (B) are not equivalent, because it could be that extending from xn to
xn+1 is not possible even though it would have been possible with a different
choice of the lower xi. If one constantly has to be changing the lower choices
in order to make each extension, it could be that there is no coherent choice
of all the extensions as once.

The vanishing of our obstructions says something about these questions. If
the filtration F• was finite then the questions are the same, and imply that
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we have produced an element of Ep(X). In situation (B) something like this
also works for infinite filtrations, although the resulting element of Ep(X) is
only uniquely determined in good cases. The spectral sequence is a device
for keeping track of these obstructions and liftings, and what they ultimately
produce.

We will now go through all of the machinery needed to define and work with the
spectral sequence associated to our exact couple.

(1). For 1 ≤ r ≤ ∞ write

Zp,qr = {x ∈ Ep(Fq, Fq−1)
∣∣ kx may be lifted at least r times under i}.

This is called the group of r-cycles in the spectral sequence. The phrasing is
ambiguous when r =∞, but we mean Zp,q∞ =

⋂
r Z

p,q
r . We also define Bp,qr ⊆ Zp,qr

to be the subgroup generated by all “obstructions” that arise from at most r − 1
layers lower down in the diagram. To be precise, Bp,qr is spanned by the sets

ji−sk(Ep−1(Fq−s−1, Fq−s−2))

for 0 ≤ s ≤ r − 1. It is best to immediately forget this precise description and just
remember the idea.

Notice that everything in Bp,qr maps to zero under k, and hence is contained in
every Zp,qt . That is, we have

0 = Bp,q0 ⊆ Bp,q1 ⊆ · · · ⊆ Bp,q∞ ⊆ Zp,q∞ ⊆ · · · ⊆ Zp,q2 ⊆ Zp,q1 ⊆ Zp,q0 = Ep(Fq, Fq−1).

Note that Bp,q∞ =
⋃
r B

p,q
r and Zp,q∞ =

⋂
r Z

p,q
r .

(2). It as an easy exercise to prove that x ∈ Bp,qr if and only if x can be written
as x = j(y1 + y2 + · · · + yr) for some yu’s such that iu(yu) = 0, for all u. As an
immediate corollary, Bp,q∞ coincides with the image of j (or equivalently with the
kernel of k).

Let x0 ∈ Ep(Fq) and assume that we lifted x0 a total of r times: that is, assume
we have chosen elements xu ∈ Ep(Fq+u) for 1 ≤ u ≤ r such that i(xu) = xu−1. If
j(xr) ∈ Bs for some s then (using the result of the previous paragraph) there exists
a chain of elements x′u ∈ Ep(Fq+u) such that i(x′u) = x′u−1, x′u = xu for u ≤ r − s,
and j(x′r) = 0. That is to say, we can alter our chain of xu’s in the top s− 1 spots
and end up with a chain that can be extended upwards one more level. Indeed,
just define x′u = xu − ir−u(yr−u+1 + · · · + ys) where j(xr) = j(y1 + · · · + ys) and
the yi’s are as in the preceding paragraph.

(3). Define Ep,qr = Zp,qr−1/B
p,q
r−1. The process “apply k, lift r − 1 times, then apply

j” yields a well-defined map dr : E∗,∗r → E∗,∗r . This is our “obstruction” map, and it
is now well-defined precisely because we are quotienting out by the subgroup B∗,∗r−1.
Note that dr shifts the bigrading, so that we have dr : Ep,qr → Ep+1,q+r

r .
The map dr satisfies d2

r = 0 because kj = 0. A little work shows that E∗,∗r+1 is
precisely the homology of E∗,∗r with respect to dr. The sequence of chain complexes
E1, E2, E3, . . ., each the homology of the previous one, is the spectral sequence
associated to our exact couple.

(4). For fixed values of p and q we have “entering” and “exiting” differentials

E?,?
r

dr−→ Ep,qr
dr−→ E?,?

r

for certain unimportant values of ‘?’. Using (2) it is easy to check that
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(i) The exiting map dr is zero if and only if Zp,qr−1 = Zp,qr , and
(ii) The entering map dr is zero if and only if Bp,qr−1 = Bp,qr .

(5). It remains to interpret the E∞-term. Notice that, strictly speaking, this is
not one of the stages of our spectral sequence—it is not obtained as the homology
of a previous complex. Still, in many examples one finds that E∞ agrees with some
finite stage Er, at least through a range of dimensions.

Write Ep(Fq)∞ for the set of all x ∈ Ep(Fq) such that i(x) = 0 and x lifts
arbitrarily far up in the diagram (and note that this is not the same as saying that
x lifts to the inverse limit). The map k induces a surjection Zp,q∞ � Ep(Fq)∞, and
Bp,q∞ is clearly the kernel; so we have an induced isomorphism

Γ: Ep,q∞
∼=−→ Ep(Fq)∞.

Consider the groups Ep(F) = limq E
p(Fq). As for any inverse limit these come

with a filtration where we define

Ep(F)ZPq = {α ∈ Ep(F)
∣∣ the image of α in Ep(Fq−1) is zero}.

The “ZPq” subscript is supposed to remind us “zero past Fq”. We call this the
“ZP -filtration”:

Ep(F) = Ep(F)ZP0 ⊇ Ep(F)ZP1 ⊇ Ep(F)ZP2 ⊇ · · ·
There is an evident map Ep(F)ZPq → Ep(Fq)∞ which induces an injection

Ep(F)ZP (q/q+1) := Ep(F)ZPq/E
p(F)ZP (q+1) ↪→ Ep(Fq)∞ = Ep,q∞ .(34.4)

Notice our notation for the associated graded of the ZP -filtration.

(6). We are ultimately trying to get information about E∗(X). Observe that
we have a natural map Ep(X) → Ep(F). This is always surjective; while not
obvious, it is a consequence of the fact that if Z is any topological space then
[X,Z] → limq[Xq, Z] is surjective, which in turn is a routine application of the
homotopy extension property for cellular inclusions. Let

Ep(X)ZPq = ker
(
Ep(X)→ Ep(Fq−1)

)
and note that we have a map of filtrations Ep(X)ZP• → Ep(F)ZP•. The map on
associated graded groups

Ep(X)ZP (q/q+1) → Ep(F)ZP (q/q+1)

is readily seen to be an isomorphism, for all q.

(7). If we are in “good” cases then the map in (34.4) will actually be an isomor-
phism. The question is whether an element of Ep(Fq) that can be lifted arbitrarily
high in the diagram can also be lifted into the inverse limit—note that this is not
automatic! It might be possible that higher and higher liftings exist but not “coher-
ently”; that is, to get a higher lifting one needs to change arbitrarily many elements
lower down in the chain.

Fix a p and consider the following condition:

(SSCp) :
There exists an N such that for all q the differentials entering and
exiting the group Ep,qr are zero for all r ≥ N .

If this “Spectral Sequence Convergence Condition” holds then by (4) we know
Zp,qN−1 = Zp,qr and Bp,qN−1 = Bp,qr for all r ≥ N . Therefore Zp,q∞ = Zp,qN−1,
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Bp,q∞ = Bp,qN−1, and consequently Ep,q∞ = Ep,qN . These statements hold for all values
of q. So the Ep,∗∞ groups coincide with the stable values of the Ep,∗r groups.

The convergence condition (SSCp) gives us one more important consequence,
namely that the map of (34.4) is an isomorphism:

(SSCp)⇒
[
Ep(F)ZP (q/q+1)

∼= Ep,q∞ , for all q
]
.

To prove this, let x0 ∈ Ep(Fq)∞. Then there exist elements xu ∈ Ep(Fq+u) for
1 ≤ u ≤ 2N such that i(xu) = xu−1 for each u (nothing special about 2N is being
used here, it is just a convenient large number). The element j(x2N ) lies in B2N+1,
which we have seen equals BN−1 by (SSCp). Therefore by (2) we may modify the
xu’s in dimensions x2N , x2N−1, . . . , xN+2 in such a way that the chain extends to
an x2N+1. It is important here that only the top N−1 elements are affected, for we
can now continue by induction and build an element of Ep(F) = lims E

p(Fs) that
maps to x in Ep(Fq). This completes the proof.

To summarize, the statement that the spectral sequence “converges to Ep(X)” is
usually interpreted to mean that

• The groups Ep,∗r stabilize, and equal Ep,∗∞ , at some value of r (usually one
that is independent of the grading ∗); and,

• The maps in (34.4) are isomorphisms, for all values of q.
Under these conditions the stable values of the spectral sequence give the associated
graded groups of the ZP -filtration on Ep(X). We have seen that (SSCp) implies
this kind of convergence.

(8). Sometimes it is convenient to have in mind a variation on the exact couple
diagram (34.2). Fix an integer q and consider the following:

...

��

...

��

...

Ep(Fq+2, Fq−1) k //

��

Ep(Fq+2)
j //

��

Ep+1(Fq+3, Fq+2)

Ep(Fq+1, Fq−1) k //

��

Ep(Fq+1)
j //

��

Ep+1(Fq+2, Fq+1)

Ep(Fq, Fq−1)
k // Ep(Fq)

j // Ep+1(Fq+1, Fq)

The groups in the boxes are “new”, in the sense that they are not part of the
exact couple (and they are being drawn in places which previously were occupied
by other groups from the exact couple). Each trio of groups Ep(Fq+r, Fq−1) →
Ep(Fq+r−1, Fq−1)

jk−→ Ep+1(Fq+r, Fq+r−1) is part of the long exact sequence for a
triple, and so is exact in the middle spot. From this one can see via a diagram
chase that a class u ∈ Ep(Fq, Fq−1) = Ep,q1 lies in Zr if and only if u lifts to a
class in Ep(Fq+r, Fq−1) (for this argument one needs to combine the above diagram
with (34.2) and do the chase in both at once). So the differentials in the spectral
sequence can be viewed as a sequence of obstructions for lifting u to a class in
Ep(FN , Fq−1), for larger and larger N .

(9). (Summary of the general workings of spectral sequences). We have produced
a sequence of bigraded chain complexes E∗,∗1 , E∗,∗2 , . . . such that each equals the
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homology of the previous one. We also have a “limiting” collection of bigraded
groups E∗,∗∞ , and we have seen that under certain convergence conditions these E∞
groups really are the “stable values” in the sequence of Er’s, and moreover they
give the associated graded groups for the ZP -filtration of E∗(X).

(10). Everything that we have said so far works for any increasing filtration F• of
X. Now we use the fact that a CW-filtration is very special. Notice that

Ep,q1 = Ep(Fq, Fq−1) ∼= Ẽp(Fq/Fq−1) ∼= Ẽp
(∨
α

Sq
)
∼=
⊕
α

Ẽp(Sq) ∼=
⊕
α

Ep−q(pt)

where the wedges and direct sums are over the set of q-cells in X. We can iden-
tify this group with the cellular cochain group Cq(X;Ep−q(pt)). The differential
d1 : Ep,q1 → Ep+1,q+1

1 is a map Cq(X;Ep−q(pt)) → Cq+1(X;Ep−q(pt)) and it is
readily checked to coincide with the differential in the cellular cochain complex.
We conclude that

Ep,q2
∼= Hq(X;Ep−q(pt)).

Notice that the E2-term is a homotopy invariant of X, whereas the E1-term was
not.

(11). The bigraded groups forming each term of the spectral sequence can be rein-
dexed in whatever way seems convenient, and topologists use various conventions
in different settings. For the Atiyah-Hirzebruch spectral sequence the standard
convention is to choose the grading Ep,q1 = Ep+q(Fp, Fp−1) so that we get

Ep,q2 = Hp(X;Eq(pt)).

Under this grading we have that the differential dr is a map

dr : Ep,qr → Ep+r,q−r+1
r .

The groups in the spectral sequence are drawn on a grid where p is the horizontal
axis and q the vertical one, with Ep,q2 drawn in the (p, q)-spot. Finally, in this
grading the Γ-map relating the E∞-term to the associated graded of E∗(X) has the
form

Γ: Ep+q(X)ZP (p/p+1) ↪→ Ep,q∞ .

In terms of the charts, the “total degree” lines are the diagonals where p + q is
constant. The (SSCt) condition, translated into this new indexing, says that on the
diagonal p+q = t all entering and exiting differentials vanish past some finite stage
of the spectral sequence. When this condition holds we are guaranteed convergence
for the groups along this diagonal.

When one uses the Atiyah-Hirzebruch spectral sequence it is easy (after a while)
to remember the indexing scheme for the groups and differentials, and the fact that
the diagonals p+ q = n give the associated graded of En. The other thing to keep
track of is whether the Ep,q∞ groups give the pth or qth associated graded piece of
the filtration (those are the only two obvious choices). To recall which one, just
remember that the filtration is associated to cellular dimension, which is what also
indexes cohomology H∗. The formula Ep,q2 = Hp(X;Eq) is enough to identify the
p variable as the one that is relevant here, so that Ep,q∞ is the pth graded piece.

Remark 34.5 (Warning about indexing.). For the rest of this book we will
adopt the indexing conventions from (11) above, which are the standard ones for
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the Atiyah-Hirzebruch spectral sequence. This is different than the indexing we
used in (0)–(10).

Remark 34.6 (Independence of cell structure). As we have defined things, the
spectral sequence depends on the chosen CW-structure on X. However, this de-
pendence actually goes away from the E2-term onward. Let X1 and X2 denote
the same space but with two different CW-structures. The identity map X1 → X2

is homotopic to a cellular map f : X1 → X2, and f gives us a map of spectral se-
quences by naturality. Since f is a homotopy equivalence it induces an isomorphism
on the E2-terms, and therefore on all the finite pages of the spectral sequence as
well.

The ZP -filtration on X was defined in terms of the CW-structure, but we can
define it in a different way that doesn’t make use of that. We leave it as an exercise
to check that

Ep(X)ZPq = {α ∈ Ep(X)
∣∣u∗(α) = 0 for any map u : A→ X where A is a

CW-complex of dimension less than q}.
These remarks show us that the spectral sequence from E2-onwards may be

regarded as a natural homotopy invariant of X. In particular, any map g : X → Y
gives a map of spectral sequences in the opposite direction (by replacing g with a
cellular map).

34.7. The Postnikov tower approach. Let E be a spectrum representing the
cohomology theory E∗ and let PnE denote the nth Postnikov section for E (the
spectrum obtained from E by attaching cells to kill off πn+1 and higher). There is
a tower of fibrations

· · · // // P1E // // P0E // // P−1E // // · · ·

ΣH(E1)

OO

H(E0)

OO

Σ−1H(E−1)

OO

where Ei = πi(E) = E−i(pt) and HA denotes the Eilenberg-MacLane spectrum for
the group A. If we apply function spectra F (X,−) to all the spots in this diagram
we get a new tower of fibrations

· · · // // F (X,P1E) // // F (X,P0E) // // F (X,P−1E) // // · · ·

F (X,ΣH(E1))

OO

F (X,H(E0))

OO

F (X,Σ−1H(E−1))

OO

Each fibration sequence F (X,ΣqH(Eq))→ F (X,PqE)→ F (X,Pq−1E) gives rise to
a long exact sequence in homotopy groups, and these long exact sequences inter-
twine to form an exact couple. The associated spectral sequence has

Ep,q1 = π−p−qF (X,ΣqH(Eq)) = Hp+2q(X;E−q),

dr : Ep,qr −→ Ep−r+1,q+r
r ,

and it is trying to converge to

π−p−qF (X,E) = Ep+q(X).
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It is not obvious, but with some trouble it can be seen that after re-indexing this is
“the same” as the previously-constructed spectral sequence but with the E1-term of
this one corresponding to the E2-term of the one constructed via CW-structures.

We won’t really need this Postnikov version of the spectral sequence for anything,
but it often provides a useful perspective. For example, note that this version of
the spectral sequence is manifestly functorial in X and a homotopy invariant.

34.8. Differentials. The d2-differential in the Atiyah-Hirzebruch spectral se-
quence is a map Hp(X;Eq) → Hp+2(X;Eq−1). This is natural in X and it is
also stable under the suspension isomorphism; so it is a stable cohomology opera-
tion. The d3-differential is in some sense a secondary cohomology operation, and
so on for all the differentials. This is often a useful perspective. For example, we
can now prove the following general fact:

Proposition 34.9. Suppose that the coefficient groups E∗(pt) are rational vector
spaces. Then for any space X the differentials in the Atiyah-Hirzebruch spectral se-
quence all vanish. If X is homotopy equivalent to a finite-dimensional CW-complex
then there are (non-canonical) isomorphisms

En(X) ∼= ⊕p+q=nHp(X;Eq(pt))

for every n ∈ Z.

Proof. The point is that the only stable cohomology operation of nonzero degree
on H∗(−;Q) is the zero operation. This immediately yields that all d2-differentials
are zero. But then d3 is a stable cohomology operation (not a secondary operation
anymore) and therefore it also vanishes. Continue by induction.

Since En(X) is a rational vector space and has a finite filtration where the quo-
tients are the Q-vector spaces Hp(X;Eq), there are no extension problems and one
obtains the isomorphism from the statement. �

Remark 34.10. In the Postnikov approach to the Atiyah-Hirzebruch spectral se-
quence one sees the d2-differentials very explicitly. The Postnikov tower has “k-
invariants” of the form

ΣqH(Eq)→ Σq+2H(Eq+1)

which desuspend to give H(Eq) → Σ2H(Eq+1). These are quite visibly stable
cohomology operations H∗(−;E−q) → H∗+2(−;E−q−1). The connection between
higher differentials and higher cohomology operations has a similar realization, but
the details are too cumbersome to be worth discussing here.

It is worth observing that from the E2-term onward there are never any dif-
ferentials emanating from the p = 0 line of the spectral sequence. For conve-
nience assume X is connected and choose a cell structure on X where F0 = {∗}.
By the remarks in (8) above, such differentials would be the obstructions for a
class in Eq(F0, ∅) to lift to Eq(Fr, ∅); but such a lifting necessarily exists, be-
cause F0 ↪→ Fr is split. Note that when X is connected Eq(X)ZP1 = Ẽq(X),
and Eq(X)ZP (0/1) = Eq(X)/Ẽq(X) = Eq(pt), giving further confirmation that the
E∞-term coincides with the E2-term on the p = 0 line.

In the original exact couple (34.2) we could replace all the E∗ groups with Ẽ∗

groups and still have an exact couple, with the resulting spectral sequence having
the form

Ep,q2 = H̃ p(X;Eq)⇒ Ẽp+q(X).
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This just amounts to removing the entire p = 0 line from the Atiyah-Hirzebruch
spectral sequence. Sometimes it is convenient to consider this reduced version of
the spectral sequence.

34.11. Multiplicativity. Suppose that E is a multiplicative cohomology theory.
Then for spaces X and Y we have the external product

Er(X)⊗ Es(Y )→ Er+s(X × Y ),

and this is readily checked to induce associated pairings on the ZP -filtration:

Er(X)ZPa ⊗ Es(Y )ZPb → Er+s(X × Y )ZP (a+b)

and

(34.12) Er(X)ZP (a/a+1) ⊗ Es(Y )ZP (b/b+1) → Er+s(X × Y )ZP (a+b/a+b+1).

The pairings Eq(pt) ⊗ Eq
′
(pt) → Eq+q

′
(pt) also can be fed into the cup product

machinery to give

(34.13) Hp(X;Eq(pt))⊗Hp′(Y ;Eq
′
(pt)) −→ Hp+p′(X × Y ;Eq+q

′
(pt)).

Since the Atiyah-Hirzebruch spectral sequence starts with the groups E2(−) =
H∗(−;E∗) and then converges to the groups E∗(−), it is natural to ask if the pairings
of (34.13) and (34.12) are connected via this convergence process. The machinery
for making this connection is somewhat cumbersome to write out, although in
practice not so cumbersome to use.

To say that there is a pairing of spectral sequences E∗(X) ⊗ E∗(Y ) →
E∗(X × Y ) is to say that
(i) For each r there is a product Ep,qr (X)⊗ Ep′,q′r (Y )→ Ep+p

′,q+q′

r (X × Y );
(ii) The differential dr satisfies the Leibniz rule

dr(a · b) = dr(a) · b+ (−1)pa · drb
for all a ∈ Ep,qr (X) and b ∈ Ep

′,q′

r (Y ), and therefore induces a product on
H∗(Er) = Er+1;

(iii) The product on the Er+1-term equals the one induced by the product on the
Er-term, for all r;

(iv) There is a product on the E∞-term which agrees with the products on the
Er-terms where defined (???);

(v) The maps Ep(−)ZP (q/q+1) → Eq,p−q∞ (−) are compatible with the products, in
the evident sense.

To give a decent treatment of pairings between Atiyah-Hirzebruch spectral se-
quences it is best to work at the level of spectra, and to work with a category of
spectra where there is a well-behaved smash product. This introduces several layers
of foundational technicalities that we do not wish to dwell on, so let us just say that
these things can all be worked out. In this setting the right notion of “multiplicative
cohomology theory” consists of a spectrum E together with a map E ∧ E→ E that
is associative and unital. Both the complex and real K-theory spectra can be given
this structure. One has the following general result:
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Theorem 34.14. Let E be a spectrum with a product E ∧ E → E. Then there is
a pairing of Atiyah-Hirzebruch spectral sequences where the product on E2-terms
Hp(X;Eq)⊗Hp′(Y ;Eq

′
)→ Hp+p′(X × Y ;Eq+q

′
) is equal to (−1)p

′q times the cup
product.

We will not prove the above theorem here, as this would take us too far afield.
For a proof, see [D2, Section 3]. What is more important is how to use the theorem;
we will give some examples in the following section.

Remark 34.15. The signs in the above theorem cannot, in general, be neglected.
See [D2, Section 2] for a complete discussion. However, notice that in the case of
complex K-theory it is irrelevant because the groups Hp(X;Kq) are only nonzero
when q is even. This is a pleasant convenience. A similar convenience occurs for
KO-theory: whereas the coefficients groups do have some nonzero terms in odd
degrees, since these terms are all Z/2’s one can once again neglect the signs.

34.16. Some examples. We now focus entirely on complex K-theory, examining
two sample computations. Further examples, for bothK andKO, are in Section 37.

Let us start by redoing the calculation K0(CPn) = Z[X]/(Xn+1) where X =
L − 1, now using the Atiyah-Hirzebruch spectral sequence. The following is the
E2-term:

Z Z Z Z Z1 x x2 x3 x4

Z Z Z Z Zβ−1 β−1x β−1x2 β−1x3 β−1x4

Z Z Z Z Zβ βx βx2 βx3 βx4

Z Z Z Z Zβ2 β2x β2x2 β2x3 β2x4

t -

6

?

p

q

����

��
��

��
��

Note that the E2-term vanishes to the right of the line p = 2n, since H∗(CPn)
vanishes in this range. The circled groups (and others along the same diagonal)
are the ones that contribute to K0(CPn). Note that there is no room for any
differentials, because the nonzero groups only occur when both p and q are even.
So the spectral sequence immediately collapses, and E2 = E∞. It follows that the
filtration quotients for the ZP -filtration on K0(CPn) are as follows:

K0(CPn) K0(CPn)ZP1
ooZoo K0(CPn)ZP2

oo0oo K0(CPn)ZP3
ooZoo · · ·oooo
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with the Z’s appearing exactly n + 1 times. Since the quotients are free there are
no extension problems and we conclude that K0(CPn) ∼= Zn+1 as abelian groups.

The spectral sequence also gives information about the ring structure on
K0(CPn). Note that K0(CPn)ZP1 = K̃0(CPn), and that K0(CPn)ZP2 =
K0(CPn)ZP1 by the previous paragraph. Consider the canonical map

K0(CPn)ZP (2/3)

∼=−→ E2,−2
∞ = Z〈βx〉.

Let α denote a preimage for βx under this isomorphism. The multiplicativity of
the spectral sequence tells us that αk maps to βkxk under the corresponding map
K0(CPn)ZP (2k/2k+1) → E2k,−2k

∞ . In particular, αk is nonzero for k < n + 1. We
know αn+1 = 0, either by Lemma 23.2 or by the fact that αn+1 ∈ K0(CPn)ZP (2n+2)

and this filtration group is zero by the spectral sequence.
Now consider the map Z[α]/(αn+1) → K0(CPn). This may be regarded as a

map of filtered rings, where the domain is filtered by the powers of (α) and the
target has the ZP -filtration. The spectral sequence tells us this is an isomorphism
on the filtration quotients; but since there are only finitely many of these, it follows
that the map is an isomorphism.

To complete our calculation is only remains to show that we may take α =
±(1− [L]). First verify this when n = 1, where it just comes down to the fact that
1 − [L] is a generator for K̃0(S2). For general n we can now use the naturality
of the spectral sequence, applied to the inclusion j : CP 1 ↪→ CPn. The spectral
sequences tell us that the natural map

K0(CPn)ZP (2/3) → K0(CP 1)ZP (2/3)

is an isomorphism. The element 1− [L] represents an element in the domain, which
must be a generator precisely because it maps to a generator in the target. This
tells us that one of ±(1 − [L]) maps to βx and is therefore a candidate for α, and
this is enough to conclude K0(CPn) = Z[X]/(Xn+1) where X = 1− [L].

For our next example let us consider K0(RPn). The E2-term is very similar to
the one before, with the difference that most Z’s are changed to Z/2’s:

Z2 Z2 Z2 Z2

1

β−1

β

β2

Z

Z

Z

Z2 Z2 Z2 Z2

y y2 y3 y4

Z2 Z2 Z2 Z2

Z Z2 Z2 Z2 Z2

t -

6

?

p

q

· · ·

· · ·

· · ·

· · ·

Z2

ym

Z2

Z2

Z2

(Z)

(Z)

(Z)

(Z)
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The Z’s in parentheses lie in degree p = n when n is odd, and are not present
when n is even. And m = bn2 c. As discussed in (34.8) above, there can be no
differential emanating from the p = 0 column. So the only possible differentials
allowed by the grading would occur when n is odd and would have a Z/2 mapping
into one of the Z’s; but such a map must be zero. So all differentials vanish, and we
again have E2 = E∞. We conclude that the associated graded of the ZP -filtration
on K̃0(RPn) consists of bn2 c copies of Z/2, and so K̃0(RPn) is an abelian group
of order 2b

n
2 c. It remains to determine the group precisely. For this, use the map

of spectral sequences induced by j : RPn ↪→ CPn. The maps Z → Z/2 are all
surjections at E2 and therefore also at E∞. The surjection on E∞-terms shows
that α = 1− [j∗L] generates the filtration quotient K0(RPn)ZP (2/3), since 1− [L]

generates the corresponding quotient in the CPn case. Note that α2, . . . , αb
n
2 c

therefore generate the other filtration quotients, and so in particular are nonzero.
But we can compute

α2 = (1− [j∗L])2 = 1− 2[j∗L] + [j∗L]2 = 1− 2[j∗L] + 1 = 2(1− [j∗L]) = 2α,

where in the third equality we have used that the square of any real line bundle
is trivial (Corollary 8.34). It follows that αi = 2i−1α. Since αb

n
2 c 6= 0 this gives

2(bn2 c−1)α 6= 0. The only abelian group of order 2b
n
2 c that admits such an element

is Z/(2bn2 c), and so K̃0(RPn) is isomorphic to this cyclic group.
The spectral sequence also quickly shows that K1(RPn) is isomorphic to Z when

n is odd, and 0 otherwise.

Remark 34.17. Note that we previously determined that K̃0(RP 2) was an abelian
group of order 4, back in Section 14.10. Comparing the “brute force” approach used
there to the spectral sequence machinery really shows the power of the latter: the
argument is really the same, but the spectral sequence allows us to get at the
conclusion much more quickly.

34.18. More on differentials. Since Kodd(pt) = 0 it follows for degree rea-
sons that all differentials d2r vanish in the Atiyah-Hirzebruch spectral sequence.
So our first significant differential is d3, which is a stable cohomology operation
H∗(−;Z) → H∗+3(−;Z). It is an easy matter to compute all such stable opera-
tions, as they are parameterized by the group H3(HZ) of stable homotopy classes
HZ → Σ3HZ; this can be computed as the cohomology group Hn+3(K(Z, n)) for
n ≥ 3. A routine calculation (say, with the Serre spectral sequence) shows that this
group is Z/2. The nonzero element is an operation α that is an integral lift of Sq3,
in the sense that if u ∈ H∗(X;Z) then

α(u) = Sq3(u)

where x denotes the mod 2 reduction of a class x.
The above paragraph shows that our differential d3 either equals zero (for all

spaces X) or coincides with the operation α. The latter option is the correct one,
and to see this it suffices to produce a single space X where d3 is nonzero. For
this we take the space X from Example 27.10, constructed as the cofiber of a map
Σ3RP 2 → S3 that gives a null-homotopy for 2η. This space has H3(X) = Z and
H6(X) = Z/2, so there is a potential d3 in the spectral sequence. If this d3 were
zero then we would have K̃0(X) = Z/2, but we calculated in Example 27.10 (using
the Chern character) that K̃0(X) = 0. So d3 is nonzero here. We have therefore
proven:
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Proposition 34.19. The differential d3 in the Atiyah-Hirzebruch spectral sequence
is the unique nonzero cohomology operation H∗(−;Z) → H∗+3(−;Z). It satisfies
2d3(x) = 0, for all x.

Remark 34.20. We have now explained the motivation for the space X from
Example 27.10. It is literally the smallest space for which there is a nonzero α-
operation in its cohomology.

The fact that 2d3(x) = 0 shows that d3 must vanish on any class x ∈ H∗(X)
whose order is prime to 2. Alternatively, if we tensor the Atiyah-Hirzebruch spec-
tral sequence with Z[ 1

2 ] then all d3 differentials vanish. In that case d5 is a coho-
mology operation H∗(−;Z[ 1

2 ]) → H∗+5(−;Z[ 1
2 ]), and such things are classfied by

H5(HZ;Z[ 1
2 ]). This group is readily calculated to be Z/3. If one then also inverts

3 this will kill d5, but it turns out to also kill d7 because H7(HZ;Z[ 1
6 ]) = 0. The

d9 differential becomes a cohomology operation in H9(HZ;Z[ 1
6 ]) ∼= Z/5, and so

one can kill it by inverting 5. This process continues, and shows that inverting
all primes smaller than p kills all differentials below d2p−1. Note that this gives
another proof of Proposition 34.9 (but with more precise information), saying that
after tensoring with Q all Atiyah-Hirzebruch differentials vanish.

The following result summarizes and expands the discussion in the last para-
graph. The two parts are closely related and almost equivalent, but it is useful to
have them both stated explicitly.

Proposition 34.21. Fix a prime p.
(a) Inverting (p − 1)! in the Atiyah-Hirzebruch spectral sequence results in dr = 0

for r < 2p−1, together with d2p−1(u) = (−1)p+1βP 1(ū) for all classes u, where
ū is reduction modulo p, P 1 is Steenrod’s first reduced power operation (for the
prime p), and β is the Bockstein for the sequence 0→ Z[ 1

(p−1)! ]
p−→ Z[ 1

(p−1)! ]→
Z/p→ 0.

(b) Let u ∈ H∗(X) be pe-torsion, where p is a prime. Then in the Atiyah-
Hirzebruch spectral sequence di(u) = 0 for i < 2p − 1, and d2p−1(u) =

(−1)p+1βP 1(ū) where β is the Bockstein for 0→ Z p−→ Z→ Z/p→ 0 and P 1

is as in (a).

Proof. Fixing a prime p, the following is known about H∗(K(Z, n)) assuming n >
2p− 1:
(i) Hi(K(Z, n)) = 0 for 0 < i < n and Hn(K(Z, n)) ∼= Z;
(ii) Hi(K(Z, n)) is torsion, with all orders prime to p, for n < i < n+ 2p− 1;
(iii) Hn+2p−1(K(Z, n)) is isomorphic to a direct sum Z/p⊕A where A is a torsion

group whose order only has prime factors smaller than p. The Z/p summand
is generated by βP 1(u), where u ∈ Hn(K(Z, n)) is the fundamental class.

Alternatively, the above results say that

H∗
(
K(Z, n);Z[ 1

(p−1)! ]
)
∼=


0 if i < n,

Z[ 1
(p−1)! ] if i = n,

0 if n < i < n+ 2p− 1,

Z/p if i = n+ 2p− 1.

These facts are easy calculations with the Serre spectral sequence, using the meth-
ods of [MT, Chapter 9].
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Consider the Atiyah-Hirzebruch spectral sequence for K(Z, n), and in particular
the differentials on the fundamental class u. By naturality of the spectral sequence
this serves as a universal example for what happens on all spaces. Since inverting
(p− 1)! kills all of the cohomology of K(Z, n) in dimensions strictly between n and
n + 2p − 1, this shows that it also kills the differentials dr(u) for r < 2p − 1. By
universality, inverting (p− 1)! kills these differentials for any space X.

If u ∈ H∗(X) is a pe-torsion class then dr(u) for r < 2p−1 is killed by a power of
(p− 1)! by the preceding paragraph, but it is also killed by pe; since these integers
are relatively prime it follows that dr(u) = 0 for r < 2p− 1.

It remains to identify d2p−1 in both (a) and (b). We know by the calculation of
H∗(K(Z, n)) for n� 0 that after localization at (p− 1)! one must have d2p−1(u) =
λ ·βP 1(ū), for some λ ∈ Z/p. We need to determine λ, and for this we can examine
a single well-chosen example space. The sample space we choose is a generalization
of the one from Example 27.10. Consider the projection π : CP p → CP p/CP p−1 ∼=
S2p. We claim that there is a stable map f : S2p → CP p such that the composite
S2p → CP p π−→ S2p has degreeMp for some integerM prime to p; for the proof, see
Lemma 34.23 below. The “stable map” phrase is to indicate that f might only exist
after suspensing some number of times, so really it is a map f : ΣrS2p → ΣrCP p.
We can assume that r is even. Let X be the cofiber of f , and note that

H̃i(X) =


Z if r + 2 ≤ i < r + 2p and i is even,
Z/(Mp) if i = r + 2p+ 1,

0 otherwise.

Consider the cofiber sequence

ΣrCP p j−→ X
p−→ Sr+2p+1

Let x ∈ H2(CP p) be a chosen generator, and let u ∈ Hr+2(X) be a class that
j∗ maps onto the suspension σr(x). Let v ∈ Hr+2p+1(X) be the image under p∗
of the canonical generator from Hr+2p+1(Sr+2p+1). Note that j∗ is an isomor-
phism on H∗(−;Z/p) for ∗ ≤ 2p + r, and so we can write x̄k for the generator of
H2k+r(X;Z/p) that maps to the element of the same name in H2k+r(CP p;Z/p).
Observe that β(x̄p) = Mv in H∗(X;Z/p).

In H∗(CP p;Z/p) we have P 1(x̄) = x̄p, as this is how P 1 behaves on classes of
degree 2. So in H∗(ΣrCP p;Z/p) we have P 1(σrx̄) = σr(x̄p), by stability of the P 1

operation. It follows that βP 1(ū) = Mv.
In the Atiyah-Hirzebruch spectral sequence for X, after inverting (p− 1)! there

is only one possible nonvanishing differential, namely d2p−1 : Z[ 1
(p−1)! ] → Z/p. We

know that

d2p−1(u) = λ · βP 1(ū) = λMv.(34.22)

But we can also compute d2p−1(u) directly. The class u is represented by an ele-
ment in K0(Xr+2, Xr+1) (a cellular (r+2)-cochain). The differential is represented
by choosing a lift of u ∈ K0(Xr+2, Xr+1) to ξ ∈ K0(X2p+r, Xr+1) and then ap-
plying the connecting homomorphism from the long exact sequence for the triple
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(X2p+r+1, X2p+r, Xr+1):

ξ ∈ K0(X2p+r+1, Xr+1)

��

δ // K1(X2p+r+1, X2p+r)

u ∈ K0(Xr+2, Xr+1).

Recall that Xr+1 = ∗ and that u is represented by the class σr(1 − [L]) ∈
K̃0(ΣrCP 1). The element 1− [L] ∈ K̃0(CP 1) lifts to the class with the same name
in K̃0(CP p), and so we may take ξ = σr(1 − [L]) ∈ K0(ΣrCP p, ∗). To compute
δ(ξ) we can use the Chern character:

K0(X2p+r, ∗) δ //

ch

��

K1(X2p+r+1, X2p+1)

ch
��

Hev(X2p+r, ∗;Q)
δ // Hodd(X2p+r+1, X2p+1;Q).

We know from Proposition 27.7 that the right vertical map is an injection and that
its image is the integral subgroup Hodd(X2p+r+1, X2p+1;Z). So we compute

ch(ξ) = ch
(
σr(1− [L])

)
= σr ch(1− [L]) = σr(x− x2

2 + x3

6 − · · · )
Applying δ to this expresstion kills everything except the class in degree 2p + r,
and we therefore get

δ(ch ξ) = (−1)p · 1
p! ·Mp = (−1)p M

(p−1)!

where the first two terms in the product come from ch(ξ) and the Mp comes from
application of δ. Note that commutativity of the above square implies that M

(p−1)!

must be an integer, and that

δ(ξ) = (−1)p M
(p−1)! · v

where v denotes the preferred generator of K1(X2p+r+1, X2p+r) ∼= Z.
Putting everything together, we have just proven that in the Atiyah-Hirzebruch

spectral sequence for X with (p− 1)! inverted one has

d2p−1(u) =
[
(−1)p M

(p−1)!

]
p
· v

where [−]p denotes the residue modulo p. Wilson’s Theorem says that (p−1)! ≡ −1
mod p, and so

d2p−1(u) =
[
(−1)p+1M

]
p
· v.

Comparing to (34.22) gives λ = (−1)p+1, and we are finished with (a).
Part (b) can be deduced from (a) using the commutative square

H∗(X)
d2p−1 //

��

H∗+2p−1(X)

��
H∗(X;Zf )

d2p−1 // H∗+2p−1(X;Zf )

where we are writing Zf = Z[ 1
(p−1)! ]. Let B ⊆ H∗+2p−1(X) be the subgroup of

elements killed by a power of p, and note that B injects into H∗+2p−1(X;Zf ). If
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peu = 0 then both d2p−1u and (−1)p+1βP 1(ū) belong to B. The commutative
square, together with part (a), show that the two classes map to the same element
of H∗+2p−1(X;Zf ); hence, they are the same. �

Lemma 34.23. Fix a prime p. Then for some r > 0 there exists a map S2p+r →
ΣrCP p such that the composite

S2p+r → ΣrCP p Σrπ−→ ΣrS2p

has degree equal to Mp for some M relatively prime to p. Here π : CP p → S2p is
the map that collapses CP p−1 to a point.

Proof. This is a computation with stable homotopy groups. Consider the homology
theory X 7→ E∗(X) = πs∗(X) ⊗ Z(p). When X = S0 the groups E∗(X) are the p-
components of the stable homotopy groups of spheres, and it is known that Ei(X) =
0 for 0 < i < 2p − 3 and E2p−3(X) ∼= Z/p. An easy induction using the cofiber
sequences CPn−1 ↪→ CPn → S2n shows that E2p−1(CPn) ∼= Z/p for all 1 ≤ n ≤
p− 1. The long exact sequence for CP p−1 ↪→ CP p → S2p then gives

· · · → πs2p(CP
p−1)→ πs2p(CP

p)→ Z→ πs2p−1(CP p−1)→ · · ·
The element p ∈ Z necessarily maps to zero in πs2p−1(CP p−1)⊗Z(p), since the latter
group is Z/p. This means that there exists M ∈ Z prime to p such that Mp maps
to zero in πs2p−1(CP p−1). But then Mp is the image of an element in πs2p(CP

p),
and this element is what we were looking for. �

34.24. Differentials and the Chern character. In the proof of Proposi-
tion 34.21 there was a key step where we used the Chern character to help compute
a differential in the Atiyah-Hirzebruch spectral sequence. We will next explain a
generalization of this technique.

The E1-term of the Atiyah-Hirzebruch spectral sequence breaks up into chain
complexes that look like

· · · → K−1(Fq−1, Fq−2)→ K0(Fq, Fq−1)→ K1(Fq+1, Fq)→ · · ·
If q is odd this is the zero complex, and if q is even we have seen that it is iso-
morphic to the cellular chain complex for X with Z coefficients. The latter is
via isomorphisms K0(Fq, Fq−1) ∼= K̃0(∨αSq) ∼=

⊕
α K̃

0(Sq) ∼=
⊕

α Z. Notice
that we can also use the Chern character to obtain such an isomorphism, as we
know ch: K0(Fq, Fq−1) → H∗(Fq, Fq−1;Q) to be injective with image equal to
H∗(Fq, Fq−1;Z) (Proposition 27.7). Since the Chern character is natural it actu-
ally gives us an isomorphism of chain complexes

· · · // K−1(Fq−1, Fq−2)

∼=
��

// K0(Fq, Fq−1) //

∼=
��

K1(Fq+1, Fq) //

∼=
��

· · ·

· · · // H∗(Fq−1, Fq−2) // H∗(Fq, Fq−1) // H∗(Fq+1, Fq) // · · ·
Taken on its own, this is just a matter of convenience: we already had a natural
isomorphism between these complexes, so identifying it as the Chern character
just gives it a nice name. But using the fact that the Chern character is defined
more globally (i.e., on all pairs (Y,B)) allows us to push this a bit further and
obtain a description of the Atiyah-Hirzebruch differentials. The following result is
a combination of [AH2, Lemmas 1.2 and 7.3]
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Proposition 34.25. Let X be a CW-complex and let u ∈ Hp(X). Then in the
Atiyah-Hirzebruch spectral sequence one has diu = 0 for all 2 ≤ i < r if and only if
there exist ũ ∈ Hp(Fp+r−1, Fp−1) and ξ ∈ K∗(Fp+r−1, Fp−1) such that

(i) ũ is a lift for u under Hp(Fp+r−1, Fp−1)→ Hp(Fp+r−1)
∼=←− Hp(X), and

(ii) ch(ξ) = ũ+ higher order terms.
Moreover, if in the above situation α is a cellular cochain representating ch(ξ)p+r−1

then δα is integral and represents the differential dru.

Proof. To symplify some typography we assume throughout the proof that p is
even, although the odd case is identical (or else one could just replace X with its
suspension).

Assume that u ∈ Hp(X) satisfies diu = 0 for 2 ≤ i < r. Identifying u with an
element in E2, this condition says that u can be represented by a class z ∈ E1 =
K0(Fp, Fp−1) with the property that z ∈ Zr−1. The element associated to z by the
isomorphism K0(Fp, Fp−1) ∼= Cpcell(X;Z) is a cellular p-cochain representative for
u.

As remarked in (8) of Section 34.1, the condition z ∈ Zr−1 is equivalent to saying
that z lifts to a class z̃ ∈ K0(Fp+r−1, Fp−1). Now apply the Chern character to get
the square

K0(Fp+r−1, Fp−1) //

ch

��

K0(Fp, Fp−1)

ch

��
H∗(Fp+r−1, Fp−1;Q)

j∗ // H∗(Fp, Fp−1;Q),

z̃ //

��

z

��
ch(z̃) // ch(z).

The element ch(z) is an (integral) cellular p-cochain that represents the class u.
The groups H∗(Fp+r−1, Fp−1) are zero in degrees ∗ < p, so ch(z̃) is of the form
ch(z̃)p + higher order terms. The fact that ch(z) is a cellular cochain representing
u says that any lift of ch(z) into Hp(Fp+1, Fp−1) has the same image in Hp(Fp+1)
as u:

Hp(X) // Hp(Fp+1) Hp(Fp+1, Fp−1)oo

It follows readily that ch(z̃)p has the same image in Hp(Fp+r−1) as u. This com-
pletes the (⇒) direction of the first statement in the proposition. The (⇐) direction
follows in the same way, as all the steps are reversible.

For the final statement of the proposition we continue to assume (for convenience)
that p is even. Consider the diagram

ξ ∈ K0(Fp+r−1, Fp−1)

ch

��

δ // K1(Fp+r, Fp+r−1)

ch

��
H∗(Fp+r−1, Fp−1;Q)

δ // H∗+1(Fp+r, Fp+r−1;Q)

where in both rows the map δ is the connecting homomorphism in the long exact
sequence for the triple (Fp+r, Fp+r−1, Fp−1). Looking back on (8) of Section 34.1,
the element δ(ξ) represents dr(u) in the Er-term of the spectral sequence. But we
know that the right vertical map is an injection whose image consists of the integral
elements, and our isomorphism of the E2-term with H∗(X;Z) identifies δ(ξ) with
ch(δ(ξ)). Commutativity of the square says this element is also δ((ch ξ)q+r−1) (and
also verifies that this class is integral). �
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35. Operations on K-theory

Experience has shown that when studying a cohomology theory it is useful to
look not just at the cohomology groups themselves but also the natural operations
on the cohomology groups. In the case of singular cohomology this is the theory of
Steenrod operations. In the present section we will construct some useful operations
K0(X) → K0(X). We start with the λ-operations, which are easy to define but
have the drawback that they are not group homomorphisms. Then we modify these
to obtain the Adams operations ψk, which are more nicely behaved.

35.1. The lambda operations. Fix a topological space X. We start with the
exterior power constructions E 7→ ΛkE on vector bundles over X. These are, of
course, not additive: Λk(E ⊕F ) 6∼= ΛkE ⊕ΛkF . So it is not immediately clear how
these constructions induce maps on K-groups. The key lies in the formula

Λk(E ⊕ F ) ∼=
⊕
i+j=k

ΛiE ⊗ ΛjF.(35.2)

Construct a formal power series

λt(E) =

∞∑
i=0

[ΛiE]ti = 1 + [E]t+ [Λ2E]t2 + · · · ∈ K0(X)[[t]].

Because the zero coefficient is 1, this power series is a unit in K0(X)[[t]]. So λt is
a function into the group of units inside K0(X)[[t]]:

Vect(X)
λt //

��

(
K0(X)[[t]]

)∗

K0(X)

88

Formula (35.2) says that λt(E ⊕ F ) = λt(E) · λt(F ), and this implies the existence
of the dotted-arrow group homomorphism in the above diagram. We will call this
dotted arrow λt as well.

Finally, define λk : K0(X)→ K0(X) by letting λk(w) be the coefficient of tk in
λt(w). Note that if E is a vector bundle over X then λk([E]) = [ΛkE]. However,
λk is not a group homomorphism; instead one has the formula

λk(u+ v) =
∑
i+j=k

λi(u)λj(v).

Example 35.3. To get a feeling for these operations let us compute λk(−[E]) for
E a vector bundle over X. Note first that

λt(−[E]) = 1
λt([E]) = 1

1+[E]t+[Λ2E]t2+···

For R a commutative ring and a = 1 + a1t+ a2t
2 + · · · ∈ R[[t]], one has

1
a = 1 + P1t+ P2t

2 + · · ·
where the Pi’s are certain universal polynomials in the ai’s with coefficients in Z.
Equating coefficients in the identity 1 = (1 + a1t+ a2t

2 + · · · )(1 +P1t+P2t
2 + · · · )

gives
Pk + Pk−1a1 + Pk−2a2 + · · ·+ P1ak−1 + ak = 0,
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which allows one to inductively determine each Pk. One finds that

P1 = −a1, P2 = a2
1 − a2, P3 = −a3

1 + 2a1a2 + a3

So we conclude that

λ1(−[E]) = −[E],

λ2(−[E]) = [E]2 − [Λ2E],

λ3(−[E]) = −[E]3 + 2[E][Λ2E] + [Λ3E]

and so forth.

35.4. Symmetric power operations. One can repeat everything from the pre-
vious section using the symmetric product construction E 7→ Symk E in place of
the exterior product ΛkE. One obtains a group homomorphism

symt : K
0(X)→

(
K0(X)[[t]]

)∗
and defines symk(w) to be the coefficient of tk in symt(w). It turns out, how-
ever, that these operations do not give anything ‘new’—they are related to the
λ-operations by the formula

symk(w) = (−1)kλk(−w).

To explain this we need a brief detour on the deRham complex. The following
material is taken from [FLS].

Let V be a vector space over a field F . Write Sym∗(V ) = ⊕k Symk(V ) and
Λ∗(V ) = ⊕kΛkV . These each have a familiar algebra structure, and we have
canonical isomorphisms

Sym∗(V )⊗ Sym∗(W )
∼=−→ Sym∗(V ⊕W ), Λ∗(V )⊗ Λ∗(W )

∼=−→ Λ∗(V ⊕W ).

(In the former case, include Sym∗(V ) and Sym∗(W ) into Sym∗(V ⊕W ) and then
multiply there; likewise for the exterior algebra version). These isomorphisms allow
us to equip both Sym∗(V ) and Λ∗(V ) with coproducts ∆sym and ∆ext making them
into Hopf algebras. The coproducts are

Sym∗(V ) −→ Sym∗(V ⊕ V )
∼=←− Sym∗(V )⊗ Sym∗(V )

and
Λ∗(V ) −→ Λ∗(V ⊕ V )

∼=←− Λ∗(V )⊗ Λ∗(V )

where in each case the first map is the one induced by the diagonal ∆: V → V ⊕V .
If v1, . . . , vk ∈ V and I ⊆ {1, . . . , k} then write vI for the monomial vi1 · · · vir where
I = {i1, . . . , ir} and i1 < · · · < ir. Then

∆sym(v1 · · · vk) =
∑

A
·
∪B={1,...,k}

vA ⊗ vB

where the
·∪ symbol denotes disjoint union, and likewise

∆ext(v1 · · · vk) =
∑

A
·
∪B={1,...,k}

(−1)[A,B]vA ⊗ vB

where the sign (−1)[A,B] is the one that makes the equation v1 · · · vk =
(−1)[A,B]vAvB valid in Λ∗(V ).
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Write e : Symk(V ) → Symk−1 V ⊗ Sym1(V ) and e′ : Λk(V ) → Λ1V ⊗ Λk−1(V )
for the projections of the coproduct onto the indicated factors. Finally, write d and
κ for the composites

Symk(V )⊗ Λi(V )
e⊗id// Symk−1(V )⊗ Sym1(V )⊗ Λi(V )

Symk−1(V )⊗ Λ1(V )⊗ Λi(V )
id⊗µ// Symk−1(V )⊗ Λi+1(V )

and

Symk(V )⊗ Λi(V )
id⊗e′// Symk(V )⊗ Λ1(V )⊗ Λi−1(V )

Symk(V )⊗ Sym1(V )⊗ Λi−1(V )
µ⊗id// Symk+1(V )⊗ Λi−1(V ).

The maps d and κ are called the de Rham and Koszul differentials, respectively;
in a moment we will give concrete formulas for them and see that d2 = k2 = 0. The
following diagram shows the maps d, and the maps κ go in the opposite direction:

The deRham and Koszul complexes:(35.5)

...
...

...
...

Sym3 V ⊗ Λ2V
d

66

Sym2 V ⊗ Λ2V
d

66

Sym1 V ⊗ Λ2V
d

66

Sym0 V ⊗ Λ2V

Sym3 V ⊗ Λ1V
d

66

Sym2 V ⊗ Λ1V
d

66

Sym1 V ⊗ Λ1V
d

66

Sym0 V ⊗ Λ1V

Sym3 V ⊗ Λ0V
d

66

Sym2 V ⊗ Λ0V
d

66

Sym1 V ⊗ Λ0V
d

66

Sym0 V ⊗ Λ0V

Let e1, . . . , en be elements of V . It will be convenient to use the notation dej
for the element of Λ1(V ) corresponding to ej under the canonical isomorphism
Λ1(V ) ∼= V . Let m = ei1 ⊗ · · · ⊗ eir ∈ Symr(V ) and ω = dej1 ∧ · · · ∧ dejs ∈ Λs(V ).
It is an exercise to verify that

e(m) =
∑
u

(
ei1 ⊗ · · · ⊗ êiu ⊗ · · · ⊗ eir

)
⊗ eiu

and
e′(ω) =

∑
u

(−1)u−1deju ⊗
(
dej1 ∧ · · · ∧ d̂eju ∧ · · · ∧ dejs

)
.

So
d(m⊗ ω) =

∑
u

(
ei1 ⊗ · · · ⊗ êiu ⊗ · · · ⊗ eir

)
⊗ (deiu ∧ ω)
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and

κ(m⊗ ω) =
∑
u

(−1)u−1(m⊗ eju)⊗
(
dej1 ∧ · · · ∧ d̂eju ∧ · · · ∧ dejs

)
.

From these descriptions one readily sees that d is the usual deRham differential
and κ is the usual Koszul differential. Consequently, d2 = 0 and κ2 = 0. In the
two-dimensional array (35.5), if we take direct sums inside of each row then we get

Sym∗(V )⊗ Λ0(V )
d−→ Sym∗(V )⊗ Λ1(V )

d−→ · · ·
and this is an algebraic version of the deRham complex. We also get

· · · −→ Sym∗(V )⊗ Λ2(V )
κ−→ Sym∗(V )⊗ Λ1(V )

κ−→ Sym∗(V )⊗ Λ0(V )

which is a Koszul complex.

Proposition 35.6.
(a) dκ+ κd : Symr(V )⊗ Λs(V )→ Symr(V )⊗ Λs(V ) is multiplication by the total

degree r + s.
(b) In (35.5) every diagonal deRham chain complex is exact in dimensions where

the total degree is prime to the characteristic of F .
(c) In (35.5) every diagonal Koszul chain complex is exact, regardless of the char-

acteristic of the ground field, except for the diagonal in total degree 0.

Proof. Part (a) is a computation that is tedious but not particularly hard. If
v1, . . . , vr, w1, . . . , ws ∈ V then κd(v1 · · · vr ⊗ w1 · · ·ws) has two types of terms:
“pure” terms where a vi is moved to the right of the tensor and then moved back,
and “mixed” terms where a vi is moved to the right of the tensor and then a wj is
moved to the left. There are exactly r pure terms. Similarly dκ has s pure terms
where a wj is moved to the left and then moved back, and also a bunch of mixed
terms. One needs to check that the signs on the mixed terms in dκ exactly cancel
those in κd.

Part (b) follows from (a): the maps κ give a chain homotopy showing that
multiplication by the total degree is homotopic to the zero map. If the total degree
is invertible in the ground field, this implies that the homology must be zero in that
dimension.

We do not actually need part (c) below, but we include it to complete the story.
The maps d give a chain homotopy for the κ-complexes, much like in the proof
of (b), but this gives exactness only for some spots in the complex. The proof of
exactness at all spots is something we have already seen in a somewhat more general
context, in Theorem 18.25(a). If we pick a basis x1, . . . , xn of V then Sym∗(V ) =
F [x1, . . . , xn] and the κ-complex is the Koszul complex K(x1, . . . , xn). �

Now we apply the above results to K-theory. Since the deRham and Koszul
complexes were canonical constructions, we can apply them to vector bundles. The
deRham complex gives us exact sequences

0 // Symk E ⊗ Λ0E // Symk−1E ⊗ Λ1E // · · · // Sym1E ⊗ Λk−1E

��
Sym0E ⊗ ΛkE // 0.



342 DANIEL DUGGER

These show that in K0(X) one has∑
a+b=k

(−1)b[SymaE] · [ΛbE] = 0.

Consequently, symt([E]) · λ−t([E]) = 1. So

symt([E]) = 1
λ−t([E]) = λ−t(−[E]) and λ−t([E]) = 1

symt([E]) = symt(−[E]).

Any class w ∈ K0(X) has the form w = [E] − [F ] for some vector bundles E and
F , and therefore

symt(w) = symt([E]) · symt(−[F ]) = λ−t(−[E]) · λ−t([F ]) = λ−t([F ]− [E])

= λ−t(−w).

So the symk and λk operations on K-theory are essentially the same: symk(w) =
(−1)kλk(−w).

This has been a long discussion with somewhat of a negative conclusion: the
symk operations can be completely ignored in favor of the λk’s (or vice versa). We
have learned some useful things along the way, however.

35.7. The Adams operations. The usefulness of the λk operations is limited by
the fact that they are not group homomorphisms. There is a clever method, how-
ever, for combining the λ-operations in a way that does produce a collection of group
homomorphisms. This is originally due to Frank Adams [Ad2]. Before describing
this construction we take a brief detour to develop the algebraic combinatorics that
we will need.

Recall that we have a map λt : K0(X)→
(
K0(X)[[t]]

)∗ and that this is a group
homomorphism:

λt(x+ y) = λt(x) · λt(y).

If we want additive maps K0(X) → K0(X) a natural idea is to apply logarithms
to the above formula. To be precise, start with the formal power series

log(1 + z) = z − z2

2 + z3

3 − · · ·
Since λt(x) has constant term equal to 1, we can use the above series to make sense
of log(λt(x))—but only provided that we add denominators into K0(X), say by
tensoring with Q. If we set µt(x) = log(λt(x)) then we would have

µt(x+ y) = µt(x) + µt(y).

The coefficients of powers of t in µt(x) then give additive operations, with the only
difficulty being that they take values in K0(X)⊗Q.

We can, however, eliminate the need for Q-coefficients by applying the operator
d
dt . Precisely, define

νt(x) =
d

dt

[
µt(x)

]
=

λ′t(x)
λt(x) = (1− z + z2 − z3 + · · · )|z=λt(x)−1 · λ′t(x).

The two factors in the right-most expression both lie in K0(X)[[t]], and so this
eliminates the problem with denominators: νt(x) ∈ K0(X)[[t]] yet we still have
νt(x + y) = νt(x) + νt(y). Taking coefficients of νt(x) thereby yields additive
operations νk : K0(X)→ K0(X).
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We could stop here, but there is one more modification that makes things a bit
simpler later on. Suppose that L is a line bundle over X, and take x = [L]. Then
λt(x) = 1 + [L]t = 1 + xt, hence

νt(x) = x
1+xt = x(1− xt+ x2t2 − x3t3 + · · · ) = x− x2t+ x3t2 − · · · .

The ν-operations simply give powers of x, together with certain signs: νk(x) =
(−1)kxk−1. It is easy to adopt a convention that makes these signs disappear, and
we might as well do this; and while we are at it, let us shift the indexing on the ν’s
so that the kth operation sends x to xk, since that will be easier to remember.

Putting everything together, we have arrived at the following definition:

ψt(x) = t
d

dt

[
log(λ−t(x))

]
= t · λ

′
−t(x)

λ−t(x) ,

and ψk(x) is the coefficient of tk in ψt(x). The operations ψk are called Adams
operations. We have proven that
(1) Each ψk is a group homomorphism K0(X)→ K0(X), natural in X;
(2) If x = [L] for L a line bundle then ψk(x) = xk.

Conditions (1) and (2) actually completely characterize the Adams operations,
although we will not need this.

If R is a commutative ring and α =
∑
i≥1 αit

i is a power series with no constant
term, then there is an identity

α′

1+α =

∞∑
k=0

(−1)kSk(α1, . . . , αk)tk−1

where the Sk are certain universal polynomials called the Newton polynomials. See
Appendix D for a discussion, and Proposition D.3 for the identity. Applying this
with α = λ−t(x)− 1 yields part (a) of the following result. Part (b) is a standard
recursive relation for the Newton polynomials, again derived in Appendix D.

Proposition 35.8.
(a) ψk = Sk(λ1, . . . , λk), where Sk is the kth Newton polynomial;
(b) ψk = λ1ψk−1 − λ2ψk−1 + · · ·+ (−1)kλk−1ψ1 + (−1)k+1kλk.

Proof. See Proposition D.3 and Lemma D.1. �

We record the first few Adams operations:

ψ1 = λ1, ψ2 = (λ1)2 − 2λ2, ψ3 = (λ1)3 − 3λ1λ2 + 3λ3.

For more of these, just see the list of Newton polynomials given in Table 4.2 of
Appendix D.

35.9. Properties of the Adams operations.

Proposition 35.10. Fix k, l ≥ 1 and x, y ∈ K0(X). Then
(a) ψk(x+ y) = ψk(x) + ψk(y)
(b) ψk(xy) = ψk(x)ψk(y)
(c) ψk(ψl(x)) = ψkl(x)
(d) If ` is prime then ψ`(x) ≡ x` mod `.
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The proof will use the following terminology. A line element in K0(X) is any
element [L] where L→ X is a line bundle. The span of the line elements consist of
the classes of the form [L1] + · · ·+ [La]− [L′1]− · · · − [L′b] where the Li’s and L′j ’s
are all line bundles.

Proof of Proposition 35.10. Note that if x and y are line elements then all of the
above results are obvious because ψr([L]) = [Lr]. More generally, the results follow
easily if x and y are in the span of the line elements. The general result now
follows from the splitting principle in Proposition 35.11 below. Specifically, choose
a p : X1 → X such that p∗ is injective on K0(X) and p∗(x) is in the span of line
elements. Then choose a q : X2 → X1 such that q∗ is injective and q∗(p∗(y)) is
in the span of line elements. The identities in (a)–(d) all hold for x′ = (pq)∗(x)
and y′ = (pq)∗(y), and so the injectivity of (pq)∗ shows they hold for x and y as
well. �

Proposition 35.11 (The Splitting Principle). Let X be any space, and let x ∈
K0(X). Then there exists a space Y and a map p : Y → X such that p∗ : K0(X)→
K0(Y ) is injective and p∗(x) is in the span of line elements.

Proof. Write x = [E] − [F ] for vector bundles E and F . Consider the map
π : P(E) → X. Then π∗E ∼= E′ ⊕ L where L is a line bundle, and π∗ : K0(X) →
K0(P(E)) is injective (????). Iterating this procedure we obtain a map f : Y → X
such that f∗E is a sum of line bundles and f∗ is injective. Now use the same
process to obtain a map g : Y ′ → Y such that g∗ is injective and g∗(f∗F ) is a sum
of line bundles. The composite Y ′ → X has the properties from the statement of
the proposition. �

Corollary 35.12 (Characterization of Adams operations). Fix k ≥ 1. Suppose
that F : K0(−)→ K0(−) is a natural ring homomorphism such that F ([L]) = [Lk]
for any line bundle L→ X. Then F = ψk.

Proof. Fix a space X, and let α ∈ K0(X). Then α = [E] − [F ] for some vector
bundles E and F on X. By the Splitting Principle there exists a map p : Y → X
such that p∗E and p∗F are direct sums of line bundles, and such that p∗ : K0(X)→
K0(Y ) is injective. Our assumption on F implies at once that F (p∗α) = ψk(p∗α),
or equivalently p∗(Fα) = p∗(ψkα). Injectivity of p∗ now gives F (α) = ψk(α). �

The fact that ψk is natural and preserves (internal) products immediately yields
that it also preserves external products. Recall that if x ∈ K0(X) and y ∈ K0(Y )
then the external product can be written as x × y = π∗1(x) · π∗2(y) ∈ K0(X × Y ).
Clearly ψk(x× y) = ψk(x)× ψk(y). Using this, we easily obtain the following:

Proposition 35.13. For k ≥ 1, ψk acts on K̃0(S2n) as multiplication by kn.

Proof. Let β = 1− [L] be the Bott element in K̃0(S2), and recall that the internal
square β2 is zero. From this it follows readily that

ψk(β) = 1− Lk = 1− (1− β)k = 1− (1− kβ) = kβ.

Now recall that the external power β(n) = β × β × · · · × β generates K̃0(S2n). But

ψk(β(n)) = (ψkβ)(n) = (kβ)(n) = knβ(n).

�
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Recall the canonical filtration of K0(X) coming from the Atiyah-Hirzebruch
spectral sequence, as discussed in Section 34 and especially in Remark 34.6. In
particular, recall that F 2n−1K0(X) = F 2nK0(X), for every n, as a consequence
of K∗(pt) being concentrated in even dimensions. The naturality of the Adams
operations shows that they respect the filtration, and Proposition 35.13 shows that
ψk acts as a scalar on the associated graded:

Proposition 35.14. Let k ≥ 1.
(a) If x ∈ F 2nK0(X) then ψk(x) = knx + terms of higher filtration. That is,

ψk(x)− knx ∈ F 2n+2K0(X).
(b) If the induced filtration on K0(X)Q is finite (e.g., if X is a finite-dimensional

CW-complex) then the operations ψk are diagonalizable on K0(X)Q, with eigen-
values of the form kr for r ≥ 0. For k 6= 1 the decomposition

K0(X)Q =
⊕
r≥0

Eigψk(kr)

restricts to give
F 2nK0(X)Q =

⊕
r≥n

Eigψk(kr),

and this decomposition is independent of k: for all k, l 6= 1 and r ≥ 0 one has
Eigψk(kr) = Eigψl(l

r).

Proof. For part (a) it suffices to replace X by a weakly equivalent CW-complex,
so that F 2nK0(X) = ker[K0(X) → K0(X2n−1)]. If α ∈ F 2nK0(X) then let α1

denote its image in K0(X2n). The cofiber sequence X2n−1 ↪→ X2n → X2n/X2n−1

indcues a long exact sequence

· · · → K̃0(X2n/X2n−1)→ K0(X2n)→ K0(X2n−1)→ · · ·
The element α1 ∈ K0(X2n) maps to zero, and so it is the image of a class α2 ∈
K̃0(X2n/X2n−1). By Proposition 35.13 one knows ψk(α2) = knα2, and so ψkα1 =
knα1. It follows that ψkα − knα maps to zero in K0(X2n), and hence lies in
F 2n+1K0(X2n) = F 2n+2K0(X2n).

For part (b), let 2n be the largest even integer such that F 2nK0(X)Q 6= 0.
It follows from (a) that ψk acts as multiplication by kn on F 2nK0(X)Q. But
if ψk(x) = knx for some x /∈ F 2nK0(X)Q then choose r < n largest so that
x ∈ F 2rK0(X)Q. Part (a) gives that ψk(x) = krx + y where y ∈ F 2r+2K0(X)Q,
but then we get (kn − kr)x = y. Since kn 6= kr we have x ∈ F 2r+2K0(X)Q, which
is a contradiction. So F 2nK0(X)Q = Eigψk(kn).

We now prove by reverse induction that F 2iK0(X)Q is the sum of kj-eigenspaces
of ψk, for j ≥ i. Assume this holds for a particular value of i, and let α ∈
F 2i−2K0(X). We know ψkα = ki−1α+ γ, where γ is some element of F 2iK0(X)Q.
The induction hypothesis says that γ = σi + σi+1 + · · · + σn where each σr is
an eigenvector for ψk with eigenvalue kr. A routine calculation now shows that
α −∑r≥i

1
kr−ki−1σr is a ki−1-eigenvector for ψk, and hence α belongs to the sum

of eigenspaces for eigenvalues kr, r ≥ i− 1. This completes the induction step.
It remains to prove that the eigenspaces Eigψk(kr) are independent of k. This

is a small variant on the classical argument that commuting operators (in this case
ψk and ψl) can be simultaneously diagonalized. First note that we have seen that
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Eigψk(kn) = F 2nK0(X)Q = Eigψl(l
n). We also have

Eigψk(kn−1)⊕ Eigψk(kn) = F 2n−2K0(X)Q = Eigψl(l
n−1)⊕ Eigψl(l

n).

For this subspace choose a basis of ψk-eigenvectors a1, . . . , as, b1, . . . , bt (with the
a’s having eigenvalue kn−1 and the b’s having eigenvalue kn) that simultaneously
diagonalizes ψl. By what was already proven, the b’s span Eigψl(l

n); so the only
possiblity for the a’s is that their ψl-eigenvalue is ln−1. It follows that the a’s are
a basis for Eigψl(l

n−1), and therefore Eigψk(kn−1) = Eigψl(l
n−1). Now repeat this

argument inductively. �

Remark 35.15. The Adams operations ψk are defined for k ≥ 1. Someone once
had the clever idea of taking the operation induced by E 7→ E∗ and calling it ψ−1.
So ψ−1([E]−[F ]) = [E∗]−[F ∗]. Then for k ≥ 1 one checks that ψ−1◦ψk = ψk◦ψ−1,
and so it is reasonable to define ψ−k to be this common expression. With this
definition parts (a)–(c) of Proposition 35.10 now hold for all k, l ∈ Z− {0}.
35.16. Adams operations for non-compact spaces. ????

36. The Hopf invariant one problem

The Hopf invariant assigns an integer to every map f : S2n−1 → Sn, giving a
group homomorphism H : π2n−1(Sn) → Z. Elementary arguments show that 2 is
always in the image, and the natural question is then whether 1 is also in the image.
This is the Hopf invariant one problem—determine all values of n for which H is
surjective (or said differently, all values of n for which there exists a map of Hopf
invariant one).

It was known classically that H is surjective when n ∈ {1, 2, 4}, because the
classical Hopf maps all have Hopf invariant equal to one. The question for other
dimensions was first settled by Adams in [Ad1], who proved that no other Hopf
invariant one maps exist. Adams’s proof is not simple, even by modern stan-
dards, being based on secondary cohomology operations associated to the Steenrod
squares. Several years after Adams gave his original proof, Adams and Atiyah [AA]
used K-theory to give a much simpler solution to the Hopf invariant one problem.
Their ‘postcard proof’ takes less than a page, in dramatic contrast to Adams’s orig-
inal method. This was seen—rightly so—as a huge demonstration of the power of
K-theory.

Our goal in this section will be to present the Adams-Atiyah proof, although we
will not quite do this in their style. Specifically, when Adams and Atiyah wrote
their paper they clearly had an agenda: to write down the proof in as small a space
as possible. If the goal is to accentuate how much the use of K-theory simplifies the
solution, this makes perfect sense. But at the same time, writing the proof in this
way results in a certain air of mystery: the proof involves a strange manipulation
with the Adams operations ψ2 and ψ3 that comes out of nowhere—it seems like a
magic trick.

In our presentation below we try to put this (ψ2, ψ3) trick into its proper context:
it is part of a calculation of a certain Ext1 group. The full calculation of this group
is not hard, and quite interesting for other reasons—e.g., it connects deeply to the
study of the J-homomorphism. Our presentation doesn’t fit on a postcard, but
by the time we are done we will have a good understanding of several neat and
important things. Hopefully it won’t seem like magic.
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36.1. Brief review of the problem. Let f : S2n−1 → Sn and consider the map-
ping cone Cf . One readily computes that

Hi(Cf) ∼=
{
Z if i ∈ {0, n, 2n},
0 otherwise.

Fix an orientation on the two spheres, and let a and b be corresponding generators
for Hn(Cf) and H2n(Cf). Then b2 = h · a for a unique integer h ∈ Z, and this
integer is called the Hopf invariant of f : we write h = H(f).

Note that if n is odd then b2 = −b2 and so h = 0. Therefore the Hopf invariant
is only interesting when n is even.

Remark 36.2. We follow [Ha, Proposition 4B.1] to see that H : π2n−1(Sn)→ Z is
a group homomorphism. Given f, g : S2n−1 → Sn consider the diagram of mapping
cones

S2n−1

��

f+g // Sn // Cf+g

��
S2n−1 ∨ S2n−1 f∨g // Sn // X

where the left vertical map is the equatorial collapse and X = Cf∨g. Note that
there are inclusions Cf ↪→ X and Cg ↪→ X. The cohomology group H2n(X) has
two generators a1 and a2, and naturality applied to those inclusions shows that
b2 = H(f)a1 +H(g)a2. But under the map Cf+g → X both a1 and a2 are sent to
our usual generator a, and from this one gets that H(f + g) = H(f) +H(g).

Remark 36.3. It is easy to see that 2 (and therefore any even integer) is always
in the image of H. We again follow [Ha] here and let X be the pushout

Sn ∨ Sn // //

∇
��

Sn × Sn

α

��
Sn // X.

One readily checks that the cohomology of X consists of two copies of Z, in degrees
n and 2n. So X is the mapping cone of a certain map f : S2n−1 → Sn, the attaching
map of the top cell. If x ∈ Hn(Sn) is a fixed generator, then there is a generator
b ∈ Hn(X) that maps to x⊗ 1 + 1⊗ x under α∗. It follows that b2 maps to

(x⊗ 1 + 1⊗ x)2 = 2(x⊗ x)

and therefore b2 is twice a generator of H2n(X). One concludes that the Hopf
invariant of f is ±2, depending on one’s sign choices.

The problem arises of determining the precise image ofH : π2n−1(Sn)→ Z, when
n is even. By Remarks 36.2 and 36.3 the image is a subgroup that contains 2Z, so
there are only two possibilities: either the image equals 2Z, or else it equals all of
Z. The latter happens if and only if there exists an element in π2n−1(Sn) having
Hopf invariant equal to one. Thus, this is the “Hopf invariant one” problem.

The following several paragraphs involve the Steenrod squares. The results will
not be needed later in this section, but they constitute an interesting part of the
overall story.

As soon as one is versed in the Steenrod squares it is easy to obtain a necessary
condition for the existence of a Hopf invariant one map f : S2n−1 → Sn. In the mod
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2 cohomology of Cf we have Sqn(b) = b2 = h · a. So if f has odd Hopf invariant
then Sqn(b) = a, and the mod 2 cohomology of Cf looks like this:

Sqn

b

a

This picture just says that the cohomology has generators a and b together with a
Sqn connecting b to a. As an immediate consequence we obtain Adem’s theorem:

Proposition 36.4 (Adem). If f : S2n−1 → Sn has Hopf invariant one then n is a
power of 2.

Proof. The above picture represents a module over the Steenrod algebra only if Sqn

is indecomposable. But by our knowledge of the Steenrod algebra, the indecompos-
ables all have degrees equal to a power of 2 (they are represented by the elements
Sq2i). �

The reader might have noticed that there actually seem to be two problems
here, that are interelated. There is the Hopf invariant one problem, and there
is the question of whether there exists a map Sk+n−1 → Sk whose cofiber has
a nonzero Sqn in mod 2 cohomology. The first problem is inherently unstable in
nature because it deals with the cup product, whereas the second problem is clearly
stable. It is useful to note that the two problems are actually equivalent:

Proposition 36.5. Fix n ≥ 1. The following two statements are equivalent:
(a) There exists a map S2n−1 → Sn of Hopf invariant one;
(b) There exists a k ≥ 0 and a map Sk+n−1 → Sk whose mapping cone has a

nonzero Sqn operation.

Proof. In the discussion preceding Adem’s theorem we saw that (a) implies (b) by
taking k = n. Conversely, if (b) holds for a certain map g then by suspending if
necessary we can assume k ≥ n. The Freudenthal Suspension Theorem guarantees
that π2n−1(Sn)→ πk+n−1(Sk) is surjective, so choose map a map f : S2n−1 → Sn

that is a preimage of g. The spaces Cf and Cg are homotopy equivalent after
appropriate suspensions, so the mod 2 cohomology of Cf has a nonzero Sqn. It
immediately follows that f has odd Hopf invariant, and consequently there exists
a map of Hopf invariant one. �

Adem’s theorem is really an analysis of the stable problem, and it may be
rephrased as follows. If f : Sn+k−1 → Sk then there is a cofiber sequence
Sn+k−1 → Sk → Cf , and if n ≥ 2 the long exact sequence on mod 2 cohomology
breaks up into a family of short exact sequences

0← H̃∗(Sk;Z/2)← H̃∗(Cf ;Z/2)← H̃∗(Sn+k;Z/2)← 0.

These are maps of modules over the Steenrod algebra A, and both the left and
right terms are isomorphic to the trivial A-module F2 (graded to lie in the ap-
propriate dimension). So the above short exact sequence represents an element of
Ext1

A(F2,F2). Standard homological algebra identifies this Ext1 with the module
of indecomposables I/I2, where I is the augmentation ideal of A. Adem’s Theorem
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works because we know this module of indecomposables precisely, and therefore can
identify the Ext1 groups precisely.

36.6. An Ext calculation. Most of this section will be spent in pursuit of a purely
algebraic question, somewhat related to what we just saw. Let (N, ·) be the monoid
of natural numbers under multiplication, and let B = Z[N] be the corresponding
monoid ring. Write ψk for the element of B corresponding to k ∈ N. Then B is
simply the polynomial ring

B = Z[ψ2, ψ3, ψ5, . . .],

with one generator corresponding to each prime number. We think of B as the ring
of formal Adams operations, and note that K0(X) is naturally a B-module for any
space X.

Let Z(r) denote the following module over B: as an abelian group it is a copy of
Z, with chosen generator g, and the B-module structure is ψk.g = krg. Our goal
will be to compute the groups

Ext1
B(Z(r),Z(s))

for all values of r and s.
Before exploring this algebraic problem let us quickly indicate the application to

topology. Let f : Sn+k → Sn be a map of spheres, and write Cf for the mapping
cone. The Puppe sequence looks like

Sn+k → Sn → Cf → Sn+k+1 → Sn+1 → · · ·
and applying K̃0(−) to this yields

K̃0(Sn+k)← K̃0(Sn)← K̃0(Cf)← K̃0(Sn+k+1)← K̃0(Sn+1)← · · ·
Any K̃0(−) group is naturally a B-module, via the Adams operations; and all the
maps in the above sequence are maps of B-modules. Under the hypotheses that n
is even and k is odd, the groups on the two ends vanish and we get a short exact
sequence

0← K̃0(Sn)← K̃0(Cf)← K̃0(Sn+k+1)← 0.

Proposition 35.13 says that as a B-module K̃0(S2r) is isomorphic to Z(r), and
hence the above sequence yields an element

A(f) ∈ Ext1
B

(
Z(n2 ),Z(n+k+1

2 )
)
.

That is to say, we have obtained a topological invariant of f taking values in this
Ext group.

Now we begin our computation. Let X be a B-module that sits in a short exact
sequence

0→ Z(s)→ X → Z(r)→ 0.(36.7)

Write a for a chosen generator of Z(s) (as well as its image in X) and b̃ for a chosen
generator of Z(r). Write b for a preimage of b̃ in X. Then we have

ψkb = krb+ Pka

for a unique Pk ∈ Z. The B-module structure on X is completely determined by
the ∞-tuple of integers P = (P2, P3, P5, . . .).



350 DANIEL DUGGER

Does any choice of P correspond to a B-module? To be a B-module one must
have ψkψl = ψlψk on B. But we can compute

ψk(ψlb) = ψk(lrb+ Pla) = lr · ψk(b) + Pl · ψka
= lr · (krb+ Pka) + Plk

sa

and likewise

ψl(ψkb) = ψl(krb+ Pka) = kr · ψl(b) + Pk · ψla
= kr · (lrb+ Pla) + Pkl

sa.

Equating these expressions we find that (lr − ls)Pka = (kr − ks)Pla. Since a is
infinite order in X it must be that

(lr − ls)Pk = (kr − ks)Pl,
and this holds for every two primes k and l. If r = s this gives no condition and
it is indeed true that any choice of P corresponds to a module X. But in the case
r 6= s we can write

Pl
Pk

= lr−ls
kr−ks .

So once we fix a prime k, all other Pl’s are determined by Pk. For convenience we
take k to be the smallest prime, and obtain

Pl = P2 ·
(
lr−ls
2r−2s

)
for every prime l. This shows that the module X depends on the single parameter
P2; however, it is still not true that all possible integral choices for P2 correspond to
B-modules. Indeed, we will only get a B-module if the above formula for Pl yields
an integer for every choice of l. To this end define

Zr,s =
{
P ∈ Z

∣∣P · ( lr−ls2r−2s

)
∈ Z, for all primes l

}
.

For P ∈ Zr,s let XP denote the corresponding B-module for which P2 = P .
Note that Zr,s ⊆ Z is an ideal, and nonzero because it contains 2r − 2s. In a

moment we will compute this ideal in some examples. For now simply note that
we have a map (in fact a surjection) Zr,s → Ext1

B(Z(r),Z(s)) sending P to the
extension (36.7) in which X = XP . It is an exercise to check that this is indeed a
map of abelian groups.

We next need to understand when XP and XQ are isomorphic as elements of
Ext1

B(Z(r),Z(s)). This is when there is a map of B-modules XP → XQ yielding a
commutative diagram

0 // Z(s) // XP

f

��

// Z(r) // 0

0 // Z(s) // XQ
// Z(r) // 0

Such an f must satisfy f(a) = a, and f(b) = b+ Ja for some J ∈ Z (note that the
symbols a and b are being used to simultaneously represent different elements of XP

and XQ). The condition that f be a map of B-modules is that ψk(f(b)) = f(ψkb)
for all primes k. For k = 2 the left-hand-side is

ψ2(b+ Ja) = 2rb+Qa+ J · 2sa
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and the right-hand-side is

f(ψ2b) = f(2rb+ Pa) = 2r(b+ Ja) + Pa.

We obtain the condition
Q− P = (2r − 2s)J.

The reader may check as an exercise that the condition for the other ψk’s follows
as a consequence of this one.

The conclusion is that XP and XQ are isomorphic as elements of
Ext1

B(Z(r),Z(s)) precisely when P − Q is a multiple of 2r − 2s. The map
Zr,s → Ext1

B(Z(r),Z(s)) therefore descends to an isomorphism

Zr,s/(2
r − 2s)

∼=−→ Ext1
B(Z(r),Z(s)).

Finally, it remains to determine the group Zr,s/(2r − 2s). This is a cyclic group
(since Zr,s ∼= Z), and we need to find its order. To this end, note that the condition
P ( l

r−ls
2r−2s ) ∈ Z is equivalent to

2r−2s

gcd(2r−2s,lr−ls)

∣∣∣P.
This is true for all l if and only if P is a multiple of

lcm
{

2r−2s

gcd(2r−2s,lr−ls)

∣∣∣ l prime
}

= 2r−2s

gcd({lr−ls | l prime}) .

So define
Nr,s = gcd(2r − 2s, 3r − 3s, 5r − 5s, 7r − 7s, . . .).

Then we have just determined that Zr,s = ((2r − 2s)/Nr,s), and hence

Ext1
B(Z(r),Z(s)) ∼= ( 2r−2s

Nr,s
)/(2r − 2s) ∼= Z/Nr,s.

We will explore the numbers Nr,s in a moment, but we have already done enough
to be able to solve the Hopf invariant one problem. So let us pause and tackle that
first.

36.8. Solution to Hopf invariant one. We are ready to give the Adams-Atiyah
[AA] solution to the Hopf invariant one problem:

Theorem 36.9. If f : S2n−1 → Sn has Hopf invariant one then n ∈ {1, 2, 4, 8}.
Proof. We assume n > 1 and prove that n ∈ {2, 4, 8}. We of course know that n is
even, since otherwise the Hopf invariant is necessarily zero. Write n = 2r, and let
X be the mapping cone of f . We have an exact sequence of B-modules

0← K̃0(Sn)← K̃0(X)← K̃0(S2n)← 0

which has the form
0← Z(r)← K̃0(X)← Z(2r)← 0.

Let a ∈ K̃0(X) be the image of a chosen generator for K̃0(S2n) and let b ∈ K̃0(X)

be an element that maps to a chosen generator of K̃0(Sn). Then b2 maps to 0 in
K̃0(Sn), so we have b2 = h · a for a unique h ∈ Z. A little thought shows that, up
to sign, h is the Hopf invariant of the map f .

The key to the argument is the equivalence ψ2(b) ≡ b2 mod 2 (Proposi-
tion 35.10(d)). Using our assumption that h is odd, this gives ψ2(b) ≡ a mod
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2. However, recall our classification of extensions in Ext1
B(Z(r),Z(2r)). Such ex-

tensions are determined by an integer P2 ∈ Z satisfying

P2 ·
(
l2r−lr
22r−2r

)
∈ Z(36.10)

for all primes l, where P2 is defined by the equation ψ2b = 2rb+P2a. Our assumption
about the Hopf invariant of f now gives that P2 is odd. But equation (36.10) says
that

P2 · l
r

2r · l
r−1

2r−1 ∈ Z,
and if P2 is odd and l is odd then this implies that 2r|lr − 1.

Let us pause here and summarize. From the topology we have extracted a
number-theoretic condition: if n = 2r and S2n−1 → Sn has Hopf invariant one,
then 2r|lr − 1 for all odd primes l.

This number-theoretic condition is very restrictive, and it turns out just looking
at l = 3 is enough to give us what we want. The lemma below shows that r lies in
{1, 2, 4}, impying that our original n belongs to {2, 4, 8} as desired. �

Lemma 36.11. If 2r|3r − 1 then r ∈ {0, 1, 2, 4}.
Proof. Let ν(n) be the 2-adic valuation of an integer n: that is, n = 2ν(n) · (odd).
Here is a table showing the numbers ν(3r − 1) for small values of r:

Table 36.12.

r 1 2 3 4 5 6 7 8 9 10 11 12
ν(3r − 1) 1 3 1 4 1 3 1 5 1 3 1 4

The reader will reach the natural guess that ν(3r − 1) = 1 when r is odd,
and this is easy to prove by working modulo 4. In Z/4 we have 3 = −1, and so
3r = (−1)r = −1 when r is odd. Thus 3r − 1 = 2 in Z/4, which confirms that
ν(3r − 1) < 2.

When r is even the reader will note from the table that ν(3r − 1) seems to grow
quite slowly as a function of r. Again, this is easy enough to prove as soon as one
has the idea to do so. If r = 2u then

3r − 1 = 32u − 1 = (3u − 1)(3u + 1).

Modulo 8 the powers of 3 are just 1 and 3, so the possible values for 3u + 1 are
only 2 and 4. In particular, 8 does not divide 3u + 1: that is, ν(3u + 1) < 3 for all
values of u. We therefore have ν(3r − 1) ≤ ν(3u − 1) + 2. If u is odd we stop here,
otherwise we again divide by 2 and apply the same formula; a simple induction
along these lines yields

ν(3r − 1) ≤ 1 + 2ν(r).

The bound 1 + 2ν(r) is generally substantially smaller than r. An easy exercise
verifies that r ≤ 1+2ν(r) only when r ∈ {1, 2, 4}. So to summarize, we have shown
that if r /∈ {1, 2, 4} then 1 + 2ν(r) < r; hence ν(3r − 1) < r, and so 2r - 3r − 1. �
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36.13. Completion of the Ext calculation. At this point we have finished with
the solution to the Hopf invariant one problem. But there is another interesting
problem that is still on the table, namely the exact computation of the groups

Ext1
B(Z(r),Z(s)) ∼= Z/Nr,s.

We need to determine the numbers Nr,s = gcd(2r − 2s, 3r − 3s, 5r − 5s, . . .). Note
that Nr,s = Ns,r, so we can concentrate on the case r ≥ s.

This calculation, of course, is intriguing from a purely algebraic perspective—
when an answer comes down to finding one specific number, it would be difficult
not to take the extra step and determine just what that number is. But the answer
is also interesting for topological reasons. We have seen that if f : Sn+k−1 → Sn

where n and k are both even, then we get an extension A(f) ∈ Ext1
B(Z(n2 ),Z(n+k

2 )).
A little work shows that this actually gives a group homomorphism

A : πn+k−1(Sn)→ Ext1
B

(
Z(n2 ),Z(n+k

2 )
) ∼= Z/Nn

2 ,
n+k

2
.

It is important to determine how large the target group is, and how close A is to
being an isomorphism. This was investigated by Adams [A3].

We begin our investigation of the numbers Nr,s by looking at Nr,r−1. Since
lr − lr−1 = lr−1(l − 1) this is

Nr,r−1 = gcd(2r−1, 3r−1 · 2, 5r−1 · 4, 7r−1 · 6, . . .).
The 2r−1 in the first entry tells us that the gcd will be a power of 2, and the 3r−1 ·2
tells us that it will be at most 21. A moment’s thought reveals that the gcd is
precisely 21, as long as r ≥ 2. When r = 1 the gcd is just 1:

Nr,r−1 =

{
1 if r = 1,

2 if r ≥ 2.

Next consider the numbers Nr,r−2, requiring us to look at lr−lr−2 = lr−2(l2−1).
We have

Nr,r−2 = gcd(2r−2(22 − 1), 3r−2(32 − 1), 5r−2(52 − 1), 7r−2(72 − 1), . . .)

= gcd(2r−2 · 3, 3r−2 · 8, 5r−2 · 24, 7r−2 · 48, . . .).

From the first entry we see that the gcd will only have twos and threes in its
factorization, with at most one 3. Later entries show that the gcd has at most 3
twos, and a brief inspection leads to the guess that the gcd is 24 as long as r ≥ 5.
To prove this we need to verify that 24|l2−1 for primes l > 3. This is easy, though.
Consider the numbers l − 1, l, and l + 1. At least one is a multiple of 3, and our
hypotheses on l say that it isn’t l. So 3 divides (l − 1)(l + 1) = l2 − 1. Likwise,
both l − 1 and l + 1 are even and at least one must be a multiple of 4: so 8|l2 − 1
as well. The reader will now find it easy to check the following numbers:

Nr,r−2 =


1 if r = 2,

6 if r = 3,

12 if r = 4,

24 if r ≥ 5.
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Remark 36.14. The two cases we have analyzed so far yield an evident conjecture:
that Nr,r−t is independent of r for r � 0. We will see below that this is indeed the
case.

Let us work out two more cases before discussing the general pattern.

Nr,r−3 = gcd(2r−3(23 − 1), 3r−3(33 − 1), 5r−3(53 − 1), . . .)

= gcd(2r−3 · 7, 3r−3 · 26, 5r−2 · 124, . . .).

A very quick investigation shows that

Nr,r−3 =

{
1 if r = 3,

2 if r ≥ 4.

Moving to Nr,r−4 we have

Nr,r−4 = gcd(2r−4(24 − 1), 3r−4(34 − 1), 5r−4(54 − 1), . . .)

= gcd(2r−4 · 15, 3r−4 · 80, 5r−4 · 624, 74−r · 2400, . . .).

The numbers are getting larger now, and it is harder to see the patterns. The
relevant fact is that l4 − 1 is a multiple of 24 · 3 · 5 for all primes l > 5; and for
l = 2 it is a multiple of 3 · 5, for l = 3 it is a multiple of 24 · 5, and for l = 5 it is
a multiple of 24 · 3. We leave it as an exercise for the reader to prove this, using
the factorization l4 − 1 = (l − 1)(l + 1)(l2 + 1) and some easy number theory. The
conclusion is that

Nr,r−4 =



1 if r = 4,

30 if r = 5,

60 if r = 6,

120 if r = 7,

240 if r ≥ 8.

By now it should be clear what the general pattern is, if not the specifics. To
understand Nr,r−t we consider the numbers

2t − 1, 3t − 1, 5t − 1, 7t − 1, . . .

Excluding some finite set of primes at the beginning, there will be an “interesting”
gcd to this set of numbers. When r is large the bad primes at the beginning become
irrelevant to the computation, and so here Nr,r−t is equal to the aforementioned
“interesting” gcd. We encourage the reader to do some investigation on their own at
this point. The “large r” values of Nr,r−t are listed in the following table, together
with their prime factorizations:

t 1 2 3 4 5 6 7 8 9 10 11 12
Nr,r−t 2 24 2 240 2 504 2 480 2 264 2 65520

p.f. 2 23·3 2 24·5 2 23·32·7 2 25·3·5 2 23·3·11 2 24·32·5·7·13

If you have been around the stable homotopy groups of spheres you will see some
familiar numbers in this table, which might make you sit up and take notice. For
example: πs3 ∼= Z/24, πs7 ∼= Z/240, πs11

∼= Z/504, and πs15
∼= Z/960 (note that the

last one does not quite match). It is remarkable to have these numbers coming up
in a purely algebraic computation! It turns out that what we are seeing here is the
so-called “image of J”. We will say more about this at a later time.
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Fix t ∈ Z+. It turns out that there is a simple formula for the “stable” values
of Nr,r−t, as a function of t. These stable values are also closely connected to the
denominators of Bernoulli numbers. We close this section by explaining this.

Our examples have led to the hypothesis that the sequence of numbers

2N (2t − 1), 3N (3t − 1), 5N (5t − 1), 7N (7t − 1), . . .

has a greatest common divisor that is independent of N when N � 0. Our aim is
to prove this, and to investigate this gcd. To this end, let mN (t) be this gcd:

mN (t) = gcd{lN (lt − 1) | l is prime}.
Notice the relation to our Ext-calculation is that when r ≥ s we have Nr,s =
ms(r − s).

Also define
m′N (t) = gcd{kN (kt − 1) | k ∈ Z+}.

Clearly m′N (t) divides mN (t), but in fact the two are equal:

Lemma 36.15. For all t and N , m′N (t) = mN (t).

Proof. It will suffice to show that mN (t) divides m′N (t), or equivalently that every
prime-power factor of the former is also a factor of the latter. So let p be a prime
and suppose pe|mN (t). Then pe|pN (pt−1), so e ≤ N . For any l such that (l, p) = 1
we have pe|lt − 1, so lt = 1 in Z/pe.

Now let k ∈ Z with k ≥ 2. If p | k then pe | kN (kt− 1) since e ≤ N . If p - k then
write k = l1l2 . . . lr where each lr is a prime different from p. We know that lti = 1
in Z/pe for each i, and so kt = lt1l

t
2 . . . l

t
r = 1 in Z/pe as well. That is, pe|kt− 1. We

have therefore shown that pe|m′N (t), which is what we wanted. �

The next proposition proves that mN (t) stabilizes for N � 0, and it also deter-
mines an explicit formula for the stable value in terms of the prime factorization of
t. Let νp(t) denote the exponent of the prime p in the prime factorization of t.

Proposition 36.16. Let L be the supremum of all exponents in the prime factor-
ization of t. Then mN (t) is independent of N for N ≥ L+ 2. If we call this stable
value m(t) then
(a) m(t) = 2 when t is odd;
(b) When t is even m(t) = 22+ν2(t) · ∏

p odd,(p−1)|t
p1+νp(t).

(c) More generally,

mN (t) = 2min{2+ν2(t),N} ·
∏

p odd,(p−1)|t

pmin{1+νp(t),N}.

Remark 36.17. The notation m(t) comes from Adams [A3]. Note that the propo-
sition completes our Ext-calculations, via the formula Nr,s = ms(r − s). But see
also ??? for more about the Ext groups.

Before proving the proposition let us look at a couple of examples. To compute
m(50) we write 50 = 2 · 52. Next we make a list of all odd primes p such that p− 1
divides 50; these are 3 and 11. So

m(50) = 23 · 3 · 11 = 264.
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For a harder example let us compute m(12). We write 12 = 22 · 3, and our list of
odd p such that p− 1 divides 12 is 3, 5, 7, and 13. So

m(12) = 24 · 32 · 5 · 7 · 13 = 65520.

Further, we have m(12) = m4(12) and

m3(12) = 23 · 32 · 5 · 7 · 13

m2(12) = 22 · 32 · 5 · 7 · 13

m1(12) = 21 · 31 · 5 · 7 · 13

m0(12) = 1.

Here are several more values of m for the reader’s curiosity (the numbers are, of
course, better understood in terms of their prime factorizations):

t 2 4 6 8 10 12 14 16 18

m(t) 24 240 504 480 264 65520 24 16320 28728

To prove Proposition 36.16 we need a lemma from algebra. Most basic algebra
courses prove that the group of units in Z/p is a cyclic group, necessarily isomorphic
to Z/(p − 1). One can also completely describe the group of units inside the ring
Z/pe, for any e. Recall that this group simply consists of all residue classes of
integers k such that (p, k) = 1. Here is the result:

Lemma 36.18. Fix a prime p and consider the group of units (Z/pe)∗ inside the
ring Z/pe.
(a) If p is odd then (Z/pe)∗ ∼= Z/((p− 1)pe−1) ∼= Z/(p− 1)× Z/(pe−1).
(b) If e ≥ 2 then (Z/2e)∗ ∼= Z/2× Z/(2e−2). Here the Z/2 is the subgroup {1,−1}

and the Z/(2e−2) is the subgroup of all numbers congruent to 1 mod 4.
(c) (Z/2)∗ = {1}.
Proof. We first recall the proof that (Z/p)∗ is cyclic. If a finite abelian group is
noncyclic, then it contains a subgroup isomorphic to Z/k × Z/k, for some prime k
(this follows readily from the structure theorem for finite abelian groups). But if this
were true for (Z/p)∗ then the field Z/p would have k2 solutions to the polynomial
xk − 1, and this is a contradiction.

Assume that p is odd. Reduction modulo p gives a surjective map (Z/pe)∗ →
(Z/p)∗. Let K denote the kernel. Note that (Z/pe)∗ coincides with the set

{1, 2, . . . , pe − 1} − {p, 2p, 3p, . . . , (pe−1 − 1)p}
and so has order pe− pe−1. Thus, |K| = pe−1. It remains to show that K is cyclic,
and for this it suffices to verify that K has exactly p − 1 elements of order p. Let
a ∈ K − {1}, and let the base p representation of a be

a = 1 + afp
f + af+1p

f+1 + · · ·+ ae−1p
e−1,

for 0 ≤ ai < p and af 6= 0 (note that a0 = 1 by the definition of K). Write
b = af + af+1p+ af+2p

2 + · · · , so that

ap = (1 + pfb)p = 1 + p · pfb+
(
p
2

)
p2fb2 + · · ·

The terms after p1+fb all contain at least f + 2 factors of p; so modulo pf+2 one
has ap ≡ 1 + pf+1b ≡ 1 + afp

f+1. So we can have ap = 1 in Z/pe only if f = e− 1.
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Thus, we have shown that the elements ofK that are pth roots of unity are precisely
the elements 1 + ape−1, for 0 ≤ a < p. In particular, we have only p − 1 of these
(excluding the identity element). This completes the proof.

The proof for p = 2 is similar. Of course (Z/4)∗ ∼= Z/2. For e ≥ 3 consider
the sequence 0 → K → (Z/2e)∗ → (Z/4)∗ → 0, where the right map is reduction
modulo 4. This reduction map is split-surjective, with the splitting sending the
generator of (Z/4)∗ to −1. The proof that K is cyclic proceeds exactly as in the
odd primary case. �

Proof of Proposition 36.16. Let p be an odd prime. Then one has

pe | mN (t) ⇐⇒ pe | pN (pt − 1) and pe | lN (lt − 1) for all primes l 6= p

⇐⇒ e ≤ N and pe | lt − 1 for all primes l 6= p

⇐⇒ e ≤ N and pe|kt − 1 for all k ∈ Z+ such that p - k
⇐⇒ e ≤ N and all units in Z/pe are tth roots of 1

⇐⇒ e ≤ N and (p− 1)pe−1|t.
The third equivalence is by Lemma 36.15, and in the last equivalence we have used
that (Z/pe)∗ ∼= Z/((p− 1)pe−1). This last line shows why N is redundant when it
is large enough: the condition pe−1|t already forces e ≤ νp(t) + 1, and so e ≤ N is
redundant if N ≥ νp(t) + 1.

Assuming now that N is large enough so that we are in the stable case, the
above equivalences show that p|m(t) only when p − 1|t; and also that in this case
νp(m(t)) = 1 + νp(t).

The analysis of p = 2 is very similar. One finds

2e | mN (t) ⇐⇒ e ≤ N and all units in Z/2e are tth roots of 1.

When e = 1 the latter condition is just e ≤ N . When e > 1 the latter condition
is equivalent to e ≤ N and 2e−2|t, using Lemma 36.18(b). This readily yields the
desired result. �

Our final task is to make the connection between the numbers m(t) and the
Bernoulli numbers. For a review of the Bernoulli numbers and their basic properties,
see Appendix A. The result we are after is the following:

Theorem 36.19. When t is even, m(t) is the denominator of the fraction Bt
2t when

expressed in lowest terms.

The following table demonstrates this result in the first few cases:

t 2 4 6 8 10 12

|Bt| 1
6

1
30

1
42

1
30

5
66

691
2730

|Bt|
2t

1
24

1
240

1
504

1
480

1
264

691
65520

m(t) 24 240 504 480 264 65520

It should be remarked, perhaps, that this connection betweenm(t) and Bernoulli
numbers is worth more in effect than it is in practical value. The explicit formula
for m(t) from Proposition 36.16 is much more useful than its description as the
denominator of Bt/(2t). Moreover, the denominators of Bernoulli numbers are
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very simple: for Bn it is simply the product of all primes p such that p− 1 divides
n. So in the end the result of Theorem 36.19 is neither deep nor particularly useful.
Still, it provides a nice-sounding connection between topology and number theory.

Proof of Proposition 36.19. By the theorem of von Staudt and Claussen (Theo-
rem C.5) we know that the denominator of Bt (in lowest terms) is the product of
all primes p such that p − 1 divides t. Note that one such prime is p = 2, so the
denominator is even (in fact, congruent to 2 modulo 4) and the numerator is odd.
Note also that these are the same primes appearing in the factorization of m(t), by
Proposition 36.16(b).

Consider now α = Bt/(2t). Since the numerator of Bt is odd, the number of
twos in the denominator of α is 1 + 1 + ν2(t). This is the same as the number of
twos in the prime factorization of m(t).

For every prime p such that p−1|t we have one p appearing in the denominator of
Bt and νp(t) of them appearing in t, so the total number of p’s in the denominator
of α is 1 + νp(t). At this point we have thereby shown that m(t)|den(α).

It remains to check that if pe | t and p − 1 - t then pe divides the numerator of
Bt and therefore disappears from the denominator of α. This is the nontrivial part
of the proof.

Let p be an odd prime in the denominator of α, appearing with multiplicity e.
Then pe is also in the denominator of Bt/t. By Proposition C.6 we know that

kt(kt−1)Bt
t ∈ Z

for all k ∈ Z. Consequently we have pe|kt(kt − 1) for all k ∈ Z. But this exactly
says that pe divides the gcd m(t). This verifies that the ‘odd part’ of den(α) divides
m(t), and we have already checked the factors of 2 in a previous paragraph. So
den(α) | m(t), and therefore the two are equal. �

Exercise 36.20. Let us return to our original motivation, which was to understand
the groups ExtB(Z(r),Z(s)). As part of our computation we discovered two sur-
prises: the groups are symmetric in r and s, and there is a “stability” phenomenon
related to s being large compared to r − s. In this exercise we will identify some
algebraic structure behind these phenomena.
(a) IfM is a B-module thenM∗ = HomAb(M,Z) becomes a B-module by precom-

position: if f : M → Z then define ψk.f = f ◦ ψk. Note that Z(r)∗ ∼= Z(r),
and that if 0 → Z(s) → M → Z(r) → 0 is an exact sequence then so is
0← Z(s)∗ ←M∗ ← Z(r)∗ ← 0. Verify that this gives an isomorphism between
ExtB(Z(r),Z(s)) and ExtB(Z(s),Z(r)).

(b) If M and N are B-modules verify that the abelian group M ⊗Z N becomes a
B-module via the formula ψk(m ⊗ n) = (ψkm) ⊗ (ψkn). Check that Z(r) is a
flat B-module, so that we get maps

ExtB(Z(r),Z(s))
⊗Z(1)−→ ExtB(Z(r + 1),Z(s+ 1))

⊗Z(1)−→ · · ·
Verify that the maps in this sequence eventually become isomorphisms.

37. Calculation of KO for stunted projective spaces

The goal in this section is to determine KO0(RPn) and KO0(RPn/RP a) for all
values of n and a, together with the Adams operations on these groups. These com-
putations are the key to solving the vector fields on spheres problem (introduced in
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Section 15), which we do in the next section. As intermediate steps we also com-
pute K∗(RPn) and K∗(RPn/RP a). The original written source for this material
is Adams [Ad2] (although he acknowledges unpublished work of Atiyah-Todd and
Bott-Shapiro for portions of the calculation). We follow Adams’s approach very
closely.

Some words of warning about this material are in order. The complete calcula-
tion of KO for stunted projective spaces is fairly involved. Several things end up
going on at once, so that there is a bunch of stuff to keep track of. And calculations
are just never very fun to read in the first place. We have attempted to structure
our presentation to try to help with this, but of course it only goes so far. After
some preliminary material we give a section which has just the statements of the
results, with a minimal amount of discussion in between (and no proofs). The intent
is to give the reader the general picture, and also a convenient reference section.
All of the proofs are then given in a subsequent section.

Some readers might want to skip the proofs the first time through, and this is
not a problem. Later applications in the text only need the results, not details from
the proofs. However, I highly recommend that algebraic topologists go through
the proofs carefully at an early stage in their career. I cannot stress this enough.
Going through the proofs will teach you something important about this subject
that I do not have words for, and it will open up doors for you down the road.
Trust me that this is an important thing to do.

37.1. Initial material. The results in this section will make heavy use of the
interplay between RPn and CPn in the homotopy category of spaces. We begin by
reviewing the basics of what we will need.

Let η be the tautological complex line bundle on CPn, and let L be the tauto-
logical real line bundle on RPn. Let j : RPn ↪→ CPn be the inclusion.

Lemma 37.2. The complexification of L is the pullback of η: that is, cL ∼= j∗η.

Proof. Complex line bundles on a space X are classified by homotopy classes in
[X,CP∞]. The real line bundle L is classified by the inclusion RPn ↪→ RP∞, so
the complexificaton of L is classified by the composition RPn ↪→ RP∞ ↪→ CP∞.
The complex line bundle η is classified by CPn ↪→ CP∞, so j∗η is classified by
the composition RPn ↪→ CPn ↪→ CP∞. The result follows from the commutative
diagram

RPn //

��

CPn

��
RP∞ // CP∞.

�

Note that CP∞ ' K(Z, 2), so complex line bundles on X are classified by
[X,CP∞] = H2(X). If n > 1 then H2(RPn) = Z/2, so there are only two
isomorphism classes of complex line bundles: the trivial bundle and the non-
trivial bundle. The bundle cL = j∗η is nontrivial, since its classification map
RPn ↪→ RP∞ ↪→ CP∞ represents the generator of H2(RPn).

Remark 37.3. The powers ηk are all distinct line bundles on CPn (e.g., the first
Chern classes are c1(ηk) = kc1(η) = kx where x is the generator of H2(CPn)). The
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situation upon pulling back to RPn is very different, however. We have

[j∗η]2 = (cL)2 = c(L2) = c(1R) = 1C.

So the even powers of j∗η are all trivial, and the odd powers are just j∗η. We will
see that this accounts for the main difference between K0(CPn) and K0(RPn).

In addition to the inclusion j : RPn ↪→ CPn there is another interesting map from
real to complex projective space. Every real line in Cn+1 determines a complex line
by taking the C-linear span, and therefore we get a map PR(Cn+1)→ PC(Cn+1) =
CPn. It is easy to see that this is a fiber bundle with fiber S1 (the space of real
lines in C). Identifying Cn+1 with R2n+2 shows that the domain is homeomorphic
to RP 2n+1, giving us a fiber bundle

S1 −→ RP 2n+1 q−→ CPn.
In terms of homogeneous coordinates, q sends the point [x0 : x1 : · · · : x2n : x2n+1]
to [x0 + ix1 : x2 + ix3 : · · · : x2n + ix2n+1].

Lemma 37.4. The diagram

RPn i //

j %%

RP 2n+1

q

��
CPn

commutes up to homotopy, where i is the standard inclusion. Consequently, q∗
sends x ∈ H2(CPn) to the nonzero element of H2(RP 2n+1). (The latter statement
can also be proven via the Serre spectral sequence for q).

Proof. The diagram commutes on the nose if i is replaced by the inclusion sending
[x0 : x1 : · · · : xn] to [x0 : 0 : x1 : 0 : · · · : xn : 0]. But all linear inclusions from one
projective space to another are homotopic. �

Corollary 37.5. There is an isomorphism of bundles q∗η ∼= cL.

Proof. As we have remarked before, there are only two isomorphism classes of
complex bundles on RP 2n+1. Since j∗η = i∗(q∗η) is not trivial, the bundle q∗η
cannot be trivial. So the only possibility is q∗η ∼= cL. �

Note that for a ≤ n one has the following commutative diagram

RP 2a+1 i //

q

��

RP 2n+1

q

��
CP a i // CPn,

and therefore q induces a map RP 2n+1/RP 2a+1 → CPn/CP a. We will also use
q to denote this induced map on quotients, as well as various small modifications.
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Note that these induced maps fit together to give a big commutative diagram

S2a+2 RP 2a+2/RP 2a+1

��
��

RP 2a+3/RP 2a+1 q //
��
��

CP a+1/CP a
��
��

S2a+2

...
��

��

...
��

��
RP 2n+1/RP 2a+1 q //

��
��

CPn/CP a
��

��

RP 2n+2/RP 2a+1

��

��
RP 2n+3/RP 2a+1 q //

��
��

CPn+1/CP a
��
��

...
��

��

...
��

��
RP∞/RP 2a+1 q // CP∞/CP a.

(37.6)

We will tend to use ‘q’ as a name for any composition of maps from this diagram
that involves one horizontal step.

Notice that at the very top of the diagram we have a map from S2a+2 to itself.
The next result identifies this map:

Lemma 37.7. For n ≥ 1 the composite

S2n ∼= RP 2n/RP 2n−1 ↪→ RP 2n+1/RP 2n−1 q−→ CPn/CPn−1 ∼= S2n

is a homeomorphism.

Proof. The space RP 2n/RP 2n−1 consists of the basepoint and the affine space R2n

made up of points [x0 : x1 : · · · : x2n−2 : x2n−1 : 1]. Likewise, the space CPn/CPn−1

consists of the basepoint and the affine space Cn made up of the points [z0 : z1 :
· · · : zn−1 : 1]. One readily uses the formula for q to see that it gives a continuous
bijective correspondence, and is therefore a homeomorphism (the spaces involved
being compact and Hausdorff). �

37.8. The main results. Here we state the main theorems about the K-theory
of real and complex projective spaces. The proofs will be deferred until the next
section.

Theorem 37.9 (Complex K-theory of complex projective spaces and stunted pro-
jective spaces). Let η be the tautological line bundle on CPn, and write µ = [η]−1 ∈
K̃0(CPn).
(a) K0(CPn) = Z[µ]/(µn+1) and K1(CPn) = 0.
(b) The Adams operations on K0(CPn) are given by

ψk(µs) =
[
(1 + µ)k − 1

]s
= ksµs + s

(
k
2

)
ks−1µs+1 + (higher order terms).
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(c) The sequence 0 → K̃0(CPn/CP a) → K̃0(CPn) → K̃0(CP a) → 0 is exact,
and identifies K̃0(CPn/CP a) as the free abelian group Z〈µa+1, µa+2, . . . , µn〉 ⊆
K0(CPn). The ring structure and action of the Adams operations are deter-
mined by the corresponding structures on K0(CPn). Also, K1(CPn/CP a) = 0.

Remark 37.10. Following Adams [Ad2] we write µ(i) for the element of
K0(CPn/CP a) that maps to µi in K0(CPn). The extra parentheses in the ex-
ponent remind us that this class is not a true ith power in the ring K0(CPn/CP a).

Theorem 37.11 (Complex K-theory of real projective spaces). Let ν be the ele-
ment [j∗η]−1 ∈ K̃0(RPn), where as usual j is the standard inclusion RPn ↪→ CPn.
(a) K̃0(RPn) ∼= Z/

(
2b

n
2 c
)
with generator ν. The ring structure has ν2 = −2ν and

νf+1 = 0, where f = bn2 c.

(b) K1(RPn) =

{
0 if n is even,
Z if n is odd.

(c) The Adams operations on K0(RPn) are given by

ψk(νe) =

{
0 if k is even,
νe if k is odd.

Recall that we have calculated K̃0(CPn/CP a−1) to be the free abelian group
Z〈µ(a), µ(a+1), . . . , µ(n)〉. For k ≤ 2n + 1 we may pull back these classes along the
map q : RP k/RP 2a−1 → CPn/CP a−1 to get elements of K̃0(RP k/RP 2a−1). We
again follow Adams [Ad2] and set

ν̄(t) = q∗(µ(t)) ∈ K̃0(RP k/RP 2a−1)

for a ≤ t ≤ n. Note that these elements correspond nicely as k and n vary, due
to the commutative diagram (37.6). We may as well take n 7→ ∞ so that we have
classes ν̄(t) for all t ≥ a.

We claim that upon pulling back along the projection π : RP k → RP k/RP 2a−1

we have π∗(ν̄(t)) = νt; this explains our choice of notation. To prove this claim
we can deal with the cases k = 2u and k = 2u + 1 simultaneously. Consider the
commutative diagram

RP 2u/RP 2a−1 // // RP 2u+1/RP 2a−1 q // CPu/CP a−1

RP 2u

π

OO

// // RP 2u+1 q //

π

OO

CPu.

πC

OO

We have π∗(q∗(µ(t))) = q∗(π∗C(µ(t))) = q∗(µt) = (q∗µ)t = νt, where the last equality
is by Corollary 37.5 and Lemma 37.2.

Observe that K̃0(RP 2a/RP 2a−1) = K̃0(S2a) ∼= Z and the class ν̄(a) is a genera-
tor. This follows because µ(a) generates K̃0(CP a/CP a−1) ∼= Z and ν̄(a) is the pull-
back of µ(a) along the map RP 2a/RP 2a−1 → CP a/CP a−1, which by Lemma 37.7
is a homotopy equivalence.

For n ≥ 2a the inclusion i : RP 2a/RP 2a−1 ↪→ RPn/RP 2a−1 induces a map

Z = K̃0(S2a) = K̃0(RP 2a/RP 2a−1)
i∗←− K̃0(RPn/RP 2a−1).
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This map is surjective, because the class ν̄(a) in the domain maps to the class ν̄(a)

in the target, and the latter is a generator. In particular, not only do we know that
the above map i∗ is surjective but the class ν̄(a) in the domain gives a choice of
splitting. This will be the main use of these ν̄ classes.

Theorem 37.12 (Complex K-theory of real stunted projective spaces).
Suppose n > a > 0.
(a) If a = 2t then the sequence

0→ K̃0(RPn/RP a)→ K̃0(RPn)→ K̃0(RP a)→ 0

is exact. It identifies K̃0(RPn/RP a) with the subgroup of K̃0(RPn) generated
by νt+1 = (−2)tν. As a group, K̃0(RPn/RP a) ∼= Z/(2g) where g = bn−a2 c.
The ring structure and Adams operations are determined by the structures in
K0(RPn). In particular, ψk acts as zero when k is even and as the identity
when k is odd. We write ν(i) for the element of K̃0(RPn/RP a) that maps to
νi in K̃0(RPn), so that ν(t+1) is a generator.

(b) Let a = 2t − 1. The cofiber sequence RP 2t/RP 2t−1 → RPn/RP 2t−1 →
RPn/RP 2t induces a sequence

0← K̃0(RP 2t/RP 2t−1)← K̃0(RPn/RP 2t−1)← K̃0(RPn/RP 2t)← 0

that is short exact. Consequently, K̃0(RPn/RP 2t−1) ∼= Z⊕ Z/(2f ) where f =
bn2 c − t; the former summand is generated by ν̄(t) and the latter summand is
generated by ν(t+1).

(c) The action of ψk on K̃0(RPn/RP 2t−1) is given by

ψk(ν(t+1)) =

{
0 if k is even
ν(t+1) if k is odd,

and

ψk(ν̄(t)) = ktν̄(t) +

{
1
2k

tν(t+1) if k is even
1
2 (kt − 1)ν(t+1) if k is odd.

Most of the content to the above theorem is represented in the following convo-
luted but useful diagram:

Z/
(
2b

n
2 c
)

= K̃(RPn) K̃(RP 2t/RP 2t−1) = Z

· · · K̃(RPn/RP 2t−2)

OO
OO

oo K̃(RPn/RP 2t−1)oo

jj 44 44

K̃(RPn/RP 2t)oo
ll

ll

oo

Z/(2B+1) Z⊕ Z/(2B)oooo Z/(2B)oooo B=bn2 c−t

ν(t) ν̄(t), ν(t+1)oo

qq

ν(t+1)oo

ν(t+1) = −2ν(t)

The indicated maps are injections/surjections, and our chosen generators of the
groups are written in the bottom two lines. The generators ν(t+1) and ν̄(t)
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map to the elements νt+1 and νt in K̃(RPn), and ν̄(t) maps to a generator of
K̃(RP 2t/RP 2t−1) = K̃(S2t). The action of the Adams operations on ν(t+1) is com-
pletely determined by what happens in K̃(RPn). Likewise, the action on ν̄(t) is
completely determined by using the surjection onto K̃(S2t) together with the map
into K̃(RPn). These are instructive exercises; but if necessary see the proofs in
Section 37.22 for details.

Remark 37.13. The action of ψk on the element ν̄(t) is of crucial importance to
the solution of the vector fields on spheres problem. See Section 38.

We now move from the realm of K-theory to KO-theory. Recall that L→ RPn
always denotes the tautological line bundle.

Theorem 37.14 (Real K-theory of real projective spaces).
K̃O 0(RPn) ∼= Z/(2f ) where f = #{s | 0 < s ≤ n, s ≡ 0, 1, 2, or 4 mod 8}. The
group is generated by λ = [L] − 1, which satisfies λ2 = −2λ and λf+1 = 0. The
Adams operations are given by

ψk(λ) =

{
0 k even,
λ k odd.

Remark 37.15. Because this number comes up so often, let us define

ϕ(n) = #{s | 0 < s ≤ n, s ≡ 0, 1, 2, or 4 mod 8}.

The following chart shows the groups K̃O 0(RPn) and K̃0(RPn) as functions of
n. To save space we write Zn instead of Z/n; but all the groups are cyclic, and so
really one only needs to keep track of the order.

n 2 3 4 5 6 7 8 9 10 11 12 13 14
KO Z4 Z4 Z8 Z8 Z8 Z8 Z16 Z32 Z64 Z64 Z128 Z128 Z128

K Z2 Z2 Z4 Z4 Z8 Z8 Z16 Z16 Z32 Z32 Z64 Z64 Z128

Observe that the K̃O 0(RPn) groups follow the by-now-familiar 8-fold pattern from
Bott periodicity and Clifford algebras: starting in multiples of 8 the orders of the
groups jump according to the pattern “jump-jump-nothing-jump-nothing-nothing-
nothing-jump” (the first couple are not on the chart because the associated projec-
tive spaces are exceptions in some way). In particular, every eight steps a total of
four jumps have occurred, resulting in the orders being multiplied by 16. This is the
quasi-periodicity of the first line. The second line has the simpler quasi-periodocity
of length 2, where every two steps the order of the group gets doubled. Note that
the groups on the two lines coincide in dimensions congruent to 6, 7, and 8 modulo
8; in other dimensions there is a difference of a factor of 2.

For reference purposes we also Table 37.15 below showing the numbers ϕ(n) and
bn2 c. Even though this is really the same information as in the previous table, it is
very handy to have around. The table provides some useful information about the
comparison between ϕ(n) and bn2 c, which we record in a proposition:

Proposition 37.16. For every n ≥ 2, the number ϕ(n) equals either bn2 c or bn2 c+1.
The former occurs precisely when n is congruent to 6, 7, or 8 modulo 8.

Recall the complexification map c : K̃O 0(RPn) → K̃0(RPn). Both groups are
cyclic, and by Lemma 37.2 the map sends the generator λ = L − 1 of the domain
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Table 37.15. Comparison of ϕ(n) and bn2 c

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ϕ(n) 0 1 2 2 3 3 3 3 4 5 6 6 7 7 7 7 8
bn2 c 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

to the generator ν = j∗η− 1 of the target. Hence, c is surjective. Our observations
about the orders now proves part (a) of the following result. Part (b) follows at
once from c(λ) = ν and the fact that rRc = 2.

Theorem 37.17. Let n ≥ 2.
(a) The complexification map c : K̃O 0(RPn) → K̃0(RPn) is always surjective. It

is an isomorphism if n is congruent to 6, 7, or 8 modulo 8, and it has kernel
Z/2 otherwise.

(b) The map rR : K̃0(RPn)→ K̃O 0(RPn) sends ν to 2λ.

Finally, we turn our attention toKO-theory of the spaces RPn/RP a. It is almost
true that the Atiyah-Hirzebruch spectral sequence for RPn/RP a is a truncation of
the one for RPn. The mod 2 cohomology groups H∗(RPn/RP a;Z/2) are indeed
a truncation of H∗(RPn;Z/2), and the integral cohomology groups are a similar
truncation when a is even. But when a is odd there is a Z in Ha+1(RPn/RP a) that
does not appear in Ha+1(RPn). This new Z will contribute to K̃O 0(RPn/RP a)
only if it shows up along the main diagonal in the Atiyah-Hirzebruch spectral
sequence, which will happen precisely when a+ 1 is a multiple of 4. This explains
the two cases in the following result:

Theorem 37.18 (Real K-theory of real, stunted projective spaces; part 1).
(a) Suppose a 6≡ −1 mod 4. Then the map π∗ : K̃O 0(RPn/RP a) → K̃O 0(RPn)

is an injection whose image is the subgroup generated by λϕ(a)+1. So
K̃O 0(RPn/RP a) ∼= Z/(2g) where g = ϕ(n) − ϕ(a) = #{s | a < s ≤ n, s ≡
0, 1, 2, or 4 mod 8}. Let λ(ϕ(a)+1) be the preimage for λϕ(a)+1 under π∗, which
generates the group. Then

ψk(λ(u)) =

{
0 k even,
λ(u) k odd.

(b) Assume that a ≡ −1 mod 4. The sequence

Sa+1 = RP a+1/RP a → RPn/RP a → RPn/RP a+1

induces a split-exact sequence in KO-theory:

0← K̃O 0(Sa+1)← K̃O 0(RPn/RP a)← K̃O 0(RPn/RP a+1)← 0.

Consequently,

K̃O 0(RPn/RP a) ∼= Z⊕ K̃O 0(RPn/RP a+1) ∼= Z⊕ Z/2h

where h = ϕ(n)− ϕ(a+ 1) = #{s | a+ 1 < s ≤ n, s ≡ 0, 1, 2, or 4 mod 8}.
Notice that the above result does not give the action of the Adams operations

in part (b). To do this we need to choose a specific generator for the Z summand,
and this requires some explanation. It turns out (and this is not obvious) that the
generator can always be chosen so that it maps to λϕ(a+1) in K̃O 0(RPn). This
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property is all that we will really need, but it is not so easy to prove; in fact there
are always two such generators, and proving the desired existence seems to be best
accomplished by having a method for systematically choosing a preferred generator
out of the two possibilities. This is what we do next; in the chain

K̃O (RP 4t/RP 4t−1)← K̃O (RP 4t+1/RP 4t−1)← · · · ← K̃O (RPn/RP 4t−1)← · · ·

we wish to choose elements λ
(ϕ(4t))

in each group with the property that they all
map onto each other, they all map to a generator of the left-most group, and upon
pulling back along the projection RPn → RPn/RP 4t−1 the element λ

(ϕ(4t))
maps

to λϕ(4t) (for any choice of n).
These elements will be produced by starting with the elements ν̄(2t) that we have

already constructed, living in the bottom groups of the following diagram:

K̃O (RP 4t/RP 4t−1)

c

��

· · ·oo K̃O (RPn/RP 4t−1)oo

c

�� ((
K̃(RP 4t/RP 4t−1)

rR

bb

· · ·oo K̃(RPn/RP 4t−1)oo

rR

bb

((

K̃O (RPn)

c

��
K̃(RPn)

rR

bb

First note that it suffices to construct the λ
(ϕ(4t))

classes for n sufficiently large,
as we can then construct the classes for smaller n by naturality. In particular,
we may assume that n is congruent to 6 (or 7 or 8) modulo 8. This forces the
right-most vertical c map to be an isomorphism, by Theorem 37.17(a).

The rest of the argument breaks into two cases, depending on whether t is
even or odd. When t is even, ϕ(4t) = 2t − 1 (see Table 37.15) and the vertical
maps c in the above diagram are all isomorphisms; this will be proven carefully in
Theorem 37.20(b) below, but for now we just accept it. Define

λ
(ϕ(4t))

= c−1(ν̄(2t)).

The desired properties of λ
(ϕ(4t))

are immediate by the naturality of c and the
known properties of ν̄(2t).

When t is odd one has ϕ(4t) = 2t + 1. The vertical maps c are no longer
isomorphisms (except the rightmost one), but we can use the map rR instead. The
idea for this comes from the fact that when t is odd the map c : K̃O (S4t)→ K̃(S4t)

is Z 2−→ Z, and rR sends a generator to a generator. So rR(ν̄(2t)) will gives us an
element of K̃O (RPn/RP 4t−1) that maps to a generator in K̃O (RP 4t/RP 4t−1).

However, note that rR(ν̄2t) maps to −λ(2t+1) in K̃O (RPn). This follows at once
from a simple calculation:

rR(ν2t) = rR((−2)2t−1 ·ν) = (−2)2t−1 ·rR(ν) = (−2)2t−1 ·2λ = −(−2)2t ·λ = −λ2t+1.

The extra minus sign leads us to make the definition

λ
(ϕ(4t))

= −rR(ν̄(2t))

in the case when t is odd.
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We have now constructed the desired generators λ
(ϕ(4t))

. The group
K̃O 0(RPn/RP 4t−1) is generated by the two elements λϕ(4t+1) (which is torsion)
and λ

(ϕ(4t))
(which is non-torsion). We next use these generators to describe the

action of the Adams operations:

Theorem 37.19 (Real K-theory of real, stunted projective spaces; part 2). Let
t ≥ 1 and let f = ϕ(4t). The Adams operations on K̃O 0(RPn/RP 4t−1) are given
by the formulas

ψk
(
λ(f+1)

)
=

{
0 k even,
λ(f+1) k odd;

ψk
(
λ

(f)
)

= k2tλ
(f)

+

{
1
2k

2tλ(f+1) k even,
1
2 (k2t − 1)λ(f+1) k odd.

Just as we saw for K̃(RPn/RP a), much of the information about KO-theory
of stunted projective spaces is represented in the following useful diagram. The
above formulas for the Adams operations are obtained easily by chasing information
around the diagram.

Z/
(
2ϕ(n)

)
= K̃(RPn) K̃O (RP 4t/RP 4t−1) = Z

K̃O (RPn/RP 4t−2)

OO
OO

oo K̃O (RPn/RP 4t−1)oo

jj 44 44

K̃O (RPn/RP 4t)oo
mm

mm

oo

Z/(2B+1) Z⊕ Z/(2B)oooo Z/(2B)oooo B=ϕ(n)−ϕ(4t)

λ(f) λ
(f)
, λ(f+1)oo

qq

λ(f+1)oo f=ϕ(4t)

λ(f+1) = −2λ(f)

Due to lack of space the diagram does not show the groups K̃O (RPn/RP 4t−3),
but these are similar to the K̃O (RPn/RP 4t−2) and K̃O (RPn/RP 4t) cases in that
these groups all inject into K̃O (RPn) and have the “expected” image.

Because we have needed this already in the process of defining the classes λ
(ϕ(4t))

,
we also include some more information on the complexification map for stunted
projective spaces. We want to investigate c : K̃O 0(RPn/RP a) → K̃0(RPn/RP a),
but results are awkward to state in this generality: one runs into a multitude of
cases depending on the congruences classes of n and a modulo 8. We start with the
observation that it is essentially enough to solve the problem for n large enough. If
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N ≥ n then we have the diagram

K̃O 0(RPn/RP a)

c

��

K̃O 0(RPN/RP a)

c

��

oooo

K̃0(RPn/RP a) K̃0(RPN/RP a).oooo

So if we know the right vertical map then we can also figure out the left vertical
map, using the horizontal surjections.

Notice that by choosingN so that it is congruent to 6 (or 7 or 8) modulo 8, we can
get ourselves in the situation where c : K̃O 0(RPN )→ K̃0(RPN ) is an isomorphism
(see Theorem 37.17)—clearly this will simplify some matters in our analysis. This
explains why we focus on this special case in the following result.

Here is a notational simplification that is very useful. At this point we have
specified particular generators for the groups K̃O 0(RPn/RP a), for all values of
n and a. These are the elements λ(i) and λ

(j)
for certain values of i and j that

depend on a. To actually name i and j precisely requires separating various cases
for a, and it is convenient to not always have to do this. We will write λ◦ and
λ
◦
as abbreviations for our generators, but where we have not bothered to write

the exact number in the exponent (it is uniquely specified, so we can be incautious
about this). We also write ν◦ and ν̄◦ for our generators in K̃0(RPn/RP a).

Theorem 37.20. Consider the map c : K̃O 0(RPn/RP a) → K̃0(RPn/RP a) and
the map rR going in the opposite direction. Assume that n is congruent to 6, 7, or
8 modulo 8.
(a) Suppose a is even, so that both the groups are torsion.

(i) If a ≡ 6, 8 mod 8 then c is an isomorphism, c(λ◦) = ν◦, and rR(ν◦) = 2λ◦.
(ii) If a ≡ 2, 4 mod 8 then c is an injection with cokernel Z/2. One has

c(λ◦) = −2ν◦ and rR(ν◦) = −λ◦.
(b) Suppose that a = 4t− 1. Here both the domain and target of c have copies of Z

inside them.
(i) If a ≡ 7 mod 8 (i.e., t is even) then c is an isomorphism.
(ii) If a ≡ 3 mod 8 (i.e., t is odd) then c is a monomorphism, and the cokernel

is Z/2⊕ Z/2.
(c) Suppose that a = 4t + 1. In this case c maps its domain isomorphically onto

the torsion subgroup of the target of c. One has c(λ◦) = ν◦ and rR(ν◦) = 2λ◦.

37.21. An extended example. Let us demonstrate much of what we have learned
by looking at a specific example. The Atiyah-Hirzebruch spectral sequence for
computing K̃O (RP 10) gives one Z/2 for every dimension from 1 through 10 that
is congruent to 0, 1, 2, or 4 modulo 8. These are the dimensions 1, 2, 4, 8, 9, and
10—so we have six Z/2’s, and K̃O (RP 10) ∼= Z/(26). In comparison, K̃(RP 10) is
just Z/(25) (as 5 = 10

2 ).
There is a visual way of representing this information that is useful, especially

when it comes to the stunted projective spaces. Draw a cell diagram for RP 10,
leaving out the 0-cell. For K̃O (RP 10) discard all cells except the ones in dimensions
congruent to 0, 1, 2, or 4 modulo 8; then label the remaining cells with ascending
powers of λ. For K̃(RP 10) discard all the odd-dimensional cells and label the
remaining ones with ascending powers of ν. Always remembering that λ2 = −2λ
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(and ν2 = −2ν), the cells now represent the associated graded of K̃O (RP 10) (or
K̃(RP 10)) with respect to the 2-adic filtration. The picture below also shows the
complexification map c : K̃O (RP 10) → K̃(RP 10). Recall that this is a ring map
and sends λ to ν:

K̃O (RP 10)
c−→K̃(RP 10)

λ

λ2

λ3

λ4

λ5

λ6

ν

ν2

ν3

ν4

ν5

We see in this case that c : K̃O (RP 10)→ K̃(RP 10) is surjective with kernel Z/2
(generated by λ6 = −32λ). One has rR(ν) = rR(c(λ)) = 2λ, and more generally

rR(νk) = rR((−2)k−1ν) = (−2)k−1rR(ν) = (−2)k−1 · 2λ = −(−2)kλ = −λk+1.

Next let us consider the K-groups of RP 10/RP 4, referring to the diagram

K̃O (RP 10/RP 4)

c

��

// // K̃O (RP 10)

c
����

K̃(RP 10/RP 4) // // K̃(RP 10).

In relation to our cell-diagrams, the K-groups of RP 10/RP 4 are obtained by throw-
ing away the bottom four cells. We obtain the picture

K̃O (RP 10/RP 4)
c−→K̃(RP 10/RP 4)

λ(4)

λ(5)

λ(6)

ν(3)

ν(4)

ν(5)

This picture tells us that K̃O (RP 10/RP 4) ∼= Z/(23), generated by λ(4), and also
K̃(RP 10/RP 4) ∼= Z/(23) with generator ν(3). These each embed into the respective
K-group of RP 10. The complexification map therefore sends λ(4) to ν(4) and λ(5)

to ν(5), and we find that this map has both kernel and cokernel isomorphic to Z/2.
The situation is a little different if we consider the K-groups of RP 10/RP 3.

Here the bottom cell of RP 10/RP 3 gives rise to a Z in singular cohomology, and a
corresponding Z in the K-groups. The picture becomes as follows:
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K̃O (RP 10/RP 3)
c−→K̃(RP 10/RP 3)

λ
(3)

λ(4)

λ(5)

λ(6)

−2

ν̄(2)

ν(3)

ν(4)

ν(5)

Here the black dots represent copies of Z, so that K̃O (RP 10/RP 3) ∼= Z ⊕ Z/8
with the two summands generated by λ

(3)
and λ(4), respectively. Likewise,

K̃(RP 10/RP 3) ∼= Z ⊕ Z/8 with the two summands generated by ν̄(2) and ν(3).
The various maps

K̃O (RP 10/RP 4) −→ K̃O (RP 10/RP 3) −→ K̃O (RP 10), and

K̃(RP 10/RP 4) −→ K̃(RP 10/RP 3) −→ K̃(RP 10)

are the evident ones suggested by the diagrams. The only subtlety lies in deter-
mining the complexification map c. Of course c(λ(i)) = ν(i) for i = 4, 5, as this is
forced by that happens on the subgroup K̃O (RP 10/RP 4) ⊆ K̃O (RP 10/RP 3). To
compute c(λ

(3)
) we must remember that λ

(3)
is defined by the equation

λ
(3)

= −rR(ν(2))

(note that 3 = 4t− 1 where t = 1, and so we are in the case where t is odd; in the
case where t is even the definition of the λ classes is different). So we obtain

c
(
λ

(3))
= −c(rR(ν(2))) = −(1 + ψ−1)(ν̄(2)) = −[ν̄(2) + ν̄(2)] = −2ν̄(2).

Here we have used Theorem 37.12(c) for evaluating ψ−1(ν̄(2)). Note that the pull-
back map induced by RP 10 → RP 10/RP 3 sends λ

(3)
to λ3 and sends −2ν̄(2) to

−2ν2 = ν3; hence the above formula is consistent with our previous computation
of c : K̃O (RP 10)→ K̃(RP 10).

37.22. The proofs. We now give proofs for all of the results previously stated in
this section.

Proof of Theorem 37.9. This is straightforward, and left to the reader. �

Proof of Theorem 37.11. There is no room for differentials in the Atiyah-
Hirzebruch spectral sequence for K∗(RPn), so it collapses at E2. Part (b) follows
immediately. It is also a direct consequence that K̃0(RPn) is an abelian group of
order 2b

n
2 c. It remains to solve the extension problems to determine precisely which

group it is.
Observe that L2 = 1, hence (cL)2 = c(L2) = c(1) = 1. So

ν2 = (cL− 1)2 = (cL)2 − 2(cL) + 1 = 2(1− c(L)) = −2ν.

Note that an immediate consequence is νt = (−2)t−1ν.
Let F i = ker

(
K̃0(RPn)→ K̃0(RP i−1)

)
. So

K̃0(RPn) = F 0 ⊇ F 1 ⊇ F 2 ⊇ · · · ⊇ Fn+1 = 0.
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The quotients F i/F i+1 are the groups in the E∞ term of the spectral sequence,
and so are

F i/F i+1 =

{
Z/2 0 < i ≤ 2bn2 c and i even
0 otherwise.

So F 0 = F 1 = F 2 and F 2/F 3 ∼= Z/2. The element ν generates F 2/F 3: we
know this by naturality of the spectral sequence, applied to the map j : RPn ↪→
CPn. The element µ generates F 2/F 3 for K̃0(CPn), and H2(CPn) → H2(RPn)
is the projection Z → Z/2: the image of a generator is another generator. So j∗µ
generates F 2/F 3 for K̃0(RPn), and of course ν = j∗µ.

The multiplicativity of the spectral sequence then gives us that ν2 generates
F 4/F 5, and in general νj generates F 2j/F 2j+1 for j = 1, 2, . . . , bn2 c. In particular,
νj is not equal to zero for j in this range. But νj = (−2)j−1ν, so 2b

n
2 c−1ν 6= 0. This

proves that the only possibility for K̃0(RPn) is Z/2bn2 c, and that ν is a generator.
Note that we than have 0 = (−2)b

n
2 cν = νb

n
2 c+1.

For part (c) we just observe that ψk(cL) = (cL)k = c(Lk) and this equals 1 if k
is even, and cL if k is odd. �

Proof of Theorem 37.12. Parts (a) and (b) are trivial. In each case one writes
down the evident long exact sequence and quickly sees that the given sequence
is short exact. The only slight subtlety is seeing in the case a = 2t − 1 that
K̃0(RPn/RP 2t−1)→ K̃0(RP 2t/RP 2t−1) is surjective, but this was explained when
we constructed the element ν̄(t) (which maps to a generator in the target group).

For part (c), the action of ψk on ν(t+1) is determined by the corresponding action
in K̃0(RPn/RP 2t); so there is nothing to prove here. The action on ν̄(t) is more
interesting. We can, of course, write

ψk(ν̄(t)) = Aν̄(t) +Bν(t+1)(37.23)

where A is a unique integer and B is unique modulo 2f . Applying the map
i∗ : K̃0(RPn/RP 2t−1) → K̃0(RP 2t/RP 2t−1) kills ν(t+1) and sends ν̄(t) to a gen-
erator g, so this equation becomes ψk(g) = Ag. But we already know that ψk acts
on such a generator by kt, so A = kt.

Next we apply the map π∗ : K̃0(RPn/RP 2t) → K̃0(RPn) to equation (37.23).
The map π∗ sends ν̄(t) to νt and ν(t+1) to νt+1, so using A = kt we obtain

ψk(νt) = ktνt +Bνt+1

in K̃0(RPn). Now use that ψk is a ring homomorphism, together with νt+1 = −2νt.
We get

(kt − 2B)νt =
[
ψk(ν)

]t
=

{
0 if k is even
νt if k is odd.

The group K̃0(RPn) is Z/(2g) with generator ν, and νt = (−2)t−1ν. So the additive
order of νt is 2g−t+1, or equivalently 2f+1. In the case that k is even it follows that
kt − 2B is a multiple of 2f+1, so that kt

2 ≡ B mod 2f (recall that B is only
well-defined modulo 2f in the first place).

In the remaining case where k is odd we get kt − 2B ≡ 1 modulo 2f+1. So
kt−1

2 ≡ B modulo 2f , which is what we wanted. �
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Proof of Theorem 37.14. In the Atiyah-Hirzebruch spectral sequence for
K̃O (RPn), the diagonal of the E2-term that is relevant to K̃O 0(RPn) consists
of ϕ(n) copies of Z/2. The first concern is to determine if there are any differentials
causing some of these copies to disappear by E∞, and the second concern is the
problem of extensions.

Observe that the complexification map c : K̃O 0(RPn)→ K̃0(RPn) is surjective,
because ν generates the target and ν = c(L− 1). So it follows from Theorem 37.11
that at least bn2 c among our ϕ(n) copies of Z/2 must survive the spectral sequence.

The trick now is to not consider one n at a time, but rather to consider them
all at once. When n is congruent to 6, 7, or 8 modulo 8 then we know ϕ(n) = bn2 c,
and so here it must be that all the Z/2’s along the main diagonal survive. That
is, all differentials entering or exiting the main diagonal are zero. But then by
naturality of the spectral sequence this is true for all n. We conclude that the order
of K̃O 0(RPn) is 2ϕ(n), no matter what n is.

When n is congruent to 6, 7, or 8 modulo 8 we now know that the orders
of K̃O 0(RPn) and K̃0(RPn) are the same. Since the complexification map is
surjective, it is therefore an isomorphism. So K̃O 0(RPn) is cyclic. Since c(λ) = ν
it follows that λ is a generator. In particular, λ is a generator for the quotient
F 1/F 2.

But then by naturality of the spectral sequence (and with it, naturality of the
filtration F i) it follows that λ generates F 1/F 2 for every value of n. Since L2 = 1
we of course have λ2 = −2λ. At this point the argument follows the one in the
proof of Theorem 37.11 to show that K̃O 0(RPn) is cyclic, for all values of n.

The computation of the Adams operations again follows from ψk(L) = Lk, which
equals 1 if k is even and L if k is odd. �

Proof of Theorem 37.17. This was given just prior to the statement of the theorem.
�

Proof of Theorem 37.18. For part (a) one examines the Atiyah-Hirzebruch spectral
sequence for K̃O ∗(RPn/RP a). Note that the quotient RPn → RPn/RP a induces
a map of spectral sequences in the other direction. The diagonal groups in the E2-
term for K̃O ∗(RPn/RP a) are a truncation of the diagonal groups appearing in the
E2-term for K̃O ∗(RPn). Since there are no entering or exiting differentials (along
the diagonal) in the latter case, naturality of the spectral sequence guarantees there
are no entering or exiting differentials for RPn/RP a. Passing to E∞-terms now,
we see that the associated graded groups for K̃O (RPn/RP a) are a truncation of
the associated graded groups for K̃O (RPn). Examining the map of filtered groups

K̃O (RPn/RP a)

π∗

��

F1

��

oooo F2
oooo

��

· · ·oooo

K̃O (RPn) F ′1oooo F ′2oooo · · ·oooo

we now find that Fk → F ′k is an isomorphism for k ≥ a + 1 and Fk/Fk+1 = 0

for k ≤ a. It follows that K̃O (RPn/RP a) → K̃O (RPn) is an injection, with
image equal to F ′a+1. In our analysis of KO(RPn) we have already seen that
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F ′a+1 ⊆ K̃O (RPn) is the subgroup generated by λa+1. Everything else in part (a)
is then immediate.

For (b) we only need to prove that K̃O 0(RPn/RP 4t−1)→ K̃O 0(RP 4t/RP 4t−1)

is surjective, since the latter group is isomorphic to K̃O 0(S4t) ∼= Z. Everything
else in part (b) is routine. To do this, consider the following diagram:

Z/2

· · · K̃O 1(RPn/RP 4t)oo K̃O 0(RP 4t/RP 4t−2)oo K̃O 0(RPn/RP 4t−2)
j∗1oooo · · ·oo

· · · K̃O 1(RPn/RP 4t)oo

OO

K̃O 0(RP 4t/RP 4t−1)oo

i∗
OOOO

K̃O 0(RPn/RP 4t−1)
j∗2oo

OOOO

· · ·oo

Z
The two indicated vertical maps are surjections because they sit inside long exact
sequences where the third term is K̃O 0(RP 4t−1/RP 4t−2) = K̃O 0(S4t−1) = 0. The
indicated group is Z/2 by part (a) of the theorem, which also yields the diagram

K̃O 0(RP 4t) K̃O 0(RPn)oooo

K̃O 0(RP 4t/RP 4t−2)

OO

OO

K̃O 0(RPn/RP 4t−2).

OO

OO

j∗1oo

The group K̃O 0(RP 4t/RP 4t−2) is the subgroup of K̃O 0(RP 4t) generated
by ν1+ϕ(4t−2), and K̃O 0(RPn/RP 4t−2) is the similarly-described subgroup of
K̃O 0(RPn). It follows at once that j∗1 is surjective.

Returning to the earlier diagram, the image of j∗2 is an ideal (r) inside of Z. The
fact that i∗j∗2 is surjective (readily observed from the diagram) proves that r must
be odd. But the quotient Z/r will inject into K̃O 1(RPn/RP 4t), by the long exact
sequence. The Atiyah-Hirzebruch spectral sequence shows that this latter group
has no odd torsion, because it has a filtration where the quotients are only Z’s and
Z/2’s. So the conclusion is that r = 1, hence j∗2 is surjective. �

Proof of Theorem 37.19. The evaluation of ψk
(
λ(f+1)

)
is immediate using natural-

ity and Theorem 37.14. For the evaluation of ψk
(
λ

(f)
)
one can repeat the proof

of Theorem 37.12(c) almost verbatim. Alternatively, one can use the result of The-
orem 37.12(c) together with the complexification map c : K̃O 0(RPn/RP 4t−1) →
K̃0(RPn/RP 4t−1), which is a monomorphism for n congruent to 6, 7, or 8 modulo
8; the result for other values of n can then be deduced by naturality. �

Proof of Theorem 37.20. For part (a) we consider the two short exact sequences

0 // K̃O 0(RPn/RP a) //

c

��

K̃O 0(RPn) //

∼=c

��

K̃O 0(RP a) //

c

��

0

0 // K̃0(RPn/RP a) // K̃0(RPn) // K̃0(RP a) // 0.
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If a is congruent to 6 or 8 modulo 8 then the right vertical map is an isomorphism,
which means the left vertical map is as well. The desired results are immediate.

If a is congruent to 2 or 4 modulo 8 then the right vertical map is a surjection
with kernel Z/2. It follows from the zig-zag lemma that the left vertical map is an
injection with cokernel Z/2. The generator for the domain is λ(ϕ(a)+1), and we are in
the case where ϕ(a) = ba2 c+ 1. So c maps this generator to ν(b a2 c+2) = −2ν(b a2 c+1).
The statement r(ν◦) = −λ◦ then follows using that rc = 2.

For (b) we look at the short exact sequences

0 // K̃O (RPn/RP 4t) //

c

��

K̃O (RPn/RP 4t−1) //

c

��

K̃O (RP 4t/RP 4t−1) //

c

��

0

0 // K̃(RPn/RP 4t) // K̃(RPn/RP 4t−1) // K̃(RP 4t/RP 4t−1) // 0.

When t is even the right vertical map is an isomorphism by Bott’s calculation, and
the left vertical map is an isomorphism by (a). So the middle vertical map is also
an isomorphism.

When t is odd the right vertical map is an injection with cokernel Z/2, by Bott.
The left vertical map is an injection with cokernel Z/2 by part (a). So by the
Snake Lemma the middle vertical map is also an injection, and its cokernel is either
(Z/2)2 or Z/4. The element ν̄(2t) maps to a generator for the right bottom group
K̃(RP 4t/RP 4t−1). If we verify that 2ν̄(2t) = 0 in the cokernel of c then we will have
proven that this cokernel is (Z/2)2, not Z/4. But note that

crR(ν̄(2t)) = (1 + ψ−1)(ν̄(2t)) = 2ν̄(2t)

where in the last equality we have used the formula for ψ−1(ν̄(2t)) from Theo-
rem 37.12(c).

For (c) we consider the following:

0 // K̃O (RPn/RP 4t+2)
p∗ //

c

��

K̃O (RPn/RP 4t+1) //

c

��

K̃O (RP 4t+2/RP 4t+1) //

c

��

0

0 // K̃(RPn/RP 4t+2) // K̃(RPn/RP 4t+1) // K̃(RP 4t+2/RP 4t+1) // 0.

We have not yet discussed exactness of the top row. On the left end this follows
because K̃O−1(S4t+2) = 0. By our computations, the cokernel of p∗ is a group of
order 2ϕ(4t+2)−ϕ(4t+1); but by inspection this number is equal to 1 when t is odd
and 2 when t is even. As this is the same as the order of the group K̃O (S4t+2),
this justifies exactness on the right.

If t is odd then the left vertical map is an isomorphism by (a), and the hor-
izontal map p∗ is an isomorphism; the desired claims follow at once. When t is
even we must argue more carefully. Note that the image of K̃(RPn/RP 4t+2) inside
K̃(RPn/RP 4t+1) is precisely the torsion subgroup; let us call this image T . Since
the group K̃O (RPn/RP 4t+1) is torsion, its image under c is also torsion; so this im-
age is a subgroup of T . Moreover, K̃O (RPn/RP 4t+1) is generated by λ(ϕ(4t+1)+1),
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and one readily computes that ϕ(4t+ 1) = 2t+ 1. Consider the square

K̃O (RPn/RP 4t+1) // //

c

��

K̃O (RPn)

c ∼=
��

K̃(RPn/RP 4t+1) // K̃(RPn).

The left vertical map clearly must be injective. Compute that π∗(c(λ(2t+2))) =
c(λ2t+2) = ν2t+2. There is only one element of the torsion subgroup of
K̃(RPn/RP 4t+1) that pulls back to ν2t+2, namely ν(2t+2). It follows that
c(λ(2t+2)) = ν(2t+2). But ν(2t+2) generates T , so c maps K̃O (RPn/RP 4t+1) iso-
morphically onto T . �

38. Solution to the vector field problem

In this section we conclude our story of the vector field problem, following the
original paper by Adams [Ad2]. Let us first recall the Hurwitz-Radon function ρ(n):
if n = 24b+a · (odd) then ρ(n) = 2a + 8b − 1. We have seen in Theorem 15.5 that
one can construct ρ(n) independent vector fields on Sn−1. The vector field problem
will be settled once we prove the following:

Theorem 38.1 (Adams). There do not exist ρ(n) + 1 independent vector fields on
Sn−1.

Remark 38.2. There will inevitably come a time when the reader wishes to re-
member the formula for ρ(n) but cannot immediately look it up. The key facts
about the formula are:
(i) ρ(n) only depends on the power of 2 in the prime factorization of n;
(ii) For a ≤ 3 one has ρ(2a) = 2a − 1;
(iii) ρ(16n) = ρ(n) + 8.
These facts of course uniquely determine ρ(n). Personally, I find the exact form
of (iii) hard to remember when I haven’t been working with this stuff for a while.
What is able to stick in my head is that there are zero vector fields on S0, one on
S1, three on S3, seven on S7—and then I have to remember that there are only
eight on S15. The jump from zero on S0 to eight on S15 is the quasi-periodicity; so
there are nine on S31, eleven on S63, fifteen on S127, and so forth. From this it is
easy to recover the formula ρ(16n) = ρ(n) + 8, and onward to the general formula
for ρ.

The proof of Theorem 38.1 is quite involved—it requires a surprising amount of
algebraic topology. KO-theory is usually regarded as the key tool in the proof, but
one also needs Steenrod operations, James periodicity, and Atiyah duality in the
stable homotopy category. This adds up to a sizable amount of material. We will
take a modular approach to things; we start by giving an outline of the proof, and
then we will fill in the details one by one.

38.3. Outline of the proof.

Step 1: We have the following implications (i)⇒ (ii)⇒ (iii)⇒ (iv):

(i) There exist k − 1 vector fields on Sn−1.
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(ii) There exist k − 1 vector fields on Sun−1 for every u ≥ 1.
(iii) The map π1 : Vk(Run)→ Sun−1 has a section, for every u ≥ 1.

(iv) The map RPun−1/RPun−k−1 → Sun−1 (projection onto the top cell) has a
section in the homotopy category, for every u such that un + 2 > 2k. That
is to say, RPun−1/RPun−k−1 splits off the top cell in the stable homotopy
category.

We have seen these implications back in Section 15, but let us briefly recall why
they hold. For (i)⇒(ii) it is a direct construction: given k−1 orthogonal vector fields
made from vectors with n coordinates, one can repeat those patterns in successive
groups of coordinates to make k − 1 orthogonal vector fields in un coordinates,
for any u. The step (ii)⇒(iii) is a triviality, essentially just a restatement of the
problem. Then for (iii)⇒(iv) it is because for a + 2 > 2b the space Vb(Ra) has a
cell structure where the a-skeleton is RP a−1/RP a−b−1 (Proposition ??).

Step 2: Steenrod operations allow one to prove that if a + 1 = 2r · (odd) then
RP a/RP a−b does not split off the top cell for b > 2r.

The proof will be described in detail below, but here is a short summary. The
hypothesis says that a = 2r(2t+ 1)− 1 = 2r+1t+ 2r − 1, and this guarantees that
there is a Sq2r operation in H∗(RP∞) connecting the class in degree 2r+1t−1 to the
class in degree a. If b > 2r then that Sq2r operation is still present in RP a/RP a−b,
and this obstructs the splitting off of the top cell.

Step 3: Putting steps 1 and 2 together, we have that if n = 2m · (odd) then there
do not exist 2m vector fields on Sn−1.

For m ≤ 3 this solves the vector field problem, because in this case ρ(m) = 2m− 1.

Step 4: There are periodicities to the spaces RP a/RP a−b. If L−1 has finite order
rb in K̃O(RP b−1), then

RP a/RP a−b ' Σ−srb
(
RP a+srb/RP a+srb−b

)
for every s ≥ 1, where the homotopy equivalence is in the stable homotopy category.
This is called James periodicity . The proof was given in Proposition 16.17.

Step 5: Now things get a bit more sophisticated. Atiyah proved that if M is
any compact manifold and E → M is a real vector bundle, then Th(E → M) is
Spanier-Whitehead dual to Th(−E − TM → M), where TM is the tangent bundle
to M (for Thom spaces of negative bundles, see Section 16.13).

Recall from Example 16.10 that RPn−1/RPn−k−1 ∼= Th((n − k)L → RP k−1).
Also, forM = RP k−1 one has TM = kL−1 in KO(M) (Example 26.11). So Atiyah
Duality gives that RPn−1/RPn−k−1 is Spanier-Whitehead dual to

Th

(
−(n−k)L−T

↓
RPk−1

)
= Th

(
−(n−k)L−kL+1

↓
RPk−1

)
= Th

(
−nL+1

↓
RPk−1

)
= Σ Th

(
−nL
↓

RPk−1

)
.
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If rk is the order of L−1 in K̃O(RP k−1) then the last spectrum may be interpreted
as

Σ Th

(
−nL
↓

RPk−1

)
' ΣΣ−srk Th

(
srkL−nL
↓

RPk−1

)

= Σ1−srk Th

(
(srk−n)L

↓
RPk−1

)

= Σ1−srk

[
RP srk−n+k−1/RP srk−n−1

]
,

where s is any integer sufficiently large so that srk − n− 1 ≥ 0. We have therefore
proven:

The Spanier-Whitehead dual of RPn−1/RPn−k−1 is (up to suspension)
RP srk−n+k−1/RP srk−n−1, where s is any integer such that srk − n− 1 ≥ 0.

Step 6: A direct consequence of the previous statement is that

RPn−1/RPn−k−1 splits off its top cell (stably)
if and only if

RP srk−n+k−1/RP srk−n−1 splits off its bottom cell (stably),

where s� 0 as above.

Step 7: Using step 6 we can add a condition onto the list of implications from step
1. Namely, we have (iv)⇒(v) where the latter is

(v) RP srk−un+k−1/RP srk−un−1 splits off its bottom cell (stably), for any u � 0
and any s� 0.

Step 8: Adams calculated K̃O(RP a) for all a, together with the Adams operations
on these groups. He used this knowledge, together with Step 2 above, to prove the
following:

For any m ≥ 0, RPm+ρ(m)+1/RPm−1 does not split off its bottom cell in the stable
homotopy category.

Step 9: Completion of the proof .

Proof of Theorem 38.1. Suppose there are k − 1 vector fields on Sn−1. Then by
Step 7 the space RP srk−un+k−1/RP srk−un−1 stably splits off its bottom cell for
any u and s such that un + 2 > 2k and srk − un − 1 ≥ 0. Choose u to be odd,
and choose s to be a multiple of 2n. Set m = srk − un, and note that m is an odd
multiple of n; consequently, we have ρ(m) = ρ(n).

We have that RPm+k−1/RPm−1 splits off its bottom cell. By Step 8 this implies
that k − 1 ≤ ρ(m) = ρ(n). So there are at most ρ(n) vector fields on Sn−1. �

The missing pieces from our outline are: Step 2, Step 5, and Step 8. We now
fill in the details for these steps, one by one—but not quite in the above order. We
save Atiyah duality for last, only because the other two pieces belong more to the
same theme.
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38.4. Steenrod operations and stunted projective spaces (steps 2 and 3).
Let x ∈ H1(RP∞;Z/2) be the nonzero element. The Steenrod operations on RP∞

are easily computed from the facts Sq1(x) = x2, Sqi(x) = 0 for i > 1, and the
Cartan formula. We leave this as an exercise for the reader. In the following
picture we show the Sq1, Sq2, and Sq4 operations on H∗(RP 20;Z/2):

bbb
bbb
bbb
bbb
bbb
bbb
bb

x

x2

x5

x9

x13

x18

x20

The Sq1 operations are depicted as vertical lines, the Sq2 operations as curved
lines, and the Sq4s as “offseted vertical lines”. For example, one can read off of the
diagram that Sq1(x5) = x6, Sq2(x10) = x12, and Sq4(x10) = 0 (in the latter case
because the diagram does not have a Sq4 emanating from the x10 class).

The pattern of Sq2r operations in H∗(RP∞;Z/2) is very simple. The first Sq2r

operation occurs on x2r and thereafter they follow the pattern of “2r on/2r off”.
This is captured by the formula

Sq2r (xa) =

{
xa+2r if a ≥ 2r and a ≡ 2r, 2r + 1, . . . , 2r+1 − 1 mod 2r+1,
0 otherwise.

Of course for H∗(RPn;Z/2) the formulas must be truncated to account for the fact
that classes above dimension n are not present.

To see how Steenrod operations give obstructions to stable splittings, consider
RP 9/RP 6. Its cohomology has a Sq2 connecting the class in degree 7 to the class
in degree 9. Suppose the projection onto the top cell p : RP 9/RP 6 → S9 has a
splitting χ in the stable homotopy category. Then the composite

H∗(S9)
p∗−→ H∗(RP 9/RP 6)

χ∗−→ H∗(S9)

is an isomorphism. Write xi for the generator in Hi(RP 9/RP 6), so that in this
notation we have Sq2(x7) = x9. Necessarily we must have χ∗(x7) = 0, therefore
0 = Sq2(χ∗x7) = χ∗(Sq2 x7) = χ∗(x9). But x9 is in the image of p∗, so this is a
contradiction.

Clearly this kind of argument will work for any RPn/RPn−b where we have a
nontrivial cohomology operation hitting the top class. Based on this, it is now easy
to prove the following:
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Proposition 38.5. Write n + 1 = 2s · odd. If RPn/RPn−b splits off its top cell
stably then b ≤ 2s.

Proof. If n is even then in H∗(RP∞) there is a Sq1 hitting the class in degree n,
and this operation will be present in H∗(RPn/RPn−b) as long as b > 1. So the top
cell can not split off in this case. In other words, if n+ 1 = 20 · (odd) then splitting
of the top cell can only happen if b ≤ 20.

Similarly, if n = 4e + 1 then in H∗(RP∞) there is a Sq2 hitting the class in
degree n. This Sq2 will be present in H∗(RPn/RPn−b) as long as b > 2, and again
we find that under this criterion the top cell can not split off. So n+ 1 = 21 · (odd)
implies splitting of the top cell can only happen if b ≤ 21.

The same style of argument continues. If n = 2re + (2r−1 − 1) then there is a
Sq2r−1

hitting our class in degree n, and this obstructs the splitting of the top cell
as long as b > 2r−1. Rephrased, this says that if n + 1 = 2r−1(2e + 1) then the
splitting does not exist when b > 2r−1. Replacing r− 1 with s, we have the desired
result. �

Corollary 38.6. If n = 2s · odd then there are at most 2s − 1 independent vector
fields on Sn−1.

Proof. If there are k − 1 vector fields on Sn−1 then RPun−1/RPun−k−1 splits off
its top cell for all u � 0. Choose a u that is odd, so that un = 2s · odd. By
Proposition 38.5 we conclude that k ≤ 2s. �

The upper bounds provided by Corollary 38.6 agree with the Hurwitz-Radon
lower bounds when s ≤ 3. Note that these few cases cover quite a bit more than
one first might think. For example, for spheres of dimension less than 50 it follows
that the Hurwitz-Radon number of vector fields is the maximum possible for all
but three cases, namely the spheres S15, S31, and S47 (multiples of 16 minus one).
Corollary 38.6 yields that there exist at most 15 vector fields on S15, 31 on S31,
and 15 on S47, whereas the Hurwitz-Radon construction only gives 8 vector fields
on S15 and S47, and 9 vector fields on S31. This demonstrates that our bounds for
the spheres S16e−1 are still far away from our goal.

38.7. Adams’s Theorem and KO-theory (Step 8). Next we move to the piece
that finally cracked the proof, namely the following theorem of Adams [Ad2]:

Theorem 38.8. Let m ≥ 1. Then the space RPm+ρ(m)+1/RPm−1 does not split
off its bottom cell in the stable homotopy category.

Proof. Write m = 2u ·odd, and consider RPN/RPm−1 for N ≥ m. Note that there
is a Sq2u operation on H∗(RPN/RPm−1;Z/2) connecting the generator in degree
m to the generator in degree m + 2u. This proves that the bottom cell does not
split off when N ≥ m + 2u. This settles the theorem in the case u ≤ 3, as here
ρ(m) = 2u − 1 and so m+ 2u = m+ ρ(m) + 1.

We will next do a similar argument—but using K-theory—in the case u ≥ 4.
Actually, the K-theory argument only uses u ≥ 3 so for the sake of pedagogy let
us just make this weaker assumption.
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Since m ≡ 0 mod 4 we know by Theorem 37.18 that there is a short exact
sequence
(38.9)

0 K̃O (RPm/RPm−1)oo

∼=
��

K̃O (RPN/RPm−1)oo K̃O (RPN/RPm)oo

∼=
��

0oo

Z Z/(2f )

where f is a certain integer we will recall in a moment. Each of the groups has
Adams operations on it, and the maps are compatible with these operations. If
we let B = Z[ψ2, ψ3, ψ5, . . .], then (38.9) is an exact sequence of B-modules (note
that B is just the monoid ring Z[N] from Section 36). If RPN/RPm−1 splits off its
bottom cell then this extension is split; so we will attempt to algebraically analyze
when such a splitting exists.

As a B-module the group K̃O (RPm/RPm−1) is Z(m2 ), meaning that each ψk

acts as multiplication by k
m
2 . It will be convenient to set r = m

2 . Also, we know by
Theorem 37.18(a) that on K̃O (RPN/RPm) the operation ψk acts as zero when k
is even, and the identity when k is odd. We also have determined the action of the
ψk’s on the middle group, but let us ignore this for the moment and consider the
situation in a bit more generality.

Let A be any abelian group, and let A[2] be the B-module whose underlying
abelian group is A and where ψk acts as zero when k is even, and the identity when
k is odd. Consider an extension of B-modules

0← Z(r)← E ← A[2]← 0.

Let g be an element of E that maps onto a generator for Z(r). Then we can write
ψkg = krg + αk for unique elements αk ∈ A, and the relations ψkψl = ψlψk show
that we must have

krαl = (lr − 1)αk whenever k is even and l is odd,
krαl = lrαk whenever k and l are both even,
(kr − 1)αl = (lr − 1)αk whenever k and l are both odd.

(38.10)

So the extension E is determined by the elements αk ∈ A, for k ≥ 2, satisfying the
above equations.

To analyze when the sequence is split, let g̃ denote the image of g in Z(r). A
splitting would send g̃ to an element g + a, for some a ∈ A. Since ψk(g̃) = krg̃ we
find that

kr(g + a) = ψk(g + a) = krg + αk +

{
0 if k is even,
a if k is odd.

Rearranging to solve for αk, we obtain

αk =

{
kra if k is even,
(kr − 1)a if k is odd.

So these are the properties of an (αk) sequence that are equivalent to the extension
0 ← Z(r) ← E ← A[2] ← 0 being split. Notice that such sequences are in some
sense the “trivial” solutions of the relations (38.10).
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We make one more general comment before returning to our specific situation.
Let a ∈ A and consider the sequence defined by

αk =

{
1
2k

r.a k even
1
2 (kr − 1).a k odd.

(38.11)

Note that the fractions multiplying a are in fact integers. So this sequence defines
a valid extension E, and if a is not a multiple of 2 in A then the extension doesn’t
“look” split. Precisely, if A is torsion-free and a /∈ 2A, then the extension is clearly
nonsplit. We will see that the case where A is torsion is a bit more subtle.

Now let us return to the extension in (38.9). Here A = Z/(2f ), where f =
ϕ(N) − ϕ(m). Since m is a multiple of 8 (and this is the first place where we use
this assumption), f also equals ϕ(N −m).

In Theorem 37.19 we previously computed the action of the Adams operations
on K̃O (RPN/RPm−1). The corresponding α-sequence is precisely the one given
by (38.11), where a is a generator for Z/(2f ). So the extension is split if and only
if there exists a B ∈ Z such that

1
2k

r.a = kr.(Ba) (k even), 1
2 (kr − 1).a = (kr − 1).(Ba) (k odd)

for all k. Phrased differently, these say that

2f divides

{
1
2k

r(1− 2B) if k is even,
1
2 (kr − 1)(1− 2B) if k is odd.

Since 1− 2B is always odd, this is equivalent to

2f+1 divides

{
kr k even,
kr − 1 k odd.

Let ν(x) denote the 2-adic valuation of the integer x, and let us restate what we
have now shown: If 8|m and RPN/RPm−1 splits off its bottom cell, then

ϕ(N −m) + 1 ≤ min
{
r, ν(3r − 1), ν(5r − 1), ν(7r − 1), ν(9r − 1), . . .

}
where r = m/2. Here we have used ν(2r) = r and have also left out ν(kr) for
even integers k > 2, as these numbers are at least r and hence irrelevant for the
minimum.

Our next task is to consider the numbers ν(3r − 1), and for these we refer to
Lemma 38.12 below. Since in our case r is even one has ν(3r − 1) = ν(r) + 2.
Note that as r ≥ 4 this term is no larger than r, and so the first term in the above
minimum is irrelevant.

We could proceed to analyze the terms ν(kr − 1) for odd k > 3, which is not
hard, but in fact we have done enough to conclude the proof already. We have
shown that if 8|m and RPN/RPm−1 splits off its bottom cell, then

ϕ(N −m) + 1 ≤ ν(r) + 2 = ν(m) + 1,

or simply ϕ(N −m) ≤ ν(m). So our task is to find the largest x for which ϕ(x) =
ν(m). To do this, write ν(m) = 4b + a where 0 ≤ a ≤ 3. Let “ϕ-count” stand for
counting the integers that are congruent to 0, 1, 2, or 4 modulo 8. Every cycle of
8 consecutive integers contributes 4 to the ϕ-count, and so for ϕ(x) ≥ 4b we would
need x ≥ 8b. The cases a = 0, 1, 2, 3 can now be analyzed by hand: for a = 0 we
have x = 8b; for a = 1 we have x = 8b + 1; for a = 2 we have x = 8b + 3; and for
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a = 3 we have x = 8b + 7. So in general the largest x such that ϕ(x) = 4b + a is
x = 8b+ 2a − 1.

Putting everything together, if ϕ(N − m) ≤ ν(m) = 4b + a then N − m ≤
8b+ 2a− 1 = ρ(m). So if N ≥ m+ ρ(m) + 1 then RPN/RPm−1 cannot split off its
bottom cell. �

Lemma 38.12. If r is even then ν(3r−1) = ν(r)+2. If r is odd then ν(3r−1) = 1.

Proof. If r is odd then modulo 4 we have 3r = (−1)r = −1, so 3r − 1 ≡ 2 mod 4.
This proves that ν(3r − 1) = 1.

If r = 2f · u where u is odd, we prove by induction on f that ν(3r − 1) = f + 2.
The base case is f = 1, and here we use 3r−1 = 32u−1 = (3u−1)(3u+1). We know
ν(3u−1) = 1 by the preceding paragraph. Modulo 4 one has 3u+1 = (−1)u+1 = 0,
but modulo 8 one has 3u+1 = 4. So ν(3u+1) = 2, which confirms that ν(3r−1) = 3.

For the inductive step, if r = 2f+1u where u is odd then write

3r − 1 = (32fu − 1)(32fu + 1).

By induction we know ν(32fu − 1) = f + 2. Modulo 4 we have 32fu + 1 =(
(−1)2f

)u
+1 = 1 + 1 = 2. So ν(32fu + 1) = 1, hence ν(3r − 1) = f + 3. �

Remark 38.13. It is intriguing that a number-theoretic analysis of ν(3r − 1) was
the ultimate step in both the Hopf invariant one problem and the vector fields on
spheres problem. To my knowledge, there is no reason to suspect any connection
between these two problems.

Exercise 38.14. If k is any odd number, prove that ν(kr − 1) ≥ ν(r) + 2 when r
is even. This confirms that the terms for k > 3 were irrelevant for the minimum
considered in the above proof.

Example 38.15. To demonstrate the proof of Adams’s Theorem, consider m =
576 = 26·9. Starting strictly above 576, we mark off numbers until we have exceeded
a ϕ-count of ν(m) = 6. In the following sequence, the numbers contributing to the
ϕ-count have boxes around them:

576 | 577 , 578 , 579, 580 , 581, 582, 583, 585 , 585 , 586 , 587, 588

Adams’s argument shows that RP 588/RP 575 does not split off its bottom cell. Note,
of course, that ρ(576) = 11 and 588 = 576+11+1. The point, however, is that one
does not need to remember the awkward formula for ρ(m); the procedure is simply
to count past m until the ϕ-count exceeds ν(m).

38.16. Atiyah duality (Step 5). This is the final piece. The material in this
section will complete our proof of Theorem 38.1.

Consider the space RP 9/RP 4. Its cohomology is shown below in the diagram
on the left:

bbb
bb

H∗(RP 9/RP 4) bbb
bb

H∗(????)

We obtained the picture on the right by simply turning the left diagram upside
down; is this also the cohomology of a space? It is easy to see that the answer is yes:
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the right diagram is H∗(RP 10/RP 5). This turns out to be a general phenomenon,
first discovered by Atiyah. And the kind of ‘duality’ we are seeing actually takes
place at a deeper level than just that of cohomology. It is essentially a geometric
duality, taking place inside of the stable homotopy category.

The stable homotopy category is symmetric monoidal: the monoidal product is
the smash E,F 7→ E ∧ F , and the unit is the sphere spectrum S. It is also closed
symmetric monoidal, meaning that there exist function objects E,F 7→ F(E,F )
and a natural adjunction

HomHo (Sp)(E,F(X,Y )) ∼= HomHo (Sp)(E ∧X,Y ).

Spanier-Whitehead duality has to do with the functor X 7→ DX = F(X,S). This
functor preserves cofiber sequences and it sends the n-sphere Sn = Σ∞Sn to the
(−n)-sphere S−n. So if a certain spectrum X is built from cells in dimensions 0
through n, the spectrum DX is built from cells in dimensions −n through 0.

For nice enough spectra X one has the property that D(D(X)) ' X; such
spectra are called dualizable. All finite cell complexes are dualizable. One can
prove that H∗(DX) agrees with ‘taking H∗(X) and turning it upside down’.

The essentials of Spanier-Whitehead duality were known long before the details
of the stable homotopy category had all been worked out (particularly the details
behind the smash product). Here is the main result for finite complexes:

Proposition 38.17. Let X be a finite cell complex that is embedded in Sn as a
subcomplex (of some chosen cell structure on Sn). Then

Σn−1D(Σ∞X) ' Σ∞(Sn −X).

Example 38.18. Let us check the above proposition in some very easy examples.
We use the form D(X) ' Σ−n+1(Sn −X).
(a) X = S0. Then Sn − S0 ' Sn−1, and so we find D(S0) ' Σ−n+1Sn−1 ' S0.

The 0-sphere is self-dual.
(b) Let X = Sn−1, embedded as the equator in Sn. The complement Sn−X is S0

(up to homotopy), so we have D(Sn−1) ' Σ−n+1S0 = S−(n−1). Again, this is
as expected.

For some classical references on Spanier-Whitehead duality, see [A4, Chapter
III.5] and [Swz, Chapter 14].

We can now state Atiyah’s main theorem. The proof is taken directly from [At2].
See Section 16.13 for a discussion of Thom spaces of virtual bundles.

Theorem 38.19 (Atiyah Duality). Let M be a compact, smooth manifold.
(a) If M has boundary then D(M/∂M) ' Th(−TM ) where TM →M is the tangent

bundle.
(b) Now assume that M is closed, and let E →M be a real vector bundle. Then

D(ThE) ' Th(−E − TM ).

Proof. For (a), embed M into In (nicely) in such a way that ∂M maps into In−1×
{0}. (See [At2] for details). Consider the join pt ∗ In, which is a pyramid; its
boundary is homeomorphic to Sn. Refer to the following picture for an example:
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In
M

pt ∗ In ⊇ pt ∗M

Consider the subcomplex

X = M ∪ (pt ∗ ∂M) ⊆ ∂(pt ∗ In) ∼= Sn.

We have M/∂M 'M ∪ (pt ∗ ∂M), and so

D(M/∂M) ' D(X) ' Σ−n+1(Sn −X).

Projection away from pt gives a deformation retraction Sn −X ∼−→ In −M . Next
observe In−M ' In−U , where U is a tubular neighborhood of M in In. Finally,
notice that since In is contractible we have that In/(In−U) is a model for Σ(In−U)
(up to homotopy). Putting everything together, we have

D(M/∂M) ' Σ−n+1(In − U) ' Σ−n(In/(In − U)) = Σ−n Th(NIn/M )

' Th(NIn/M − n).

Now use that TM ⊕NIn/M ∼= n.
For (b) use that Th(E) ∼= Di(E)/S(E), whereDi(E) is the disk bundle and S(E)

is the sphere bundle of E. The disk bundle is a compact manifold with boundary
S(E), so by (a) one has

D(ThE) = D
(
Di(E)/S(E)

)
' Th(−TDi(E)).

If π : Di(E)→M is the bundle map then it is easy to see that TDi(E)
∼= π∗(E⊕TM ).

Since π is a homotopy equivalence,

Th(−TDi(E)) = Th(−π∗(E ⊕ TM )) ' Th(−(E ⊕ TM )).

This finishes the proof. �

We next apply what we just learned to stunted projective spaces. Recall from
Example 16.10 that all stunted projective spaces are Thom spaces:

RPn−1/RPn−k−1 ∼= Th

(
(n−k)L

↓
RPk−1

)
.

Recall as well that the tangent bundle to RP k−1 satisfies T ⊕ 1 ∼= kL (Exam-
ple 26.11). Using these two facts, Atiyah Duality now gives that

D(RPn−1/RPn−k−1) ' Th

(
−(n−k)L−T

↓
RPk−1

)
= Th

(
−nL+1

↓
RPk−1

)
' Σ Th

(
−nL
↓

RPk−1

)
.
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Let rk−1 be the additive order of [L] − 1 in K̃O(RP k−1). Then rk−1L ∼= rk−1

(stably), and hence for any s ∈ Z we have

Th

(
−nL
↓

RPk−1

)
' Σ−srk−1 Th

(
−nL+srk−1

↓
RPk−1

)
' Σ−srk−1 Th

(
−nL+srk−1L

↓
RPk−1

)

' Σ−srk−1 Th

(
(srk−1−n)L

↓
RPk−1

)
'Σ−srk−1

[
RP srk−1−n+k−1/RP srk−1−n−1

]
.

In the last line we imagine s chosen to be large enough so that srk−1 − n− 1 ≥ 0.
Putting everything together, we have proven the following:

Corollary 38.20. Let rk−1 be the additive order of [L]− 1 in K̃O(RP k−1). Then
there is a stable homotopy equivalence

D(RPn−1/RPn−k−1) ' Σ1−srk−1

[
RP srk−1−n+k−1/RP srk−1−n−1

]
where s is any integer such that srk−1 − n− 1 ≥ 0.

Example 38.21. Let us consider the Spanier-Whitehead dual of RP 9/RP 4, as in
the beginning of this section. Relative to our above discussion, n = 10 and k = 5.
By Theorem 37.14 we know K̃O(RP 4) ∼= Z/8, so the order of [L] − 1 is 8. The
above corollary gives

D(RP 9/RP 4) ' Σ1−8s
[
RP 8s−6/RP 8s−11

]
for any s where the right-hand-side makes sense. The smallest choice is s = 2,
giving D(RP 9/RP 4) ' Σ−15(RP 10/RP 5).

39. The immersion problem for RPn

Let M be a compact, n-dimensional, real manifold. It is a classical theorem of
Whitney from the 1940s that M can be immersed in R2n−1 and embedded into
R2n [Wh1, Wh2]. A much more difficult result, proved by R. Cohen [C] in 1985,
says that M can be immersed in R2n−α(n) where α(n) is the number of ones in the
binary expansion of n. As a general result this is known to be the best possible, but
for specific choices of M one could conceivably do better. Define the immersion
dimension (resp. the embedding dimension) of M to be the smallest k such
that M immerses (resp., embeds) into Rk.

In general, determining the immersion and embedding dimensions of a given
manifold seem to be difficult problems. Over the last 60+ years they have been
extensively studied, particularly for the manifold RPn. The problem tends to
involve two distinct components. As one aspect, clever geometric constructions are
used to produce immersions (or embeddings) and therefore upper bounds on the
immersion dimension. For lower bounds one must prove non-immersion results, and
this is usually done by making use of some sort of homotopical invariants. Over
the years the problem for RPn has been used as a sort of testing ground for every
new homotopical technique to come along.

Our intent here is not to give a complete survey of this problem, as this would
take far too long. We will be content to give a small taste, entirely concentrating
our focus on some easily-obtained lower bounds in the case of RPn. The methods
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involve Stiefel-Whitney classes (in singular cohomology) and some related charac-
teristic classes in KO-theory.

39.1. A short survey. Before jumping into our analysis, let us give some sense of
what is known about the problem. The following table shows the current knowledge
(as of this writing) about the immersion and embedding dimensions for RPn when
n ≤ 24:

Table 39.2. Immersion and embedding dimensions for RPn

RPn 2 3 4 5 6 7 8 9 10 11 12 13
imm. dim. 3 4 7 7 7 8 15 15 16 16 18 22
emb. dim. 4 5 8 9 [9, 11] [9, 12] 16 17 17 [17, 18] [18, 21] [22, 23]

RPn 14 15 16 17 18 19 20 21 22 23 24
imm. 22 22 31 31 32 32 34 38 38 38 [38, 39]
emb. [22, 23] [23, 24] 32 33 33 [33, 34] [34, 37] 39 39 39 [39, 42]

In the table, entries in brackets are given when the exact answer is not known.
For example, the embedding dimension of RP 6 is only known to lie in the interval
[9, 11]. RP 6 definitely embeds into R11 and does not embed into R8—but it is not
known if RP 6 embeds into R9 or R10. In comparison, we know much more about
the immersion problem; the smallest unknown case is RP 24.

The above data on the immersion and embedding dimensions was taken from a
table compiled by Don Davis [Da2]. Davis’s table contains substantially more data,
covering slightly past RP 100.

One of the earliest results is due to Milnor [MS]: if n = 2r then the immersion
dimension of RPn equals 2n−1 (showing that the Whitney upper bound is sharp in
this case). Peterson [P] proved that if n = 2r then the embedding dimension equals
2n, again showing that the Whitney bound is sharp here. (We recount Milnor’s
proof in Corollary 39.11 below.) In general, if n = 2r + d for 0 ≤ d < 2r and d is
relatively small, then one can expect the immersion and embedding dimensions to
be 2r+1 + x where x is a known quantity or one that is tightly constrained. The
following theorem encompasses most of what is known for d ≤ 10:

Theorem 39.3. Write n = 2i+d where 0 ≤ d < 2i. Then the immersion dimension
of RPn equals 2i+1 + e and the embedding dimension equals 2i+1 + f where the
following is known:

d 0 1 2 3 4 5 6 7 8 9 10
i ≥ 1 ≥ 2 ≥ 3 ≥ 3 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4 ≥ 4
e −1 −1 0 0 2 6 6 6 [6, 7] 14 14
f 0 1 1 [1, 2] [2, 5] 7 7 7 [7, 10] [14, 15] [14, 16]

For example, for RP 40 we write 40 = 25 + 8 and consult the d = 8 column. It
tells us that the immersion dimension is either 26 + 6 or 26 + 7 (70 or 71), and that
the embedding dimension lies between 26 + 7 and 26 + 10 (71 through 74).

The above theorem is not credited because it represents the combined work over
many years of several authors. Much credit should be given to Davis, who has
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brought all the results together and given complete references. The above theorem
is just the first few lines of the table [Da2].

39.4. Stiefel-Whitney techniques. Suppose that M is a compact manifold of
dimension n, and that M is immersed in Rn+k. The immersion has a normal
bundle ν, and there is an isomorphism of bundles TM ⊕ ν ∼= n+ k. Taking total
Stiefel-Whitney classes of both sides gives

w(TM ) · w(ν) = w(TM ⊕ ν) = w(n+ k) = 1.

Recall that the total Stiefel-Whitney class of a bundle E is w(E) = 1 + w1(E) +
w2(E)+· · · . Because the zero-coefficient is 1 we can formally invert this expression,
and because H∗(M) is zero in sufficiently large degrees this formal inverse actually
makes sense as an element of H∗(M). So we can feel free to write w(E)−1, and we
obtain

w(TM )−1 = w(ν).

We don’t know anything about ν except its rank, which is equal to k. This guaran-
tees that w(ν) does not have any terms of degree larger than k, and so we obtain
the following simple result [MS, material preceding Theorem 4.8]:

Proposition 39.5. Let M be a compact manifold of dimension n. If M immerses
in Rn+k then w(TM )−1 vanishes in degrees larger than k.

Let us apply this proposition to RPn. Here we have the identity TRPn ⊕ 1 =
(n+ 1)L (Example 26.11) and so

w(TRPn) = w(TRPn ⊕ 1) = w((n+ 1)L) = w(L)n+1 = (1 + x)n+1,

where x denotes the generator for H1(RPn;Z/2). Taking inverses gives

w(TRPn)−1 = (1 + x)−(n+1) =

∞∑
i=0

(−(n+1)
i

)
xi.

We can rewrite the coefficient of xi, since(−(n+1)
i

)
= (−1)i (n+1)·(n+2)···(n+i)

i! = (−1)i
(
n+i
i

)
.

Putting everything together we obtain the following:

Corollary 39.6. If RPn immerses into Rn+k then
(
n+i
i

)
is even for k < i ≤ n.

The above corollary yields very concrete non-immersion results, but to obtain
these we need to be good at checking when binomial coefficients are even. His-
torically, topologists got pretty good at this because of the presence of binomial
coefficients in the Adem relations. A key result is the following:

Lemma 39.7. Let njnj−1 . . . n0 be the base 2 representation for n; that is, each
nj ∈ {0, 1} and n =

∑
nj2

j. Similarly, let kjkj−1 . . . k0 be the base 2 representation
for k. Then (

n
k

)
≡
∏
i

(
ni
ki

)
mod 2.

Proof. The result follows easily from four points: (i)
(

2n
i

)
is even if i is odd; (ii)(

2n
2k

)
≡
(
n
k

)
(mod 2); (iii)

(
2n+1

2k

)
≡
(

2n
2k

)
(mod 2); and (iv)

(
2n+1
2k+1

)
≡
(
n
k

)
(mod 2).

The four cases correspond to the four possibilities for n0 and k0, and set us up for
a straightforward induction.
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For (i) and (ii), imagine a column of the numbers 1 through n and a second
“mirror” column containing the same entries. If i is odd, the i-element subsets of
the two columns together may be partitioned into two classes: those which contain
more elements from column A than column B, and those which contain less elements
from column A. The operation of “switch entries between the two columns” gives
a bijection between these two classes, thereby showing that

(
2n
i

)
is even.

For (ii), note that the i-element subsets can be partitioned into groups deter-
mined by the number of elements from column A. This gives rise to the formula(

2n
2k

)
=
(
n
0

)(
n
k

)
+
(
n
1

)(
n
k−1

)
+ · · ·+

(
n
k−1

)(
n
1

)
+
(
n
k

)(
n
0

)
.

The terms on the right-hand-side are symmetric and so can be grouped in pairs,
except for the middle term which is

(
n
k

)2. So working mod 2 we have(
2n
2k

)
≡
(
n
k

)2 ≡ (nk).
For (iii) just use Pascal’s identity

(
2n+1

2k

)
=
(

2n
2k

)
+
(

2n
2k−1

)
together with (i). For

(iv) use
(

2n+1
2k+1

)
=
(

2n
2k+1

)
+
(

2n
2k

)
together with (i) and (ii). �

Example 39.8. To determine if
(

20
9

)
is even then we note that 20 is 10100 in base

2, and 9 is 1001. Using the above lemma we compute(
20
9

)
=
(

1 0 1 0 0
0 1 0 0 1

)
≡
(

1
0

)(
0
1

)(
1
0

)(
0
0

)(
0
1

)
= 1 · 0 · 1 · 1 · 0 = 0.

So
(

20
9

)
is even.

Notice that
(

1
1

)
=
(

1
0

)
=
(

0
0

)
= 1, whereas

(
0
1

)
= 0. So in computations like the

one above, the fnal answer is even if and only if
(

0
1

)
appears at least once in the

product—that is, if n has a certain bit turned “off” and the corresponding bit of k
is “on”. In particular, the following three statements are now obvious:
(i) If n = 2r then

(
n
i

)
is even for all i in the range 0 < i < n.

(ii) If n = 2r − 1 then
(
n
i

)
is odd for all i ≤ n.

(iii)
(

2n
n

)
is always even.

The point for the first two is that 2r has all of its bits turned off except for the rth,
whereas 2r − 1 has all of its bits turned on. For statement (iii) just consider the
smallest bit of n that is turned on, and note that the corresponding bit is off in 2n.

Corollary 39.6 is most often used in the form below. The proof is immediate
from Corollary 39.6.

Corollary 39.9. Fix n ≥ 2, and let k be the largest integer such that k ≤ n and(
n+k
k

)
is odd. Then RPn does not immerse into Rn+k−1.

Note that k will be strictly less than n, as
(

2n
n

)
is always even; this conforms with

the Whitney immersion result. As an application of the above corollary, suppose
we want to immerse RP 10. We start with(

20
10

)
= 20·19·18·17·16·15·14·13·12·11

10·9·8·7·6·5·4·3·2·1

We have 210 dividing the numerator and 28 dividing the denominator. Start re-
moving factors from the left, one by one from the numerator and denominator
simultaneously, watching what happens to the number of 2’s in each. The fraction
does not become odd until we are looking at

(
15
5

)
. So the conclusion is that RP 10

does not immerse into RP 14.
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The above process is cumbersome, and with a little investigation it is not hard
to produce a shortcut.

Proposition 39.10. Write n = 2i + d where 0 ≤ d < 2i. Then the largest k in the
range 0 ≤ k ≤ n such that

(
n+k
k

)
is odd is k = 2i − d− 1.

Proof. Note that if j = 2i−d−1 then n+j = 2i+1−1 and so
(
n+j
j

)
is certainly odd.

We must show that
(
n+j
j

)
is even for j in the range 2i−d ≤ j ≤ n. This is the kind

of analysis that is perhaps best left to the reader, but we will give a sketch. Suppose
to the contrary that j is in this range and

(
n+j
j

)
is odd. Let e = j − (2i − d − 1),

so that n + j = (2i + d) + e + (2i − d − 1) = e + (2i+1 − 1). Let the smallest bit
of e that is turned on be the rth bit; this is also the smallest bit of n + j that is
turned off. Since

(
n+j
n

)
is odd, this bit must be also off in n. If we write e = e′+2r,

then n+ j = e′ + (2r + 2i+1 − 1). The term in parentheses has all bits off from the
(r + 1)st through the ith, and so the bits of n+ j agree with the bits of e′ (and of
e) in this range. Since

(
n+j
n

)
is odd, every bit of n that is turned on in this range

must also be turned on in n+ j—and therefore also in e. We have thus shown that
• The rth bit is off in n but on in e, and
• All bits greater than the rth that are on in n are also on in e.

These two facts show that e > n, which is not allowed since e ≤ j ≤ n. �

Corollary 39.11. If n = 2i + d where 0 ≤ d ≤ 2i − 1 then RPn does not immerse
into R2i+1−2. In particular, if n = 2i then the immersion dimension of RPn equals
2n− 1.

Proof. The first line is immediate from Corollary 39.9 and Proposition 39.10. The
second statement follows from the first together with the Whitney theorem saying
that RPn immerses into R2n−1. �

Let us now change gears just a bit and consider embeddings. We can also use
characteristic classes to give obstructions in this setting. The key result is the
following:

Proposition 39.12. SupposeM is a compact n-manifold that is embedded in Rn+k.
Then wk(ν) = 0 where ν is the normal bundle.

Proof. Choose a metric on ν and let S(ν) be the sphere bundle. If p : S(ν) → M
denotes the projection map, then clearly p∗ν splits off a trivial bundle: p∗ν = 1⊕E
for some rank k − 1 bundle E on S(ν). The Whitney formula then gives 0 =
wk(p∗ν) = p∗(wk(ν)).

The proof will be completed by showing that p∗ : H∗(M ;Z/2)→ H∗(S(ν);Z/2)
is injective. Let U be a tubular neighborhood of M in Rn+k, arranged so that its
closure U is homeomorphic to the disk bundle of ν. Write ∂U for the boundary,
which is isomorphic to S(ν). We have the long exact sequence

· · · → Hi(U, ∂U)→ Hi(U)→ Hi(∂U)→ · · ·
where all cohomology groups have Z/2-coefficients. The projection U → M is a
homotopy equivalence, so our map p∗ is isomorphic to Hi(U) → Hi(∂U). We can
verify that this is injective by checking that the previous map in the long exact
sequence is zero. We look only at i > 0, as the i = 0 case is trivial.
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To this end, consider the diagram below:

Hi(Rn+k,Rn+k −M) //

∼=
��

Hi(Rn+k)

��
Hi(U, ∂U) // Hi(U)

The left vertical map is an isomorphism by excision, and the group in the upper
right corner is zero. So the bottom horizontal map is zero, as we desired. �

Compare the next result to Proposition 39.5:

Corollary 39.13. Let M be a compact n-manifold. If M embeds into Rn+k then
w(TM )−1 vanishes in degrees k and larger.

Proof. We saw in the proof of Proposition 39.5 that w(TM )−1 = w(ν). Since ν has
rank k, this forced the Stiefel-Whitney classes to vanish in degrees larger than k.
But now Proposition 39.12 also gives us the vanishing in degree k. �

Corollary 39.14. If RPn embeds into Rn+k then
(
n+i
i

)
is even for k ≤ i ≤ n.

Proof. Same as for Corollary 39.6. �

Corollary 39.15. Let n = 2i +d where 0 ≤ d ≤ 2i− 1. Then RPn does not embed
into R2i+1−1. In particular, if n = 2i then the embedding dimension of RPn equals
2n.

Proof. Let k be the largest integer in the range 0 ≤ k ≤ n such that
(
n+k
k

)
is

odd. Then Corollary 39.14 shows that RPn does not embed into Rn+k. But
Proposition 39.10 identifies k = 2i−d−1, and so n+k = 2i+1−1. This proves the
first statement. The second statement is then a consequence of the first together
with the Whitney theorem that RPn embeds into R2n. �

To gauge the relative strength of Corollaries 39.11 and 39.15, see the table below
and compare to Table 39.2. One gets a clear sense of how far algebraic topology
has progressed since the early days of Stiefel-Whitney classes!

Table 39.16. Stiefel-Whitney lower bounds for the immersion
and embedding dimensions of RPn

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
imm≥ 3 4 7 7 7 8 15 15 15 15 15 15 15 16 31 31 31
emb≥ 4 4 8 8 8 8 16 16 16 16 16 16 16 16 32 32 32

39.17. K-theoretic techniques. One can readily imagine taking the basic ap-
proach from the last section and replacing the Stiefel-Whitney classes with charac-
teristic classes taking values in some other cohomology theory. Atiyah [At3] pursued
this idea using KO-theory, and certain constructions of Grothendieck provided the
appropriate theory of characteristic classes. In this way he obtained some new
non-immersion and non-embedding theorems. We explain this work next.
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In Section 33 we described Chern classes in complex K-theory, which were de-
fined using the γ̃-operations. One can basically repeat those constructions in KO-
theory verbatim to obtain KO-characteristic classes for real vector bundles. Since
the context is a little different, we give a very quick review here.

For an element x ∈ K̃O (X) define

γt(x) = λ t
1−t

(x) = 1 + t
1−t [λ

1x] +
(

t
1−t
)2

[λ2x] + · · ·
Note that γt(x + y) = γt(x)γt(y). Define γi(x) to be the coefficient of ti in γt(x).
So we have

γk(x+ y) =
∑
i+j=k

γi(x)γj(y).

Note also that γt(1) = 1 + t
1−t = 1

1−t = 1 + t+ t2 + · · ·
For a vector bundle E over X define

γ̃t(E) = γt(E − rankE) =
γt(E)

γt(rankE)
=

γt(E)

γt(1)rankE
= γt(E) · (1− t)rankE .

One should think of this as just being a renormalization of the γt construction; note
that γ̃t(E) = 1 if E is a trivial bundle. Observe that we still have the analog of the
Whitney formula:

γ̃t(E ⊕ F ) = γt(E ⊕ F − rank(E + F )) = γt
(
(E − rankE) + (F − rankF )

)
= γt(E − rankE)γt(F − rankF )

= γ̃t(E)γ̃t(F ).

If L is a line bundle then

γ̃t(L) = γt(L) · (1− t) =
[
1 + t

1−t [L]
]
· (1− t) = 1− t+ t[L] = 1 + t([L]− 1).

So γ̃1(L) = [L]− 1 and γ̃i(L) = 0 for i > 1.
Finally, we observe that if E is a rank k bundle then γ̃i(E) = 0 for all i > k.

This is because

γ̃t(E) = λ t
1−t

(E)(1− t)k =

∞∑
i=0

( t
1−t )

i[ΛiE] · (1− t)k =

k∑
i=0

ti(1− t)k−i[ΛiE].

The final expression is a polynomial in t of degree at most k.
Compare the following result to Proposition 39.5 and Corollary 39.13.

Proposition 39.18. Let M be a compact n-manifold. If M immerses into Rn+k

then the power series γ̃t(TM )−1 vanishes in degrees larger than k. If M embeds into
Rn+k then γ̃t(TM )−1 vanishes in degrees k and larger.

Proof. The proofs are the same as before. If M immerses into Rn+k then TM ⊕ν ∼=
n+ k where ν is the normal bundle. So γ̃t(TM )γ̃t(ν) = γ̃t(TM⊕ν) = γ̃t(n+ k) = 1,
and then γ̃t(TM )−1 = γ̃t(ν). But since ν has rank k we have γ̃i(ν) = 0 for i > k.

For the second part of the proposition we need to prove that if M embeds into
Rn+k then γ̃k(ν) = 0. The proof is exactly the same as for Proposition 39.12. �

For the following proposition, recall from Remark 37.15 that ϕ(n) denotes the
number of integers s such that 0 < s ≤ n and s is congruent to 0, 1, 2, or 4 modulo
8.

Corollary 39.19 (Atiyah).
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(a) If RPn immerses into Rn+k then 2ϕ(n)−j+1 divides
(
n+j
j

)
for k < j ≤ ϕ(n).

(b) If RPn embeds into Rn+k then 2ϕ(n)−j+1 divides
(
n+j
j

)
for k ≤ j ≤ ϕ(n).

Proof. Recall that 1⊕ TRPn ∼= (n+ 1)L, as in Example 26.11. We get

γ̃t(TRPn) = γ̃t(TRPn ⊕ 1) = γ̃t((n+ 1)L) = γ̃t(L)n+1 =
(
1 + tλ

)n+1

where λ = [L]− 1 ∈ K̃O 0(RPn). So

γ̃t(TRPn)−1 = (1 + tλ)−(n+1) =

∞∑
j=0

(−(n+1)
j

)
λj · tj =

∞∑
j=0

(−1)j
(
n+j
j

)
λj · tj .

If RPn immerses into Rn+k then by Proposition 39.18
(
n+j
j

)
λj = 0 in K̃O 0(RPn)

for all k < j. If RPn embeds into Rn+k then
(
n+j
j

)
λj = 0 for all k ≤ j.

Now we recall from Theorem 37.14 that K̃O 0(RPn) ∼= Z/(2ϕ(n)) and that λ is a
generator. Also recall that λ2 = −2λ, or λj = (−2)j−1λ. The desired conclusions
follow immediately. �

Corollary 39.19 is best used in the following form. Let σ(n) denote the largest
value of j in the range 1 ≤ j ≤ ϕ(n) for which

(
n+j
j

)
is not divisible by 2ϕ(n)+1−j ;

if no such j exists then set σ(n) = 0 by default. Then RPn does not immerse into
Rn+σ(n)−1 and does not embed into Rn+σ(n).

For some values of n the result of Corollary 39.19 is stronger than what we
obtained from Corollaries 39.6 and 39.15, and for some values of n it is weaker. We
demonstrate some examples:

Example 39.20. For the question of immersions of RP 8, we have ϕ(8) = 4 and
σ(8) = 4. So Atiyah’s result (39.19) gives that RP 8 does not immerse into R11.
The Stiefel-Whitney classes, however, told us that RP 8 does not immerse into R14.

In contrast, for RP 15 we have ϕ(15) = 7 and σ(15) = 4. So Atiyah’s result tells
us that RP 15 does not immerse into R18. The method of Stiefel-Whitney classes
(39.6) gives no information in this case.

The table below shows the lower bounds for the immersion dimension of RPn
obtained from Stiefel-Whitney techniques versus the KO-theoretic techniques. The
reader will notice that the Stiefel-Whitney bounds are significantly better when
n = 2i+d and d is small, whereas the KO-theoretic bounds are better for n = 2i+d
when d is close to (but not exceeding) 2i − 1.

Table 39.21. Lower bounds for the immersion dimension of RPn

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S-W 3 4 7 7 7 8 15 15 15 15 15 15 15 16 31 31 31
KO 3 4 7 7 7 8 12 13 15 15 17 17 19 19 24 25 27

n 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
S-W 31 31 31 31 31 31 31 31 31 31 31 31 32 63 63
KO 27 31 31 31 31 34 35 38 39 40 41 42 43 48 49
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As an example when n is much larger, the Stiefel-Whitney classes give no infor-
mation on the immersion dimension of RP 255. By contrast, the Atiyah result gives
that the immersion dimension is at least 375. For n = 2i − 1 the improvement of
the Atiyah bound over the Hopf bound is on the order of n2 .

39.22. Immersions and geometric dimension. So far we have used various
characteristic classes to give lower bounds on the immersion/embedding dimensions
for RPn. To close this section we will show how to produce upper bounds for the
immersion dimension, via a geometric result of Hirsch that translates this into a
bundle-theoretic problem. The central tool again ends up being KO-theory. Using
these methods we will completely determine the immersion dimension of RPn for
n ≤ 9.

Let E → X be a vector bundle. Define the virtual dimension of E by the
formula

v.dimE = min{k |E ∼= F ⊕ (rankE)− k for some bundle F of rank k}.
The virtual dimension is the smallest k such that E is isomorphic to a stabilized
rank k bundle. If X is paracompact Hausdorff then by Proposition 9.2 we can also
write

v.dimE = rankE −max{j |E has j independent sections}.
Note that the virtual dimensions of E and E⊕1 might be different; the latter might
be smaller than the former. With this in mind we can also introduce the stable
virtual dimension:

sv.dimE = min{v.dim(E ⊕ r) | r ≥ 0}
= min{rankF |F is a bundle that is stably equivalent to E}.

Finally, we introduce the following related concept. For α ∈ K̃O 0(X), define the
geometric dimension of α to be

g.dimα = min{k
∣∣α+ k = [F ] for some vector bundle F on X}.

The above three concepts are related as follows:

Proposition 39.23. Let E → X be a vector bundle, where X is compact.
(a) g.dim(E − rankE) = sv.dim(E) ≤ v.dim(E).
(b) If X is a finite CW-complex and rankE > dimX then sv.dim(E) = v.dim(E).

Proof. For (a) only the first equality requires proof. This equality is almost a
tautology: for any integer d ≥ 0 we have

sv.dim(E) ≤ d ⇐⇒ there exists an F of rank d such that E ∼=st F

⇐⇒ there exists an F of rank d such that [E]− rankE = [F ]− d
⇐⇒ there exists a bundle F such that [E]− rankE + d = [F ]

⇐⇒ g.dim(E − rankE) ≤ d.
The desired equality follows immediately.

For (b), let r = sv.dim(E), k = rank(E), and note that r ≤ k. Then there
exists a rank r bundle F such that E and F are stably isomorphic: E ⊕ N ∼=
F ⊕ (N + k − r) for some N > 0. Since rank(E) > dimX we can cancel the N
factors to get E ∼= F⊕(k − r), by Proposition 13.19. Hence v.dim(E) ≤ rank(F ) =

r = sv.dim(E). �
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The following result of Hirsch [Hi], and its corollary, translate the immersion
problem into a purely homotopy-theoretic question. This is the key to why immer-
sions are better understood than embeddings.

Theorem 39.24 (Hirsch). Let M be a compact manifold of dimension n. For
k ≥ 1 the following statements are equivalent:
(a) M can be immersed in Rn+k

(b) There exists a bundle F of rank k such that TM ⊕ F is trivial.
(c) There exists an On-equivariant map Fr(TM )→ Vn(Rn+k), where Fr(TM ) is the

bundle of n-frames in TM .

Observe that (a) implies (b) by taking F to be the normal bundle of the im-
mersion. Also, if φ : TM ⊕ F → n+ k is an isomorphism then any n-frame in
TM yields an n-frame in Rn+k by applying φ; thus, one gets an equivariant map
Fr(TM )→ Vn(Rn+k). This shows (b) implies (c). So the content of the above theo-
rem is really in (c)⇒(a); this is what was proven by Hirsch, via geometric arguments
[Hi, Theorem 6.1 (taking r = 0 there)]. He actually showed much more, essentially
proving that homotopy classes of immersions from M to Rn+k are in bijective cor-
respondence with equivariant homotopy classes of maps Fr(TM )→ Vn(Rn+k). We
will not give Hirsch’s proof here, but we will use the following corollary of his result.
This corollary first appeared in [At3, Proposition 3.2] and in [Sa2, Theorem 2.1].

Corollary 39.25. Let k ≥ 1, and let M be a compact manifold of dimension n.
Then M immerses in Rn+k if and only if g.dim(n− TM ) ≤ k.
Proof. We have already seen the ‘only if’ direction when we obtained obstructions
to immersions: if an immersion exists then n+ k ∼= TM ⊕ ν where ν is the normal
bundle, therefore n− TM = ν − k and hence g.dim(n− TM ) = g.dim(ν − k) ≤ k.

For the other direction, assume g.dim(n − TM ) ≤ k. So there exists a rank k
vector bundle F such that n−TM +k = F in KO(M). This implies n+k = TM +F
in KO(M), which in turn yields that n+ k +N ∼= TM ⊕ F ⊕ N for some N ≥ 0.
Since the rank of TM ⊕F is larger than dimM , it follows by Proposition 13.19 that
we can cancel the N on both sides to get n+ k ∼= TM ⊕F . Then by Theorem 39.24
we know that M immerses into Rn+k. �

Remark 39.26. Note in particular that if M is parallelizable then M immerses
into Rn+1 (taking k = 1 in Corollary 39.25, since k = 0 is not allowed).

We now specialize again to the case of M = RPn. Here we have

n− TRPn = (n+ 1)− (1⊕ TRPn) = (n+ 1)− (n+ 1)L = (n+ 1)(1− L).

Proposition 39.27. For n ≤ 8 the immersion dimension of RPn is as given in
Table 39.2.

Proof. Given the lower bounds given by Stiefel-Whitney classes (see Table 39.21),
we only have to demonstrate the required immersions. The fact that RP 8 im-
merses in R15 is a special case of Whitney’s classical theorem. Both RP 3 and
RP 7 have trivial tangent bundles (using the related fact for S3 and S7), and so by
Remark 39.26 they immerse into R4 and R8, respectively.

For RP 6 we must calculate the geometric dimension of 7(1−L) = −7(L−1). But
ϕ(6) = 3, and so K̃O (RP 6) ∼= Z/8. Hence 8(L− 1) = 0, and so −7(L− 1) = L− 1.
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The geometric dimension of L − 1 is clearly at most 1, and so by Corollary 39.25
RP 6 immerses into R7. Of course RP 4 and RP 5 therefore also immerse into R7.

A similar argument works to show that RP 2 immerses into R3 (or one can just
construct the immersion geometrically). �

The reader should note why the above result stopped with RP 8. For RP 9

one finds that the immersion problem boils down to determining the geomet-
ric dimension of −10(L − 1) = 22(L − 1) (here we used that ϕ(9) = 5 and so
K̃O 0(RP 9) = Z/32). The precise value of this geometric dimension is far from
clear. We will close this section by analyzing it completely, following Sanderson
[Sa2]. However, we take a short detour to illustrate some general principles.

Recall that for general n we have n− TRPn = (n+ 1)(1− L). We would like to
interpret the geometric dimension of this class as being a stable virtual dimension,
but for this we would need to be looking at a positive multiple of L− 1 rather than
1− L. There are two ways to get ourselves into this position. The first, which we
have already seen, proceeds by recalling that L − 1 has order 2ϕ(n) in K̃O (RPn).
So we can write

n− TRPn = −(n+ 1)(L− 1) =
(
2ϕ(n) − (n+ 1)

)
(L− 1)

and hence

g.dim(n− TRPn) = g.dim
([

2ϕ(n) − (n+ 1)
]
L−

[
2ϕ(n) − (n+ 1)

])
= sv.dim

([
2ϕ(n) − (n+ 1)

]
L
)

(the last equality is by Proposition 39.23(b)). The second approach is from Sander-
son [Sa1, Lemma 2.2]:

Proposition 39.28. For the bundle L→ RPn, the statement g.dim(a(L−1)) ≤ b
is equivalent to g.dim((b− a)(L− 1)) ≤ b, for any a, b ∈ Z with b ≥ 0.

Proof. It suffices to prove the implication in one direction, by symmetry. So suppose
g.dim(a(L− 1)) ≤ b. This implies that a(L− 1) + b = E in KO0(RPn), for some
rank b bundle E. Multiply by L to get a(1−L) + bL = E ⊗L, and then rearrange
to find (b− a)(L− 1) + b = E ⊗L. This yields that g.dim((b− a)(L− 1)) ≤ b. �
Corollary 39.29. Let L→ RPn be the tautological bundle. For k > 0 the following
statements are equivalent:
(1) RPn immerses into Rn+k,
(2) g.dim(−(n+ 1)(L− 1)) ≤ k,
(3) g.dim((n+ k + 1)(L− 1)) ≤ k,
(4) g.dim

(
[2ϕ(n) − (n+ 1)] (L− 1)

)
≤ k.

Proof. The equivalence (1) ⇐⇒ (2) comes from Corollary 39.25, and (2) ⇐⇒ (3)
is by Proposition 39.28. Finally, (2) ⇐⇒ (4) is true because 2ϕ(n)(L − 1) = 0 in
K̃O 0(RPn). �

Part (3) of the above result, which is the part that comes from Proposition 39.28,
will actually not be needed in the remainder of this section. But we record it here
for later use (see Proposition 40.15).

We close this section by settling the immersion problem for RP 9:

Proposition 39.30 (Sanderson). The immersion dimension of RP 9 equals 15.
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This result is from [Sa2, Theorem 5.3]. Sanderson proves much more than this,
for example that RPn immerses into R2n−3 whenever n is odd. He also proved that
RP 11 immerses into R16, which ends up being the best result for both RP 11 and
RP 10.

Proof. The lower bound of 15 is given by Stiefel-Whitney classes, as in Table 39.21.
So we only need to prove that RP 9 immerses into R15. By Corollary 39.29 this is
equivalent to g.dim(22(L−1)) ≤ 6, and is also equivalent to g.dim(16(L−1)) ≤ 6.
The proof below works for both statements, but for specificity we just prove the
former. Note that what we must prove is equivalent to sv.dim(22L) ≤ 6, by
Proposition 39.23. We will outline the steps for this, and then give more details
afterwards.
Step 1: There exists a rank 4 complex bundle E on RP 9 such that rRE is stably
equivalent to 22L (recall that rRE denotes the real bundle obtained from E by
forgetting the complex structure).
Step 2: The bundle E|RP 8 has a nonzero section s.
Step 3: The bundle rRE|RP 8 has a field of (real) 2-frames.
Step 4: For N � 0 the field of real (2 + N)-frames of (rRE ⊕ N)|RP 8 may be
extended over RP 9.
Step 5: sv.dim(22L) = sv.dim(rRE) ≤ 6, hence RP 9 can be immersed into R15.

We now justify each of these steps. For step 1 use that rR : K̃(RPn)→ K̃O (RPn)
has image equal to 〈2(L − 1)〉, by Theorems 37.14 and 37.17. Since 22(L − 1) is
therefore in the image, there is a complex bundle E on RP 9 such that rRE is stably
equivalent to 22L. The bundle E is represented by a map RP 9 → BU , and such a
map necessarily factors up to homotopy through BU(4): for this, use obstruction
theory and the homotopy fiber sequences S2n−1 → BU(n−1)→ BU(n) (recall that
U(n)/U(n− 1) ∼= S2n−1). For a map RP 9 → BU(n) to lift (up to homotopy) into
BU(n− 1), one has obstructions in the groups Hi(RP 9;πi−1S

2n−1) for 0 ≤ i ≤ 9.
But as long as 5 ≤ n the homotopy groups πi−1S

2n−1 vanish in this range, so all
the obstruction groups are zero.

For step 2 we again proceed by obstruction theory. We have the sphere bundle
S(E|RP 8) → RP 8 with fiber S7, and all the obstruction groups vanish except for
the last one: H8(RP 8;π7S

7). The coefficents are untwisted because the complex
structure gives a canonical orientation to each fiber. This final obstruction class
is the same as the Euler class of rRE, or equivalently the top Chern class of E.
Since H8(RP 8;Z) = Z/2 it will be sufficient to compute the mod 2 reduction of
this class, which is the top Stiefel-Whitney class w8(rRE). Now we use that rRE is
stably isomorphic to 22L, so the total Stiefel-Whitney class is w(rRE) = w(22L) =
w(L)22 = (1 + x)22. Hence w8(rRE) =

(
22
8

)
x8. Since

(
22
8

)
is even, the obstruction

class vanishes and we indeed have a nonzero section.
Step 3 is trivial: the sections s and is give the field of real 2-frames.
Step 4 is obstruction theory yet again. If F = rRE⊕N then we have a (partial)

section of VN+2(F ) → RP 9 defined over RP 8, and we must extend this to all of
RP 9. The obstruction lies in H9(RP 9;π8(VN+2(RN+8))). But the homotopy group
in the coefficients has been computed [Wht2, BP] and is known to be zero for all
N ≥ 2 (see also Exercise 39.31 below for hints to this calculation).
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Step 5 is now immediate: rRE ⊕N has rank 8 +N and has 2 +N independent
sections, hence v.dim(rRE ⊕ N) ≤ 6. So sv.dim(rRE) ≤ 6 as well. Since rRE is
stably equivalent to 22L, sv.dim(22L) = sv.dim(rRE) ≤ 6. �

Example 39.31. Compute the homotopy group needed in the above proof via the
following steps:
(a) Use the fibration sequences Vk(Rn) → Vk+1(Rn+1) → Sn to deduce that

π8VN+2(RN+8) ∼= π8V4(R10) for all N ≥ 2.
(b) Using the cell structure from Proposition ?? reduce the problem to that of

computing π8(RP 9/RP 5).
(c) Attempt to inductively compute π8(RPn/RP 5) using the long exact homotopy

sequences

· · · → π8(RPn/RP 5)→ π8(RPn+1/RP 5)→ π8(RPn+1/RP 5,RPn/RP 5)→ · · ·
The Blakers-Massey theorem implies that πr(RPn+1/RP 5,RPn/RP 5) ∼=
πr(D

n+1, Sn) ∼= πr−1S
n for r ≤ n + 4, so since n ≥ 5 the long exact sequence

becomes

π8(Sn)→ π8(RPn/RP 5)→ π8(RPn+1/RP 5)→ π7(Sn)

with the first map induced by Sn → RPn → RPn/RP 5.
(d) Check that RP 7/RP 5 ' S7 ∨S6 (think about the attaching map of the 7-cell),

so that π8(RP 7/RP 5) ∼= Z/2 ⊕ Z/2 with the generators corresponding to the
maps η and η2.

(e) By using the action of the Steenrod operations on H∗(RP 8/RP 5;Z/2), make
some deductions about the attaching map for the 8-cell and use this to analyze
the long exact sequence from (c). Conclude that π8(RP 8/RP 5) = Z/2 with the
generator represented by the composite S8 η−→ S7 ↪→ S7 ∨ S6 = RP 7/RP 5 ↪→
RP 8/RP 5.

(f) Finally, repeat the strategy from (e) to analyze the attaching map of the 9-cell
in RP 9/RP 5 and deduce that π8(RP 9/RP 5) = 0.

The arguments in this section naturally suggest the following problem, which is
open:

Problem: Compute the geometric dimension of k([L] − 1) ∈ K̃O (RPn), for any
given k and n.

Over the years this problem has been extensively studied by Adams, Davis, Gitler,
Lam, Mahowald, Randall, and many others. Just a few of the many references are
[GM1, GM2, A5, As, DGM, LR1, LR2, BDM]. See also Section 40.14 for a bit more
discussion.

39.32. Summary. In this section we obtained two sets of non-immersion/non-
embedding results, one using Stiefel-Whitney classes in mod 2 singular cohomology
and the other using the γ̃ classes in KO-theory. We also translated the immersion
problem into a question about geometric dimension of reduced bundles, and for
RPn we completely solved this question for n ≤ 9. As we have said before, this is
far from the whole story—in fact it is just the very tip of a large and interesting
iceberg. We refer the reader to the references cited in [Da2] for other pieces of the
story, as well as to the survey paper [Da1].
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40. The sums-of-squares problem and beyond

This section is in some ways an epilogue to the previous one. In the last section
we started with a geometric problem, that of immersing RPn into Euclidean space.
We then used cohomology theories and characteristic classes to obtain necessary
conditions for such an immersion to exist: we obtained two sets of conditions, one
from mod 2 singular cohomology and one fromKO-theory. In the present section we
start with an algebraic problem, one that at first glance seems completely unrelated
to immersions. It is the problem of finding sums-of-squares formulas in various
dimensions, which we encountered already back in Section 15 (we will review the
problem below). Once again we will use cohomology theories to obtain necessary
conditions for the existence of such formulas. The surprise is that these conditions
are basically the same as the ones that arose in the immersion problem! This is
because both problems lead to the same homotopy-theoretic situation involving
bundles over real projective space.

In theory the present section could be read completely independently of the last
one. But because the underlying homotopy-theoretic problem is the same, we refer
to the previous section for many details of its analysis.

40.1. Review of the basic problem. Recall from Section 15 that a sums-of-
squares formula of type [r, s, n] (over R) is a bilinear map φ : Rr ⊗ Rs → Rn
with the property that

|φ(x, y)|2 = |φ(x)|2 · |φ(y)|2(40.2)

for all x ∈ Rr and y ∈ Rs. If we write x = (x1, . . . , xr) and y = (y1, . . . , ys)
then φ(x, y) = (z1, . . . , zn) where each zi is a bilinear expression in the x’s and y’s.
Formula (40.2) becomes

(x2
1 + · · ·+ x2

r) · (y2
1 + · · ·+ y2

s) = z2
1 + · · ·+ z2

n.

We will sometimes refer to this as an “ [r, s, n]-formula” for short. Note that if an
[r, s, n]-formula exists then one trivially has [i, j, k]-formulas for any i ≤ r, j ≤ s,
and k ≥ n.

For what values of r, s, and n does an [r, s, n]-formula exist? This is the sums-
of-squares problem. Said differently, given a specific r and s what is the smallest
value of n for which an [r, s, n]-formula exists? Call this number r ∗ s. As with the
immersion problem, there are two aspects here. One is the problem of constructing
sums-of-squares formulas, thereby giving upper bounds for r ∗ s; the other is the
problem of finding necessary conditions for their existence, thereby giving lower
bounds. The latter is the part that involves topology.

The sums-of-squares formulas that everyone knows are the ones coming from the
multiplications on R, C, H, and O. These haves types [1, 1, 1], [2, 2, 2], [4, 4, 4], and
[8, 8, 8]. Hurwitz proved than an [n, n, n] formula only exists when n ∈ {1, 2, 4, 8},
and the Hurwitz-Radon theorem generalizes this:

Theorem 40.3 (Hurwitz-Radon). A sums-of-squares formula of type [r, n, n] ex-
ists if and only if r ≤ ρ(n) + 1, where ρ(n) is the Hurwitz-Radon number from
Definition 15.4.

This “Hurwitz-Radon theorem” is really the same as the one on vector fields on
spheres that we saw as Theorem 15.5. The proof is the same as well:
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Proof. Write n = (odd) · 2a+4b with 0 ≤ a ≤ 3. Recall from Theorem 15.13 that
an [r, n, n]-formula exists if and only if there exists a Clr−1-module structure on
Rn. We saw in Section 15 that representations of Clr−1 only exist on vector spaces
whose dimension is a multiple of 2ϕ(r−1). Thus, we have the chain of equivalences

an [r, n, n]-formula exists ⇐⇒ there exists a Clr−1-module structure on Rn

⇐⇒ 2ϕ(r−1)
∣∣n

⇐⇒ ϕ(r − 1) ≤ a+ 4b

⇐⇒ r − 1 ≤ 2a + 8b− 1 = ρ(n).

For the last equivalence note that ϕ(2a + 8b− 1) = ϕ(2a − 1) + 4b = a+ 4b, where
the first equality is the 8-fold periodicity of ϕ and the second is just a calculation
for 0 ≤ a ≤ 3. Moreover, 2a + 8b− 1 is the largest number whose ϕ-value is a+ 4b;
by periodicity this can again be checked just for b = 0 and 0 ≤ a ≤ 3. So in general
we have ϕ(s) ≤ a+ 4b = ϕ(2a + 8b− 1) if and only if s ≤ 2a + 8b− 1; this is what
is used in the final equivalence. �

Remark 40.4. Note that if there exist formulas of type [r, s1, n1] and [r, s2, n2]
then there is also a formula of type [r, s1 + s2, n1 + n2] (by distribuitivity). This
says that

r ∗ (s1 + s2) ≤ r ∗ s1 + r ∗ s2.

Also notice that r ∗ s ≤ (r + a) ∗ (s + b) whenever a, b ≥ 0, because a formula of
type [r + a, s + b, n] automatically yields one of type [r, s, n] by plugging in zeros
for a of the x’s and b of the y’s.

The classical identities show that 2 ∗ 2 = 2, 4 ∗ 4 = 4, and 8 ∗ 8 = 8, and it is
trival that n ∗ 1 = n. Using these together with the observations of the previous
paragraph, one can obtain upper bounds on r ∗ s. For example, 3 ∗ 10 ≤ 12 because

3 ∗ 10 ≤ 3 ∗ 8 + 3 ∗ 2 ≤ 8 ∗ 8 + 4 ∗ 4 = 8 + 4 = 12.

The following table shows what is known about r ∗ s for small values of r and
s. For r ≤ 8 the values completely agree with the upper bounds obtained by the
above methods.

Table 40.4. Values of r ∗ s

r\s 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2 2 4 4 6 6 8 8 10 10 12 12 14 14 16 16 18
3 4 4 7 8 8 8 11 12 12 12 15 16 16 16 19
4 4 8 8 8 8 12 12 12 12 16 16 16 16 20
5 8 8 8 8 13 14 15 16 16 16 16 16 21
6 8 8 8 14 14 16 16 16 16 16 16 22
7 8 8 15 16 16 16 16 16 16 16 23
8 8 16 16 16 16 16 16 16 16 24
9 16 16 [16,17] ??
10 16 [16,17]
11 17

To justify the numbers in the above table we have to produce lower bounds for
r ∗ s. For example, we have to explain why there do not exist formulas of type
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[5, 10, 13]. Almost all the known lower bounds come from topological methods; we
will describe some of these next.

40.5. Lower bounds via topology. Here is the key result that shows how a
sums-of-squares formula gives rise to something homotopy-theoretic:

Proposition 40.6. If an [r, s, n]-formula exists then there exists a rank n−r bundle
E on RP s−1 such that rL⊕ E ∼= n (here rL is the direct sum of r copies of L).

Proof. Let φ : Rr ⊗ Rs → Rn be the map giving the sums-of-squares formula. If
u ∈ Rs is a unit vector, check that φ(e1, u), . . . , φ(er, u) is an orthonormal frame in
Rn. This is an easy consequence of the sums-of-squares identity; it is an exercise,
but see the proof of Corollary 15.10 if you get stuck. In this way we obtain a
map f : Ss−1 → Vr(Rn). Compose with the projection Vr(Rn) → Grr(Rn) and
then note that the map factors to give F : RP s−1 → Grr(Rn). Precisely, given
a line in Rs spanned by a vector u its image under F is the r-plane spanned by
φ(e1, u), . . . , φ(er, u).

Let η be the tautological r-plane bundle on Grr(Rn). We claim that F ∗η = rL.
This follows from the commutative diagram

rL

��

F̃ // η

��
RP s−1 F // Grr(Rn)

where the top map is described as follows. Given r points on the same line 〈u〉 we
write them as λ1u, . . . , λru and then send them to the element λ1φ(e1, u) + · · · +
λrφ(er, u) on the r-plane F (〈u〉). One readily checks that this does not depend
on the choice of u; in fact, we could just say that points z1, . . . , zr on a common
line ` are sent to the element φ(e1, z1) + · · · + φ(er, zr) on F (`). The fact that
φ(e1, u), . . . , φ(er, u) are orthonormal (hence independent) shows that F̃ is injective
on fibers, hence an isomorphism on fibers. This shows that F ∗η ∼= rL.

We have now done all the hard work. To finish, just recall that η sits inside
a short exact sequence 0 → η → n → Q → 0 where Q is the standard quotient
bundle. This sequence is split because Grr(Rn) is compact. Pulling back along F
now gives rL⊕ F ∗Q ∼= n, as desired. �

The following result was originally proven independently by Hopf [Ho] and Stiefel
[St]; Stiefel’s method is the one we follow here.

Corollary 40.7 (Hopf-Stiefel). If an [r, s, n]-formula exists then the following two
equivalent conditions hold:
(1)

(
r+i−1
i

)
is even for n− r < i < s;

(2)
(
n
i

)
is even for n− r < i < s.

Proof. By Proposition 40.6 we know that rL⊕ E ∼= n for some rank n− r bundle
on RP s−1. Applying total Stiefel-Whitney classes gives w(rL)w(E) = w(rL⊕E) =
w(n) = 1, or w(E) = w(rL)−1 = w(L)−r. So w(L)−r vanishes in degrees larger
than n−r. But w(L) = 1+x where x is the generator for H1(RP s−1;Z/2), and the
coefficient of xi in (1 + x)−r is

(−r
i

)
=
(
r+i−1
i

)
(recall that we are working modulo

2). So
(
r+i−1
i

)
is even for n− r < i < s.
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The equivalence of the conditions in (1) and (2) follows at once from the lemma
below, taking k = n− r+ 1 and i = r+ s− n− 2 (note that conditions (1) and (2)
are both vacuous unless i ≥ 0). �

Lemma 40.8. For any non-negative integers n, k, and i, the following Z-linear
spans are the same inside of Z (that is, the lists on the two sides generate the same
ideal):

Z
〈(

n
k

)
,
(
n
k+1

)
, . . . ,

(
n
k+i

)〉
= Z

〈(
n
k

)
,
(
n+1
k+1

)
, . . . ,

(
n+i
k+i

)〉
.

Consequently, an integer is a common divisor of the first set of binomial coefficients
if and only if it is a common divisor of the second set.

Proof. Taking first differences and using Pascal’s identity shows (via multiple iter-
ations) that

Z
〈(

n
k

)
,
(
n+1
k+1

)
, . . . ,

(
n+i
k+i

)〉
= Z

〈(
n
k

)
,
(
n
k+1

)
,
(
n+1
k+2

)
,
(
n+2
k+3

)
, . . . ,

(
n+i−1
k+i

)〉
= Z

〈(
n
k

)
,
(
n
k+1

)
,
(
n
k+2

)
,
(
n+1
k+3

)
, . . . ,

(
n+i−2
k+i

)〉
= · · ·

= Z
〈(

n
k

)
,
(
n
k+1

)
, . . . ,

(
n
k+i

)〉
.

�

Example 40.9. Does a formula of type [10, 10, 15] exist? If it did, statement (2)
of Corollary 40.7 would imply that

(
15
i

)
is even for 5 < i < 10. But

(
15
6

)
is odd.

The full power of the numerical conditions in Corollary 40.7 is subtle, and one
really needs a computer to thoroughly investigate them. But the following conse-
quence represents much of the information buried in those conditions:

Corollary 40.10. If r + s > 2k then r ∗ s ≥ 2k.

Proof. We must show that if r + s > 2k then formulas of type [r, s, 2k − 1] do not
exist. If they did, the Hopf-Stiefel conditions would imply that

(
2k−1
i

)
is even for i in

the range 2k−1−r < i < s. But
(

2k−1
i

)
is odd no matter what i is, so the conditions

are only consistent if the range is empty—or equivalently, if 2k−1− r ≥ s−1. The
hypothesis r + s > 2k guarantees that this is not the case. �

For example, sums-of-squares formulas of type [16, 17, n] must all have n ≥ 32.
For r ≤ 8 the Hopf-Stiefel lower bounds for r ∗ s turn out to exactly match

the upper bounds obtained via the constructive methods of Remark 40.4. So this
justifies the numbers in Table 40.4 for the range r ≤ 8.

40.11. K-theoretic techniques. We can also analyze the implications of Propo-
sition 40.6 using KO-theory. This was first done by Yuzvinsky [Y]. Note that one
could also use complex K-theory here, but KO-theory gives stronger results: the
point is that K̃0(RPm) and K̃O 0(RPm) are almost the same, but for certain values
of m the latter group is slightly bigger (by a factor of 2).

Corollary 40.12 (Yuzvinsky). If an [r, s, n]-formula exists then the following two
equivalent conditions hold:
(1) 2ϕ(s−1)−i+1 divides

(
r+i−1
i

)
for n− r < i ≤ ϕ(s− 1);
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(2) 2ϕ(s−1)−i+1 divides
(
n
i

)
for n− r < i ≤ ϕ(s− 1).

Proof. Proposition 40.6 gives that rL ⊕ E ∼= n for some bundle E on RP s−1. We
again use characteristic classes, but this time the γ̃ classes in KO-theory. We find
that γ̃t(E) = γ̃t(L)−r, and so γ̃t(L)−r must vanish in degrees larger than n − r.
Recall that γ̃t(L) = 1 + tλ where λ = [L]− 1, and so the coefficient of ti in γ̃t(L)−r

is
(−r
i

)
λi = ±

(
r+i−1
i

)
2i−1λ. Here we have used λ2 = −2λ.

Recalling that K̃O 0(RP s−1) ∼= Z/(2ϕ(s−1)), we find that 2ϕ(s−1) divides
2i−1

(
r+i−1
i

)
for all i > n− r. This statement only has content for i ≤ ϕ(s− 1), and

thus we obtain the condition in (1).
The equivalence of (1) and (2) is an instance of the following general observation:

the sequence of conditions

2N
∣∣(n
k

)
, 2N−1

∣∣( n
k+1

)
, 2N−2

∣∣( n
k+2

)
, . . . , 2N−j

∣∣( n
k+j

)
is equivalent to the sequence of conditions

2N
∣∣(n
k

)
, 2N−1

∣∣(n+1
k+1

)
, 2N−2

∣∣(n+2
k+2

)
, . . . , 2N−j

∣∣(n+j
k+j

)
.

This follows at once by applying Lemma 40.8 multiple times, with i = 1, i = 2, . . .,
i = j. �

The Hopf-Stiefel conditions are symmetric in r and s, but this is not true for the
KO-theoretic conditions in the above proposition. For example, applying the con-
ditions yields no information on [3, 6, n]-formulas beyond n ≥ 5 (which is trivial),
whereas applying the conditions to [6, 3, n]-formulas yields n ≥ 8. One must there-
fore apply the conditions to both [r, s, n] and [s, r, n] to get the best information.

Example 40.13. Like we saw for the immersion problem, in some dimensions the
KO-theoretic conditions are stronger than the Hopf-Stiefel conditions—and in some
dimensions they are weaker. Neither result is strictly stronger than the other.

For example, the Hopf-Stiefel conditions show that 4 ∗ 5 ≥ 8 whereas the KO-
conditions only show 4 ∗ 5 = 5 ∗ 4 ≥ 7. The smallest dimension for which the
KO-theoretic conditions are stronger is when r = 10 and s = 15. The Hopf-
Stiefel conditions rule out the existence of [10, 15, 15]-formulas, but not [10, 15, 16].
The KO-conditions rule out [15, 10, 16], however, and therefore also [10, 15, 16] by
symmetry.

To pick a larger example, the Hopf-Stiefel conditions show that 127 ∗ 127 ≥ 128
but the KO-conditions show that 127 ∗ 127 ≥ 184. The KO-conditions seem to
give their greatest power when r and s are slightly less than a power of 2.

40.14. Other problems. The reader will probably have noticed that the above
methods and results for the existence of sums-of-squares formulas are almost exactly
the same as the ones in the last section on the existence of immersions for real
projective spaces. It is natural to wonder if there is a closer connection between
these two problems. There is! In fact there turns out to be a whole family of
interconnected problems circling this area. We will explain this next.

A careful look at Proposition 40.6 shows that one can make the argument work
with something much weaker than a sums-of-squares formula. Specifically, all we
needed was a bilinear map f : Rr⊗Rs → Rn such that f(x⊗y) = 0 only when x = 0
or y = 0. Such a bilinear map is usually called nonsingular. Given such a map
and a nonzero u ∈ Rr, the elements φ(u, e1), . . . , φ(u, er) are necessarily linearly
independent—and this is really all that was needed in the proof of Proposition 40.6.
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We can replace our sums-of-squares problem with the following: given r and s,
for what values of n does there exist a nonsingular bilinear map of type [r, s, n]?
The topological obstructions we found for sums-of-squares formulas are of course
still valid in this new context.

The existence of nonsingular bilinear maps turns out to be related to the im-
mersion problem for real projective spaces. More than this, both problems are
connected to a number of similar questions that have been intently studied by al-
gebraic topologists since the 1940s. Many of these problems were originally raised
by Hopf [Ho]. This material takes us somewhat away from our main theme of K-
theory, but it seems worthwhile to tell a bit of this story since we have encountered
it.

To start with, let us introduce the following classes of statements:
SS[r, s, n]: there exists a sums-of-squares formula of type [r, s, n]
NS[r, s, n]: there exists a nonsingular bilinear map Rr ⊗ Rs → Rn
RR[r, s, n]: there exist n×smatrices A1, . . . , Ar with the property that every

nonzero linear combination of them has rank s
T[r, s, n]: the tangent bundle TRPn has s independent sections when re-

stricted to RP r
IS[r, s, n]: the bundle nL→ RP r has s independent sections

GD[r, s, n]: over RP r one has g.dim(n(L− 1)) ≤ n− s
ES[r, s, n]: the ‘first-vector’ map p1 : Vs(Rn+1)→ Sn has a Z/2-equivariant

section over the subspace Sr ⊆ Sn. Here Z/2 acts antipodally
on Rn+1, and both Vs(Rn+1) and Sn get the induced action.

AX[r, s, n]: there exists an “axial map” RP r × RP s → RPn; this is a map
with the property that the restrictions RP r × {∗} → RPn and
{∗}×RP s → RPn are homotopic to linear embeddings, for some
choice of basepoints in RP r and RP s

IM[r, n]: RP r immerses into RPn
VF[k, n]: there exist k independent vector fields on Sn.

The acronyms are mostly self-evident, except for a few: RR stands for “rigid rank”,
IS for “independent sections”, and ES for “equivariant sections”.

The above statements are closely interrelated, as the next result demonstrates.
We should point out that very little from this result will be needed in our subsequent
discussion. We are including it because most of the claims are easy to prove, and
because the various statements get used almost interchangeably (often without
much explanation) in the literature on the immersion problem.

Proposition 40.15.
(a) GD[r, s, n] ⇐⇒ GD[r,−n,−s]
(b) IM[r, n] ⇐⇒ GD[r,−(n+ 1),−(r + 1)] ⇐⇒ GD[r, r + 1, n+ 1]
(c) T [n, k, n]⇒ VF[k, n]
(d) One has the following implications:

SS[r, s, n]
1 +3 NS[r, s, n] ks

2 +3 RR[r, s, n]

3

��

ES[r − 1, s, n− 1]

6

��
GD[r − 1, s, n] IS[r − 1, s, n]

5ks T[r − 1, s− 1, n− 1]
qy

19

4ks AX[r − 1, s− 1, n− 1]

(e) If r < n then implication 4 is reversible, and if r ≤ n then 5 is reversible.
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(f) If r < n and r ≤ 2(n− s) then implication 6 in (d) is also reversible.

Proof. Part (a) is Proposition 39.28, and part (b) is Corollary 39.29; we have seen
these already. Part (c) follows from the fact that TSn = p∗TRPn where p : Sn →
RPn is the projection.

For part (d), the first implication is obvious. The others we treat one by one.
NS[r, s, n] ⇐⇒ RR[r, s, n]: The equivalence follows from adjointness, as bi-
linear maps f : Rr ⊗ Rs → Rn correspond bijectively to linear maps F : Rr →
Hom(Rs,Rn). The linear map F is specified by the n×s matrices F (e1), . . . , F (er).
It is easy to verify that f is nonsingular if and only if all nontrivial linear combi-
nations of these matrices have rank s.
RR[r, s, n]⇒ T[r−1, s−1, n−1]: First note that the tangent bundle of RPn is
the collection of pairs (x, v) such that x, v ∈ Rn, |x| = 1, and x · v = 0, modulo the
identifications (x, v) ∼ (−x,−v). Secondly, note that since NS[r, s, n] is symmetric
in r and s the same is true for RR[r, s, n]. The condition RR[s, r, n] says that we
have n × r matrices A1, . . . , As such that every nontrivial linear combination has
rank r. For any x ∈ Rr − 0 it follows that A1x, . . . , Asx are independent: for if∑
tiAix = 0 then

∑
tiAi has rank less than r, which only happens when all ti = 0.

Note that there is a matrix P ∈ GLn(R) such that the columns of PA1 are the
standard basis e1, . . . , er, so by replacing each Ai with PAi we can just assume
these are the columns of A1.

For every x ∈ Sr−1 ⊆ Rr ⊆ Rn consider the independent vectors
A1x,A2x,A3x, . . . , Asx. Note that A1x = x. Let ui(x) = Aix − (Aix · x)x. Then
u2(x), . . . , ur(x) are independent, and orthogonal to x. Since ui(−x) = −ui(x) for
each i, these give us s− 1 independent sections of TRPn−1 defined over RP r−1.
T[r−1, s−1, n−1]⇒ IS[r−1, s, n]: This follows from the bundle isomorphism
TRPn−1 ⊕ 1 ∼= nL (cf. Example 25.16 and note that the same argument works in
the real case, where we have L ∼= L∗).
IS[r − 1, s, n]⇒ GD[r − 1, s, n]: Trivial.
T[r − 1, s − 1, n − 1] ⇐⇒ ES[r − 1, s, n − 1]: First note that the frame
bundle Vs−1(TRPn−1) is homeomorphic to Vs(Rn)/ ± 1 in an evident way. Under
this homeomorphism the projection Vs−1(TRPn−1) → RPn−1 corresponds to the
first-vector map Vs(Rn)/± 1→ Sn−1/± 1. So T [r− 1, s− 1, n− 1] is equivalent to
the latter bundle having a section over Sr−1/± 1. But then consider the diagram

Vs(Rn) //

��

Vs(Rn)/± 1

��
Sn−1 // Sn−1/± 1

where the two horizontal maps are 2-fold covering spaces. This is a pullback square.
It is easy to see that the right vertical map has a section defined over Sr−1/± 1 if
and only if the left vertical map has a Z/2-equivariant section defined over Sr−1.
ES[r−1, s, n−1]⇒ AX[r−1, s−1, n−1]: Note that there is an evident map
Vs(Rn)→ Top(Ss−1, Sn−1) that sends a frame v1, . . . , vs to the map (a1, . . . , as) 7→
a1v1 + · · · + asvs. So a section χ : Sr−1 → Vs(Rn) gives by composition a map
Sr−1 → Top(Ss−1, Sn−1), and then by adjointness a map g : Sr−1 × Ss−1 → Sn−1.
The fact that χ was a section of the first-vector map shows that g(x, e1) = x for
all x ∈ Sr−1. Also, it is clear that g(e1,−) is a linear inclusion Ss−1 ↪→ Sn−1
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(there is nothing special about e1 here). The Z/2-equivariance of χ shows that
g(−x, y) = −g(x, y), and the similar identity g(x,−y) = −g(x, y) is trivial. So g
descends to give a map RP r−1 × RP s−1 → RPn−1, and this map is axial.

For (e), the reversibility of both implications is governed by stability theory
of vector bundles. For example, assume IS[r − 1, s, n]. Then nL ∼= s ⊕ E for
some bundle E of rank n − s, where we are working over RP r−1. Recall that
j∗TRPn−1⊕1 ∼= nL, where j : RP r−1 ↪→ RPn−1 is the inclusion. So j∗TRPn−1⊕1 ∼=
s⊕E ∼= 1⊕((s−1)⊕E). Since we are working over RP r−1 and r−1 < n−1, we can
cancel the 1 on both sides to get j∗TRPn−1

∼= (s − 1) ⊕ E (see Proposition 13.19).
This says that T[r− 1, s− 1, n− 1] holds. The reversibility of implication 5 is very
similar, and is left to the reader.

Part (f), on the reversibility of implication 6, is the only part of the proposition
that is not elementary. Let TopZ/2(Ss−1, Sn−1) denote the space of Z/2-equivariant
maps, where the spheres have the antipodal action. This is a subspace of the usual
function space Top(Ss−1, Sn−1). Note that the space of equivariant maps has a
Z/2-action, given by composing (or equivalently, precomposing) a given map with
the antipodal map. James [J1] shows that the evident map TopZ/2(Ss−1, Sn−1)→
Top(RP s−1,RPn−1) is a principal Z/2-bundle with respect to the above action.

We will also have need of the evaluation map ev : TopZ/2(Ss−1, Sn−1) → Sn−1

sending h 7→ h(e1). James [J1] shows that this is also a fibration.
Note that the Stiefel manifold Vs(Rn) is a subspace of TopZ/2(Ss−1, Sn−1) in the

evident way, and that the following diagram commutes:

Vs(Rn) //

p1 $$

TopZ/2(Ss−1, Sn−1)

ev
vv

Sn−1.

James [J1, Theorem 6.5] proved that Vs(Rn) ↪→ TopZ/2(Ss−1, Sn−1) is [2(n−s)−1]-
connected, and this is the crucial point of the whole argument.

Suppose f : RP r−1 × RP s−1 → RPn−1 is an axial map. By the homotopy ex-
tension property we can assume that f(∗,−) and f(−, ∗) are both equal to the
canonical embeddings, where ∗ refers to some chosen basepoints in RP r−1 and
RP s−1. The axial map f gives a map F : RP r−1 → Top(RP s−1,RPn−1) by ad-
jointness. Regard the target as pointed by the canonical embedding j, and note
that F is a pointed map.

Covering space theory gives that there is a unique map F̃ : Sr−1 →
TopZ/2(Ss−1, Sn−1) such that F̃ (∗) is the canonical embedding Ss−1 ↪→ Sn−1 and
such that the diagram

Sr−1 F̃ //

��

TopZ/2(Ss−1, Sn−1)

��
RP r−1 F // Top(RP s−1,RPn−1)

commutes. We claim that F̃ is Z/2-equivariant, and that the composition ev ◦F̃ is
the standard inclusion Sr−1 ↪→ Sn−1. Both of these are easy exercises in covering
space theory. The latter statement depends on the so-far unused portion of the
axial map condition on f .
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If r − 1 ≤ 2(n − s) − 1 then by James’s connectivity result the map F̃ can
be factored up to homotopy through Vs(Rn). Moreover, this can be done in the
category of Z/2-equivariant pointed spaces over Sn−1 (the only hard part here
is the Z/2-equivariance, and for this one uses that Sr−1 has an equivariant cell
decomposition made from free Z/2-cells). In this way one produces the relevant
equivariant section of the map Vs(Rn)→ Sn−1. �

Remark 40.16. We have included the above proposition because it is very useful
as a reference. However, it should be pointed out that there is something slightly
deceptive about part (d). Some of the implications are more obvious than the long
chains would suggest. For example, NS[r, s, n] ⇒ AX[r − 1, s − 1, n − 1] is a very
easy argument of one or two lines. Likewise, NS[r, s, n] ⇒ GD[r − 1, s, n] is just
the argument in Proposition 40.6. The picture in (d) is useful in showing all the
relations at once, but it makes some of the statements seem more distant than they
really are.

The reader will have noticed that Proposition 40.15 encodes several things that
we have seen before. Some are transparently familiar, like parts (a) and (b). A less
transparent example is

SS[r, n, n] ⇐⇒ SS[n, r, n]⇒ T[n− 1, r − 1, n− 1]⇒ VF[r − 1, n− 1].

This was the content of Corollary 15.10. In constrast, here is a similarly-obtained
implication that we have not seen yet:

NS[r, r, n]⇒ GD[r − 1, r, n] ⇐⇒ IM[r − 1, n− 1].

From this we learn that immersion results for real projective space can be obtained
by demonstrating the existence of nonsingular bilinear maps. This approach was
successfully used by K.Y. Lam in [L1]. We briefly sketch his method simply to give
the basic idea; for details the reader may consult [L1] and similar papers.

Recall that O denotes the octonions. Consider the map f : O2 ×O2 → O3 given
by

f
(
(u1, u2), (x1, x2)

)
= (u1x1 − x2u2, x2u1 + u2x1, u2x2 − x2u2).

With a little work one can prove that this is nonsingular. Also, it is a general
fact about the octonions that for any a, b ∈ O the commutator [a, b] = ab − ba
is imaginary. So the image of f actually lies in the 23-dimensional subspace of
O3 where the real part of the third coordinate vanishes. So f gives a nonsingular
bilinear map of type [16, 16, 23]. This shows that RP 15 immerses into R22. By
restricting f to appropriate subspaces Lam also obtained nonsingular bilinear maps
of types [11, 11, 17], [13, 13, 19], and [10, 10, 16], thereby proving that RP 10 immerses
into R16, RP 12 immerses into R18, and RP 9 immerses into R15.

40.17. Summary. In this section we examined the sums-of-squares problem, and
saw how characteristic classes can be used to obtain lower bounds for the numbers
r∗s. Use of Stiefel-Whitney classes in singular cohomology yielded the Hopf-Stiefel
lower bounds on r ∗ s, whereas the use of the γ-classes in KO-theory gave the
Yuzvinsky lower bounds. This story is very similar to the one for immersions of
RPn discussed in Section 39, and in fact the sums-of-squares problem is closely
connected to this immersion problem. We closed the section by exploring the
relations between these and a host of similar problems.
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Part 6. Bott periodicity

Bott periodicity is a deep result, and we will spend several sections exploring it
from different perspectives. What do I mean by “deep”? There are many instances
in mathematics where, once you learn to look at a result in just the right way, you
say to yourself “I could have guessed that.” This doesn’t mean it is easy to prove,
but at least you have understood the result at some intuitive level. Then there are
other results where, no matter how you look at it, you can’t quite get to that “I
could have guessed this” spot. For me, Bott periodicity is in this latter category.

A simpler example I like to mention of a “deep” result is the Pythagorean Theo-
rem. Although I know several proofs of this fact—some of them quite simple!—down
in my bones I suppose I have never felt like I truly know why the universe has to
be that way. For me (sadly) the Pythgorean Theorem remains an unenlightening
computation.

Of course, once one has the Pythagorean Theorem it becomes an absolutely cru-
cial tool for exploring geometry, used at almost every turn in the road. It becomes
part of one’s thinking, and is a fundamental technique by which one understands
more complicated results in geometry. There is a sense in which one gets to “under-
stand” the Pythagorean Theorem just by learning to use it so well. Bott periodicity
is also kind of like this. There are by now many different proofs, and once one has
the result it opens entire worlds—one of these is the world of K-theory, that we
have spent this whole book exploring. So one approach is just to accept Bott peri-
odicity the same way as one accepts the Pythagorean Theorem, as a fundamental
computation that will get used over and over again, and not worry to much about
whether one could have “guessed” it. But I can’t help feeling that one day we might
have a deeper understanding.

While I do not know a way to “guess” the Bott periodicity theorems, I want to
offer a very rough picture that the reader can keep in their head as a first approxi-
mation to the story. First, it is a basic fact in homotopy theory that ΩBG ' G for
any topological group G; so we get Ω(Z×BU) ' U for free. Bott periodicity comes
from a calculation of ΩU , or of ΩU(n) for large n. For (at the moment) unexplained
reasons we will replace this with the homotopy equivalent space ΩI,−IU(n) of paths
from I to −I. If H ⊆ Cn is a complex subspace, then we can make an easy example
of such a path by multiplying vectors in H by eπit and vectors in H⊥ by e−πit, as t
goes from 0 to 1. So we are doing a (gradual) complex rotation on H and the oppo-
site rotations on H⊥. There are, of course, many types of paths on U(n) other than
these simple ones—but the fundamental calculation of Bott is that as n gets large
these simple paths represent more and more of the homotopy type of ΩI,−IU(n).
So in a large range that grows with n we have that ΩI,−IU(n) is weakly equivalent
to the space of all H, which is the Grassmannian Gr•(Cn) =

∐
k Grk(Cn). This

space has n + 1 components, but in the stabilization process (which has both k
and n going to infinity) it becomes a Z’s worth of components and we get Z×BU .
Thus we arrive at the Bott equivalence ΩU ' Z×BU .

There are, of course, lots of questions to answer here. Why do these simple H-
paths constitute a large range of the homotopy type of ΩI,−IU(n)? What exactly
is going on in the stabilization process? (It is trickier than you might expect!) But
the above paragraph does an adequate job of giving a very quick picture of what
Bott periodicity is about.
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What about periodicity for the orthogonal group O? Here one looks at the
space ΩI,−IO(2n) and observes that for every orthogonal complex structure J on
R2n (an orthogonal transformation such that J2 = −I) the formula t 7→ eπtJ gives
a very simple path from I to −I. Note that the condition J2 = −I gives that
esJ = cos(s)I + sin(s)J . The Bott arguments show that the homotopy type of
ΩI,−IO(2n) is approximated in a large range by the space of these “simple” paths—
i.e., by the space of all such J . This is the space of complex structures on R2n.
As one iterates this procedure one finds that paths of complex structures (from a
chosen J to −J) are approximated by spaces of quaternionic structures, and very
quickly one finds the real Clifford algebras appearing. The eightfold periodicity of
the Clifford algebras reappears in the analysis of these iterated loop spaces, so that
Ω8O turns out to be O again. And that—in a nutshell—is real Bott periodicity. It
is a complicated nutshell, but we will spend the next several sections filling in the
details.

41. Periodicity via Bott-Morse theory

Bott’s original approach to the periodicity theorems was through Morse theory
and the analysis of geodesics on Lie groups and their homogeneous spaces. Later
approaches have tried to eliminate as much of the Morse and Lie theory as possible,
but I’m not sure how helpful this is in the end. There is something important hidden
in the Bott-Morse arguments that is worth understanding, so this is where we are
going to begin our journey.

41.1. Brief tour of Morse theory. Let X be a smooth manifold, and let h : X →
R be a smooth function with nondegenerate critical points—this means that the
Hessian matrix of second partial derivatives has full rank at these points. Such
critical points are isolated (by the Taylor approximation), and to each one we
can associate an index: geometrically, this is the number of directions on the
manifold where the function h is decreasing . Algebraically, the index is the number
of negative eigenvalues of the Hessian matrix. The canonical example is the height
function on the torus, as depicted in the following picture:

b

b

b

bindex=2

index=1

index=1

index=0

h

b

b

b

b 0

1

2
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In Morse theory one looks at the spaces X≤c = h−1((−∞, c]) and studies the
changes as c increases. The homotopy type of X≤c changes precisely when c is a
critical value, and the change is equivalent to a cell attachment where the dimension
of the cell is the index of the corresponding critical point. So in the example from
the picture we get



A GEOMETRIC INTRODUCTION TO K-THEORY 409

c < 0: Xc ' ∅
0 ≤ c < 1: Xc ' pt
1 ≤ c < 2: Xc ' e0 ∪ e1 = S1

2 ≤ c < 3: Xc ' e0 ∪ e1 ∪ e1 = S1 ∨ S1

3 ≤ c <∞: Xc ' e0 ∪ e1 ∪ e1 ∪ e2 = X.

Here are drawings depicting samples from the four nonempty stages:

Morse showed that when X is a Riemannian manifold one can apply similar
techniques to study the loop space ΩX, taking h to be a certain “energy functional”.
The space ΩX is no longer a finite-dimensional manifold but with some care the
techniques still work (this is similar to what happens in the classical calculus of
variations). It will be useful to modify the loop space slightly, though. Choose
P,Q ∈ X and let ΩP,QX denote the space of paths which begin at P and end at Q.
When P = Q we will simplify the notation to ΩPX. If γ is any fixed path from Q
to P , post-composition with γ and γ−1 gives the maps in a homotopy equivalence
ΩP,QX ' ΩPX.

We need to next restrict to the subspace ΩsmP,QX ↪→ ΩP,QX consisting of piece-
wise C∞ paths. The inclusion can be shown to be a homotopy equivalence [Mi1,
Theorem 17.1]. We define the “energy functional” E : ΩsmP,Q(X)→ R by

E(γ) =

∫ 1

0

∣∣∣dγ
dt

∣∣∣2 dt
where the norm of dγ

dt is of course defined via the Riemannian metric on X. The
details of E are not so important here, but the crucial fact is that the critical points
of E are the geodesics on X. The index of a geodesic is the dimension of a space
of certain kinds of “small variations”. We will demonstrate this concept with the
example of X = Sn for n ≥ 2.

The main observation about the sphere is that there is a unique minimal geodesic
between points P and Q except when they are antipodal. In the antipodal case,
there is a whole family of minimal geodesics—and that family is precisely an Sn−1,
parameterized by the midpoint of the geodesic (where it intersects the equator).

First consider the case where P and Q are generically positioned. Without loss of
generality we assume P is the north pole, and Q is any point other than −P . There
is exactly one minimal geodesic from P to Q, and there are no “variations” on this
geodesic—so it has index 0. Next, there is the geodesic from P to Q going around
the sphere in the opposite direction, passing through −P . The part of the geodesic
going from P to −P allows for “variation”, though, as we discussed above—the
dimension of such variations is n− 1, so that is the index of this geodesic.

Continuing on, the next longest geodesic from P to Q is the one that takes the
short path from P to Q but then contines all the way around the sphere—passing
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through −P and P—before once again returning to Q. For this geodesic we get
variations for the portion from P to −P , but then also for the portion from −P
back to P—so that is (n − 1) + (n − 1) dimensions of variation. Proceeding in
this way, one finds that the geodesics from P to Q have indices 0, n− 1, 2(n− 1),
3(n− 1), and so forth. So Morse theory ends up telling us that

ΩP,QS
n ' e0 ∪ en−1 ∪ e2(n−1) ∪ · · · .

As we described above, Morse’s original techniques assume that the critical points
of h are isolated. In more general settings one might instead have that the inverse
image of a critical value is a subspace of positive dimension. Bott extended Morse
theory so that it could be applied in these settings; while it still gives a decompo-
sition of the space X, the components are not just cells—they will be disk bundles
of vector bundles over the critical subspaces instead. As an example, consider now
the space ΩP,−PS

n. We don’t have a single minimal geodesic from P to −P like we
did before—we have a whole family of minimal geodesics, forming the space Sn−1.
This is our index 0 piece of the decomposition. The other geodesics all have index
at least 2(n− 1), so even without analyzing them in detail we find that

(*) ΩP,−PS
n ' Sn−1 ∪ (cells of dimension at least 2(n− 1)).

Even this limited knowledge is substantial; for example, it is enough to prove the
Freudenthal Suspension Theorem! Fix a minimal-length geodesic γ from P to −P ,
and consider the map f : Sn−1 → ΩPS

n that sends a point x to the path “follow the
geodesic from P to −P that passes though x, then follow γ−1 back to P ”. This is
essentially the map Sn−1 → ΩSn that is adjoint to the identity ΣSn−1 → Sn (one
should contract the image of γ to identify Sn with the reduced suspension of Sn−1).
The Bott-Morse decomposition of (*) tells us that f induces isomorphisms on πi for
i ≤ 2n−4 and an epimorphism for i = 2n−3, which implies that the suspension map
πi(S

n−1) → πi+1(Sn) has the same behavior. This is the Freudenthal Suspension
Theorem.

Remark 41.2. Consider now the case of S1. There are two minimal geodesics
from a point P to −P , corresponding to the two ways of going around the circle.
So the space of minimal geodesics is S0, and we have the decomposition

ΩP,−PS
1 ' S0 ∪ (other cells).

Note that ΩP,−PS
1 ' Z, so this decomposition gives an accurate approximation

but only on two of the components. The issue here is that we have non-minimal
geodesics that also have index zero, and so give rise to 0-cells. In fact, all of the
geodesics have index 0, and the Z is exactly parameterizing the different geodesics.

This is not just an idle example. In our work below we will often enounter
situations where ΩX is not connected and the minimal geodesics only tell us about
some of the components. Of course in a loop space all of the components are
homotopy equivalent, so as soon as we understand one we understand them all.
But the existence of non-minimal geodesics of small index (in particular, index 0)
will sometimes get in the way of us being able to specify how close an approximation
the space of minimal geodesics is to ΩX.

41.3. Applying Bott-Morse theory to the unitary group. We will consider
the group U(n) and attempt to analyze geodesics from I to −I. Let us recall how
the basic Lie theory works. For A in the tangent space at the identity, the path
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t 7→ etA is a geodesic in U(n) whose tangent vector at t = 0 is A. The condition
that etA is unitary is I = etA(etA)† = etAetA

†
. Applying d

dt

∣∣
t=0

gives the equation
0 = A+A†. Conversely, this equation implies that A and A† commute and therefore
etAetA

†
= et(A+A†) = e0 = I. So the tangent space TIU(n) consists precisely of the

skew-Hermitian matrices.
The maximal torus in U(n) has rank n and consists of the diagonal matrices,

so the tangent space of the torus is the subspace DskH of skew-Hermitian diagonal
matrices. We identify this with Rn via (r1, . . . , rn) 7→ diag(ir1, . . . , irn). Every
element of TIU(n) is conjugate (via the adjoint action of U(n), which is literally
matrix conjugation) to an element of DskH .

Finding geodesics from I to −I is the same as finding all skew-Hermitian matrices
A for which t 7→ etA passes through −I when t = 1. By conjugating, we can assume
that A is diagonal. Therefore A = diag(k1πi, . . . , knπi) for some odd integers kj .
One can check that the minimal geodesics are the ones for which all the kj ’s are
1 or −1. Our space of minimal geodesics is the set of U(n)-conjugates of these.
Since U(n) contains the permutation matrices, we reduce to thinking about the
conjugates of the matrices Dr = diag(πi, . . . , πi,−πi, . . . ,−πi) where πi occurs r
times and −πi occurs n − r times. The stabilizer of Dr is readily checked to be
U(r)× U(n− r), and so our space of minimal geodesics is

n∐
r=0

U(n)/(U(r)× U(n− r)) ∼=
n∐
r=0

Grr(Cn).

We can also think about this isomorphism in terms of eigenspaces. We are look-
ing at skew-Hermitian matrices whose only eigenvalues are πi and −πi. Because
they are skew-Hermitian, the eigenspaces must be orthogonal—hence knowing one
eigenspace determines the other. So the conjugacy classes are determined by the
πi-eigenspace.

In this way we have produced a map
n∐
r=0

Grr(Cn)
β−→ ΩI,−IU(n)

that sends a subspace H ⊆ Cn to the geodesic t 7→ etA where A is the unique linear
transformation Cn → Cn which is multiplication by πi on H and multiplication by
−πi on H⊥. This map β is called the Bott map. The appearance of the disjoint
union in the domain is a little annoying at first, but in retrospect something like
this is expected. Recall that π1U(n) ∼= Z, with the isomorphism induced by the
determinant map det : U(n) → S1. So π0(ΩU(n)) ∼= Z, meaning that ΩU(n) has
countably many path components. Our map β is touching n+1 of these components.
How do we understand which components? We use det : U(n) → S1 to induce a
map ΩI,−IU(n) → Ω1,(−1)nS

1, and this is a bijection on path components. The
path components of the target can be indexed by integers k, with one possible
correspondence having k associated to the path t 7→ etπi(2k−n). If H ⊆ Cn has
dimension r then the map “multiplication by eπit on H and multiplication by e−πit
on H⊥” has determinant eπi(2r−n) and therefore β(H) is in the path component of
ΩI,−IU(n) labelled by r.

The appearance of the disjoint union causes some issues in our Bott-Morse ar-
guments, as in Remark 41.2. We will come back to this, but for the moment let us
take an approach that gets us around that issue. Assume n = 2k and consider only
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the portion Grk(C2k)→ ΩI,−IU(2k) of the Bott map. The image consists of conju-
gates of the geodesic t 7→ diag(eπit, . . . , eπit, e−πit, . . . , e−πit) where eπit and e−πit
both appear k times. Such matrices (and their conjugates) all have determinant
equal to 1, and so these are geodesics lying in SU(2k). The loop space of SU(2k) is
path-connected, so we can save some trouble by just working here. We have found
that the space of minimal geodesics from I to −I is the space Grk(C2k).

With a little effort one can analyze the non-minimal geodesics in SU(2k)
and calculate their index: for the geodesic corresponding to the matrix A =
diag(πir1, . . . , πir2k) (with all ri odd and

∑
ri = 0) the index turns out to be

index =
∑
ri>rj

(ri − rj − 2).

We refer the reader to [Bott] or [Mi1] for this calculation. When half the r’s are 1
and the other half −1, this gives index 0—as expected for minimal geodesics. In
all other cases one can readily prove that the index is at least 2k + 2 (a sequence
giving this minimum is 3 followed by k − 2 copies of 1, followed by k + 1 copies of
−1). So Bott-Morse theory gives us that

ΩI,−ISU(2k) ' Grk(C2k) ∪ (cells of dimension (2k + 2) and higher).

From here we get that πiΩSU(2k) ∼= πi Grk(C2k) for i ≤ 2k. But then for each
i ≥ 2 we can choose a large enough k and argue that

πiU = πiU(2k) = πiSU(2k) = πi−1ΩSU(2k) ∼= πi−1 Grk(C2k)

= πi−1 Grk(C∞)

= πi−1BU(k)

= πi−2(ΩBU(k))

= πi−2(U(k))

= πi−2U.

In the fifth isomorphism we have used that Grk(C∞) is obtained from Grk(C2k) by
adding (2k+2)-cells and higher, which follows from the standard cell decompositions
for the Grassmannians. So we have now proven the most primitive version of Bott
periodicity, namely the isomorphisms πtU ∼= πt+2U for t ≥ 0.

We can perform the stabilization at the level of spaces rather than after taking
homotopy groups, but this involves a little care. The issue is that we are dealing
with paths from I to −I, and these do not map to similar paths under the inclusion
SU(2n) ↪→ SU(2n+ 2). So we have to change back to paths from I to I.

Let e1, . . . , en be the standard basis for Cn. LetM2n = Cn⊕Cn, where the basis
for the first copy of Cn is denoted e+

1 , . . . , e
+
n and the basis for the second copy is

e−1 , . . . , e
−
n . From now on when we write U(2n) we mean the group of unitary

automorphisms of M2n. Let γ : I → SU(2n) be the path from I to −I given by

γ(t) = diag(e−πit, . . . , e−πit, eπit, . . . , eπit)

(with n copies of e−πit and n copies of eπit). For any other path α from I to −I,
write αγ for the path t 7→ α(t)γ(t), which is a loop at I. This gives a homeomor-
phism Γn : ΩI,−ISU(2n)→ ΩISU(2n).
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Now consider the following diagram:

Grn(M2n)

jn
��

β // ΩI,−I(SU(2n))
Γn //

g

��

ΩISU(2n)

��
Grn+1(M2(n+1))

β // ΩI,−I(SU(2(n+ 1)))
Γn+1// ΩISU(2(n+ 1)).

Here jn sends a subspace W ⊆ M2n to W ⊕ 〈e+
n+1〉 ⊆ M2(n+1). For the map g, if

u : [0, 1]→ SU(2n) is a path from I to−I we define (gu)(t) = u(t)⊕diag(eπit, e−πit).
The right vertical map is induced by the standard inclusion of SU(2n) into SU(2(n+
1)), namely A 7→ A⊕ id.

We need to check that the diagram commutes. Commutativity of the right-most
square is easy. Commutativity of the left square follows after one remembers that
the map β sends a subspace H to the path which at time t scales H by eπit and
scales H⊥ by e−πit. Note that jn can be thought of as “adding e+

n+1 to H and
adding e−n+1 to H⊥”.

Taking vertical colimits (as n → ∞) in the above diagram, the first and third
columns yield a map colimn Grn(M2n) → ΩISU . This also goes under the name
“the Bott map”, and will be denoted β∞ (sometimes we will drop the subscript,
though). Since the horizontal composites Γn◦β become arbitrarily highly connected
as n goes to ∞, the map β∞ is a weak equivalence. It only remains to understand
the homotopy type of the colimit in the domain. For this, consider the doubly
infinite diagram

Gr1(C1
+ ⊕ C1

−) //

��

Gr1(C1
+ ⊕ C2

−) //

��

Gr1(C1
+ ⊕ C3

−) //

��

· · · +3 Gr1(C∞)

��
Gr2(C2

+ ⊕ C1
−) //

��

Gr2(C2
+ ⊕ C2

−) //

��

Gr2(C2
+ ⊕ C3

−) //

��

· · · +3 Gr2(C∞)

��
...

...
...

...

The horizontal maps are induced by inclusions Cp+ ⊕ Cq− ↪→ Cp+ ⊕ Cq+1
− , whereas

the vertical maps send a subspace W ⊆ Cp+ ⊕ Cq− to the subspace W ⊕ 〈e+
p+1〉 ⊆

Cp+1
+ ⊕ Cq−. The space colimn Grn(M2n) is the colimit along the diagonal of the

above diagram, and so is canonically isomorphic to the space obtained by first
taking horizontal colimits and then vertical colimits. That is, colimn Grn(M2n) '
Gr∞(C∞) ' BU .

As the last topic of this section we describe an approach to understanding ΩU
that handles all of the components at once, rather than just focusing on the ΩSU =
(ΩU)0 component.

Write Cp,q as an abbreviation for Cp ⊕ Cq where the first summand has basis
e+

1 , . . . , e
+
p and the second summand has basis e−1 , . . . , e

−
q . It will be convenient to

write Cp+ for the first summand and Cq− for the second. For p ≤ p′ and q ≤ q′ we
have the evident inclusions Cp,q ⊆ Cp′,q′ . Write Gr• Cp,q for

∐
k Grk(Cp,q). Let us

also write U(p, q) for the group of unitary automorphisms of Cp,q, though note that
there is an evident identification U(p, q) ∼= U(p+ q).
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Let γ : [0, 1] → U(p, q) be the path γ(t) = e−πit|Cp+ ⊕ eπit|Cq− . That is, γ(t)

multiplies positive basis elements by e−πit and negative basis elements by eπit. For
a subspace H ⊆ Cp,q, let ΦH : [0, 1] → U(p, q) be the path where ΦH(t) multiplies
elements of H by eπit and elements of H⊥ by e−πit. Define βH(t) = ΦH(t) · γ(t).
Then βH is a loop based at I, so that we have a map β : Gr•Cp,q → ΩIU(p + q).
The following property will be important to us:

(**)
For all t, the linear map βH(t) is the identity when restricted to
H ∩ Cp+ or to H⊥ ∩ Cq−.

For H ∈ Grk(Cp,q) the unitary transformation ΦH(t) has determinant equal
to ekπit · e−(p+q−k)πit = e(2k−p−q)πit. The transformation γ(t) has determinant
e−pπit · eqπit = e(q−p)πit. So detβH(t) = e2(k−p)πit. Therefore β maps Grk(Cp,q)
into the component [ΩIU(p, q)]k−p. For this reason, let us label the components of
Gr•(Cp,q) so that Grk is the “k − p component”. So the components of Gr•(Cp,q)
are labelled as −p,−(p− 1), . . . , q − 1, q.

We now consider the following lattice diagram, consisting of two kinds of stabi-
lizations:

Gr•C1,1 //

��

Gr• C1,2 //

��

Gr• C1,3 //

��

· · ·

Gr•C2,1 //

��

Gr• C2,2 //

��

Gr• C2,3 //

��

· · ·

Gr•C3,1 //

��

Gr• C3,2 //

��

Gr• C3,3 //

��

· · ·

...
...

...

(41.4)

The horizontal maps consist of the evident inclusions Grk(Cp,q) ↪→ Grk(Cp,q+1)
(“add e−q+1 to the complement of the subspaceH”), whereas the vertical maps consist
of the inclusions Grk(Cp,q) ↪→ Grk+1(Cp+1,q) (“add e+

p+1 to the subspace H”). Note
that both horizontal and vertical maps respect the labels on the components—that
is, in all cases the component with label x is sent to the component with the same
label x. The colimit across the top row is a disjoint union

∐
k≥0 Grk(C∞), with

components labelled −1 and higher. Taking colimits across each row gives the
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diagram

· · · -2 -1 0 1 · · ·

Gr0(C∞)

��

q Gr1(C∞)

��

q Gr2(C∞)

��

q · · ·

Gr0(C∞)

��

q Gr1(C∞)

��

q Gr2(C∞)

��

q Gr3(C∞)

��

q · · ·

. .
. ...

...
...

...

where in the first row the components are labelled with −1 and higher, in the second
row with −2 and higher, and so on. So the colimit of the entire diagram is Z×BU .

Now consider the corresponding lattice of unitary groups:

U(1, 1) //

��

U(1, 2) //

��

U(1, 3) //

��

· · ·

U(2, 1) //

��

U(2, 2) //

��

U(2, 3) //

��

· · ·

U(3, 1) //

��

U(3, 2) //

��

U(3, 3) //

��

· · ·

...
...

...

Here both horizontal and vertical maps are induced by the inclusions Cp,q ↪→ Cp′,q′ .
The colimit of the diagram is U(C∞ ⊕C∞) and therefore a model of the group U .

The Bott maps β give a map of diagrams from the array of Grassmannians
to ΩI applied to the array of unitary groups. One readily checks that property
(**) above implies that all the squares commute. Taking colimits gives us the map
Z×BU → ΩIU . The Bott-Morse arguments imply that taking colimits in each row
gives us a map that is a weak equivalence on the components that are hit, and then
taking the colimit in the vertical direction allows us to hit all of the components.
So our map Z×BU → ΩIU is a weak equivalence.

41.5. Geodesics on the orthogonal group. Analyzing geodesics on O(n) is
fairly similar to what we did for U(n), but just different enough so that the space
of minimal geodesics is not a Grassmannian anymore. This immediately dashes the
chances for the kind of 2-fold periodicity we saw before. In a moment we will see
precisely what the space of minimal geodesics is, but before diving into the analysis
let us talk about the big picture.

The space of minimal geodesics turns out to be another Lie-theoretic space: not
a Lie group, but a Riemannian submanifold of a Lie group having the property that
geodesics that start tangent to the submanifold never leave it (like the equator of a
sphere). So one can apply the Bott technique again to analyze its loop space. In this
manner one gets yet another space of minimal geodesics (technically the minimal
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geodesics on the space of minimal geodesics), which again ends up Lie-theoretic in
nature. So one continues in this process, and after seven times something magical
happens in that one finally encounters the real Grassmannian—so that after looping
one more time one gets back to the orthogonal group.

Part of what is challenging in navigating this argument is keeping track of the
eight spaces and their various relations to each other. So let us spend some time
on this topic before diving into details.

The key players are the orthogonal, unitary, and symplectic groups: O(n), U(n),
and Sp(n). These are the space of inner-product preserving linear automorphisms
of Rn, Cn, and Hn. As matrix groups they consist of n × n matrices A of (real,
complex, quaternionic) numbers such that A†A = I where (−)† is the conjugate-
transpose. The inclusions R ↪→ C ↪→ H therefore induce standard inclusions of
groups O(n) ⊆ U(n) ⊆ Sp(n).

However, we can also think of H as C2 (or C as R2). When we do this, every
symplectic map Hn → Hn is a unitary map C2n → C2n, and every unitary map
Cn → Cn is an orthogonal map R2n → R2n. So we get inclusions Sp(n) ↪→ U(2n)
and U(n) ↪→ O(2n).

Now let us discard the indices by passing to the direct limit groups O, U , and Sp.
The following “clock” shows the six inclusions we have just mentioned and includes
two extra terms we will explain presently:

O // U

&&
O ×O

::

Sp

��
O

OO

Sp× Sp
yy

U

dd

Spoo

Here the inclusions O → O×O and Sp→ Sp×Sp are the diagonals. The inclusion
O×O → O comes from writing R∞ = R∞⊕R∞ (think of separating the even and
odd basis elements), and then sending a pair of orthogonal transformations (A,B)
to the transformation that does A on the first copy of R∞ and B on the second.
The inclusion Sp× Sp→ Sp is defined similarly.

Okay, we are almost done. Now go back to the above clock and label each arrow
with the corresponding group quotient, with the provisos that (G × G)/G = G
and G/(G × G) = Z × BG (of course these are not really group quotients, cf.
Remark 41.9):

O
U/O // U

Sp/U

&&
O ×O

Z×BO ::

Sp

Sp��
O

O

OO

Sp× Sp
Z×BSpyy

U
O/U

dd

Sp
U/Sp
oo
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What Bott’s arguments will show is that applying loops to a label on an arrow
gives the label on the preceding arrow:

Ω(Z×BO) ' O Ω(Z×BSp) ' Sp
ΩO ' O/U ΩSp ' Sp/U
Ω(O/U) ' U/Sp Ω(Sp/U) ' U/O
Ω(U/Sp) ' Z×BSp Ω(U/O) ' Z×BO.

Note that we can now get the homotopy groups for O (or really, any of the arrow
labels) by simply knowing π0 of all the spaces involved. We know that O has
two path components, whereas U and Sp both have only one. So O/U still has
two components, whereas U/O, U/Sp, and Sp/U are all connected. Starting with
Z × BO and moving counterclockwise, the π0 values are therefore Z, Z/2, Z/2, 0,
Z, 0, 0, 0, Z. Voila!

Exercise 41.6. Use the above octagon to work out all the homotopy groups of
U/O, Sp/U , and U/Sp.

Remark 41.7. Our circle of groups is called the “real Bott periodicity clock”. It
is very easy to remember, via the following method. Write down the groups O, U ,
Sp in order (which is the order of R, C, and H) and then on the other side of the
clock write them in reverse order. Between the two O’s write O ×O, and between
the two Sp’s write Sp×Sp. It doesn’t matter which direction you draw the arrows,
as long as they all point in the same direction. The formula Ω(Z × BO) ' O will
tell you which way the loop-relations go. If you were stuck on a desert island and
needed to remember the spaces in the Ω-spectrum for KO, this is a way to do so.

Exercise 41.8. Work out the homotopy groups of U/O, O/U , and all of the other
spaces in the Bott periodicity clock. Even better, work out a method for directly
reading these off of the Bott periodicity clock that only requires remembering the
number of components of O, U , and Sp.

Remark 41.9. It will take us a while to explain the meaning of the “quotients”
(G × G)/G = G and G/(G × G) = Z × BG. The first is perhaps not so strange,
but the second begs some hint of an explanation. Consider O(n)×O(n) ↪→ O(2n),
where the former is the evident subgroup of block diagonal matrices. The quotient
in spaces is O(2n)/(O(n)× O(n)) ∼= Grn(R2n). Stabilizing with n gives a familiar
model of the space BO. This doesn’t explain the extra Z factor, but it does (sort
of) give a way of rationalizing the mnemonic G/(G×G) = Z×BG.

Here are the precise statements that come out of the Bott-Morse argument with
minimal geodesics:

ΩO(2n) ' O(2n)/U(n) ∪ (cells of dimension ≥ 2n− 2)

Ω[O(4n)/U(2n)] ' U(2n)/Sp(n) ∪ (cells of dimension ≥ 4n− 2 )

Ω0[U(4n)/Sp(2n)] ' Sp(2n)/(Sp(n)× Sp(n)) ∪ (cells of dimension ≥ 4n+ 4 )

ΩSp(n) ' Sp(n)/U(n) ∪ (cells of dimension ≥ 2n+ 2)

Ω[Sp(2n)/U(n)] ' U(n)/O(n) ∪ (cells of dimension ≥ n+ 1)

Ω0[U(2n)/O(2n)] ' O(2n)/(O(n)×O(n)) ∪ (cells of dimension ≥ n+ 1)
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Here Ω0 refers to the basepoint component of the loop space, whereas the actual
loop space has π0 = Z (coming from π1U(n) = Z). Here is the extra Z we were
missing in Remark 41.9.

Now that we have the lay of the land, let us take a look at the analysis of
ΩI,−IO(2n) (note that we need the dimension to be even in order for I and −I to be
in the same path component). The tangent space of O(2n) at the identity consists of
matrices A such that eAt lies in O(2n) for all t. So we get I = eAt(eAt)T = e(A+AT )t

and this implies that A + AT = 0. So the tangent space consists of the skew-
symmetric matrices. We take as our maximal torus T ⊆ O(2n) the set of rotation
matrices of the form Rθ1⊕ · · ·⊕Rθn where Rθ =

[
cos θ − sin θ
sin θ cos θ

]
. The corresponding

tangent vectors are matrices of the form D(r1, . . . , rn) := r1J ⊕ · · · ⊕ rnJ where
J =

[
0 −1
1 0

]
and r1, . . . , rn ∈ R. Lie theory tells us that every matrix A ∈ TIO(2n)

is conjugate to one of the above D(r1, . . . , rn) matrices, but in fact we can do a little
better. In O(2) the matrix J is conjugate to −J , and so we can assume that all
ri ≥ 0. (We can also use permutation matrices to ensure that r1 ≥ r2 ≥ · · · ≥ rn,
but will not need this).

Exercise 41.10. Check that J is conjugate to −J in O(2).

Our next task is to determine which matrices A ∈ TIO(2n) have the property
that t 7→ etA is a path from I to −I. Since eA = PeD(r)P−1, this is the con-
dition that eD(r) = −I. But note that erJ = cos(r)I + sin(r)J , so the previous
condition is equivalent to saying that each ri is a (positive) odd multiple of π. It
turns out (and is not surprising) that the minimal geoedesics are the ones where
ri = π for all i. The space of minimal geodesics is then homeomorphic to the
O(2n)-orbit space of πD(1, . . . , 1) under conjugation. If we think of D(1, . . . , 1)
as giving a complex structure on R2n (its square is −I, after all), the stabilizer of
D(1, . . . , 1) is the subgroup of orthogonal transformations that commute with this
complex structure—and this is precisely U(n). So our space of minimal geodesics
is O(2n)/U(n).

The final task is to analyze the indices of the non-minimal geodesics. A calcu-
lation shows that for the geodesics corresponding to π ·D(k1, . . . , kn), with the ki
odd positive integers, the index is

(n− 1)

[∑
i

ki − n
]

+
∑
ki>kj

(ki − kj − 2)

(see [Bott] or [Mi1] for this). The minimal case (1, . . . , 1) gives index 0 (as expected),
and the next largest case will be (3, 1, . . . , 1) which gives index 2n− 2. So all non-
minimal indices have index at least 2n − 2, and therefore the Bott-Morse theory
gives that

ΩO(2n) ' O(2n)/U(n) ∪ (cells of dimension ≥ 2n− 2).

◦ Exercises ◦

Now we will use the same techniques to analyze Ω[O(2n)/U(n)]. The first crucial
observation is that O(2n)/U(n)—our space of minimal geodesics from the above
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argument—can be identified with a certain subspace X of O(2n). Here is a picture
to keep in mind:

b

b

b b

O(2n)

X

I

−I

Jn

γ

−Jn

b

The geodesics γ on O(2n) starting at I are of the form t 7→ etA, and therefore
γ(1) = γ( 1

2 )2. So if the geodesic goes from I to −I, then its midpoint γ( 1
2 ) squares

to −I—that is, it gives a complex structure on R2n. This gives us our candidate
for X:

X = CS2n = {J ∈ O(2n) | J2 = −I}.
This is the space of orthogonal complex structure on R2n, and it will play the role
of the “equator” in the above picture. Let J1 =

[
0 −1
1 0

]
and Jn = J⊕(n)

1 denote the
standard complex structures. The following diagram of homeomorphisms will be
important for us:

{2n× 2n skew-symm. A with eigenvalues ±πi}
A7→e

1
2
A= 1

πA//

A 7→(t 7→etA)

��

CS2n

{minimal geodesics I → −I on O(2n)}
γ 7→γ( 1

2 )

33

The vertical map is a homeomorphism because geodesics are determined by their
tangent vector at I. For the horizontal map, note that if A is skew-symmetric with
eigenvalues ±πi then there is a P ∈ O(2n) such that PAP−1 = πJn. Then

e
1
2A = e

π
2 P
−1JnP = P−1e

π
2 JnP = P−1JnP = 1

πA.

The map A 7→ 1
πA is clearly a homeomorphism. The diagonal map is therefore also

a homeomorphism, by commutativity of the diagram.
All of the maps in the diagram are compatible with conjugation by O(2n). As

we have remarked before, the space in the upper left corner is a single O(2n)-orbit:
every such matrix A is conjugate to πJ. So in CS2n every element is conjugate to
J. The stabilizer of J is—by definition—the unitary group U(n) ⊆ O(2n). So we
have CS2n

∼= O(2n)/U(n).
We next want to compute the space of minimal geodesics in CS2n from J to

−J. However, we first need to deal with the fact that CS2n has two components
(corresponding to the two components in O(2n)). The path components are rep-
resented by J and −J1 ⊕ J⊕(n−1)

1 , and changing the sign on two of the J1 blocks
doesn’t change the path component. So J and −J are in the same path component
precisely when n is even. From now on we make this extra assumption.
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Exercise 41.11. Find a reflection in O(2) that conjugates J1 to −J1, and use this
to verify the assertions of the previous paragraph.

Observe that TJO(2n) = J · TIO(2n) = {JA |A skew-symmetric}. Given a tan-
gent vector JA ∈ TJO(2n), the corresponding geodesic is t 7→ JetA. For what values
of A does this geodesic lie in CS2n? We write

−I = JetAJetA = J2 + t(JAJ + J2A) + (higher order terms in t)

and we obtain the condition JAJ + J2A = 0, or JA = −AJ. Conversely, if we have
this anti-commuting condition then we can argue that

JetA · JetA = −JetAJ−1etA = −etJAJ−1

etA = −e−tAetA = −I.
This computation shows that

TJCS2n = {JA |A skew-symmetric and JA = −AJ}.
From this we find that the geodesics in CS2n from J to −J all come by applying
left-multiplation-by J to certain geodesics in O(2n) from I to −I—namely, ones
of the form t 7→ etA where A anti-commutes with J. The minimal such geodesics
will again be where A has eigenvalues ±πi, since that is the same condition for
minimality in O(2n).

We now get the following diagram of homeomorphisms:

{
2n × 2n skew-sym A with JA = −AJ
and eigenvalues ±πi

}
A 7→Je

1
2
A= 1

π JA//

A7→(t 7→JetA) ∼=

��

{
L ∈ O(2n), L2 = −I,
JL = −LJ

}

{minimal geodesics J→ −J in CS2n}
γ 7→γ( 1

2 )

33

We have already seen that the vertical map is a homeomorphism, and the horizontal
map is clearly injective. So we only need to check that the horizontal map is
surjective. But given an L in the target, we set A = −πJL and readily check that
A has the required properties to be a preimage.

The space in the upper right corner of the above diagram can be described as the
set of orthogonal quaternionic structures on R2n (remember that n is even) that
extend the fixed complex structure J. Recalling that U(n) ⊆ O(2n) is the subgroup
of automorphisms that commute with J, conjugation by U(n) acts on all the spaces
in the above diagram. By Lemma 41.12 below, the U(n)-action is transitive. For
a fixed L, the stabilizer of L is precisely Sp(n2 ). So the orbit of L is U(n)/Sp(n2 ),
and this is our space of minimal geodesics.

One can now proceed, as Bott did, to use the same techniques to analyze
Ω[U(2n)/Sp(n)], and so on. At each stage something very similar happens, though
the patterns are not perhaps totally manifest at first. This is where Clifford alge-
bras enter the story, as they give a nice way of organizing what is happening in this
process. We will pick this thread up in the next section.

The following result from linear algebra is a leftover piece from our above anal-
ysis:
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Lemma 41.12. Consider Cn with its standard Hermitian product 〈−,−〉. For
x, y ∈ Cn let x · y = Re(〈x, y〉) be the associated real inner product. Sup-
pose L : Cn → Cn is conjugate-linear (i.e. L(ix) = −iL(x)), orthogonal (pre-
serves the dot product), and L2 = −I. Then n is even and there exists a uni-
tary map P : Cn → Cn such that P−1LP equals the map j : Cn → Cn where

j(ek) =

{
ek+1 if k is odd,
−ek−1 if k is even.

Proof. First note that the Hermitian inner product is recovered from the dot prod-
uct by the formula 〈x, y〉 = (x · y) + i(x · iy). This follows at once from the formula
〈x, iy〉 = −i〈x, y〉. Consequently, we obtain

〈Lx,Ly〉 = (Lx · Ly) + i(Lx · iL(y)) = (x · y) + i(Lx · −L(iy))

= (x · y)− i(x · iy)

= 〈x, y〉.
Equivalently, 〈x, y〉 = 〈Lx,Ly〉. As a corollary we find that 〈x, Lx〉 = 0 for all x,
since

〈x, Lx〉 = 〈Lx,L2x〉 = −〈Lx, x〉 = −〈x, Lx〉.
Let a1 denote any unit vector in Cn, and let b1 = L(a1). Note that b1 is also a unit

vector, since L is orthogonal. Moreover, 〈a1, b1〉 = 〈a1, La1〉 = 0. Consequently,
the vectors a1, b1 are C-linearly independent.

Let H = Span{a1, b1}⊥, the orthogonal complement with respect to the Her-
mitian inner product. Then L restricts to a map H → H, and we proceed by
induction. In this way we establish that n is even and we produce a unitary basis
a1, b1, . . . , ar, br (n = 2r) where L(ak) = bk. Let P : Cn → Cn be the transforma-
tion given by e2k−1 7→ ak, e2k 7→ bk. Then P−1LP has the desired form, and since
a, b is a unitary basis the transformation P is unitary. �

◦ Exercises ◦

Exercise 41.13. Knowing the groups π∗(U/O) and π∗(O/U), analyze the long
exact sequences for the fibrations O → U → U/O and U → O → O/U to determine
what all of the maps are. Verify that

πi(O)→ πi(U) is


multiplication by ±2 when i ≡ 3 mod 8,
multiplication by ±1 when i ≡ 7 mod 8,
zero otherwise.

Likewise,

πi(U)→ πi(O) is


the projection Z→ Z/2 when i ≡ 1 mod 8,
multiplication by ±1 when i ≡ 3 mod 8,
multiplication by ±2 when i ≡ 7 mod 8,
zero otherwise.

Note that these give us the maps c : KO∗(pt)→ K∗(pt) and r : K∗(pt)→ KO∗(pt)
when ∗ ≤ 0.
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Exercise 41.14. In our investigation of Bott periodicity we had to use the two
homotopy-equivalent spaces ΩI,−ISU(2n) and ΩISU(2n). Working more generally,
let G be a topological group with identity e and let x ∈ G.
(a) For any path f from x to e, check that Ωe,xG → ΩeG given by post-

concatenation with f is continuous.
(b) Let γ : I → G be a path from e to x, and let γ−1 denote the path t 7→ γ(t)−1

from e to x−1. For λ ∈ Ωe,xG, let λ · γ−1 be the path t 7→ λ(t)γ−1(t). Check
that this defines a continuous map Ωe,xG → ΩeG, and further that this map
is homotopic to post-concatenation with the path xγ−1. [Hint: In I2 ⊆ R2

consider the diagonal path as well as the path with the same endpoints that
moves counterclockwise around the boundary. Since I2 is convex, these paths
are homotopic relative to the endpoints via the straight-line homotopy. Use
this fact to avoid having to write down any horrible formulas.]

42. Bott periodicity and Clifford algebras

Recall from Section 15.11 the real Clifford algebras Clr = R〈e1, . . . , en〉/(e2
i =

−1, eiej = −ejei). We previously denoted these Cl+r , but here we will drop the +
since we will not need to use the negative Clifford algebras. The Clifford algebras
exhibit the pattern Clr+8

∼= Clr(16), where recall that T (n) is shorthand for the
matrix algebraMn×n(T ). The table below lists Clr for 0 ≤ r ≤ 8. By inspection the
module theory of these algebras is very easy to understand, in each case the module
category being semi-simple. In the table we also list the irreducible modules for each
Clr. Finally, in the last column we list the groups from the Bott periodicity clock,
as discussed in the previous section. We have not yet explained the connection of
these groups to the Clifford algebra story, but the table certainly demonstrates that
something interesting is going on. Our task in this section will be to explain what
it is.

Table 42.1. Clifford algebras and their modules

r Clr Irreducible modules Bott group
0 R R O
1 C C U
2 H H Sp
3 H×H H+, H− Sp× Sp
4 H(2) H2 Sp
5 C(4) C4 U
6 R(8) R8 O
7 R(8)× R(8) R8

+, R8
− O ×O

8 R(16) R16 O

Let M be a Clr-module. It will be useful to assume that all of our modules
are equipped with a real inner product, denoted 〈−,−〉, with respect to which all
of the ei-multiplications are orthogonal. Any module can be equipped with such
a structure: choose any inner product on the underlying vector space and then
average it with respect to multiplication by the 2r monomials in the ei’s.

Remark 42.2. For the bulk of our work from now on, all Clifford modules will be
assumed to be “orthogonal” in the above sense—even when not said explicitly. The
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restriction to considering these orthogonal modules is not strictly necessary, but it
has the effect of producing spaces that relate to the compact spaces O(n) rather
than the non-compact spaces GLn(R). See Remark 42.15 for another perspective.

Write O(M) for the set of all orthogonal transformations of the underlying inner
product space of M . For each k ≤ r + 1, define

Ek(M) = {J ∈ O(M)
∣∣ e1, . . . , ek−1, J gives a Clk-module structure on M}

Equip this set with the subspace topology from O(M). This is the space of Clk-
extension structures on the underlying Clk−1-structure of M , the “E” being for
“Extension”.

Note that E1(M) is the space of orthogonal complex structures onM , and E2(M)
is the space of (orthogonal) quaternionic structures where the given e1 action is
multiplication by i. We saw both of these spaces coming up in our arguments
from the last section. It is natural to set E0(M) = O(M). Note that we have the
sequence of subsets

E0(M) ⊇ E1(M) ⊇ E2(M) ⊇ · · ·
since if e1, . . . , ek−1, J satisfy the Clifford relations then so do e1, . . . , ek−2, J .

The action of ek on M gives a natural basepoint in Ek(M), for each k ≤ r. We
also have the antipodal element −ek ∈ Ek(M). If the Clk-structure extends to a
Clk+1-structure (e.g., if k < r) then ek and −ek are in the same path component
of Ek(M): to see this, check that t 7→ cos(πt)ek + sin(πt)ek+1 describes a path in
Ek(M). We will attempt to use Bott-Morse theory to approximate Ωek,−ekEk(M)
by the space of minimal geodesics.

The tangent space TIO(M) may be identified with the set of linear maps A : M →
M that are skew-symmetric in the sense that 〈Ax, y〉 = −〈x,Ay〉 for all x, y ∈ M .
Then a little legwork shows that

TekEk(M) = {ek ·A
∣∣A is skew-symmetric, Aek = −ekA,

and A commutes with e1, . . . , ek−1}.
One way to at least check the plausibility of this claim is to take a geodesic t 7→ etA

in O(M), left-multiply by ek, and then see what conditions on A will result in the
geodesic t 7→ eke

tA lying in Ek(M). The above conditions fall out immediately.
Given such a tangent vector ekA, the corresponding geodesic t 7→ eke

tA arrives
at −ek when t = 1 precisely when the eigenvalues of A are odd multiples of πi. The
minimal geodesics from ek to −ek correspond to those A where the eigenvalues are
±πi. We obtain the following diagram of homeomorphisms:

{skew-sym A with ekA = −Aek, A
commutes with e1, . . . , ek−1, and has
eigenvalues ±πi

}
A7→eke

1
2
A= 1

π ekA //

A 7→(t7→eketA)

��

Ek+1(M)

{minimal geodesics ek → −ek in Ek(M)}
γ 7→γ( 1

2 )

33

Exercise 42.3. Verify that for A as in the upper left corner one has e
1
2A = 1

πA (use
diagonalization). Then check that the top horizontal map is a homeomorphism, so
that the diagonal map is as well.
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Let β : Ek+1(M) → Ωek,−ekEk(M) be the inverse to the diagonal map in the
above diagram. In retrospect, β is easy to describe. It sends an element ẽk+1 to
the path t 7→ eke

−πtek ẽk+1 , which is equal to the path

t 7→ cos(πt)ek + sin(πt)ẽk+1

that we have seen before. The Bott-Morse arguments show that β is an nk-
equivalence for a certain integer nk that goes to infinity as dimM → ∞. So
we next stabilize.

Observe that if M ′ is another Clr-module then we have natural maps Ek(M)→
Ek(M ⊕M ′) sending ẽk to ẽk ⊕ ek. That is, we use the “new” ek-structure on the
M summand and the “old” ek-structure (the one from the Clr-stucture) on the M ′
summand.

Let M = {Mi} be a sequence of representations of Clr, and let Ek(M) be the
colimit of the directed system

Ek(M1)→ Ek(M1 ⊕M2)→ Ek(M1 ⊕M2 ⊕M3)→ · · · ⇒ Ek(M).

If we also write M for the infinite sum
⊕∞

i=1Mi, then Ek(M) can be alternatively
described as

Ek(M) = {ẽk ∈ O(M)
∣∣ e1, . . . ,ek−1, ẽk is a Clk-structure on M and ẽk agrees with

ek on a subspace of finite codimension}.
Here O(M) refers to the group colimk O(

⊕k
i=1Mi).

Stabilizing the Bott maps here is a little tricky, because the map j : Ek(M) →
Ek(M ⊕M ′) does not have the property that j(−ek) = −j(ek). So it does not send
paths ek → −ek to paths j(ek)→ −j(ek). Some of the tricks we used in the previous
section—in the case of U and O—to change from paths to loops don’t readily solve
the problem here, essentially because Ek(M) doesn’t have a multiplication on it.
The following seems to be the best we can do.

Let k ≤ r − 1 and consider the system

Ek+1(M1) //

β

��

Ek+1(M1 ⊕M2) //

β

��

Ek+1(M1 ⊕M2 ⊕M3)

β

��

// · · ·

Ωek(Ek(M1)) // Ωek(Ek(M1 ⊕M2)) // Ωek(Ek(M1 ⊕M2 ⊕M3)) // · · ·
The horizontal maps are all induced by the inclusions, but we need to explain the
Bott maps β. In each setting, let γ denote the map t 7→ cos(πt)ek + sin(πt)ek+1,
and regard this as the canonical path from ek to −ek in Ek(M) (whatever M is).
Define the Bott map β to send ẽk+1 to the concantenation of paths

β(ẽk+1) = γ−1 ∗ (t 7→ cos(πt)ek + sin(πt)ẽk+1)

(f ∗ g means the path that travels g first and then follows with f). Note that this
path moves from ek to −ek via ẽk+1, and then back to ek via ek+1 (this is the γ−1

part).
The squares in the above diagram do not commute. Given an ẽk+1, the two loops

one gets by going around a square in the two different ways agree on the first part
of the module, but disagree on the summand that is being added on. On this last
summand one loop is constant, whereas the other loop follows the canonical path
and then its inverse. So the squares commute up to homotopy, and in fact up to a
very specific homotopy (the homotopy showing that a path followed by its inverse is
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null). It follows that we get a map from the telescope (or homotopy colimit) of the
top sequence to the colimit of the bottom sequence. Since the telescope collapses
down to the honest colimit, let us display all of this via the diagram

Ek+1(M) TelnEk+1(Mn)
β∞ //π

'
oo colimn ΩekEk(Mn)

' // ΩekEk(M).

Since the Bott maps Ek+1(Mn) → ΩekEk(Mn) are equivalences in a range that
goes to infinity with n, the map β∞ is a weak equivalence. So we have shown that
in the sequence of spaces

Er(M), Er−1(M), . . . , E0(M)

each space is equivalent to loops on the next one.
To eliminate the need to stop at Er we do the following. Start with M = R∞,

then group the summands by twos and give them the usual complex structure.
Then group the C-summands by twos and give the groupings the usual quaternionic
structure. Take the first H and give it the Cl3-structure of H+, the second H
and give it the Cl3-structure of H−, alternating back and forth forever. Continue
inductively in the evident manner, so that in the end R∞ is equipped with a Cl∞-
structure. Then we have the spaces Ek(M) for all k, and our previous arguments
give specific equivalences between loops on one and the next:

. . . , E2(M), E1(M), E0(M) Ek+1(M)
'−→ ΩEk(M).

In this way we have obtained ‘algebraic’ models for all of the iterated loop spaces
of E0(M) ' O.

Note that one can do these same constructions using the complex Clifford mod-
ules, thereby obtaining a sequence of algebraic models for the iterated loop spaces
of U .

It remains to identify the homotopy types of the spaces Ek(M) with something
familiar (and similarly for the direct limit Ek(M), of course). To this end, define
the group of Clifford automorphisms

CAk(M) = {f ∈ O(M)
∣∣ f is a Clk-linear automorphism}.

Note that
O(M) = CA0(M) ⊇ CA1(M) ⊇ CA2(M) ⊇ · · ·

as well as the evident identifications CA1(M) = U(M) and CA2(M) = Sp(M).
The group CAk−1(M) acts on Ek(M) by conjugation, and the stabilizer of the
point ek is CAk(M). So we get the injective map

CAk−1(M)/CAk(M) −→ Ek(M), [f ] 7→ fekf
−1.(42.4)

We have seen these maps before in the cases k = 1 and k = 2, where they were actu-
ally homeomorphisms. But they are not always homeomorphisms, as the following
example shows.

Example 42.5. Consider the Cl3-module M = H where the action of e1 and e2 is
that of i and j, respectively, and e3 acts as e1e2. We will examine

CA2(M)/CA3(M) ↪→ E3(M).

An easy exercise shows that there are exactly two e3-structures extending the Cl2-
action, namely e3 = ±e1e2. [The action of e1e2e3 squares to 1 and is H-linear, so
it is either id or − id]. So E3(M) consists of exactly two points.
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The group CA2(M) is just Sp(1), the group of unit quaternions, and CA3(M)
is the same group since if a map respects the e1- and e2-actions on M then it also
must respect e1e2. So CA2(M)/CA3(M) is a single point. The image in E3(M)
consists of the e3-structure e3 = e1e2.

For a similar example where the spaces are bigger, let M = H+ ⊕H− where e3

acts on the first factor as e1e2 and on the second factor as −e1e2. In this case it
turns out that

E3(M) = ∗ q S4 q ∗.
The first point is the structure e3 = e1e2, and the last point is the structure
e3 = −e1e2. The S4 is really HP 1, and coincides with e3-structures that are equal
to e1e2 on a 1-dimensional H-subspace V and equal to −e1e2 on V ⊥.

The group CA2(M) is Sp(2), and the subgroup CA3(M) is Sp(1) × Sp(1): for
the latter, an H-linear map f : M →M commutes with the e3-structure if and only
if it preserves the subspaces H+ and H−. The map CA2(M)/CA3(M) → E3(M)
is a homeomorphism onto the second component, but of course is not surjective.

The above example reveals the key issue. Sometimes the Clk−1-moduleM admits
different ek-structures that lead to non-isomorphic Clk-modules, and when this
happens the space Ek(M) has multiple components. In fact, we know the group
CAk−1(M) acts on Ek(M) and therefore Ek(M) will be a disjoint union of orbits,
each of which is a homogeneous space for CAk−1(M). Two ek-structures (call them
ek and e′k) are in the same orbit if and only if there is a Clk-isomorphism between
M and M ′. Thus, we obtain the following:

Proposition 42.6. Let I(M) be the set of isomorphism classes of Clk-module struc-
tures on M extending the given Clk−1-structure. For each element of I(M) choose
a specific ek-structure representing it, and let CAk(M ; ek) ⊆ CAk−1(M) be the
subgroup of automorphisms that preserve this structure. Then there is a homeo-
morphism ∐

I(M)

CAk−1(M)/CAk(M ; ek)
∼=−→ Ek(M)

sending the coset f · CAk(M ; ek) to fekf−1, for all f ∈ CAk−1(M) .

Exercise 42.7. Prove the above proposition.

We will eventually see that the spaces Ek(M) have exactly one component except
in the cases where k ≡ 3 mod 4 (Proposition 42.13), but in order to prove this we
need to understand a bit more about Clifford modules.

42.8. Understanding Clifford module structures. Let M be a real vector
space. Giving a Cl2-structure on M is the same as giving M the structure of
an H-vector space, so we understand that fairly concretely. What does one need
to specify in order to extend this to a Cl3-structure? Rather than consider e3, it
is helpful to look instead at the element y = e1e2e3. Note that giving the Cl3-
structure is the same as specifying left-multiplication by y. But y2 = 1, so the
eigenvalues of (multiplication by) y are ±1; so M will decompose as the orthogonal
sum of the two eigenspaces V+ and V−. Since y commutes with e1 and e2, each
of V+ and V− is closed under the H-action. One can readily reverse this reasoning
and see that specifying V+ is equivalent to specifying y· (note that V− = V ⊥+ ). So
extending the Cl2-structure to a Cl3-structure is equivalent to giving an H-subspace
V of M .
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If the Cl3-structure extends to a Cl4-structure then e4—which must anticommute
with e1e2e3—must send V+ to V− and vice versa. So such an extension can only
occur when dimV+ is exactly half of dimM , and when this condition is satisfied
giving the e4-structure is equivalent to specifying an H-linear isomorphism V+ →
V−.

One can repeat the above style of argument to inductively analyze what is re-
quired to extend a Clr-structure to a Clr+1-structure. There is some slight clev-
erness in finding an analog of y in each case, but essentially the first thing one
tries always works. Table 42.8 below summarizes the results, and we leave it to
the reader to work out the details as an exercise (but we give some hints). When
some Clifford module structures do not extend, we indicate this—so if there is no
notation, all extend. Also, we write A⊥B for the orthogonal complement of A inside
of B.

Table 42.8. Giving Clifford module structures

r Equivalent description of a Clr-structure on M
0 R-module (extends only when dim is even)
1 C-module (extends only when dimC is even)
2 H-module
3 H-module together with H-submodule V ⊆M (extends only when

dimV is half of dimM) [V is the +1 eigenspace of e1e2e3]
4 above together with an H-linear isomorphism V → V ⊥ (always extends)

[the isomorphism is multiplication by e4]
5 above together with a C-submodule W ⊆ V such that e2W = W⊥V

[W is the +1-eigenspace of e1e4e5]
6 above together with a real subspace U ⊆W such that e1U = U⊥W

[U is the +1-eigenspace of e2e4e6]
7 above together with a real subspace T ⊆ U (extends only when

dimT = 1
2 dimU) [T is the +1-eigenspace of e1e6e7]

8 above together with an R-linear isomorphism T → T⊥U (extends when
dimT is even) [the isomorphism is multiplication by e7e8]

9 above together with a complex structure on T [given by e8e9]
(extends when dimC T is even)

10 above together with a quaternionic structure on T extending
the C-structure [given by e8e10]

Remark 42.9. One can start to see the 8-fold quasi-periodicity in this chart. In
row 8n we have a statement involving e8n, and in row 8n+r for 0 < r ≤ 7 we take the
statement in row r and change every word ei1 · · · eis to (e8ne8n+i1) · · · (e8ne8n+is).

Exercise 42.10. Justify all of the lines in the above table. The following notes—
also indexed by r to match the table—give short guides:
(3) (e1e2e3)2 = 1, so the eigenvalues of e1e2e3 are ±1 andM is the orthogonal sum

of the eigenspaces. Since e1e2e3 commutes with e1 and e2, these eigenspaces
are closed under the H-action.

(4) e4 anticommutes with e1e2e3, and so sends the +1-eigenspace V to the −1-
eigenspace V ⊥. [In particular, an e4-structure exists only when V and V ⊥

have the same dimension].
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(5) (e1e4e5)2 = 1 and e1e4e5 commutes with e1e2e3.
(6) e2e4e6 squares to 1 and commutes with e1e4e5.
(7) e1e6e7 squares to 1 and commutes with e2e4e6.
(8) e8 anticommutes with e1e6e7.
Continue far enough that you believe the quasi-periodicity.

The diagram below gives another way of keeping track of what is happening
here. Columns 0 through n show the deconstruction of a Cln-module M .

M M

e1

��
M

e1

��

e2

DD V [e1e2e3]

e1,e2

��

e4

uu

W [e1e4e5]

e2
��

e1

��
U [e2e4e6]

e1
��

T [e1e6e7]

e7e8

vv

T

e8e9

��
T

e8e9

��

e8e10

DD

V ⊥

e1,e2

DD W⊥

e1

DD U⊥ T⊥

0 1 2 3 4 5 6 7 8 9 10

◦ Exercises ◦

Based on the above work, we can identify the spaces Ek(M) for all k. To help
with this, the following result will be useful:

Proposition 42.11. One has the following homeomorphisms:

{orthogonal complex structures on R2n} ∼= O(2n)/U(n)

{rank n real subspaces H of Cn s.t. iH = H⊥} ∼= U(n)/O(n)

{orthogonal H-structures on C2n extending the complex structure} ∼= U(2n)/Sp(n)

{rank n complex subspaces H of Hn s.t. jH = H⊥} ∼= Sp(n)/U(n)

Proof. The first and the third have similar proofs. For the third, U(2n) acts on
the space of quaternionic structures by conjugation. By Lemma 41.12 the action
is transitive. The stabilizer of a fixed quaternionic structure is precisely Sp(n), so
this completes the identification.

For the second homeomorphism, observe that U(n) acts on the left space. We
will show the action is transitive and calculate the stabilizer of Rn. Let V and W
be two rank n real subspaces of Cn such that iV = V ⊥ amd iW = W⊥. Note
that Cn = V ⊕ iV = W ⊕ iW . Choose orthonormal R-bases for each of V and
W , and note that these are necessarily unitary C-bases for Cn. Therefore the C-
linear transformation L : Cn → Cn sending the first basis to the second is unitary.
This proves that U(n) acts transitively on the given space. The stabilizer of the
subspace Rn ⊆ Cn is precisely O(n). The proof for the fourth homeomorphism is
identical. �

Remark 42.12. For a Hermitian inner product space V , a real subspace H such
that iH = H⊥ is sometimes called a “real structure” on V . Likewise, if V is
a quaternionic inner product space then a complex subspace H ⊆ V such that
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jH = H⊥ is called a “complex structure” on V . Using this terminology, the results
of Proposition 42.11 take on a nice symmetry.

Proposition 42.13. Let M be a Clk−1-module, with dimRM = n. Then one has
the following identifications:

k Ek(M) conditions CAk(M)
0 O(n) O(n)

1 O(n)/U(n2 ) n is even U(n2 )

2 U(n2 )/Sp(n4 ) n is a multiple of 4 Sp(n4 )

3 GrH• (Hn
4 ) n is a multiple of 4 Sp(V )× Sp(V ⊥)

4 Sp(n8 ) n is a multiple of 8 Sp(V ) = Sp(n8 )

5 Sp(n8 )/U(n8 ) n is a multiple of 8 U(W ) = U(n8 )

6 U(n8 )/O(n8 ) n is a multiple of 8 O(U) = O(n8 )

7 GrR• (Rn
8 ) n is a multiple of 8 O(T )×O(T⊥U )

8 O( n16 ) n is a multiple of 16 O(T ) = O( n16 )

Here GrF• (N) denotes the space of all F -subspaces of N , and so is a disjoint union
with components indexed by the possible F -dimensions of such subspaces. The
spaces V , W , U , and T are as in Table 42.8, and the space Ek(M) is empty when
the given conditions on n are not satisfied.

Corollary 42.14. Let M be a Clk-module. The map CAk−1(M)/CAk(M) →
Ek(M) of (42.4) is a homeomorphism when k 6≡ 3 mod 4, and the inclusion of a
connected component otherwise.

Proof of Proposition 42.13. The identification of the Ek(M) spaces follows imme-
diately from the information in Table 42.8. The k = 1, 2, 5, 6 cases use Proposi-
tion 42.11, whereas k = 3, 7 are self-evident. For k = 4 one notes that the space of
H-linear isomorphisms V → V ⊥ is (when nonempty) a torsor for the group Sp(V )
via precomposition. Similar for k = 8.

The identification of the groups in CAk(M) is also mostly immediate from Ta-
ble 42.8, with the exceptions of k = 4, 8. For k = 4, the automorphisms of V
and V ⊥ from CA3(M) must be compatible with the isomorphism e4· : V → V ⊥,
which is equivalent to saying that the automorphism of V ⊥ is determined by
the one on V . So CA4(M) = Sp(V ) and the map CA4(M) → CA3(M) is
f 7→ (f, x 7→ −e4f(e4x)). The analysis for k = 8 is entirely similar. �

Taking the results of Proposition 42.13 and stabilizing, we can now complete the
identification of the iterated loop spaces of O. In the following chart we start with
the rightmost O and taking loops moves us to the left:

· · · E8M E7M E6M E5M E4M E3M E2M E1M E0M
· · · O Z×BO U/O Sp/U Sp Z×BSp U/Sp O/U O

The only slightly subtle point in the stabilization is what happens for k = 3, 7.
But here one gets a bigraded lattice as in (41.4) and the analysis exactly follows
what was done there. See Section 43.5 below, though, for a less ad hoc approach
to stabilization.
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Remark 42.15 (∗-algebras and modules). Throughout this section we always con-
centrated on orthogonal Clifford module structures. This was not absolutely nec-
essary, but is convenient because it produces objects that connect to the compact
groups On, Un, and Spn rather than GLn(R), GLn(C), and GLn(H). But the
constant insistence on orthogonal actions can feel a little clunky.

Here is some different language that accomplishes the same thing. Let M be
a finite-dimensional real inner product space, and let EndR(M) be the algebra of
R-linear endomorphisms equipped with the involution f 7→ f†. Recall that the
adjoint f† is the linear map uniquely characterized by 〈f†x, y〉 = 〈x, fy〉, and in
terms of matrices with respect to an orthonormal basis this just amounts to taking
the transpose.

The pair (EndR(M), †) is a prototypical example of a ∗-algebra, which is an R-
algebra A equipped with a conjugation ∗ : A→ A that is an R-linear anti-involution;
the “anti” part is the identity (xy)∗ = y∗x∗. As it turns out, the Clifford algebras
come with natural structures of ∗-algebras where one sets e∗i = −ei (note that this
determines the ∗-operation on all other elements). We say that M is a ∗-module
for Clk if the action map ρ : Clk → EndR(M) is a map of ∗-algebras; in addition
to being a module in the ordinary sense this amounts to the extra condition that
ρ(e∗i ) = ρ(ei)

† for all i. But because e∗i = −ei = e−1
i , this is the condition that

ρ(ei)
−1 = ρ(ei)

†—equivalently, ρ(ei) is orthogonal in the sense of preserving the
inner product.

The upshot is that the “orthogonal Clifford modules” we have been considering
can also be described as the ∗-modules for the Clifford ∗-algebras. There is nothing
deep here—it is just a shift of language—but the theory of ∗-algebras and ∗-modules
can feel a bit less ad hoc, and connects to the vast theory of C∗-algebras in analysis.

Exercise 42.16. For the ∗-operation on Cln defined in Remark 42.15, check that
(ei1 · · · eik)∗ = (−1)(

k+1
2 )ei1 · · · eik when the ij are all distinct.

43. The rich pageant of Clifford algebras

One thing that is missing from our story so far is a “natural” construction of
the K-theory spectra K and KO. Clifford algebras have led us to models for the
iterated loop spaces on U and O, but to write down a spectrum one needs iterated
deloopings of Z × BU and Z × BO. The periodicity theorems allow us to recast
the iterated loops on O as iterated deloopings of Z × BO, but this approach feels
a bit unsatisfying.

Now that the specter of Clifford algebras has been allowed in the door, though,
it turns out there is much more one can do with them. Instead of the singly-indexed
family of Clifford algebras we have studied so far, it is natural to look at a bigraded
family. Karoubi showed how to use these to produce the required deloopings and
the associated models of K-theory spectra. In this section we recount this theory.

The Clifford algebra construction is something that can be applied to any vector
space equipped with a quadratic form, over any field. Given (V, q) we can define
the Clifford algebra as a quotient of the tensor algebra T (V ):

Cl(V, q) = T (V )/〈v ⊗ v = −q(v) | v ∈ V 〉
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Over the real numbers every quadratic form is isomorphic to one of the form

q(x1, . . . , xp+q) = x2
1 + · · ·+ x2

p − (x2
p+1 + · · ·+ x2

p+q)

for integers p, q ≥ 0. The Clifford algebra associated to this form will be denoted
Clp,q. Note that Clp,0 is the algebra that we have previously been calling Clp,
whereas Cl0,q is an algebra we saw in Section 15 and denoted Cl−q there.

One can readily check that Clp,q is isomorphic to the quotient of the tensor
algebra R〈e1, . . . , ep, f1, . . . , fq〉 by the relations saying that e2

i = −1, f2
j = 1, and

any two distinct e- or f -variables anti-commute with each other. We will often find
this model particularly convenient.

Computing the Clp,q algebras explicitly is just as easy as the computation of the
Cl±k algebras that we did in Section 15. We can do it with only one additional fact:

Proposition 43.1. For any p, q ≥ 0 there is an isomorphism of R-algebras

Clp+1,q+1 → Clp,q(2) given by ep+1 7→
[
0 −1
1 0

]
, fq+1 7→

[
1 0
0 −1

]
, and ei 7→[

0 ei
ei 0

]
, fj 7→

[
0 fj
fj 0

]
for i ≤ p and j ≤ q.

The proof is straightforward once one has the above formulas for the isomor-
phism, but before giving the proof let us explain where those formulas come from.
Let N be a Clp+1,q+1-module. The difference between Clp,q and Clp+1,q+1 lies in
the two generators ep+1 and fq+1. Since f2

q+1 = 1 the underlying vector space of N
splits as V+⊕V−, where the summands are the +1 and −1 eigenspaces for fq+1. The
other e’s and f ’s anticommute with fq+1 and so they map V+ to V− and vice versa.
But we can use ep+1 to identify V+ and V−, and in that way we can think of the
generators of Clp,q as operating on just one of these—V+, say. More precisely, define
ẽi = eiep+1 and f̃j = fjep+1 and check that these elements define an action of Clp,q
on V+. SetM = V+ with this action. Then N = M⊕ep+1M , and if we identify the
underlying vector space withM⊕M in the evident way then fq+1 acts as the matrix[
1 0
0 −1

]
, ep+1 acts as the matrix

[
0 −1
1 0

]
, ei acts as

[
0 ẽi
ẽi 0

]
, and similarly for

the fj . Since it is easy to get confused about signs here, let us justify the nonzero
entries in the matrix for ei as an example: eim = ep+1eiep+1m = ep+1(ẽim) and
ei(ep+1m) = ẽim.

Proof of Proposition 43.1. It is routine to check that the given matrices satisfy the
defining relations for the Clifford algebras, so that we do indeed get a map of
R-algebras. Taking products of the given matrices readily shows that we get all
matrices of forms [

x 0
0 x

]
,

[
x 0
0 −x

]
,

[
0 −x
x 0

]
,

[
0 x
x 0

]
where x is a product of e’s and f ’s. Such matrices generate Clp,q(2) as a vector
space, and so our map is surjective. Both the domain and codomain have dimension
2p+q+2 as vector spaces, and so the map is injective as well. �

Morita theory tells us that the module categories of Clp,q and Clp,q(2) ∼=
Clp+1,q+1 are equivalent, though we basically proved this by hand in our above
discussion. But let us record the result for future reference:
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Proposition 43.2. There is an equivalence of categories Clp,q −Mod →
Clp+1,q+1−Mod that sends a module M to M ⊕M with the action of the Clif-
ford generators given by the formulas from Proposition 43.1.

Recall that we already computed the algebras Clp,0 and Cl0,q. Proposition 43.1
then lets us fill out the table below:

Clifford algebras Clp,q

R(16) C(16) H(16) H(32)×H(32) H(32) C(64) R(128) R(128)×R(128) R(256)

C(8) H(8) H(16)×H(16) H(16) C(32) R(64) R(64)×R(64) R(128) C(128)

H(4) H(8)×H(8) H(8) C(16) R(32) R(32)×R(32) R(64) C(64) H(64)

H(4)×H(4) H(4) C(8) R(16) R(16)×R(16) R(32) C(32) H(32) H(32)×H(32)

H(2) C(4) R(8) R(8)×R(8) R(16) C(16) H(16) H(16)×H(16) H(32)

C(2) R(4) R(4)×R(4) R(8) C(8) H(8) H(8)×H(8) H(16) C(32)

R(2) R(2)×R(2) R(4) C(4) H(4) H(4)×H(4) H(8) C(16) R(32)

R×R R(2) C(2) H(2) H(2)×H(2) H(4) C(8) R(16) R(16)×R(16)

R C H H×H H(2) C(4) R(8) R(8)×R(8) R(16)

0 1 2 3 4 5 6 7 8

This table shows the algebras Clp,q where p is on the horizontal axis and q is
on the vertical. Note that if we write Clp,q ∼= A(n) where n is maximal possible,
then the “root” A only depends on p − q mod 8. This is a combination of the
(1, 1)-periodicity from Proposition 43.1, the 8-fold periodicity of the Clp,0 and Cl0,q
algebras, and a certain kind of ‘duality’ between the Clp,0 and Cl0,q families (they
have the same roots but in reverse order).

Given an orthogonal Clp,q-module M , let us now write E(0,1)
p,q (M) for the space

of orthogonal Clp,q+1-extension structures on M . That is, an element of this space
is an fq+1 ∈ O(M) such that f2

q+1 = idM and such that fq+1 anti-commutes with
the action of the generators of Clp,q on M . We will likewise write E(1,0)

p,q (M) for
the space of orthogonal Clp+1,q-extension structures on M . The spaces E(1,0)

p,0 (M)

were studied in Section 42 and there called Ep+1(M).
The following result is almost an immediate consequence of Proposition 43.2.

Proposition 43.3 ((1,1)-periodicity). For any Clp,q-module M there are homeo-
morphisms Eεp,q(M)

∼=−→ Eεp+1,q+1(M ⊕M), where ε is either (1, 0) or (0, 1) and
M ⊕M is given the Clp+1,q+1-structure described in Proposition 43.2.

Proof. A linear map M ⊕M →M ⊕M is of the form (x, y) 7→ (Ax+By,Cx+Dy)
for linear maps A,B,C,D : M →M . The key observation is that such a map anti-
commutes with the actions of ep+1 and fq+1 if and only if A = D = 0 and B = C.
This is an easy computation. Based on this, we define the map

E(0,1)
p,q (M)

∼=−→ E
(0,1)
p+1,q+1(M ⊕M)

to send an fq+1-structure f to (x, y) 7→ (fy, fx), which is readily checked to be
an fq+2-structure. The above key observation shows that any fq+2-structure on
M ⊕M is of this form, and the inverse map is readily constructed.
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The exact same proof works for E(1,0) in place of E(0,1). �

Remark 43.4. We have set up the definition of Eεp,q (where ε is (1, 0) or (0, 1)) so
that it involves orthogonal Clifford modules structures. Although this is convenient,
it also leads to some issues. Dropping the orthogonality conditions yields spaces
that are different but that turn out to have the same homotopy type, analogous to
GLn(R) and O(n).

One motivation for droppping the orthogonality condition is to generalize the
setup as follows. Let R ⊆ S be an extension of R-algebras and let {si} be a
set of elements that generates S as an R-algebra. If M is an R-module one can
define a space ER→S(M) of S-module extensions of M . We regard this as a subset
of
∏
i HomR(M,M) by recording the action of each si, and we give ER→S(M) the

subspace topology induced by the product topology. (Note that in most applications
the {si} will be a finite collection and M will be finite-dimensional over R, so this
product is just a finite-dimensional Euclidean space).

One nice benefit of this generalization is that certain results become entirely
algebraic. For example, Morita theory shows that the evident map

ER→S(M) −→ ER(n)→S(n)(M
⊕n)

is a homeomorphism. To see this, observe that we can construct a map in the
other direction as follows. Given an S(n)-extension structure on M⊕n, give M the
S-extension structure defined by

s.m = π1

([
s 0
0 0

]
·
[
m
0

])
(showing the case n = 2 for brevity). One of the compositions is then clearly
the identity, and demonstrating that the other is the identity is a nice exercise in
algebra.

For another result along these lines, consider the diagonal map R → R × R. A
generator for the target is f = (1, 0), and in fact the target can be identified with
R[f ]/(f2−1). Giving an R-module M the structure of R[f ]/(f2−1)-algebra is the
same as specifying an idempotent R-linear map M → M . But by linear algebra
any such map is diagonalizable with possible eigenvalues 1 and −1, so this is the
same as giving two R-submodules M+ and M− of M such that M = M+ ⊕M−
(the eigenspace decomposition of multiplication by f). In this way we identify
ER→R×R(M) with a subspace of Gr•(M)×Gr•(M), where Gr•(M) =

∐
k Grk(M).

It is the space of R-module splittings of M .
As a final example, consider R×R regarded as the subring of diagonal matrices

in the matrix algebra M2×2(R) = R(2). Let f = [ 0 1
1 0 ] and write diag(a, b) = [ a 0

0 b ].
Observe that f2 = 1 and f. diag(a, b) = diag(b, a).f for all a, b ∈ R. Moreover, f
generates R(2) as an R×R-algebra (algebraically this is true as long as char(R) 6= 2,
but recall that for us R is an R-algebra).

Every R × R-module has the form M ⊕ N where M and N are R-modules
and (a, b).(m,n) = (am, bn); so R × R acts on M via the first coordinate and N
via the second. We claim that extending this to an R(2)-structure is the same
as specifying an R-linear isomorphism φ : M → N . Given such a map, define
f.(m,n) = (φ−1(n), φ(m)) and check that this defines an R(2)-structure. In the
other direction, given an R(2) structure one recovers φ by φ(m) = π2(f.[m0 ]) and
it is routine to check that φ is an isomorphism.
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We conclude that ER×R→R(2)(M ⊕ N) is the space of R-linear isomorphisms
from M to N .

While we will not develop this theory in complete detail, sometimes we will go
back and forth between the “orthogonal” situation and the “algebraic” situation
when convenient and without much comment.

43.5. Stabilization. Stabilization works as follows. We want to have maps
Eεp,q(M) → Eεp,q(M ⊕ N), where ε stands for either (1, 0) or (0, 1). In the lat-
ter case, for example, the map should take an fq+1-structure onM to....? It is clear
what to do on the M factor, but for N we need to be given an fq+1-structure to
start with. So let us do the following. Let H1, . . . ,Hr be a complete list of irre-
ducible Clp,q+1-modules. We know from our identification of the Clifford algebras
that r will always be 1 or 2, but that is not important. For each i we obtain maps

θi : E
(0,1)
p,q (M)→ E(0,1)

p,q (M ⊕Hi)

as we described above: fq+1 7→ (fq+1, f
Hi
q+1) where fHiq+1 comes from the Clp,q+1-

structure on Hi. We can then form an infinite r-dimensional lattice where the nodes
are indexed by the modules He1

1 ⊕· · ·⊕Her
r and we have the maps θ1, . . . , θr leaving

each node. Define the colimit of this diagram to be E(0,1)
p,q (H).

Remark 43.6. It was not important that the Hi themselves be irreducible, but
rather that every irreducible representation be contained as a summand of some
Hi. As long as we have this condition then our lattice will be cofinal in the one
above, and so will have the same colimit. This observation will be important a bit
later. Since under these hypotheses the colimit does not depend on the specific
choice of the Hi’s, we will also write E(0,1)

p,q (∞) instead of E(0,1)
p,q (H).

If we also use H to denote the infinite Clp,q+1-module
⊕

iH
⊕∞
i , then we can

think of E(0,1)
p,q (H) as fq+1-structures on H having the property that fq+1−fHq+1 has

finite rank—or equivalently, the two structures fq+1 and fHq+1 agree on a subspace
of finite codimension. The topology is the subspace topology inherited from O(H),
which in turn is topologized as colimsO(

⊕r
i=1H

⊕s
i ).

Observe that the same approach works to define the stabilized spaces E(1,0)
p,q (∞)

except that here the H’s need to be irreducible representations of Clp+1,q.

Example 43.7. Let us consider E(0,1)
0,0 (∞). Here Cl0,1 ∼= R × R, and so we take

H1 = R+ and H2 = R− where the actions are (a, b).r = ar and (a, b).r = br,
respectively. Giving an f1-structure on a vector space V is the same as giving a
decomposition V = V+ ⊕ V− where V+ is the +1-eigenspace of f1 and V− is the
−1-eigenspace. This explains the notation R+ and R−. Note that when V has an
inner product and we are specifying an orthogonal f1-structure then we only need
to give V+, as V− will be the orthogonal complement.

To ease notation let us just write E(0,1)
0,0 = G. By the above remarks, G(V ) is

the space of subspaces V+ ⊆ V—that is, G(V ) =
∐dimV
k=0 Grk(V ). To stabilize we
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form the bigraded array

G(0) //

��

G(R+) //

��

G(R2
+) //

��

· · ·

G(R−) //

��

G(R+ ⊕ R−) //

��

G(R2
+ ⊕ R−) //

��

· · ·

G(R2
−) //

��

G(R+ ⊕ R2
−) //

��

G(R2
+ ⊕ R2

−) //

��

· · ·

...
...

...

and G(H) is the colimit. Since our model for G tracks the positive eigenspace of
f1, the horizontal maps

G(Ra+ ⊕ Rb−) −→ G(Ra+1
+ ⊕ Rb−)

send W 7→ W ⊕ ea+1 (here ea+1 denotes an element of the standard basis, not a
Clifford algebra generator) whereas the vertical maps

G(Ra+ ⊕ Rb−) −→ G(Ra+ ⊕ Rb+1
− )

sendW toW . Note that in this way we recover the same bigraded diagram that we
found by ad hoc methods back in Section 41.3. Our conclusion is that E(0,1)

(0,0)(∞) ∼=
Z×BO.

43.8. The Bott maps.
If M is a Clp,q+1-module then there is a map

β : E
(0,1)
p,q+1(M) −→ Ωfq+1,−fq+1E

(0,1)
p,q (M)

that sends fq+2 to the path t 7→ cos(πt)fq+1 + sin(πt)fq+2. Similarly, if M is a
Clp+1,q-module then we have the map

β : E
(1,0)
p+1,q(M) −→ Ωep+1,−ep+1E

(1,0)
p,q (M)

that sends ep+2 to the map t 7→ cos(πt)ep+1 + sin(πt)ep+2. The Bott arguments
show that these are equivalences in a range that goes to infinity as dimM increases.

Passing to colimits is mostly straightforward. We can choose a collection of
finitely-generated Clp,q+2-modules H1, . . . ,Hr such that every irreducible is a sum-
mand of some Hi. But even more, we can ensure that when we restrict to the
Clp,q+1-structure it is still true that every irreducible Clp,q+1-module is a summand
of some Hi. This is essentially automatic because of the way the Clifford modules
work, but it is worth a moment’s thought. We get a commutative lattice of Bott
maps indexed by the modules Ha1

1 ⊕ · · · ⊕Har
r , and passing to the colimits gives a

weak equivalence

E
(0,1)
p,q+1(∞)

'−→ ΩE(0,1)
p,q (∞).(43.9)

Note that we are using Remark 43.6 here, to know that the colimit in the target is
what we want it to be. We are also using that Ω commutes with filtered colimits,
due to the compactness of S1.

A similar construction where H is a system of Clp+1,q-modules gives a weak
equivalence

E
(1,0)
p+1,q(∞)

'−→ ΩE(1,0)
p,q (∞).
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43.10. The periodicity theorems and the representing spectrum for K-
theory.

The Bott theorems give us equivalences E(0,1)
p,q+1(∞)

'−→ ΩE
(0,1)
p,q (∞), and (1, 1)-

periodicity gives us homeomorphisms E(0,1)
p,q+1(∞) ∼= E

(0,1)
p−1,q(∞). Putting these to-

gether gives weak equivalences

E
(0,1)
p−1,q(∞)

'−→ ΩE(0,1)
p,q (∞).

Fixing q therefore gives us an Ω-spectrum

KR
(q) =

[
E

(0,1)
0,q (∞), E

(0,1)
1,q (∞), E

(0,1)
2,q (∞), . . .

]
These spectra are transparently 8-fold periodic by the 8-fold periodicity of the
Clifford algebras, together with Morita theory. The spectrum KR

(0) is more typically
calledKO. Observe that the (1,1)-periodicity in the table of Clifford algebras shows
that the spaces in the spectrum for KR

(q) are obtained from those in KR
(0) by shifting

to the right q spots. That is,

KR
(q) ' Σ−qKR

(0) ' Σ−qKO.

Bott’s original arguments were about the equivalences E
(1,0)
p+1,0(∞)

'−→
ΩE

(1,0)
p,0 (∞). In our current indexing we have E(1,0)

−1,0(∞) ∼= O ∼= E
(0,1)
−1,0(∞).

Now consider the first two rows of our table of Clifford algebras—that is, the
Clifford algebras Clp,0 and Clp,1. The diagram below shows these together with the
(horizontal) inclusions Clp,0 ↪→ Clp+1,0 and the (vertical) inclusions Clp,0 ↪→ Clp,1.

R×R // R(2) // C(2) // H(2) // H(2)×H(2) // H(4) // C(8) // R(16) // R(16)×R(16)

R
α
//

η

OO

C
β
//

ζ

OO

H
γ
//

ε

OO

H×H
δ
//

δ

OO

H(2)
ε
//

γ

OO

C(4)
ζ
//

β

OO

R(8)
η
//

α

OO

R(8)×R(8)
θ
//

θ

OO

R(16)

η

OO

0 1 2 3 4 5 6 7 8

The maps with the same label—for example, the two maps labelled α—are not
identical, but are related to each other in the evident way. Recall that the E(1,0)-
spaces involve the difference across a horizontal map, whereas the E(0,1)-spaces
involve the difference across a vertical map. Making use of Morita invariance, the
above diagram yields the unexpected relation E

(1,0)
0,0 (∞) ∼= E

(0,1)
6,0 (∞), and more

generally

(*) E
(1,0)
6−p,0(∞) ∼= E

(0,1)
p,0 (∞)

for 0 ≤ p ≤ 6 together with E(1,0)
7,0 (∞) ∼= E

(0,1)
7,0 (∞). This is another manifestation

of Bott periodicity, although the exact connection might not be immediately clear.
Recall that in the following sequence each space is loops on the one immediately
after it:

. . . E
(1,0)
2,0 E

(1,0)
1,0 E

(1,0)
0,0 O E

(0,1)
0,0 E

(0,1)
1,0 E

(0,1)
2,0 . . .

(we are now leaving out the ∞ notation for brevity). The E(1,0)
7,0 and E(0,1)

7,0 terms
are coincident with the O in the 8-fold pattern, and one can now see that (*) is
also part of this pattern. Although (*) might at first feel like a 6-fold phenomenon,
it is secretly 8-fold because of the two (0, 0) terms and the extra O.
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Here is a mnemonic for our explicit descriptions of the various E-spaces. When
R and S are successive Clifford algebras the space ER→S often takes the form
G(R)/G(S) for appropriate groups G(R) and G(S) that depend only on the ‘roots’
of the Clifford algebras. For example, ER→C ∼= O/U . In addition, ER→R×R is the
Grassmannian Z×BG(R), where G(R) is that same group; e.g., ER→R×R ∼= Z×BO.
And ER×R→R(2) is G(R). Using these mnemonics, one readily identifies the above
sequence of spaces as

. . . Z×BSp U/Sp O/U O Z×BO U/O Sp/U Sp Z×BSp . . .
We can remember all of this with another version of the Bott periodicity clock:

R
O/U// C

U/Sp

$$
R× R

O
::

H
Sp��

R
Z×BO

OO

H×H

Spzz
C

U/O

dd

H
Sp/U
oo

There are two ways to read this clock. Starting with R → C and going around
clockwise, these are the maps Clp,0 → Clp+1,0 (but remember we only record the
roots) and the labels on the arrows are the E(1,0)

p,0 spaces. Reading this way, loops
on each label gives the label on the next arrow. This is the left half of the above
sequence. Alternatively, we can start with R → R × R and regard this as Cl0,0 →
Cl0,1 (the first vertical map in the above array), and then going counterclockwise
gives the successive maps Clp,0 → Clp,1 (up to roots, of course). In this version
the labels on the arrows are the E(0,1)

p,0 spaces, and traveling counterclockwise gives
deloopings. This is the right half of the above sequence.

Remark 43.11 (Symmetric spaces). A symmetric space is a Riemannian mani-
fold M having the property that for every p ∈M there is an isometry Ip : M →M
that fixes p and where the derivative acts on TpM as −Id. The map Ip is called
an “inversion” about p. A simple example of a symmetric space is S1, where for
Ip we take the reflection in the diameter of the circle that passes through p. More
generally, every Lie group G equipped with a bi-invariant metric is a symmetric
space: inversion at the identity e is the map g 7→ g−1, and inversions at other
points can be obtained by conjugation (e.g. Ig(x) = g · Ie(g−1x)). However, there
exist symmetric spaces that are not Lie groups.

If G is a connected Lie group and σ ∈ Aut(G) is an involution, let H be an open
subgroup of Gσ = {g ∈ G |σ(g) = g}. Then G/H is a symmetric space: σ induces
G/H → G/H given by gH 7→ σ(g)H, and one readily checks that DeHσ is −Id.
Inversions at other points are obtained using the group action. As one example,
consider G = U(n) with σ complex conjugation, and H = O(n) = Gσ. Then the
symmetric space is U(n)/O(n). It is not immediately obvious, but it turns out that
every symmetric space arises as such a G/H.

There is a complete classification of symmetric spaces, due to Elie Cartan. Simi-
lar to the classification of compact Lie groups, there are a handful of infinite families
and then several isolated exceptional cases. The infinite families turn out to all be
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related to Clifford algebras—in fact, they are precisely the spaces that come up in
Bott periodicity of the unitary and orthogonal groups.

We will not need to use symmetric spaces in the rest of this book, but it is good
to know a little about how they fit into the story of Bott periodicity.

44. Pinning down Bott periodicity

At this point we have proven the isomorphisms πiU ∼= πi+2U for all i ≥ 0,
but we have not as yet produced explicit generators for these groups. Relatedly,
the periodicity isomorphism itself is difficult to unravel—it is not as if we have
an explicit formula for it. Somehow these things are buried in the Bott-Morse
arguments, but it takes a bit to tease them out. That is our goal in this present
section, for both the unitary and orthogonal groups.

We will start by investigating some relations between U(n) and U(2n). The
identification C2n ∼= C2 ⊗ Cn yields some easy connections. We will eventually
approach this in very categorical ways, but let us begin by taking a path where
everything is very concrete.

Observe that whenever α, β ∈ C and |α|2 + |β|2 = 1 then we have the element

Eα,β =

[
αIn −β̄In
βIn ᾱIn

]
∈ SU(2n).

Identifying S3 with the unit sphere in C2, then when n = 1 this is the standard
isomorphism S3

∼=−→ SU(2). For n > 1 we can think of E as arising as a composite
S3 → SU(2) → SU(2n) (the second map is basically tensoring with IdCn , by the
way).

If A ∈ U(n) then we also get the element FA =

[
In 0
0 A

]
∈ U(2n). By conjugat-

ing, we obtain elements

Gα,β,A = FAEα,βF
−1
A =

[
αIn −β̄A†
βA ᾱI

]
∈ SU(2n).

Here we have written A†, but we could also have written A−1 since they are equal.
This formula describes a map G : S3 × U(n)→ SU(2n).

Observe that
(44.1)

Gα,β,A=Re(α)

[
I 0
0 I

]
+ Im(α)

[
iI 0
0 −iI

]
+ Re(β)

[
0 −A†
A 0

]
+ Im(β)

[
0 iA†

iA 0

]
where each of the four matrices appearing in the linear combination is in SU(2n).
The coefficients of our linear combination are a point in S3, and we have seen that
any such “unital” linear combination gives a matrix in SU(2n). This surprising
property turns out to be very useful and rare, and we will see in Section 45.7
that such situations always come from Clifford algebra representations. In fact you
might notice that the four matrices in our linear combination can be used to give
a quaternionic structure on C2n and that H ∼= Cl2(R) (the four matrices gives the
action of 1, i, j, and −k).

For what is about to happen we will not need the full S3 parameter space, and
it will be enough to restrict down to a 2-disk. But there is not a canonical choice
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for such a disk, and this leads to a bit of a mess where different viewpoints call for
different choices. Most of the work in this section amounts to navigating this.

Exercise 44.2. Verify that an element X ∈ U(2n) anticommutes with
[
iI 0
0 −iI

]
if

and only if it has the form [ 0 B
C 0 ] where B,C ∈ U(n). If in addition X2 = −I verify

that B = −C† (and note that this forces X ∈ SU(2n)). So if one went looking
for quaternionic structures extending

[
iI 0
0 −iI

]
then one would quickly discover the

above formulas.

We will only need the portion of G defined on S2
upp, the upper hemisphere of S2,

regarded as sitting in S3 as the points (x, y, z, 0) with x, y, z ∈ R and z ≥ 0. In
relation to the complex coordinates used earlier, α = x+ iy and z = Re(β). Let G′
denote the map S2

upp × U(n)→ SU(2n) given by

(x, y, z, A) 7→ xI + y

[
iI 0
0 −iI

]
+ z

[
0 −A†
A 0

]
.(44.3)

When z = 0 the output does not depend on A, which says that G′ respects the
quotient relation (u,A) ∼ (u,B) for all u ∈ ∂S2

upp and A,B ∈ U(n). So we obtain
an induced map

B : (S2
upp × U(n))/∼−→ SU(2n).

The domain is a model for Σ2U(n) (see Exercise 44.11(g)), so we will also write
this as B : Σ2U(n)→ SU(2n). We call B the “Bott suspension map”.

Exercise 44.4. For any space W the double suspension Σ2W can be modelled
by the construction (S2

upp ×W )/∼ where (a,w) ∼ (a,w′) for all a ∈ ∂S2
upp and

w,w′ ∈ W . Verify this explicitly for W = Sr by checking that a homeomorphism
S2+r −→ (S2

upp × Sr)/∼ is given by

(u, x) 7→
(

(u1, u2, |x|), x|x|
)

for (u, x) ∈ R2 × Rr+1 such that |u|2 + |x|2 = 1. Here the image point has the
evident interpretation when |x| = 0. [Suggestion: It is easier to work with the
inverse.]

Exercise 44.5. Verify that the square

(S2
upp × U(n))/∼ B //

id×i
��

SU(2n)

i

��
(S2

upp × U(n+ 1))/∼ B // SU(2n+ 2)

commutes up to homotopy.

Remark 44.6. Notice that we made a choice in (44.3) to use the matrix
[

0 −A†
A 0

]
from (44.1) rather than

[
0 iA†

iA 0

]
. It turns out that this choice doesn’t matter. We

can replace
[

0 −A†
A 0

]
with the matrix

[
0 −s̄A†
sA 0

]
for any s ∈ S1 and obtain a map

G′s. Taking a path in S1 from 1 to s gives a homotopy between our G′ and any
other G′s. The formulas corresponding to G1, G−1, Gi, and G−i are all commonly
found in the literature, with different sources making different choices.
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Remark 44.7. Another choice commonly found in the literature is to switch the
locations of A and A† in formula (44.3). This time the switch does alter the
homotopy type of the maps G′ and B, but in a predictable way: it essentially
precomposes them with the automorphism of U(n) given by A 7→ A†. We will not
have to deal with this issue, but want to alert the reader to differences that might
be encountered in other sources. The profusion of different choices here makes the
literature a bit of a nightmare.

Given f : Sr → U(n) let B∗Σ2(f) denote the composite

S2+r (S2
upp × Sr)/∼

id×f // (S2
upp × U(n))/∼ B // SU(2n)

where the first isomorphism is the one from Exercise 44.4. The assignment f 7→
B∗Σ

2(f) gives a map of groups πrU(n)→ πr+2SU(2n), as it is the composite

πrU(n)
Σ2

−→ πr+2(Σ2U(n)) = πr+2((S2
upp × U(n))/∼)

B∗−→ πr+2SU(2n).

This also explains the symbology B∗Σ
2.

In coordinates (u, x) ∈ R2 × Rr+1 with |u|2 + |x|2 = 1 we have

(B∗Σ
2f)(u, x) = u1I + u2

[
iI 0
0 −iI

]
+ |x|

[
0 −f( x

|x| )
†

f( x
|x| ) 0

]
.

Note that when |x| = 0 the last term is interpreted to be the zero matrix. Sometimes
it is useful to absorb u1 and u2 into a single complex coordinate α. Here we identify
S2+r with S(C× Rr+1) and then write

(B∗Σ
2f)(α, x) =

[
αI −|x|f( x

|x| )
†

|x|f( x
|x| ) ᾱI

]
= G

α,|x|,f
(
x
|x|
).

We regard (1, 0) as the basepoint of S(C×Rr+1) and note that (B∗Σ
2f)(1, 0) = Id.

The following result is a very concrete version of Bott periodicity:

Theorem 44.8. For r < 2n the map B∗Σ
2 : πrU(n) −→ πr+2SU(2n) is an iso-

morphism. Moreover, the stabilization square

πrU(n)

B∗Σ
2

��

i∗ // πrU(n+ 1)

B∗Σ
2

��
πr+2SU(2n)

i∗ // πr+2SU(2n+ 2)

is commutative for all r and n.

The proof is not deep, and consists mostly of just carefully comparing our formula
for B∗Σ

2 to the maps that came up in the Bott-Morse arguments. But this is
easier said than done and does take some care. The remainder of the section will
be focused on this proof, but very little of what goes into this proof will be used
later. So readers who are more interested in seeing applications of Theorem 44.8
should feel free to jump ahead to Section 45.

Exercise 44.9. Use the isomorphisms in Theorem 44.8 together with the long
exact sequences for SU(r − 1) ↪→ SU(r) → S2r−1 to prove that for all k ≤ 2n− 1
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one has

πk(U(n)) ∼=
{
Z if k is odd,
0 if k is even.

That is to say, the Bott periodic groups in π∗U(n) persist up through ∗ = 2n− 1.
Also prove that π2nU(n) (the first non-periodic group) is always cyclic.

44.10. Joins. IfX and Y are spaces then the joinX∗Y is defined to be the quotient
space (X × I × Y )/∼ where the equivalence relation is genereated by (x, 0, y) ∼
(x, 0, y′) and (x, 1, y) ∼ (x′, 1, y) for all x, x′ ∈ X and y, y′ ∈ Y . Intuitively one
thinks of the join as the space of lines from points in X to points in Y . It will be
convenient to adopt the notation

(x, t, y) = (1− t)[x] + t[y],

so that X ∗ Y = {a[x] + b[y]
∣∣x ∈ X, y ∈ Y, a, b ∈ I, a+ b = 1}.

Note that S0∗Y is the (unreduced) suspension of Y . We will often give the points
of S0 names like ±P , in which case points of S0∗Y will be written a[±P ]+(1−a)[y]
where y ∈ Y and a ∈ I.

When X and Y are pointed CW-complexes then the homotopy type of X ∗ Y
coincides with Σ(X ∗Y ). We will not need this general fact, but see ??? for a proof.

The following exercise establishes several basic facts we will need about the
behavior of the join:

Exercise 44.11. Justify all of the following claims.
(a) For the unit circle S1 ⊆ C, a homeomorphism S1 ∼= S0 ∗ S0 = {±1} ∗ {±i} is

given by
α 7→ Re(α)2[sgn(Reα)] + Im(α)2[sgn(Imα)i]

where sgn(r) is +1 when r > 0 and −1 when r < 0 (the value when r = 0
doesn’t actually matter for the above formula).

(b) The inverse of the map in (a) is given by a[±1] + b[±i] 7→ (±√a) ± (
√
b · i),

where the first ± follows the sign on 1 and the second follows the sign on i.
Verify that

a[±1] + b[±i] 7→ 1√
a2+b2

[±a± bi]
also gives a homeomorphism S0 ∗ S0 → S1, and that this map is homotopic to
the first one.

In fact, suppose γ : I → R2 is any homeomorphism onto the first quadrant
of the unit circle (x, y ≥ 0) such that γ(0) = (0, 1) and γ(1) = (1, 0). Write
γ(t) = (γ1(t), γ2(t)). Then

a[±1] + b[±i] 7→ ±γ1(a)± γ2(a) · i
is a homeomorphism and is homotopic to the above maps.

There is a moral here: because joins are made up of straight lines, maps out
of them can often be represented by many different formulas that are the same
up to homotopy.

(c) For the standard spheres Sr ⊆ Rr+1 and Ss ⊆ Rs+1, there is a homeomorphism
Sr+s+1 ∼= Sr ∗ Ss given by

(x, y) 7→ |x|2
[
x
|x|

]
+ |y|2

[
y
|y|

]
where x ∈ Rr+1, y ∈ Rs+1, and |x|2 + |y|2 = 1.
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(d) When X, Y , and Z are compact Hausdorff the triple join X ∗ (Y ∗Z) is home-
omorphic to the quotient space obtained from the set of formal sums

a[x] + b[y] + c[z]

where a, b, c ≥ 0 and a+ b+ c = 1 (topologized as X × Y ×Z ×∆2) subject to
the quotient relation generated by 0[x] + b[y] + c[z] ∼ 0[x′] + b[y] + c[z] and the
two analogous relations corresponding to b = 0 and c = 0. [Note: This result
is non-obvious because of the need to commute products with the quotienting
processes. Possibly the hypotheses that the spaces are compact and Hausdorff
are unnecessarily strong, but they allow one to use adjunction arguments and
other simplifying techniques. If Q = (X × Y × Z ×∆2)/∼ start by producing
a map X × (Y × Z × I) × I → Q, then get (Y × Z × I)/∼−→ QX×I , and
continue to arrive at a map X ∗ (Y ∗ Z)→ Q.]

(e) A homeomorphism S(C× Rr+1) ∼= S0 ∗ S0 ∗ Sr is given by

(α, x) 7→ Re(α)2
[
sgn(Re(α))

]
+ Im(α)2

[
sgn(Im(α))i

]
+ |x|2

[
x
|x|

]
.

(f) S1 ∗X ∼= (D2×X)/∼ where the equivalence relation has (a, x) ∼ (a, x′) for all
a ∈ ∂D2 and x, x′ ∈ X. One such homeomorphism is given by t[α]+(1−t)[x] 7→
(tα, x), and another (homotopic) one is given by t[α] + (1− t)[x] 7→ (

√
t · α, x).

[This does not need X to be compact Hausdorff, though the proof is easier in
that case. Likewise for the next part.]

(g) There is a homeomorphism

S0 ∗ S0 ∗X −→ (S2
upp ×X)/∼

given by a[±M ] + b[±N ] + c[x] 7→ ((±M
√
a,±N

√
b,
√
c), x). Here we are using

S2
upp to line up with discussion from the beginning of the section, but note that

we could just as well use D2 instead (but getting slightly different formulas).
(h) Suppose given a map f : Z → ΩP,QW , and recall that the target denotes the

space of paths that begin at P and end at Q. Check that one gets an “adjoint”
adj(f) : S0 ∗ Z →W via the formula

(1− t)[±N ] + t[z] 7→
{

[f(z)]( t2 ) for +

[f(z)](1− t
2 ) for −,

having the property that [+N ] → P and [−N ] → Q. Moreover, if Z has a
basepoint z and γ = f(z) then the following diagram commutes

πr(Z, z)
f∗ //

Σ

��

πr(ΩP,QW,γ)

Adj∼=
��

πr+1(S0 ∗ Z, [+N ])
adj(f)∗

// πr+1(W,P )

where Adj sends a homotopy element α : Sr → ΩP,QW to adj(α) : S0 ∗Sr →W
and S0 ∗ Sr has the north pole [+N ] as basepoint. As part of this, check that
Σ and Adj are well-defined, group maps, and that Adj is an isomorphism.
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Using Exercise 44.11(g) we now see that the Bott suspension map B can be
reinterpreted as the map B : S0 ∗ S0 ∗ U(n)→ U(2n) given by the formula

a[±M ] + b[±N ] + c[A] 7→ ±M
√
aI +±N

√
b

[
iI 0
0 −iI

]
+
√
c

[
0 −A†
A 0

]
.

44.12. Proof of Theorem 44.8.
Recall the Bott map β : Grn(Cn+ ⊕ Cn−) → ΩI,−ISU(2n) sending a subspace H

to the path βH given by

βH(t) = [the transformation that is ·eπit on H and ·e−πit on H⊥].

For stabilization we need to pass to ΩISU(2n) instead, so let σ be the path from I
to −I where

σ(t) = [the transformation that is ·e−πit on Cn+ and ·eπit on Cn−].

We use the homeomorphism ΩI,−ISU(2n)→ ΩISU(2n) that sends a path λ to the
loop t 7→ λ(t) · σ(t) (see Exercise 41.14), and will write β̃ for the composite

Grn(Cn+ ⊕ Cn−)
β−→ ΩI,−ISU(2n) −→ ΩISU(2n).

The proof centers on analyzing the following large diagram. All of the “action” in
this diagram is in the two pentagons at the bottom; the composition running along
the top of those pentagons is the Bott isomorphism we saw in Section 41. The six
rectangles forming the top of the diagram are only there to show the stabilization
and can be ignored.

πrU
∼=
c
// Vectst(Sr+1) πr+1 Gr∞(C2∞)

β̃∗

∼=
//oo πr+1ΩISU πr+2SU

CkπrUk
∼=
c
//

∼=

OO

Ck Vectk(Sr+1)

∼=

OO

Ckπr+1Grk(Ck+ ⊕ C∞− )

∼=

OO

∼=oo

πrUn

[r≤2n−1]

OO

Σ &&

∼=
c
// Vectn(Sr+1)

OO

πr+1 Grn(Cn+ ⊕ C∞− )

[r≤2n−1]

OO

∼=oo

πr+1ΣUn

Σ ))

Θ∗ // πr+1 Grn(Cn+⊕Cn−)

[r≤2n−1]

OO

β̃∗

[r≤2n−1]

// πr+1ΩISU2n

OO

πr+2SU2n

[r<4n−2]

OO

πr+2(S0∗S0∗Un)

B∗

33

One part of this diagram—the map Θ∗—has not been explained yet, but we will
get to it shortly. We instead begin with several remarks to help the reader parse
the above monstrosity:
(1) The composition across the top row is the stable form of the Bott periodicity

isomorphism. The space Gr∞(C2∞) is the construction colimk Grk(Ck+ ⊕ Ck−)
that we encountered in Section 41. Recall that this space is a model for BU .

(2) The composition across the bottom of the diagram (B∗ ◦ Σ ◦ Σ) is the subject
of Theorem 44.8 and our main goal.

(3) Ck is shorthand for colimk, and we have written Uk as shorthand for U(k).
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(4) The dotted arrow in the top row is dotted because it is not naturally occuring;
rather, it is defined to be the composite of the other isomorphisms in that
square. All other maps in the diagram are the evident ones.

(5) Recall that the maps Grn(Cn+ ⊕ Cn−)→ Grn+1(Cn+1
+ ⊕ Cn+1

− ) send an n-plane
H to H ⊕ 〈en+1,+〉. That is, both en+1,+ and en+1,− are added to the ambient
space, but only the former is added to the subspace. Going to the colimit can
be broken up as first adding in all of the negative basis vectors to the ambient
space, and then adding the positive basis vectors one by one into both the
ambient space and the subspace. This is what is going on at the top of the
central column. We are doing this because Grk(Ck+⊕C∞− ) is a model for BU(k)
and hence classifies rank k vector bundles.

(6) The maps labelled c are given by the clutching construction. The inequalities
in brackets are ranges where the given maps are isomorphisms. There are
three sources of these: the fiber sequences Uk ↪→ Uk+1 ↪→ S2k+1, the fact that
Grn(C∞) is obtained from Grn(C2n) by attaching cells of dimension 2n+2 and
higher, and the Bott-Morse arguments giving the connectivity of the lower β̃
map.

(7) The four squares in the upper left obviously commute.
(8) The maps β̃ send a subspace H to the path of transformations

t 7→ (eπit on H, e−πit on H⊥) · (e−πit on Cn+, eπit on Cn−)
where the · denotes multiplication of matrices or composition of transforma-
tions. If we denote this path β̃H , notice that for x ∈ H ∩ Cn+ or x ∈ H⊥ ∩ Cn−
we have (β̃H)t(x) = x for all t. In particular, this explains why β̃ extends to
the colimit. This is the commutativity of the leftmost of the two upper right
rectangles. The commutativity of the rightmost one is self-evident.

At this point we have analyzed the top portion of the diagram, made up of the
six rectangles. It is difficult to directly relate the composition across the bottom of
these rectangles to the B∗◦Σ2 composite because some of the maps go in the “wrong”
direction. We will correct for this by introducing the map Θ: ΣU(n)→ Grn(C2n),
which helps connect the two pieces. This map is in some sense a geometric object
underlying the isomorphism πrU ∼= πr+1BU .

Let G : U(n) → Grn(C2n) be the map that sends a matrix A to its graph GA =
{(x,Ax) |x ∈ Cn}. There is an extension of G to a map ΣU(n) → Grn(C2n) that
deforms GA to each of the two “coordinate axes” in Cn ⊕ Cn. Precisely, we have
Θ: S0 ∗ U(n)→ Grn(C2n) given by

(1− t)[N ] + t[A] 7→ {(x, tAx) |x ∈ Cn}
(1− t)[−N ] + t[A] 7→ {(tx,Ax) |x ∈ Cn}.

Note that [N ] 7→ Cn ⊕ 0 and [−N ] 7→ 0⊕ Cn.
Pulling back the canonical bundle η on Grn(C2n) along Θ gives a rank n bundle

on ΣU(n). As we have seen in Section 12.1, vector bundles on such a suspension
are characterized by a clutching function U(n) → U(n), and we claim that in this
case the clutching function is the identity. To see this, observe that the formulas

(1− t)[N ] + t[A] 7→ [(e1, tAe1), . . . , (en, tAen)]

(1− t)[−N ] + t[A] 7→ [(tA−1e1, e1), . . . , (tA−1en, en)]
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give trivializing sections over the upper and lower cones, respectively. When t = 1
the matrix that writes the first basis in terms of the second basis is precisely A
(just look in the second coordinates).

Continuing now with our analysis of the big diagram:
(9) The trapezoidal pentagon in the lower left commutes because, given

f : Sr → U(n), the vector bundle on Sr+1 constructed with this clutch-
ing function is precisely the pullback in the diagram

E //

��

ηn

��
ΣSr

Σf // ΣU(n)
Θ // Grn(C2n).

This is due to our construction of Θ, and the fact that Θ∗ηn is the bundle
on ΣU(n) whose clutching function is the identity.

(10) We observe now that the theorem will follow immediately once we have
proven the commutativity of the bottom pentagon (which looks more like
a triangle in the diagram), using that the indicated maps are isomorphisms
in the given ranges.

To prove commutativity of the pentagon we need to unpack the Bott map β.
Let X ⊆ SU(2n) denote the subspace of matrices A such that A2 = −I. All such
matrices are diagonalizable with eigenvalues±i and orthogonal eigenspaces, so there
is a homeomorphism Grn(C2n) −→ X sending a subspace H ⊆ C2n to the matrix
for the transformation TH which is multiplication by i on H and multiplication by
−i on H⊥. We will move back and forth between Grn(C2n) and X at will via this
homeomorphism. For example, the Bott map β : Grn(C2n)→ ΩI,−ISU(2n) is also
the map β : X → ΩI,−ISU(2n) given by

A 7→ [t 7→ eπtA = cos(πt)I + sin(πt)A].

We next want to re-interpret our map Θ: S0 ∗ U(n)→ Grn(C2n) (see above) as
a map Θ′ : S0 ∗U(n)→ X. This involves finding matrices in X whose i-eigenspaces
are the given subspaces of C2n. A little legwork/inspiration suggests that to have
(x, tAx) be an eigenvector one should look at unitary matrices of the form Q =[
αI βA†

−β̄A ᾱI

]
, and we leave the reader to check that

• Q is unitary precisely when |α|2 + |β|2 = 1.
• When Q is unitary one automatically has det(Q) = 1, so Q ∈ SU(2n).
• When Q is unitary, Q2 = −I if and only if α = ri for some r ∈ R.
• When Q is unitary and Q2 = −I, Q has {(x, tAx) |x ∈ Cn} as its i-

eigenspace precisely when r = 1−t2
1+t2 and β = si where s = 2t

1+t2 .
• When Q is unitary and Q2 = −I, Q has {(tx,Ax) |x ∈ Cn} as its i-

eigenspace precisely when r = t2−1
1+t2 and β = si where s = 2t

1+t2 (just
change t to t−1 in the previous bullet point).

These are routine exercises in linear algebra. The upshot is that the formula for
the map Θ′ : S0 ∗ U(n)→ X is

(1− t)[±N ] + t[A] 7→
[
±riI siA†

siA ∓riI

]
= ±r

[
iI 0
0 −iI

]
+ s

[
0 iA†

iA 0

]
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where
r = 1−t2

1+t2 , s = 2t
1+t2 .

Note that r2 + s2 = 1 here, for all values of t.
The above formulas for r and s are a little awkward, so we make the following

observation. All that is important here is that the assignment t 7→ (r, s) maps I to
the first quadrant of the unit circle, with 0 7→ (1, 0) and 1 7→ (0, 1). All such maps
are homotopic, and using any such map to give the coefficients for r and s in the
above formula gives a map S0∗U(n)→ X that is homotopic to the specific Θ′ above.
For example, one could use (r, s) = (

√
1− t,

√
t) or (r, s) = (cos(π2 t), sin(π2 t)), and

these lead to more pleasant-looking formulas.
Finally, we consider the composite

S0 ∗ U(n)
Θ′−→ X

β−→ ΩI,−ISU(2n)

that is given by the formula

(1− t)[±N ] + t[A] 7→
[
u 7→ cos(πu)I + sin(πu)Θ′

(
(1−t)[±N ]+t[A]

)]
.

We again take note that the coefficients r2(u) = cos(πu) and s2(u) = sin(πu) can
be varied somewhat. All that is important is that u 7→ (r2(u), s2(u)) maps I to
the top of the unit circle and sends 0 to (1, 0) and 1 to (−1, 0). All such paths are
homotopic, so we can change the coefficients in the above formula to any such r2(u)
and s2(u) without changing the overall homotopy class of the map. In a moment
it will also be convenient that u = 1

2 is mapped to (0, 1), so we will also insist on
that.

Taking the “adjoint” of the above composite, as in Exercise 44.11(h), gives the
map adj(βΘ′) : S0 ∗ S0 ∗ U(n)→ SU(2n) whose formula is

a[±M ] + b[±N ] + c[A] 7→ r2

(
1∓Ma

2

)
I±Ns2

(
1∓Ma

2

)
r
(

c
1−a

) [
iI 0
0 −iI

]
(∗)

+ s2

(
1∓Ma

2

)
s
(

c
1−a

) [
0 iA†

iA 0

]
.

Recall that the 1∓Ma
2 term is mapping the “suspension coordinate” given by a to a

“path coordinate” that goes from 0 to 1, as shown in the following picture:

[+M ] (a = 1) //

��

0

(a = 0) // 1
2

[−M ] (a = 1) //

OO

1.

The coefficients in (∗) are off-putting, but what is happening here is that we have
four maps from ∆2 = {(a, b, c) ∈ I3 | a + b + c = 1} to S2

upp (corresponding to the
four choices of signs) that patch together to give the map shown in the following
picture:
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b b
b

b

b

b

b b

b

b

A

−A
B−B

C

C

A

B

−A

−B

+++−

−− −+

(1,0,0)

(1,0,0)

(0, 1, 0) (0,0,1)

The diamond is really ∆2 ⊆ R3 together with its three images under the different
reflections (a, b, c) 7→ (±a,±b, c). The points labelled ±A, ±B, C in the diamond
map to the corresponding points in the sphere, with indicated lines mapping onto
the indicated arcs of great circles. Each triangle in the diamond is identified with
our standard ∆2 by having the ±A vertex map to (1, 0, 0), the ±B vertex map to
(0, 1, 0), and the C vertex map to (0, 0, 1) (notice that, conveniently, these are also
related to the coordinates of their images in the sphere).

While this map from the diamond to the upper half-sphere is not too hard to
understand from a geometric perspective, the algebraic formula in (∗) is unpleasant.
As we have seen before, it can largely be ignored: all that is important here is that
the map sends the boundary of the diamond homeomorphically onto the equator
and the four corners to the four corresponding equatorial poles—all such maps are
homotopic. So we can instead use, for example, (±a,±b, c) 7→ (±√a,±

√
b,
√
c) if

we prefer. This shows that adj(βΘ′) is homotopic to the map

(∗∗) a[±M ] + b[±N ] + c[A] 7→ ±M
√
aI ±N

√
b
[
iI 0
0 −iI

]
+
√
c
[

0 iA†

iA 0

]
.

It then follows that we have a homotopy-commutative diagram

S0 ∗ S0 ∗ U(n)

∼= ((

adj(βΘ′) // SU(2n)

(S2
upp × U(n))/∼

B

77
(44.13)

where the isomorphism is the one from Exercise 44.11(g), namely a[±M ]+b[±N ]+

cA 7→ ((±M
√
a,±N

√
b,
√
c), A). This requires one more comment, because our

formula from (∗∗) does not exactly match the formula for B from (44.3) due to the
presence of the i’s in the final matrix. However, by Remark 44.6 B is homotopic to
the version with the i’s.

Exercise 44.14. For those who prefer algebra to geometry, check that the functions
r(t) =

√
1− t, s(t) =

√
t, and

r2(u) =

{√
1− 2u if 0 ≤ u ≤ 1

2 ,

−
√

2u− 1 if 1
2 ≤ u ≤ 1

, s2(u) =
√

1− |2u− 1|

satisfy our various requirements and turn formula (∗) exactly into formula (∗∗).
We can now complete the last step of the proof:
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(11) To see commutativity of the bottom pentagon in our large diagram we
expand the picture as follows:

πr+1ΣUn

Σ //

Θ′∗ ''

Θ∗ // πr+1 Grn(C2n)
β̃∗ // πr+1ΩISU2n πr+2SU2n

πr+1X

∼=

OO

β∗ // πr+1ΩI,−ISU2n

∼= K∗

OO
Adj

∼=

55

πr+2(S0 ∗ S0 ∗ Un)

adj(βΘ′)∗

OO

B∗

OO

Here K : ΩI,−ISU(2n)→ ΩISU(2n) is the map that right-multiplies a loop
by the canonical path σ : t 7→ diag(e−πit, . . . , e−πit, eπit, . . . , eπit), and Adj
is the map that sends Sr+1 → ΩI,−ISU2n to its adjoint Sr+2 ∼= S0∗Sr+1 →
SU2n (see Exercise 44.11(h)) where the basepoint of the domain is the
north pole. The upper left triangle and the upper rectangle commute by
definition. The upper right triangle is checked to commute as follows. Let
Ht be the homotopy from the constant path at I to σ rel the initial point
shown in the following diagram:

σ

σ

I

I

I

−I

I

H0 H1Ht

(on the top triangle this is constant and on the lower one it is—looked
at the right way—the homotopy showing that σ contatenated with its
reverse is homotopic to the constant path). If α : Sr+1 → ΩI,−ISU2n

then Adj(α) : S0 ∗ Sr+1 → SU2n is the map that for each x ∈ Sr+1

sends the path “suspension of x” (from north to south pole) to α(x). Let
Adj(α)t : S

0 ∗ Sr+1 → SU2n be the similar map that sends the path “sus-
pension of x” to α(x) ·Ht, where the multiplication is pointwise, using the
group structure on SU2n. This gives a homotopy, pointed at the north pole,
from Adj(α)0 = Adj(α) to Adj(α)1 = K∗(α).

The map adj(βΘ′) is the “adjoint” of the composite βΘ′, and the bottom
pentagon containing this map commutes by Exercise 44.11(h). Finally, the
maps adj(βΘ′) and B are homotopic by (44.13), and hence induce the same
map on homotopy groups.

◦ Exercises ◦

Summary: The main goal of this section was the very concrete version of Bott
periodicity for U given by Theorem 44.8. The proof was a longish chase through
the Bott periodicity map that comes out of Morse theory, but it was mostly tedious
rather than having any groundbreaking ideas. Attempting to do something similar
for O, however, presents some real challenges. To do this in a navigable manner
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will require us to step back and develop some more structure to help organize all
that is happening.

For versions of Theorem 44.8 in the literature see ?????.

45. Pinning down Bott periodicity, Part 2

In the last section we uncovered a very down-to-earth version of Bott periodicity.
We produced a family of maps B : (S2

upp × U(n))/∼−→ SU(2n), with the domain
a model for Σ2U(n) and given by very explicit matrix formulas. Then we proved
in Theorem 44.8 that the composition

πrU(n)
Σ2

−→ πr+2Σ2U(n)
B∗−→ πr+2SU(2n)

is an isomorphism for r < 2n and is compatible with the Bott map β. The compo-
sition is also denoted B. This theorem opens the door to several questions:
(1) We can now produce explicit generators for the groups π∗U by starting with

known generators in low dimensions and applying B. What do these generators
look like?

(2) The generators of π∗U translate into generators for π∗(BU) = K−∗(pt). Can
we use these explicit descriptions to understand the ring structure?

(3) The construction of the map B was somewhat ad hoc. How do we better
understand it?

(4) How do we generalize all of this to O instead of U?
Many of these questions are connected to each other. Our goal in this section is to
answer them as best as we can.

45.1. Generators for π∗U . Let us use B to produce some interesting elements in
the homotopy of the unitary groups. Start with the standard generator f1 ∈ π1U(1),
namely the map (x, y) ∈ S1 7→ x + iy. Then Bf1 is the map S3 → SU(2) that

sends (z, x, y) to
[

z −x+ iy
x+ iy z̄

]
. Note that this could also be described using

only complex coordinates, as

f3 : (z, w) 7→
[
z −w̄
w z̄

]
,

which is the standard isomorphism from S3 to SU(2). Applying B one more time
gives the map f5 ∈ π5SU(4) with formula

f5 : (u, z, w) 7→


u 0 −z̄ −w̄
0 u w −z
z −w̄ ū 0
w z̄ 0 ū

 .(45.2)

Clearly it is a triviality to keep writing these down in higher and higher dimensions
to produce explicit formulas for f2n+1 ∈ π2n+1SU(2n).

This procedure produces generators for π2s+1U that come from π2s+1U(2s). But
the stability isomorphisms shows that in fact a generator can be lifted all the way to
π2s+1U(s + 1). This is a substantial difference! For example, the above technique
lets us write down an explicit lifting of the generator for π15U to an element of
π15U(128), when in fact we know that a lifting actually exists into π15U(8).



450 DANIEL DUGGER

One thing that is notable about the generators produced by Theorem 44.8 is
that they are linear . For example, f3 is given by the formula

(z0, z1, w0, w1) 7→ z0

[
1 0
0 1

]
+ z1

[
i 0
0 −i

]
+ w0

[
0 −1
1 0

]
+ w1

[
0 i
i 0

]
.(45.3)

Liftings of these generators into smaller U(n)’s tend not to be linear anymore (in
fact, we will see in Corollary 45.9 that they are never linear). For example, here is
a lifting of f5 into π5SU(3):

(u, z, w) 7→

u− w̄z w̄2 −z̄ − w̄ū
z2 u+ zw̄ w − zū

w + ūz z̄ − ūw̄ ū2

 .(45.4)

How did we get this map? There is an interesting technique from [Lu], later
refined and simplified in [PR], that we will now describe. Let X ⊆ SU(d) be the
subspace of matrices A having add = 0. These are unitary transformations having
the property that A(ed) lies in 〈ed〉⊥. Set b = A(ed). Under these circumstances
we can follow A with the rotation in the plane 〈ed, b〉 that rotates b back to ed and
ed to −b. In this way we deform the original transformation into one that fixes ed,
and therefore lives in SU(d− 1). Here is a more precise statement:

Proposition 45.5. There is a homotopy H : X × I → SU(d) where H0 is the
inclusion and H1 factors through SU(d− 1), given by

Ht :

[
E b
c 0

]
7→
[
E − bc sin(π2 t) b cos(π2 t)
c cos(π2 t) sin(π2 t)

]
.

Proof. On one level the proof is just a computation: one simply checks that the
given formula always gives a matrix in SU(d), and then the stated properties are
immediate. Checking that the formula gives a unitary matrix is routine algebra,
though verifying that the determinant is 1 is a little trickier.

The result is clearer when we interpret the given formula as post-composing

the original unitary transformation A =

[
E b
c 0

]
with a rotation. The fact that

A is unitary implies that E(e1), . . . , E(ed−1) are orthogonal to A(ed) = b. Write
Rt for the rotation that fixes 〈ed, b〉⊥ and sends ed 7→ cos(π2 t)ed − sin(π2 t)b and
b 7→ sin(π2 t)ed + cos(π2 t)b. Then Rt clearly lies in SU(d). The composite RtA has
the following behavior:

For 1 ≤ i ≤ d− 1: ei 7→ Eei + cied 7→ Eei + ci(cos(π2 t)ed − sin(π2 t)b)

ed 7→ b 7→ cos(π2 t)b+ sin(π2 t)ed.

Note that this exactly reproduces the matrix formula in the statement of the propo-
sition. �

If a map f : Sr → SU(d) factors through X, Proposition 45.5 gives an explicit
way to homotop it down into SU(d− 1). The condition about factoring through X
seems rather specialized, but anytime there is a fixed matrix entry which vanishes
for the entire image of f then there is a way to move that entry to the (d, d)-spot
via rotations, so that in fact we land back inside of X. For example, start with the
formula for f5 in (45.2) and note the 0 in the (3, 4)-entry. Left-multiply with the
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matrix 
1 0 0 0
0 1 0 0
0 0 cos(π2 t) − sin(π2 t)
0 0 sin(π2 t) cos(π2 t)


to get a homotopy between the f5-map and the similar map where the last two
rows have been switched and the (new) third row negated. Now we have the zero
in the (4, 4)-entry, and applying the formula from Proposition 45.5 spits out (45.4).

Exercise 45.6. Start with the formula for f5 in (45.2) and apply B to get a linear
element f7 ∈ π7SU(8). You will notice that the formula has many zeros in it.
Convince yourself that after using the above method to reduce to an element in
π7SU(7) with quadratic entries one can apply the method again to reduce to an
element in π7SU(6) with quartic entries. Challenge: For this example, how long
can one continue this process?

45.7. Linear homotopy classes. The formula of (45.3) is very reminiscent of sim-
ilar formulas we saw when talking about vector fields on spheres and the Hurwitz-
Radon problem, as well as in the (related) theory of Clifford modules. This is,
of course, no surprise since Clifford modules are somehow fundamental to Bott
periodicity. But let us tease this out a bit more from an elementary perspective.

Say that a map Sr → U(n) is linear if it has the form

(x0, . . . , xr) 7→ x0A0 + x1A1 + · · ·+ xrAr

for some A0, . . . , Ar ∈ U(n). Note that given a linear map like this we can always
left-multiply by A−1

0 and obtain a related map where A0 = Id. From now on we
will always assume that linear maps have been normalized in this way.

Proposition 45.8. The elements A0, . . . , Ar ∈ U(n), with A0 = Id, give a linear
map if and only if A2

i = −I and AiAj = −AjAi for all 1 ≤ i < j ≤ r. That is, the
matrices A1, . . . , Ar give a unitary representation of the complex Clifford algebra
Clr(C) on Cn. [And the same result holds with U(n) replaced by O(n) and the
complex Clifford algebras replaced by the real ones.]

Proof. The “if” direction is a simple verification that we leave to the reader. For the
“only if” direction, assume we have a linear map Sr → U(n). Then, in particular,
x0I + x1A1 ∈ U(n) whenever x2

0 + x2
1 = 1. So

I = (x0I + x1A1)(x0I + x1A
†
1) = (x2

0 + x2
1)I + x0x1(A1 +A†1),

and since this holds whenever x2
0 + x2

1 = 1 we conclude that A1 + A†1 = 0. Then
A−1

1 = A†1 = −A1, so A2
1 = −I. Similarly, A2

i = −I for i ≥ 1.
By the same kind of analysis one uses that xiAi+xjAj ∈ U(n) whenever x2

i+x
2
j =

1 to conclude that AiA
†
j+AjA

†
i = 0. Then use that A†i = A−1

i = −Ai (and similarly
for Aj) to conclude that Ai and Aj anti-commute. �

We will call a collection of matrices A1, . . . , Ar satisfying the above conditions a
set of Hurwitz-Radon matrices, or equivalently a set of Clifford matrices.

Corollary 45.9. There exists a linear map Sr → U(n) if and only if n is a multiple
of 2b

r
2 c. Likewise, there is a linear map Sr → O(n) if and only if n is a multiple

of 2σ(r) where σ(r) = #{s | 0 < s ≤ r and s ≡ 0, 1, 2, or 4 mod 8}.
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Proof. This follows immediately from the representation theory of the Clifford al-
gebras. All of the irreducible modules for Clr have the same dimension: 2b

r
2 c in

the complex case, and 2σ(r) in the real case. Since the representation theory is
semisimple, the dimension of any representation will be a sum of the dimensions of
the irreducibles. �

By just checking that the dimensions line up, we see from Corollary 45.9 that
the linear maps Sr → U(n) produced by the B map—as in the discussion after
Theorem 44.8—are the best possible. For example, the linear map S5 → SU(4)
cannot be lifted to a linear map into SU(3), even though it does lift to a non-linear
map into SU(3) as we have seen. (We have not yet considered the orthogonal case
but will do so shortly!)

We now understand that a unitary Clr(C)-action on Cn gives a linear map
f : Sr → U(n). If the action extends to a Clr+1(C)-action then f extends to
Sr+1 → U(n), which means that f was null-homotopic (because the inclusion of Sr
into Sr+1 is null). We want to systemize this way of passing from Clifford modules
to linear homotopy classes in order to get a better handle on it.

Let Gr be the Grothendieck group of finite-dimensional unitary Clr(C)-modules.
We can also make this construction for Clr(R), and when necessary we will write
Gr(C) and Gr(R) to distinguish between the complex and real cases. The Gr
groups are all free abelian with generators corresponding to isomorphism classes of
irreducibles, since the representation theory of the Clifford algebras is semisimple.

The inclusion Clr(C) ↪→ Clr+1(C) gives rise to a forgetful map from Clr+1(C)-
modules to Clr(C)-modules, which in turn gives a map of abelian groups Gr+1 →
Gr. Let Ar denote the cokernel. Our next goal will be to construct group homo-
morphisms

Ar(C)→ πrU, Ar(R)→ πrO.

Let M be a finite-dimensional unitary Clr(C)-module (recall this means that M
comes equipped with a Hermitian inner product and that the Clifford generators
act as unitary transformations). By picking a unitary basis ε1, . . . , εn for M we can
represent each Clifford generator as acting by an element of U(n), and thereby get a
linear map fM : Sr → U(n) as above. This depends on our choice of basis, though.
Another choice of basis would change this to P · fM · P−1, where P ∈ U(n) is the
change-of-basis matrix. Fortunately, U(n) is connected: a choice of path from Id
to P will give a basepoint-preserving homotopy from fM to PfMP−1, and so we
find that the element fM ∈ πrU(n) is independent of the choice of basis.

The analogous argument in the real case requires an extra step, because of the
fact that the groups O(n) are not connected. The matter again reduces to compar-
ing a map fM : Sr → O(n) to a conjugate PfMP−1 where P ∈ O(n). There is a
path in O(n) from P to either Id or R, where R is the reflection diag(−1, 1, 1, . . . , 1),
and as before such a path gives a homotopy. So we reduce to comparing fM to
RfMR

−1. We can re-interpret conjugation by R as conjugation by −R, and if
n is odd then −R has determinant 1 and so is path-connected to Id. So if n is
odd then we are okay. But if n is even then we can compose with the inclusion
O(n) ↪→ O(n+ 1) to reduce to the odd case. So the conclusion here is that, while
fM ∈ πrO(n) might depend on the choice of basis, the image in πrO does not.
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Proposition 45.10. fM⊕N = fM + fN in πrU (or πrO for the real case). Conse-
quently, we obtain maps of abelian groups Gr(C)→ πr(U) and Gr(R)→ πr(O) as
well as induced maps Ar(C)→ πr(U) and Ar(R)→ πr(O).

Proof. This boils down to checking that if f, g : Sr → U(n) then the product
fg : x 7→ f(x)g(x) is homotopic to

f ⊕ g : x 7→
[
f(x) 0

0 g(x)

]
when regarded as maps Sr → U(2n) (in the first case, via the inclusion U(n) ↪→
U(2n)). That statement in turn follows from the claim that the two maps U(n)→
U(2n) given by

A 7→
[
A 0
0 I

]
, A 7→

[
I 0
0 A

]
(45.11)

are homotopic. To justify this claim, consider the path in U(2n) given by

t 7→
[
cos(t)I − sin(t)I
sin(t)I cos(t)I

]
from t = 0 to t = π

2 . Left-multiplication by this path shows that the identity on

U(2n) is homotopic to the map
[
A B
C D

]
7→
[
−C −D
A B

]
. Right-multiplication by

the path gives a similar homotopy between the identity and a map that involves
switching column blocks instead of row blocks. Applying these two homotopies in
succession gives the desired homotopy between the two maps of (45.11).

Check O case and basepoints. �

At this point we have constructed maps of graded groups A∗(C) → π∗(U) and
A∗(R) 7→ π∗O. We want to next understand how periodicity of the two sides
interact. In each case, periodicity stems from a certain kind of multiplication that
we now explain.

Let us first observe a clever “doubling” construction that one can apply to Clifford
modules. If M is a Clr-module then consider the real vector space M ⊕M . This
comes equipped with the map f =

[
0 I
−I 0

]
which has f2 = −I. Check that f

anticommutes with [ 0 A
uA 0 ] (u a scalar constant) if and only if u = 1, and that f

anticommutes with [B 0
0 uB ] if and only if u = −1. This gives us a couple of ways of

regarding M ⊕M as a Clr+1-module, via the formulas ei 7→
[

0 ei
ei 0

]
, er+1 7→ f or

via the formulas ei 7→
[
ei 0
0 −ei

]
, er+1 7→ f .

Suppose given a Clr-module M and a Cls-module N . Can we merge these
two actions into something like a Clr+s-module? Write the generators of Clr as
e1, . . . , er and write the generators of Cls as gr+2, . . . , gr+s+1 (the strange indexing
will make more sense in a moment) . We need to construct a new module where the
e’s and g’s act simultaneously and anticommute. If we had said “commute” rather
than “anticommute”, there would be a standard solution: take M ⊗N and consider
the actions given by ei ⊗ idN and idM ⊗gj . To get anticommutativity instead we
can take the double (M ⊗ N) ⊕ (M ⊗ N) and intertwine with the f -map in the
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following way:

ei 7→
[
ei ⊗ idN 0

0 −ei ⊗ idN

]
for 1 ≤ i ≤ r

er+1 7→
[

0 idM ⊗ idN
− idM ⊗ idN 0

]
ej 7→

[
0 idM ⊗gj

idM ⊗gj 0

]
for r + 2 ≤ j ≤ r + s+ 1.

Note that we actually get a Clr+s+1-action in this way, not just a Clr+s-action.
Write M ⊗c N for (M ⊗ N) ⊕ (M ⊗ N) with this Clr+s+1-action. We will call it
the “Clifford tensor product”.

Remark 45.12. If the Clifford algebra Clr is thought of as containing generators
e0, e1, . . . , er with e0 = 1, then the generators for the two Clifford algebras Clr and
Cls merge to give

e0, . . . , er, er+1, . . . , er+s+2

with er+i corresponding to ei in Cls. In particular, er+1 corresponds to the e0 in
Cls. Keeping this in mind helps parse the formulas in the definition of M ⊗c N .

Remark 45.13. There were choices made of where to put the signs in the matrices
defining the Clifford action on the tensor product. One is of course free to multiply
any of the matrices by −1 and this produces a different module. The sign choices
for the first and third sets of matrices seem reasonably “natural”, but the sign on
the er+1 matrix seems arbitrary (in fact, thinking about the construction of C
from R even suggests the opposite sign from ours). There is a good reason for this
particular choice of sign, though: it is the one that makes Proposition 45.16(iv)
work out. We do not claim this to be clear indication that the universe really wants
this particular sign choice, but it was the deciding factor for us.

The Clifford tensor product induces a multiplication on the groups G∗, with
the unfortunate grading Gs ⊗Gt → Gs+t+1 (if this really bothers you, keep heart
because we will eventually repair this oddity). It likewise induces pairingsAs⊗At →
As+t+1. We want to use this extra information to help understand the structure
of the A∗ groups. To this end, we need notation for talking about the irreducible
Cln-modules before we go to the next stage of computing tensor products. When
n is even there is a unique (up to isomorphism) irreducible Cln-module, so there
are no issues there: let us just denote it Fn. But when n is odd there are two
non-isomorphic irreducibles, which we will call Fn,+ and Fn,−. In order to explain
what we mean by these, let us recall how Clifford modules work via the following
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diagram:

V V e1−

V e1+

e2

ii

V e1,e2e3+−

V e1,e2e3++

e2e4

hh

V e1,e2e3,e4e5++−

V e1,e2e3,e4e5+++

e4e6

hh

0 1 2 3 4 5 6

Here are the instructions for parsing this:
• A Cl0-module is just a complex vector space V .
• To make V into a Cl1-module one must give the action of e1. But since
e2

1 = −1, the action will be diagonalizable and will split V into the +i
and −i eigenspaces, denoted V e1+ and V e1− (sometimes we will drop the
superscripts for convenience).

• If the Cl1-action extends to a Cl2-action then since e2 anti-commutes with
e1 it will have to interchange the two eigenspaces V+ and V−. In fact,
mutiplication by e2 will have to give an isomorphism V+ → V− and so the
Cl1-action extends if and only if V+ and V− have the same dimension.

• If the Cl2-action extends to a Cl3-action, then since e2e3 commutes with e1

it will perserve each of the V+ and V− eigenspaces. But (e2e3)2 = −1 so it
will decompose V+ (for example) into +i and −i eigenspaces, denoted here
V++ and V+−. Note that there will be a similar decomposition of V−, but we
don’t need to include that because we obtain it from the V+-decomposition
via multiplication by e2.

• To extend to a Cl4-action, the element e2e4 commutes with e1 and so will
have to preserve V+; but it anticommutes with e2e3 and so will interchange
V++ and V+− and give an isomorphism between them.

• At the next stage, e4e5 commutes with e1 and e2e3 and so will preserve
the V++ eigenspace, and since (e4e5)2 = −1 it splits it into +i and −i
eigenspaces.

• At this point the pattern is clear: at each stage one writes down a certain
element ejek which commutes with the previously chosen elements, or else
anticommutes with the one immediately preceding it. In the first case the
element splits a previous eigenspace into two, whereas in the second case it
gives an isomorphism between the two previous eigenspaces.

• Note that the diagram has been set up so that columns 0 through n show
the information that constitutes a Cln-module, with the understanding that
the curved isomorphisms all lie in the column containing their label. And
when we say “show”, of course the diagram only shows the splittings for
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the V+···+ eigenspaces, since the splittings of the other eigenspaces can be
obtained from these.

One can reverse the above decomposition process to construct Clifford modules
very explicitly. Briefly, one starts with some chosen information at level n and
then lets this freely generate the rest of the module by moving to the left in the
diagram. For example, a Cl3-module is determined by the choice of V++ and V+−.
Let F3,+ be the module where V++ = C and V+− = 0 (and F3,− the opposite).
Note that these two spaces determine V+, as it is their direct sum, which then
determines V− (as it is e2V+), which then determines V . So for example, we see
that V is 2-dimensional in this case. For a Cl4-module we would specify V++, then
set V+− = e2e4V++, and then continue as above—this produces a 4-dimensional
Cl4-module, and it is clear that when we restrict to Cl3 we get F3,+ ⊕ F3,−.

Exercise 45.14. The module F3,+ can be described by letting x be a generator
of V++, so that e1x = e2e3x = ix. Check that x, e2x gives a basis for V and that
e3x = −ie2x. Verify that e1e2e3 acts on F3,+ as multiplication by −1. Then do
this for F3,− and show that e1e2e3 acts as the identity instead.

Next do something similar for F5,+: if x is a generator for V+++ show that x,
e2x, e4x, and e2e4x form a basis for V , and compute the ej multiplications on these
basis elements for all j. Check that e1e2e3e4e5 acts on F5,+ as multiplication by
−i. Likewise, check that for F3,− the action is by +i.

It is often the case that one has a Cl2n+1-module M and by a dimension count
one knows it is isomorphic to either F2n+1,+ or F2n+1,−; but how do we decide
which one? The above exercise gives a clue. Note that (e1e2 · · · e2n+1)2 = (−1)n+1

and so multiplication by e1e2 · · · e2n+1 will have eigenvalues ±in+1 (that is, ±1
when n is odd and ±i when n is even).

Proposition 45.15. The element e1e2 · · · e2n+1 acts as multiplication by in+1 on
F2n+1,+ and as multiplication by −in+1 on F2n+1,−.

Proof. Set V = F2n+1,+ and let α = e1e2 · · · e2n+1. If x is a generator for V++···+
then a C-basis for V is given by the set of elements e2j1e2j2 · · · e2jkx for j1 < j2 <
· · · < jk (exercise). Each Clifford generator er commutes with α, therefore if we
prove αx = λx for some λ ∈ C then α acts by multiplication by λ on all of V .

Now we just observe that α = (1 · e1)(e2e3)(e4e5) · · · (e2ne2n+1) and each pair in
parentheses acts on x as multiplication by i. So αx = in+1x, as desired.

In the case of V = F2n+1,− we have x ∈ V++···+− and so each pair in the above
decomposition of α acts on x as multiplication by i except for the final pair, which
acts as multiplication by −i. �

With these considerations in mind we can proceed to analyze some tensor prod-
ucts:

Proposition 45.16. One has isomorphisms
(i) F0 ⊗c F2n

∼= F2n+1,+ ⊕ F2n+1,− ∼= F2n ⊗c F0

(ii) F0 ⊗c F2n+1,+
∼= F2n+2

∼= F2n+1,+ ⊗c F0

(iii) F0 ⊗c F2n+1,− ∼= F2n+2
∼= F2n+1,− ⊗c F0

(iv) F1,+ ⊗c F2n+1,± ∼= F2n+3,±
(v) F1,− ⊗c F2n+1,± ∼= F2n+3,∓.

Before proving all of these isomorphisms let us give the immediate consequence:
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Corollary 45.17. The group A2n+1 is generated by the element (F1,+)n.

Proof. We know that A2n+1 is generated by F2n+1,+ (one could also use F2n+1,−
here, since they are negatives of each other). Proposition 45.16(iv) shows that this
module is isomorphic to the n-fold Clifford tensor product of F1,+ with itself. �

Proof of Proposition 45.16. Note that F2n has dimension 2n as a C-vector space, as
does F2n+1,±. Statements (ii) and (iii) are easy, since even Clifford algebras have
exactly one irreducible and so the isomorphism class of a module is determined
by its dimension over C. So, for example, F0 ⊗c F2n+1,+ and F2n+2 both have
dimension 2n+1 and hence are isomorphic.

For F0 ⊗c F2n, the dimension over C is 2n+1 and so the module can only be
isomorphic to one of F2n+1,+⊕F2n+1,+, F2n+1,+⊕F2n+1,−, and F2n+1,−⊕F2n+1,−.
But note that the Cl0-action on F0 extends to a Cl1-action, and so the Cl2n+1-
action on F0 ⊗c F2n extends to a Cl2n+2-action. That is, the tensor product is in
the image of G2n+2 → G2n+1. This is enough to identify it is as the second of the
above options.

Finally, we tackle part (iv) (the proof for (v) is similar). A dimension calculation
shows that the Cl2n+3-module F1,+⊗cF2n+1,+ must be isomorphic to either F2n+3,+

or F2n+3,−, so we use Proposition 45.15 to decide which one. The action of the
Clifford generators on the tensor product is given by the matrices[

i 0
0 −i

]
,

[
0 1
−1 0

]
,

[
0 e1

e1 0

]
,

[
0 e2

e2 0

]
, . . . ,

[
0 e2n+1

e2n+1 0

]
and the product of these matrices is α =

[
ie1···e2n+1 0

0 ie1···e2n+1

]
. But e1 · · · e2n+1

acts on F2n+1,+ as multiplication by in+1, so the action of α on F1,+ ⊗c F2n+1,+ is
multiplication by in+2. This shows we must have F1,+ ⊗c F2n+1,+

∼= F2n+3,+, and
the analysis of F1,+ ⊗c F2n+1,− proceeds similarly. �

We are in the midst of analyzing A∗ → π∗U , and we have now introduced and
understood a ring structure on the domain. The same types of formulas lead to a
ring structure on the target. Indeed, for f : Ss → U(n) and g : St → U(q) define
f ∗ g : Ss+t+1 → U(2nq) to be given by

(f ∗ g)(u, x) =

[ |u|f(û)⊗ I I ⊗ |x|g(x̂)

−I ⊗ |x|g(x̂)† |u|f(û)† ⊗ I

]
for (u, x) ∈ Rs+1 ⊕ Rt+1 such that |u|2 + |x|2 = 1. Here we have written û = u

|u|
etc, and are interpreting the matrix as a transformation of (Cn ⊗Cq)⊕ (Cn ⊗Cq).
One readily computes that the transformation is unitary.

It is clear that f ∗ g only depends on the homotopy classes f ∈ πsU(n) and g ∈
πtU(q), since for example a homotopy from f to f ′ could be essentially substituted
into the above formula to give a homotopy from f ∗ g to f ′ ∗ g. It is also clear that
the definition of f ∗ g is compatible with stabilization, so that it induces a pairing
πsU×πtU → πs+t+1U . To check bilinearity use the model of addition in π∗U which
is induced from block sum of matrices.

The definitions have been set up so that it follows immediately that A∗ → π∗U
is a ring map (and similarly for the orthogonal case). [CHECK THIS]

A short summary of our situation is:
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• From algebraic computation we know all of the groups A∗, the ring struc-
ture, and the fact that multiplication by the generator in A1 gives period-
icity isomorphisms.

• If we had reason to know that A∗ → π∗U is an isomorphism of groups then
we would deduce Bott periodicity, but unfortunately we have no a priori
explanation of that fact.

• We do know the groups π∗U by the Bott-Morse arguments from previous
sections. The content of Theorem 44.8 shows that in the ring π∗U multi-
plication by the generator in degree 1 gives a periodicity isomorphism. It
then follows from algebra that A∗ → π∗U is an isomorphism in all degrees.
We record this important fact for later use:

Theorem 45.18. The map A∗ → π∗U is an isomorphism of graded rings.

Proof. Follows from Theorem 44.8 by the above reasoning. �

Let us next take a look at the orthogonal case, starting by determining the
ring structure on G∗(R). Much of the hard work can be avoided by using the
complexification map G∗(R) → G∗(C) (which is a ring homomorphism) together
with what we already know about the codomain, but we still need to get our hands
dirty in a few cases.

Proposition 45.19. Generators of G∗(R) and G∗(C), together with the behavior
of the complexification map on these generators, are as shown in the following table.
The bracketed formulas on the left and right give relations in the two rings.

G∗(R) G∗(C)

x(1) // a(1)

x2(2)
∆ // b+, b−(1) [a2 = b+ + b−]

x3(4)
2 // ab+ [ab− = ab+]

[x4 = y+ + y−] y+, y−(4)
2,2 // b2+, b+b− [b2− = b2+]

[xy+ = xy−] xy+
2 // ab2+

[x2y+ = 2g5] g5(8)
∆ // b3+, b

2
+b−

[xg5 = 2g6] g6(8) // ab3+

[xg6=z++z−]

[y2+=y2−=4z+,y+y−=4z−] z+, z−(8) // b4+, b
3
+b−

[xz− = xz+] xz+
// ab4+.

Here numbers in parentheses indicate the dimension of the module over the under-
lying ground field (in places where this is not given it is easily deduced). ∆ indicates
that a generator maps to the sum of the two shown generators, 2 indicates that a
generator is sent to twice the indicated generator of the target, and in all other
cases the shown generators map to the shown generators. Finally, (z+)2 = (z−)2

and multiplication by z+ is an isomorphism Gi(R)→ Gi+8(R) for all i.

Proof. Note that the relations in G∗(C) were already established by Proposi-
tion 45.16. Let x be the irreducible Cl0-module. Modules over Cl1 and Cl2 are
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determined by their dimension, so one readily sees that x2 and x3 are the irre-
ducibles there. If c denotes complexification then we start with c(x) = a and then
get c(x2) = a2 = b+ + b− and c(x3) = a3 = a(b+ + b−) = 2ab+.

Recall that y± has the property that e1e2e3 acts as ±1. Since x2 is C with e1

acting as −i, x4 is (C⊗R C)⊕ (C⊗R C) with Cl3-structure given by the matrices[
i⊗ 1 0

0 −i⊗ 1

]
,

[
0 1
−1 0

]
,

[
0 1⊗ i

1⊗ i 0

]
.

So the product e1e2e3 acts as
[
i⊗i 0
0 i⊗i

]
, which has a 4-dimensional eigenspace for

eigenvalue +1 and a 4-dimensional eigenspace for eigenvalue −1. So x4 = y+ + y−.
The complexification c(y+) has e1e2e3 acting as 1, so c(y+) = 2b2+. Likewise,

c(y−) = 2b+b−.
Both xy+ and xy− must be the generator of G4(R) for dimension reasons, and

c(xy+) = a(b2+ + b+b−) = 2ab2+.
Call the irreducible Cl5-module g5. It has dimension 8 over R, so dimension

arguments show x2y+ = 2g5. Since c(x2y+) = 2a2b2+ = 2b3+ + 2b2+b−, we conclude
that c(g5) = b3+ + b2+b−. The same kind of reasoning shows that xg5 = g6 and
c(g6) = ab3+.

The module z+ has dimension 8 and α = e1e2 · · · e7 acting as +1, so c(z+) has
those same properties. Hence c(z+) = b4+. The same reasoning shows c(z−) = b3+b−.

We know the dimensions of the generators for Gs(R) for all s, and a dimension
count shows that multiplication by z+ must map generators to generators in all
degrees except possibly those congruent to 3 modulo 4. In those execeptional
degrees one must give a bit more argument. If M is a Clr-module then the Clifford
generators act on M ⊗c z+ via the matrices[

e1I 0
0 −e1I

]
, . . . ,

[
erI 0
0 −erI

]
,

[
0 I
−I 0

]
,

[
0 Ie1

Ie1 0

]
, . . . ,

[
0 Ie7

Ie7 0

]
,

where we have written e1I instead of e1⊗I for typographical reasons. The product
of these matrices is [

ωr ⊗ I 0
0 ωr ⊗ I

]
.

So if ωr acts with eigenvalue λ on M , then ωr+8 acts with eigenvalue λ on M ⊗c
z+. From this it immediately follows that multiplication by z+ is an isomorphism
G4s+3(R)→ G4s+11(R) for all s ≥ 0. The similar analysis of the behavior of ωr+8

on M ⊗c z− reveals that (z−)2 = (z+)2. �

Corollary 45.20. The ring A∗(R) is generated by x ∈ A1(R), y ∈ A3(R), and
z ∈ A7(R) subject to the relations

2x = 0, x3 = 0, xy = 0, y2 = 4z

together with commutativity.

Proof. Take y = y+ and z = z+. The rest is left to the reader. �

Now consider the square

A∗(R) //

��

A∗(C)

��
π∗O // π∗U.
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We know all of the groups involved. We also know the top maps by Proposi-
tion 45.19, we know the bottom maps by Exercise 41.13, and we know the right
vertical map is an isomorphism by Theorem 45.18. Thinking it through, this im-
mediately yields that A∗(R)→ π∗O is an isomorphism except possibly in the case
where ∗ ≡ 1 (mod 8). It only takes a little more legwork to cover this case as well:

Theorem 45.21. The map A∗(R)→ π∗O is an isomorphism of graded rings.

Proof. We already know this is a ring map. As remarked above, by comparison
square to the complex case shows immediately that the map is an isomorphism in
degrees not congruent to 1 mod 8. It remains to check this final case. For this,
consider instead the square

A∗(C) //

��

A∗(R)

��
π∗U

r // π∗O.

Here the top map is induced by restriction of scalars along the evident maps of
algebras Cli(R)→ Cli(C). It is a quick check that this square commutes. When ∗
is equivalent to 1 mod 8 the square takes the form

Z //

∼=
��

Z/2

��
Z // // Z/2.

The left vertical map is an isomorphism by Theorem 45.18 and the bottom hori-
zontal map is projection by Exercise 41.13. It follows at once that the right vertical
map must be nonzero, hence an isomorphism. �

Remark 45.22. The above result demonstrates a useful principle: often some hard
work regarding real K-theory can be avoided by instead pulling the information
from the complex case via the two maps relating them. It is almost as if the
quadruple (O,U, c, r) should be regarded as one object. This technique comes up
often enough that it is worth keeping near the top of one’s toolbox.

Theorem 45.21 now lets us (finally) give the real analog of Theorem 44.8:

Corollary 45.23. Let βR be a generator for π7O ∼= Z, for example the generator
arising from either of the fundamental representations of Cl7(R) on R7. Then the
maps

πiO
βR·(−) // πi+8O

are isomorphisms for every i ≥ 0.

Proof. Immediate from Theorem 45.21. �

Let us also explicitly describe the generators for π∗O in low degrees. These are
obtained directly from A∗(R)→ π∗O.
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i = 0: S0 → O(1) = {+1,−1}, basepoint 7→ 1 and nonbasepoint 7→ −1

i = 1: S1 → O(2), a = (a0, a1) 7→ multiplication by a0 + ia1 on C

i = 3: S3 → O(4), a 7→ left multiplication by a0 + a1i+ a2j + a3k on H.

i = 7: S7 → O(8), a 7→ left multiplication by a on O.

The last line takes a little explanation. The octonions can be constructed by
starting with R8 and defining products of basis elements by explicit formulas. Let
the basis elements be denoted e0, . . . , e7 with e0 = 1. The products satisfy e2

i = −1
for i ≥ 1 and eiej = −ejei for 1 ≤ i < j. It turns out that one gets a map of
algebras Cl7 → EndR(O) by sending ei to left multiplication by ei. This would
be immediate if O were associative, but lack of associativity forces one to work
a little harder. The key observation is that ei(ejx) = −ej(eix) for all x ∈ O
and for all distinct i, j > 0. This property can be checked by brute force from
the defining relations of O, or deduced with less trouble from the Cayley-Dickson
construction of O. (Note that we are not claiming ei(ejx) = (eiej)x, which would
give associativity.) Since dimR O = 8, the only possibility is that O is one of the
two irreducible representations of Cl7. It doesn’t matter which one it is, as they
both give generators for A7(R).

Theorem 45.21 almost brings to a close our long journey over the last several
sections. We have at this point computed the groups π∗U and π∗O together with
their ring structure, and moreover have seen how Clifford algebras give rise to a
nice algebraic model for these rings via A∗(C) and A∗(R). The only thing that
remains is for us to connect all of this back to K-theory.

A slight complaint is that the ring structures on A∗ and π∗U (resp. A∗(R) and
π∗O) feel a bit strange and ad hoc. As we connect back to K-theory we will be
able to fix this and understand the true origins of those structures. This will be
our task in the next section.

◦ Exercises ◦

Exercise 45.24. LetM be a Cls-module. Recall thatD(M) is defined to beM⊕M
with a certain Cls+1-action. Check that an isomorphism D(M)→ Cls+1⊗ClsM is
given by sending m in the first summand of D(M) to 1⊗m+ es+1 ⊗m, and m in
the second summand to 1⊗m− es+1 ⊗m.

Exercise 45.25. Let M be a Cls-module and N be a Clt-module. Regard Cls
as a subalgebra of Cls+t+1 in the usual way, and let j : Clt ↪→ Cls+t+1 send ei 7→
es+1es+1+i for 1 ≤ i ≤ t. Check that j is an inclusion of algebras and that it gives
rise to an embedding Cls⊗Clt ↪→ Cls+t+1.

Verify that an isomorphism M ⊗cN −→ Cls+t+1⊗(Cls⊗Clt)(M ⊗N) is given by
sending w in the first summand of M ⊗cN to 1⊗w and w in the second summand
to es+1 ⊗ w.

46. Graded Clifford modules and K-theory

The homotopy groups of U and BU are the same but with a shift. We have seen
that the groups π∗U are intimately related to Clifford modules, but it turns out
that the groups π∗BU are better described using graded Clifford modules. This



462 DANIEL DUGGER

might seem odd: given that the two sets of groups are essentially the same, why
not just use the ungraded Clifford modules to describe both? But the algebra of
graded modules turns out to be a better fit for the algebra of π∗BU , most notably
the ring structure.

46.1. Gradings. A vector space V is said to be Z/2-graded if it is equipped with
a decomposition V = V0 ⊕ V1 into an “even” part and an “odd” part, labelled by
0 and 1. The degree is also called the parity in this context. If V and W are two
Z/2-graded vector spaces then Hom(V,W ) becomes Z/2-graded by the formulas

Hom0(V,W ) = Hom(V0,W0)⊕Hom(V1,W1),

Hom1(V,W ) = Hom(V0,W1)⊕Hom(V1,W0).

So the even maps are parity-preserving, and the odd maps are parity-reversing.
There is a corresponding tensor product, called the graded tensor product:

(V ⊗̂W )0 = (V0 ⊗W0)⊕ (V1 ⊗W1), (V ⊗̂W )1 = (V0 ⊗W1)⊕ (V1 ⊗W0).

Exercise 46.2. Check that these definitions yield a natural adjunction isomor-
phism Hom(V ⊗̂W,Z) ∼= Hom(V,Hom(W,Z)).

For any ungraded vector space V , write V [j] (j = 0, 1) for V regarded as a
Z/2-vector space concentrated entirely in degree j. Note the natural isomorphism
V [j]⊗̂W [k] ∼= (V ⊗W )[j + k], where j + k is interpreted modulo 2. From now on
we will stop saying “modulo 2” when it is clear from context. Also note that R[0]
is the unit for the graded tensor product.

A Z/2-graded algebra A is a Z/2-graded vector space equipped with a unit
η : R[0]→ A and a multiplication map µ : A⊗̂A→ A that is associative and unital.
In down to earth terms, A comes with a grading A = A0 ⊕A1 where the unit lives
in degree 0 and the product of two homogenous elements adds the degree. One
likewise defines Z/2-graded modules over A in the expected way.

If A and B are Z/2-graded algebras then A⊗̂B inherits a Z/2-graded algebra
structure, but this happens in more than one way: there are some choices regarding
signs. The choice that turns out to be most useful for us is the one following the
Koszul sign rule, namely

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|b1||a2|a1a2 ⊗ b1b2.(46.3)

The maps A→ A⊗̂B and B → A⊗̂B given by a 7→ a⊗1 and b 7→ 1⊗ b are maps of
algebras, the even elements of A and B map to elements that commute with each
other, whereas the odd elements of A and B map to elements that anti-commute
with each other. If M is an A-module and N is a B-module then M⊗̂N becomes
an A⊗̂B-module via the analogous formula.

Clifford algebras are naturally Z/2-graded. If (V, q) is a vector space with qua-
dratic form then the tensor algebra T (V ) is N-graded and the relations v2 = −q(v)
is even; so the quotient is Z/2-graded. So Cl(V, q)0 consists of products of an
even number of vectors in V , and Cl(V, q)1 consists of products of an odd number.
We will write Cl(V, q)grd when we need to accentuate that we are thinking of the
Clifford algebra as Z/2-graded.

The biggest advantage of introducing these Z/2-gradings is that the graded ten-
sor product gives us the most natural way of relating small Clifford algebras to
bigger ones:
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Proposition 46.4. There is a unique map of graded algebras

Cl(V, qV )⊗̂Cl(W, qW ) −→ Cl(V ⊕W, qV ⊕ qW )

that sends v ⊗ 1 to (v, 0) for v ∈ V and 1⊗ w to (0, w) for w ∈ W , and moreover
this map is an isomorphism.

Proof. Left as an exercise. �

Remark 46.5. When applied to the standard Clifford algebras for the sum-of-
squares form this becomes the isomorphism Cls+t −→ Cls ⊗̂Clt given by

ei 7→
{
ei ⊗ 1 if 1 ≤ i ≤ s,
1⊗ ei−s if s+ 1 ≤ i ≤ s+ t.

Using this, we see that if M is a graded Cls-module and N is a graded Clt-module
then M⊗̂N becomes a Cls ⊗̂Clt-module and therefore a graded Cls+t-module via
the above isomorphism.

There are interesting ways of moving back and forth between graded and un-
graded Clifford algebras and their modules. We begin by describing a functor
D : Cls-Mod → Clgrds+1-Mod. For M a Cls-module let DM be the graded vector
space with (DM)0 = (DM)1 = M . If m ∈ M write m[0] for m ∈ (DM)0 and m[1]

for m ∈ (DM)1. Define the Cls+1-structure on DM by

ei(m[j]) = (eim)[j+1], for 1 ≤ j ≤ s,
es+1(m[j]) = (−1)j+1m[j+1]

for all m ∈M and j ∈ {0, 1}. Note that this is the “doubling construction” that we
introduced back in ???, and is isomorphic to Cls+1⊗ClsM by Exercise 45.24. Now
we are just observing that the doubling construction comes with a natural grading.

Exercise 46.6. Check that the following diagram

Cls+1-Mod

D
��

U // Cls-Mod

D
��

Clgrds+2-Mod
U // Clgrds+1-Mod

does NOT commute, where the U maps are forgetful functors induced by the in-
clusions Cls ↪→ Cls+1 and so forth.

Proposition 46.7. The functor D : Cls-Mod → Clgrds+1-Mod is an equivalence of
categories, for all s.

Proof. To give an inverse functor Φ: Cls+1-Mod→ Cls-Mod we would like to send
M = M0 ⊕M1 to just M0, but the ei’s don’t act on M0—they instead interchange
M0 and M1. So we have to massage this basic idea a bit.

Define u : Cls → (Clgrds+1)0 by ei 7→ es+1ei. This is an isomorphism of algebras.
Define Φ(M) to be M0 regarded as a Cls-module via u. It is routine to now check
that D and Φ are inverses of each other, up to natural isomorphism. �

Exercise 46.8. Let M be an ungraded Cls-module and N be an ungraded Clt-
module. Then DM is a graded Cls+1-module and DN is a graded Clt+1-module,
therefore DM⊗̂DN is a graded Cls+t+2-module. So Φ(DM⊗̂DN) is an ungraded
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Cls+t+1-module. Check that Φ(DM⊗̂DN) coincides with what we previously called
M ⊗c N (DOES IT?)

When we introduced the Clifford tensor product we remarked that its behavior
with respect to the Clifford indexing was unfortunate. Notice that shifting focus to
the graded tensor product fixes this issue.

When we defined the Clifford tensor product back in ??? the construction seemed
somewhat ad hoc, but we can now see it as transporting with the (very natural)
graded tensor product across the equivalences provided by Proposition 46.7. Specif-
ically, we have the following:

Proposition 46.9. Let M be a Cls−1-module and N be a Clt−1-module. There is
a natural isomorphism of graded Cls+t-modules of the form

D(M ⊗c N)
∼=−→ DM⊗̂DN.

Consequently, the map D :
⊕

sGs−1 →
⊕

sG
grd
s is a ring homomorphism.

Proof. We give both an abstract proof and a more concrete version. The abstract
proof is to use the algebraic interpretations of D and ⊗c given in Exercises 45.24
and 45.25, together with the evident algebraic isomorphisms

Cls+t⊗Cls+t−1

(
Cls+t−1⊗(Cls−1⊗Clt−1)(M ⊗N)

)
∼= Cls+t⊗(Cls−1⊗Clt−1)(M ⊗N)

∼= (Cls⊗Cls−1
M)⊗̂(Clt⊗Clt−1

N).

The leftmost term is D(M ⊗c N) and the rightmost term is (DM)⊗̂(DN). We
leave the details to the reader.

Here is the more concrete version. The underlying vector space of M ⊗c N is
defined to be (M ⊗N)⊕ (M ⊗N), and the underlying vector space of D(M ⊗cN)
is then defined to be (M ⊗ N)⊕4. Label the copies as 1 − −4 so that the copies
in M ⊗c N are 1 and 2, and the corresponding copies in the second summand of
D(M ⊗c N) are 3 and 4.

Note that DM⊗̂DN also has four copies ofM⊗N , in this case naturally indexed
as 00, 01, 10, and 11 (corresponding to the gradings in DM and DN).

Define a map of vector spaces F : D(M ⊗c N) −→ DM⊗̂DN as follows:

w1 7→ w00 − w01

w2 7→ −w10 − w11

w3 7→ w00 + w01

w4 7→ w10 − w11.

Here w represents element of M ⊗ N and the subscripts specify the summand it
lies in. The map F is clearly a vector space isomorphism. It is routine, though
slightly tedious, to check that it is compatiable with the two Clgrds+t-actions. Again,
we leave this to the reader. �

Recall that in the case of ungraded modules we defined As to be the cokernel of
the restriction of scalars map U : Gs+1 → Gs. We make the analogous definition
of Agrds . We might guess that the isomorphisms D : G∗−1 → Ggrd∗ induce a similar
isomorphism between A∗ groups, but recall from Exercise 46.6 that the necessary
square does not commute. We can still get such an isomorphism, but we use the Φ
functors instead:
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Proposition 46.10. The square of functors

Clgrds+1-Mod
U //

Φ

��

Clgrds -Mod

Φ

��
Cls-Mod

U // Cls−1-Mod

commutes up to natural isomorphism. Consequently, the induced square on
Grothendieck groups commutes on the nose and therefore Φ induces a map
Φ: Agrds → As−1, which is an isomorphism.

Proof. The latter two statements follow immediately from the first and the fact
that Φ is an equivalence of categories. To check the first statement, recall that if
M is a Clgrds+1-module then Φ(UM) is M0 with each ei (1 ≤ i ≤ s − 1) acting as
esei. Likewise, UΦ(M) is M0 with each ei acting as es+1ei. The map f : M0 →M0

given by f(x) = (es− es+1)x (using the original Clgrds+1-structure) is readily checked
to be an isomorphism Φ(UM)→ U(ΦM). �

Using graded modules gives us another useful tool that has not been mentioned
yet. Given a graded Cls-module M , let ΠM denote M but with the parity shifted:
(ΠM)i = Mi+1.

Proposition 46.11. The induced map Π: Ggrds (C)→ Ggrds (C) is the identity when
s is even, and interchanges the two positive generators when s is odd. Likewise,
the induced map Π: Ggrds (R) → Ggrds (R) is the identity when s 6≡ 0 mod 4, and
interchanges the two positive generators otherwise.

Proof. Clearly Π must take irreducibles to irreducibles. In the non-exceptional cases
there is a unique isomorphism class of irreducible module, and thus the action of
Π is trivial. So the only work is in checking the exceptional cases where there are
two isomorphism classes of irreducibles.

We give the argument in the real case, with the complex case being similar. Let
s = 4k and let M be an irreducible (ungraded) Cls−1-module where ω = e1 · · · es−1

acts as +1. We will compute the corresponding actions of ω on Φ(DM) and on
Φ(Π(DM)).

For Φ(DM) we have ω acting as (e1e2)(e1e3) · · · (e1es) on (DM)0. But
e1 : (DM)0 → (DM)1 is −1, so this is (−1)s−1 times the original action of ω
on M . But s is even, so the action is by −1.

For Φ(Π(DM)) we have the same formula, but now e1 : (ΠDM)0 → (ΠDM)1 is
+1, so the action of ω coincides with the original +1 action on M .

We have therefore proven that M and ΠM become different irreducibles after
application of Φ, so they are the two positive generators of Ggrds (R). �

46.12. The coefficient rings of K and KO. At this point in the book we have
developed a number of ways to access the groups K∗(pt) and KO∗(pt), together
with their ring structure, but we have not as yet carefully verified the consistency
of these different approaches. We finally turn to this issue now. The work will focus
on the following large diagram (note the use of red and blue colors, which we will
discuss shortly):
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πs−1O

clutch ∼=
��

1

((

As−1

∼=Roo

2

��

D
∼=R

// Agrds

3

uu
4

��
KO0

st(S
s)

∼=
��

L1(Ds, ∂Ds)
clutch
∼=

oo
∼=
// KO0

cplx(Ds, ∂Ds)

πsBO
∼= // K̃O 0(Ss) L1(Ss, ∗)χoo ∼= //

π∗

OO

KO0
cplx(Ss, ∗)

π∗ ∼=R

OO

∼=R

χ

jj

The following several paragraphs explain how to parse this diagram. Note that
we have drawn the diagram for KO∗, but the diagram for K∗ is completely analo-
gous.

All of the maps in this diagram turn out to be isomorphisms, but the arrows are
drawn in the direction where the maps are most natural to define. For example, the
two maps labelled “clutch” are clutching constructions. The vertical one is induced
by the construction that takes a map f : Ss−1 → O(n) to the rank n bundle on
Ss having this as its clutching function. The inverse of this map feels a bit less
natural, as it can only be constructed by choosing trivializations of a bundle on the
upper and lower hemispheres (though to be fair, even the original map involves a
choice of representing element f for the homotopy class).

The horizontal clutching map sends a map g : E1 → E0 of bundles on Ds, exact
on ∂Ds, to the bundle on Ss obtained by taking E1 on the upper hemisphere, E0

on the lower hemisphere, and then using g as the clutching function.
The two maps labelled χ sends a complex of vector bundles E∗ (possibly just

of length one) to
∑
i(−1)i[Ei]. The maps labelled π∗ are the pullbacks induced by

the projection π : (Ds, ∂Ds)→ (Ss, ∗).
Taking the direct sum over s gives a graded ring in each spot of the diagram.

The red spots are the ones where we can describe this ring structure with a precise
algebraic formula; e.g., on K0

cplx(Ds, ∂Ds) it is given by the external tensor product
of chain complexes (note that this uses the canonical isomorphisms Ds × Dt ∼=
Ds+t). The blue terms are ones where we have a ring structure for formal topological
reasons, but it is much less clear how to actually compute it. For example, The
external tensor product K0(Ss) ⊗ K0(St) → K0(Ss × St) can be shown to send
K̃0(Ss) ⊗ K̃0(St) into the image of K̃0(Ss ∧ St) in the target, and in this way
defines an element of K̃0(Ss ∧ St). This is the ring structure on

⊕
s K̃

0(Ss). But
while it is true that the external tensor product is a “formula” that we understand,
re-interpreting it as an element of K̃0(Ss∧St) is not formulaic—there is no evident
way of digesting the formal difference of bundles on Ss×St into a formal difference
of bundles on Ss ∧ St.

The terms that are neither red nor blue are ones where there is no reasonable ring
structure to consider on the direct sum over s. That is to say, one can artifically
put a ring structure by transplanting the ones we know across the isomorphisms,
but the result is not useful.

One can start to see some of the difficulties in navigating elements of this dia-
gram. Although there is a very direct map from π∗−1O to K̃O 0(S∗), it is challenging
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to relate the algebraic multiplication on the former to the topological multiplication
on the latter. To compare these two it ends up being easiest to go the long way
around the diagram, as we will soon see.

Maps labelled ∼=R are ring isomorphisms. Note that the rightmost π∗ is a ring
isomorphism by naturality and excision, whereas the bottom χ is a ring isomorphism
by Theorem 18.16.

The maps labelled 1–4 are defined as follows:
(1) Given f : Ss−1 → O(n), for x ∈ Ds define f̂(x) : Rn → Rn by f̂(x) = |x|f( x

|x| )

with the understanding that this is the zero map when x = 0. Send f to the
map of bundles n→ n that is multiplication by f̂(x) over the point x ∈ Ds.

(2) Identify Rs with the subspace of Cls−1 spanned by 1, e1, . . . , en. Given a Cls−1-
module M , send this to the map of trivial bundles M → M on Ds that over
x ∈ Ds is multiplication by x.

(3) Regard Rs as a subspace of Cls in the usual way, i.e. as the span of the
elements e1, . . . , es. Given a graded Cls-module M , send this to the map of
trivial bundles M1 →M0 on Ds which over x ∈ Ds is multiplication by x.

(4) Same as (3).
All of the triangles in the top part of the diagram are readily checked to commute.

All of the maps labelled as isomorphisms are known to be so by previous results in
the text. It then follows from commutativity of the diagram that the maps 1–4 are
also isomorphisms.

The bottom right rectangle is clearly commutative, as is the triangle at the
very bottom of the diagram. Commutativity of the bottom left rectangle takes a
moment’s thought. Take an element x = [α : E1 → E0] ∈ L1(Ss, ∗). By adding a
complement to E1 to both the domain and codomain, we can assume that E1 is
free. The fact that α is an isomorphism over the basepoint implies that E0 and
E1 have the same rank, say n. We have χ(x) = [E0]− [E1] = [E0]− n. Going the
other way around the square, we consider π∗E0 and π∗E1 on Ds and clutch them
together using the isomorphism α. Using that E1 is trivial, the resulting vector
bundle is clearly isomorphic to E0. So going the other way around the square gives
[E0]− n again, hence the square commutes.

That the top horizontal maps are ring homomorphisms has been verified in
Theorem 45.18 and Proposition 46.9. It remains to check this property for the
vertical map:

Proposition 46.13. The map Agrds → K0
cplx(Ds, ∂Ds) is a ring isomorphism.

Proof. Note that the “isomorphism” part follows from the commutativity of the
big diagram, so the only question is whether the map is a ring homomorphism.
The main issue here is that the tensor product on graded modules is Z/2-graded
whereas the one on chain complexes is Z-graded, so one must work a little to fit
these together. The key step is the process described in ??? for folding a chain
complex (in this case of length two) down into a length-one chain complex—this is
the argument we used to prove that K0

cplx(X,A) is isomorphic to L1(X,A).
Let M and N be graded Cls-modules, and recall that Mi denotes the trivial

bundle on Ds with fiber Mi. Let θ(M) denote the chain complex that has Mi in
degree i and where the differential is left multiplication by x on the fiber over x.

Let αM : M0 →M1 be the map that is left multiplication by x on the fiber over x.
This gives a contracting homotopy for the map of chain complexes θ(M) → θ(M)
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that is multiplication by −|x|2:

M1
−|x|2 //

x

��

M1

x

��
M0

−|x|2
//

αM
==

M0.

Consider the following map of complexes, where the domain is M ⊗cplx N :

M1 ⊗N1
id //

��

M1 ⊗N1

−2|x|2

��
M0 ⊗N1 ⊕M1 ⊗N0

��

−αM⊗1+1⊗αN // M1 ⊗N1

M0 ⊗N0

Let Γ denote the desuspension of the mapping cone. Explicitly, Γ is the following
chain complex concentrated in degrees 2, 1, and 0 (for typographical reasons we
have omitted the tensor symbols between Mi and Nj):

M1N1

[
d⊗1
−1⊗d
−1⊗1

]
// M0N1⊕M1N0⊕M1N1

[
1⊗d d⊗1 0
αM⊗1 −1⊗αN 2|x|2

]
// M0N0 ⊕M1N1.

If E is a vector bundle let D(E) be the chain complex that has E in degrees 0
and 1 and where the differential is the identity. There are short exact sequences

0 −→ θ(M⊗̂N) −→ Γ −→ ΣD(M1 ⊗N1) −→ 0

and
0 −→ ΣX −→ Γ −→ θM ⊗cplx θN −→ 0

where X has M1 ⊗N1 in degrees 0 and 1 and the differential is multiplication by
−2|x|2. These exact sequences are more or less self-evident as soon as one goes
looking for them (remember that Σ changes the sign on the differentials in addition
to shifting them up).

The short exact sequences give us the K-theory relations

[θ(M⊗̂N)] = [Γ] = [ΣX] + [θM ⊗cplx θN ].

As the final step we observe that the differential in X can be homotoped to one that
is exact, via the homotopy −2|x|2 − t, 0 ≤ t ≤ 1. So X (and also ΣX) represents 0
in K-theory. �

46.14. MISC STUFF WAITING RECYCLING. If A is a Z/2-graded algebra
then Aop is the same underlying graded vector space but with the product a� b =
(−1)|a|·|b|ba. IfM is a right A-module then EndA(M) is HomA(M,M) with the mul-
tiplication given by composition. To clarify this a bit, note that HomA(M,N) may
be canonically identified with HomA(ΠM,ΠN) in the evident way (no sign changes
come into play here). We have EndA(M)0 = HomA(M,M) = HomA(ΠM,ΠM)
and EndA(M)1 = HomA(ΠM,M) = HomA(M,ΠM). Given f, g ∈ HomA(ΠM,M)
we interpret fg as either the composition Π(f)◦g ∈ HomA(ΠM,ΠM) or f ◦Π(g) ∈
HomA(M,M), both of which specify the same element in EndA(M)0.
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Exercise 46.15. For each a ∈ A let λa : A→ A be left multiplication by a. Check
that a 7→ λa gives an isomorphism of algebras A ∼= EndA(A).

For p, q ≥ 0 define Ap|q = A⊕p ⊕ (ΠA)⊕q and A(p|q) = EndA(Ap|q). Note
that these are the Z/2-graded analogs of matrix algebras. Observe that there are
canonical isomorphisms

• Aa|b⊗̂Ap|q ∼= Aap+bq|aq+bp.
• A(p|q) ∼= R(p|q)⊗̂RA.
• A(p|q)(a|b) ∼= A(pa+ qb|pb+ qa).

Exercise 46.16. Let A be an R-algebra, let M be an R-module, and let N be an
A-module. All of this is taking place in the Z/2-graded setting. There is a canonical
map

θ : EndR(M)⊗̂EndA(N) −→ EndR⊗RA(M⊗̂RN), f ⊗ g 7→ f ⊗ g.
(a) Check that θ is a homomorphism of graded rings.
(b) Check that the map θ is an isomorphism whenM is finitely-generated and free,

meaning that M is a finite direct sum of copies of R and ΠR.
(c) If A is an R-algebra note that Ap|q = Rp|q⊗̂RA. Use (b) to conclude that

R(p|q)⊗̂RA ∼= A(p|q).
(d) Use (b) for EndR(Rp|q)⊗̂R EndR(Ra|b) −→ EndR(Rp|q⊗̂Ra|b) to conclude that

R(p|q)⊗̂R(a|b) ∼= R(pa + qb|pb + qa), and deduce the analogous result with R
replaced by A.

We will often find ourselves using the operation A 7→ A(1|1). Note that iterating
this operation k times gives A 7→ A(2k−1|2k−1). We will use the abbreviation A((n))
for A(n|n).

A Z/2-graded algebra A is a graded division algebra if ρa is a bijection for
every homogeneous element a ∈ A. The center of a Z/2-graded algebra A is the
subalgebra of A0 consisting of elements that commute with everything in A. Let F
be a field. The algebra A is a central simple F -algebra if A is a graded division
algebra whose center is F . Let Brgr(F ) be the set of isomorphism classes of finite-
dimensional division algebras over F whose center is precisely F . This set can
be equipped with a monoid structure defined as follows. Given finite-dimensional
division F -algebras A and B with center F , the algebra A⊗̂B is isomorphic to
D(p|q) for a unique central simple F -algebra D: one defines [A] · [B] = [D] in
Brgr(F ). This makes Brgr(F ) into an abelian group, called the graded Brauer
group of F .

Remark 46.17. A graded two-sided ideal of a Z/2-graded algebra A is a graded
subspace I ⊆ A that is a two-sided ideal in the usual sense. A Z/2-graded algebra is
simple if the only graded two-sided ideals are 0 and A. A graded central simple
F -algebra is a graded F -algebra A that is simple and whose center is F . One can
prove that every central simple F -algebra has the form D(p|q) for some graded
division algebra over F and some p, q ≥ 0. One can also define Brgr(F ) to be the
isomorphism classes of graded central simple F -algebras modulo the equivalence
relation generated by A ∼ A(p|q) for every p, q ≥ 0. The tensor product of two
graded central simple F -algebras is another graded central simple F -algebra, and
this preserves the equivalence relation; so it induces a product on Brgr(F ).

With a little work one can classify all of the finite-dimensional graded division
algebras over R. In the following discussion we will stop saying “finite-dimensional”
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although it is always in the background. If A is such an algebra note that A0 will
be an (ungraded) division algebra over R, and so will be either R, C, or H. These
give all of the graded division algebras where A1 = 0. If f ∈ A1 is nonzero then
right multiplication by f will give an isomorphism A0 → A1. So our algebra will
take the form

A = A0 ⊕A0.f

and will be determined by two other pieces of information: for every x ∈ A0 one
must have fx = φ(x)f for some unique φ(x) ∈ A0, and f2 = λ for some λ ∈ A0.
The function φ : A0 → A0 must be additive and unital, and for R to be in the
center of A it must be R-linear. Associativity is equivalent to φ : A0 → A0 being an
algebra isomorphism and φ(λ) = λ, the latter coming from λf = f2 · f = f · f2 =
fλ = φ(λ)f . So graded division algebras over R with A1 6= 0 are determined (not
necessarily uniquely) by the data (φ, λ). Note that we can always replace f with
rf for some r ∈ R − {0}, which will replace λ by r2λ while describing the same
graded algebra.

For A0 = R we must have A0 acting centrally on f , and up to squares we have
only two possibilities: f2 = 1 and f2 = −1. So there are two possible algebras
here:

R+ = R[f ]/(f2 − 1) and R− = R[f ]/(f2 + 1).

For A0 = C we can have either φ equal to id or complex conjugation. In the first
case we can rescale f by any complex number to reduce to the case f2 = 1 (this
uses commutativity of C), so our unique isomorphism class of division algebra is
represented by

C+ = C[f ]/(f2 − 1).

The alternative is to have φ equal to complex conjugation, so we will have zf = fz̄
for all z ∈ C. Since λ must be fixed by complex conjugation, up to scaling by
squares of real numbers we again have the two possibilities f2 = ±1. So our two
possibilities are

C+ = C⊕C.f, [f2 = 1, zf = fz̄] and C− = C⊕C.f, [f2 = −1, zf = fz̄]

where in each case z ranges over all complex numbers.
For A1 = H we can again have φ = id. ???? As in the above analysis we reduce

to f2 = 1 and f2 = −1, obtaining the two Z/2-graded algebras

H+ = H[f ]/(f2 + 1) and H− = H[f ]/(f2 − 1).

There are also abundant examples when φ 6= id, since H has lots of automorphisms.
However, these all turn out to be isomorphic to one of the above two (WHY?).

So the complete list of Z/2-graded division algebras over consists of the following
ten algebras:

R, C, H, R+, R−, C+, C+, C−, H+, H−.
If we restrict to the ones whose center is exactly R we get down to eight, namely

R, H, R+, R−, C+, C−, H+, H−.
The graded Brauer group over R will then be one of Z/8, Z/4× Z/2, and (Z/2)3,
and we can determine which one by analyzing the elements of order 2. Recall that
the inverse of A in the Brauer group is Aop. One readily checks that (R+)op = R−
and analogously for C± and H±, but Hop ∼= H (via conjugation). So the only
element of order 2 is H, and the graded Brauer group of R is Z/8.
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If we set x = R+ then x2 = C+ and x3 = H−. We deduce that x has order 8
(since an order of 2 or 4 is not possible) and that the group structure is as depicted
in this circle:

R // R+

""
R−

<<

C+

��
C−

OO

H−

||
H+

bb

Hoo

(the arrows depict multiplication by R+). In this version of the Bott periodicity
clock we can interpret the reflective symmetry about the line joining R and H as
representing the inverses in the group.

If we look instead at graded division algebras over C there are just two of them:
C and C+. The graded Brauer group is Z/2 in this case.

Alternatively, one can look at Morita equivalence classes of graded division
algebras over R with the tensor product as a monoid with ten elements (???).
The graded Brauer group of R is a submonoid (which happens to be a group).
?????????????????????????

Graded Clifford algebras Clgp,q

R(8|8) R+(8|8) C+(8|8) H−(8|8) H(16|16) H+(16|16) C−(32|32) R−(64|64) R(128|128)

R+(4|4) C+(4|4) H−(4|4) H(8|8) H+(8|8) C−(16|16) R−(32|32) R(64|64) R+(64|64)

C+(2|2) H−(2|2) H(4|4) H+(4|4) C−(8|8) R−(16|16) R(32|32) R+(32|32) C+(32|32)

H−(1|1) H(2|2) H+(2|2) C−(4|4) R−(8|8) R(16|16) R+(16|16) C+(16|16) H−(16|16)

H(1|1) H+(1|1) C−(2|2) R−(4|4) R(8|8) R+(8|8) C+(8|8) H−(8|8) H(16|16)

H+ C−(1|1) R−(2|2) R(4|4) R+(4|4) C+(4|4) H−(4|4) H(8|8) H+(8|8)

C− R−(1|1) R(2|2) R+(2|2) C+(2|2) H−(2|2) H(4|4) H+(4|4) C−(8|8)

R− R(1|1) R+(1|1) C+(1|1) H−(1|1) H(2|2) H+(2|2) C−(4|4) R−(8|8)

R R+ C+ H− H(1|1) H+(1|1) C−(2|2) R−(4|4) R(8|8)

0 1 2 3 4 5 6 7 8

Graded Clifford algebras Clgp,q
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R((8)) R+((8)) C+((8)) H−((8)) H((16)) H+((16)) C−((32)) R−((64)) R((128))

R+((4)) C+((4)) H−((4)) H((8)) H+((8)) C−((16)) R−((32)) R((64)) R+((64))

C+((2)) H−((2)) H((4)) H+((4)) C−((8)) R−((16)) R((32)) R+((32)) C+((32))

H−((1)) H((2)) H+((2)) C−((4)) R−((8)) R((16)) R+((16)) C+((16)) H−((16))

H((1)) H+((1)) C−((2)) R−((4)) R((8)) R+((8)) C+((8)) H−((8)) H((16))

H+ C−((1)) R−((2)) R((4)) R+((4)) C+((4)) H−((4)) H((8)) H+((8))
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Part 7. What is K-theory?

Of course there is no single answer to this question, and also no easy answer.
It is a bit like asking “What is physics?” or “What is a cow?” What constitutes a
satisfying answer all depends on one’s perspective. A reporter once asked Wiliiam
Faulkner what he was trying to say in one of his novels, and the great writer’s
response was something like “If I could tell you in two minutes I wouldn’t have
had to write the whole book!” I feel very much the same way about our journey
through K-theory over the past 400+ pages. All of the material we have covered
has been trying to unveil different aspects of what K-theory “is”, but the reader
might understandably be feeling that we have, in the end, raised more questions
than answers. There are too many places where the question of “what is really
going on here?” seems to call out for a deeper explanation.

In this final section I want to look the question “What is K-theory?” straight in
the eye and try to sketch a certain kind of answer. But this will involve very different
techniques than in the rest of the book. Here I want to mostly leave geometry behind
and focus instead on the world of homotopy theory. Unfortunately, that opens up a
whole Pandora’s Box of evils that could easily take us another 400 pages to unravel.
And at some point we all need to retire for the night and get some sleep.

So here is what is going to happen. Sit back, get comfortable, take your feet off
the ground. Peter Pan and Tinkerbell are going to take us sailing into the heavens,
on a whirlwind tour, and we are going to see some strange lands. Not everything
we see is going to make sense to us tonight, and that’s okay. We will take in what
we can, not ask too many questions, and then come back home and go to sleep
before the parents catch on. Deal?

47. The second star to the right

Warning: This section is more about painting a picture than being perfectly rig-
orous, and so are going to be cavalier about including the occasional “mathematical
white lie”. The reader should proceed beyond this point at their own risk.

47.1. What is homotopy theory? Since homotopy theory is going to be the
main backdrop for this journey, we had better get some things straight about it up
front.
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In an introductory algebraic topology course one gets the idea right away that
there are deep and interesting processes for passing from topological information to
algebraic information. As researchers delved into this subject and found themselves
creating ever more sophisticated machinery to accomplish this transfer, it gradually
became apparent that it was best to think of this technology as operating inside a
certain realm that had previously been hidden. What came into view was a world
lying in between topology and algebra, sharing characteristics with both: this is the
world of homotopy theory. More precisely, I should call this the “homotopy theory
of topological spaces”; but this is kind of a mouthful and it gives the erroneous
impression that the theory is mainly about topology. Here let me just use “homotopy
theory” as an abbreviation. The following crude diagram captures the situation
somewhat:

Topological spacesAlgebra

Homotopy theory

When students first encounter homotopy theory it is usually from the perspective
that the whole point is to study topological spaces, and as a result topology feels
inherently inseparable from what homotopy theory is. But that viewpoint is an
anchor that keeps one from ascending into the heavens, and it is important to
somehow let it go. It is best to view homotopy theory as its own thing, a wonderland
that was waiting to be discovered. Topological spaces were our first way into it,
but are by no means the only way in.

It is true that the homotopical world can at times feel very geometric. Objects
like spheres and manifolds, Lie groups and their homogeneous spaces, cycles and
intersections—the list goes on and on—all play a big role. But at other times
the homotopical world feels like some kind of highly-sophisticated algebra: it has
localizations, completions, bar constructions, resolutions, etc. Every topological
space yields a corresponding object in the homotopical world, and in fact every
object comes from a topological space—but the realm of spaces is often not the
best way to think about what is happening. For example, it turns out that every
chain complex of abelian groups also specifies an object in the homotopical world;
yet it is far from evident what topological space that should correspond to.

This strange blending of worlds can make it hard for homotopy theorists to talk
to mathematicians in other fields. For a homotopy theorist, topological spaces and
chain complexes live in the same playpen and get manipulated according to the
same rules. This idea can seem very disorienting to algebraists and geometers!
The intrepid homotopy theorists have developed all kinds of techniques for working
in—and thinking about—the homotopical world, and it can takes years to master.
We can’t cover all of that in one night, but fasten your seatbelts and we will do a
quick flyover.

I need to start assigning some names to things, so let me call this mystery world
HS—for the Homotopy theory of Spaces. As the name suggests, the objects in
this world are typically called “spaces”, but this is hopelessly confusing when one is
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first getting the lay of the land. Inevitably one starts to confuse the objects with
topological spaces, which they are not. Let me instead call the objects “h-sets”,
short for “homotopical sets”. This is not a standard name, but will do for the time
being.

If you have been brought up on 20th century mathematics you would undoubt-
edly expect me to describe HS to you as a category: that is, I should give you
precise definitions of the objects and the morphisms. Somewhat surprisingly, this
has never quite worked. One can indeed describe certain categories that serve as
gateways into HS, but in each case one has to specify extra rules that govern when
various constructions in the category match HS and when they don’t. Categories
with such rules go under the name model categories.

The inability to describe HS in terms of ordinary category theory is one of the
first oddities one must adapt to. In modern language one might say that HS has
to be described as an∞-category . We won’t go into the technology of either model
categories or∞-categories, and instead will just keep most of that structure hidden
in the background. But it is important to know that it is there.

After going on at length about the difficulties in describing HS, we still need to
describe it somehow. To get a sense of the problem, we will make an attempt to
give an “algebraic” description of the objects. Remember that these are supposed to
model homotopy types, and we know something about those. It seems clear enough
that an object X should come with a set of points X0, and that we should be able to
talk about paths—or maybe “edges” is a better term—connecting two points. That
seems simple enough, but now things get bumpy. We should be able to concatenate
paths (when they line up appropriately) to make new paths, and we should be able
to talk about deformations—or homotopies—between paths. Then we are going to
need homotopies between homotopies, and so on ad infinitum. Here it gradually
becomes clear that there are probably lots and lots of ways to encode all of this
stuff: one could use cubes, or simplices, or any other form of higher-dimensional
“blobs”, and then there is a combinatorial challenge of how to make this stuff all fit
together. None of the choices seem particularly canonical, and they all seem fairly
complicated. Blech.

Of the many possible approaches there are two that are most commonly used:
(a) Simplicial sets. Here we use simplices as our model for “higher homotopies”.

The definitions of the objects are not too bad, and one gets a completely combi-
natorial world in which to work. There are issues, though. One cannot compose
edges in a simplicial set, and so one has to find ways around that and related
issues. Also, there is certainly nothing canonical about simplices—one might
have used cubes just as well, and some problems seem to call out for cubes or
even more complicated “parameter spaces”. As a result, certain constructions
end up seeming unnecessarily complicated when done in the simplicial world.

(b) Topological spaces. This is a kind of Gordian-knot style solution. Observe that
topological spaces already have all of the structure we are trying to model, the
only problem is that they have too much structure. If we only care about the
homotopies and higher homotopies inside a space then we don’t care about the
open sets or other homeomorphism-type information, and we have to find a
way to systematically forget that data.

We are not going to introduce the language of model categories here, but the point of
that technology is that it offers a systematic approach to “doing homotopy theory”



A GEOMETRIC INTRODUCTION TO K-THEORY 475

that applies in both of the above worlds (as well as many others). We have two
model categories sSet and Top as well as adjoint functors sSet � Top allowing us
to pass back and forth between them.

Via these models every topological space yields an object in HS, but we also
obtain other sources for such objects. Every small category C has a nerve NC ∈
sSet—with the n-simplices being strings of n-composable maps—and the associated
object of HS is denoted BC and called the classifying space of C (perhaps we
should say “classifying h-set”, but we are going to start reverting to more standard
terminology). Likewise, there is the Dold-Kan equivalence of categories Ch≥0(Z) ∼=
sAb and via this every non-negatively-graded chain complex of abelian groups yields
an associated simplicial set—and hence an object of HS.

47.2. Homotopical monoids. Now that we have the notion of an h-set (or at
least, the vague idea that there is a world of such things), perhaps an algebraic-
minded person would next ask: what is an h-monoid? For historical reasons these
usually go under the name A∞-spaces: such a thing is an h-set X together with
a distinguished point 1 ∈ X and a map µ : X × X → X that is “associative and
unital up to infinite homotopies”. As one would expect, it takes some serious work
to make sense of this. We sail past this point without much comment.

Let us note that an A∞-space is more than just the triple (X,µ, 1): it is also
the infinite collection of “higher homotopies” alluded to in our vague definition. So
there can exist multiple A∞-structures with the same underlying triple (X,µ, 1).
The convention is to be somewhat sloppy with language and to say things like “X
is an A∞-space” in place of “X, with a bunch of hidden data that you might guess
but we are not exactly going to spell out, is an A∞-space”. Such is life.

Although we will not need them, let us mention that an An-space is like an
A∞-space but where one only has higher homotopies up through level n, with level
2 just consisting of the product X ×X → X itself.

Here are several examples of A∞-spaces:
(1) Any monoid in sets, or more generally any topological space with a continuous

multiplication that is associative and unital on the nose.
(2) Any loop space ΩX.
(3) Any (homologically graded) differential graded algebra concentrated in non-

negative degrees (i.e. a monoid in Ch≥0(Z)).
(4) If C is a small monoidal category then the monoidal structure induces a product

on BC making this into an A∞-space.
(5) For any space X we have the monoid Vect(X) =

∐
n Vectn(X) of complex

vector bundles under direct sum. The sets Vectn(X) are represented by BU(n)
(or BGLn(C) if you prefer), and direct sum is represented by the maps of spaces
BU(k)×BU(n)→ BU(k+n) induced by the block sum homomorphism maps
U(k)× U(n)→ U(k + n), i.e.

(A,B) 7→
[
A O
O B

]
.

These maps give a multiplication on the space∐
n

BU(n)

that makes it into an A∞-space
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(6) In analogy to (5), if R is any discrete ring then
∐
nBGLn(R) has the structure

of an A∞-space. We can also consider∐
P

BAut(P )

where the coproduct is over the finitely-generated R-projectives. Here one
has to be careful as to how to get an indexing set for the coproduct. Dodg-
ing this point, this is another example of an A∞-space. Another approach
to the same (up to homotopy) space is to take the nerve of the category of
fininitely-generated R-projectives with isomorphisms, with the monoidal struc-
ture of direct sum (here again one should technically restrict to a small skeletal
subcategory).

(7) We can replace U(n) or GLn(R) with the symmetric groups Σn, again using
the map BΣk × BΣn → BΣk+n induced by block sum of permutations. The
space

∐
nBΣn is again A∞.

(8) If X is a pointed topological space then the James construction J(X) is the
free monoid generated by the points of X with the basepoint as unit, suitably
topologized. As J(X) is a topological monoid, it is an A∞-space.

(9) If X is an A∞-space then any mapping space Map(W,X) will inherit an A∞-
structure. In particular, applying this to example (5) shows that if W is path-
connected then ∐

n

Map(W,BU(n))

is A∞.
Every monoid M can be regarded as a category with one object (and endomor-

phism monoid M), and as such it has a classifying space BM . If we model BM as
the geometric realization of the nerve, there is an evident map M → Ω(BM) and
this is compatible with multiplication (up to homotopy). This generalizes: every
A∞-space X has a classifying space BX, which comes with a map of A∞-spaces
X → ΩBX. (We have of course not explained what a map of A∞-spaces is, but so
it goes).

47.3. Homotopical groups and abelian groups. Now that we know about h-
monoids, how about h-groups? We might as well keep this party going. Here the
answer turns out to be pretty easy, though: an h-group is just an h-monoid X with
the property that π0(X) is a group. One can imagine other, more sophisticated,
definitions, but they all turn out to be equivalent to this more simplistic one.

Note that every loop space ΩX will be an h-group. It turns out these are all of
them!

Theorem 47.4. Every h-group X is equivalent (as an h-group) to ΩY for some
space Y . In fact the map X → ΩBX is an equivalence.

What about h-analogs of commutative monoids and abelian groups? The analogs
of commutative monoids are called E∞-spaces: these are A∞-spaces together with
an infinite collection of higher homotopies governing commutativity. An En-space
is the associated concept where one only has homotopies up through level n. For
example, E1-spaces are just A∞-spaces. We define En-groups to be En-spaces
where π0 is a group.

Theorem 47.5. The En-groups are precisely the n-fold loop spaces ΩnX.
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Again, several examples:
(1) Every topological commutative monoid is an E∞-space. For example, if X is a

pointed space then the infinite symmetric product Sp∞(X) is E∞.
(2) If C is a symmetric monoidal category then BC is an E∞-space.
(3) The spaces

∐
nBΣn,

∐
nBGLn(R),

∐
P BAut(P ), and

∐
nBU(n) are all E∞-

spaces. The first three are the classifying spaces for the categories of finite
sets with isomorphisms, finitely-generated free R-modules with isomorphisms,
and finitely-generated projective R-modules with isomorphisms. The last is
the classifying space for the topological category of finitely-generated C-vector
spaces with isomorphisms.

There is a subtlety in Theorem 47.5 that requires some explanation. An n-fold
loop space is a space X = X0 together with a sequence of deloopings: spaces
X1, . . . , Xn and weak equivalences Xi ' ΩXi+1. But observe that the space X0

can have different choices for the deloopings: X1 can be replaced with any of its
components, X2 can be replaced with its universal cover, etc. The information in
the original En-group really only corresponds to the connective deloopings: the
choices where each Xi is (i− 1)-connected.

The notion of E∞-space is a reasonable candidate for what “h-abelian group”
should mean, but it is not the only candidate. Another perspective is that the
“h-abelian groups” are spectra. The difference here is not huge, but is worth com-
menting on; it is related to the concerns of the preceding paragraph. An E∞-space
X is an infinite-loop space, and therefore is Ω∞(E) for some spectrum E. However,
the spectrum E is not unique. For example, a spectrum and its connective cover
always have the same Ω∞.

What is true is that there is (essentially) an equivalence between E∞-spaces
and connective spectra. It is common to be somewhat sloppy about the distinc-
tion between these two, and we will follow that approach in what follows. So the
two different perspectives on “h-abelian groups” amount to just the difference be-
tween connective and non-connective spectra. We will not need to care about this
distinction for our present purposes.

47.6. Homotopical group completion. In usual (non-homotopical) algebra,
group completion is the left adjoint to the inclusion i of Groups into Monoids:

(Monoids) // (Groups).
i
oo

If M is a monoid then the group completion is often denoted M+. It can be
constructed as the quotient of the free group on the underlying pointed set ofM by
the normal subgroup generated by elements [x][y][xy]−1 for all x, y ∈M . Sometimes
the group completion is also referred to as the Grothendieck group of the monoid
M . Of course Z is the group completion of N, and when X is compact K0(X) is
the group completion of the monoid of isomorphism classes of vector bundles on X.

In the homotopical setting we can ask for a homotopical adjoint to the inclusion
of h-groups into h-monoids. This is “homotopical group completion”. If one starts
with an E∞-monoid then homotopical group completion will produce an E∞-group,
i.e. an infinite loop space. Homotopical group completion is usually denoted by
M 7→ M+ just as in the non-homotopical setting, but we will write M 7→ M+h to
avoid confusion.
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There is always an A∞ map X → Ω(BX), and the target is an h-group. It is
reasonable to expect this target to be the group completion, and it is:

Theorem 47.7. If X is an A∞-space then X+h ' Ω(BX).

If M is a discrete monoid then the simplicial model of BM together with the
Van Kampen theorem immediately gives that π1(BM) = M+, so that we conclude
π0(M+h) = π0(ΩBM) = π1(BM) = M+. It is not hard to believe that this holds
more generally: ifM is an h-monoid then π0(M+h) ∼= π0(M)+. But the interesting
question is what (−)+h does to the higher portions of the homotopy type. This is
one answer to the question of “what is K-theory?”—at some fundamental level it
is the study of homotopical group completion. We constructed the group K0(X)
as the ordinary group completion of the monoid of isomorphism classes of vector
bundles on X, but what we should have really been doing is taking homotopical
group completion of an A∞-space of of vector bundles on X. We will say more
about this in a moment.

One would almost certainly guess that if M is a discrete monoid then M+h is
also discrete, and homotopy equivalent to M+. But this turns out to be far from
the case! In Exercise 47.18 below we give an example of a discrete monoid M for
which BM ' S2, so that M+h ' ΩS2; in particular, this M+h has non-vanishing
higher homotopy groups. In fact McDuff proved that every h-group can be realized
as the classifying space of a discrete monoid [McD2]. The moral is that monoids
can be quite complicated. The naive guess about M+h is indeed true, however,
when M is sufficiently nice: see (1) and (2) in the list below for some cases of this.

Here are several examples of homotopical group completion:
(1) If M is a cancellative commutative discrete monoid then M+h ' M+ (can-

cellative means that x+ y = x+ z implies y = z).
(2) If M is a free discrete monoid then M+h 'M+.
(3) (

∐
nBU(n))+h ' Z×BU .

(4) (
∐
nBGLn(R))+h ' Z × K ′(R), where K ′(R) is a connected space whose

homotopy groups are the higher K-groups of R.
(5) (

∐
P BAut(P ))+h ' K0(R) × K ′(R) ' K(R), where K(R) is the Quillen K-

theory space of R.
(6) (

∐
nBΣn)+h ' Q(S0) = Ω∞Σ∞(S0), the 0th space in the Ω-spectrum for the

sphere spectrum. Note that πi(Q(S0)) = πi(S), the ith stable homotopy group
of spheres.

(7) If C is a symmetric monoidal category then (BC)+h is the Quillen-Segal alge-
braic K-theory space of C (the 0th space of the algebraic K-theory spectrum).

We have seen that even if M is discrete then M+h can nevertheless be quite
complicated, in the sense of having nonvanishing higher homotopy. In examples
(4)–(6) above we find examples of A∞-spaces M having πi(M) = 0 for i > 1 but
whereM+h is again quite complex. The algebraic K-groups of a ring are in general
unknown, and there are open questions even in the case R = Z. In example (6) we
find the stable homotopy groups of spheres in M+h, and of course those are also
notoriously complex. Generally speaking, there is no known process for starting
with the homotopy groups of M and then cooking up the homotopy groups of
M+h.

We will next try to explain some of the common themes one might notice in
examples (3)–(6).
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For an h-groupX, all of the components must have the same homotopy type: any
x ∈ X has an inverse y in π0(X), and then multiplication-by-x and multiplication-
by-y give homotopy inverses between the componentsX1 andXx. So for an h-group
we will always have X ' π0(X) ×X1, where X1 is the component of the identity.
Thus, one thing group completion must do is “equalize” the different components in
an h-monoid. In many of our examples we have an h-monoid X with π0(X) = N,
so let us focus on that situation for a moment. Choose a point p1 ∈ X1 and form
the direct limit system

X0
·p1−→ X1

·p1−→ X2
·p1−→ · · · .

Let X∞ denote the (homotopy) colimit. The composites Xi → X+h p−i1−→ X+h

are compatible with the maps in the direct limit system, and so yield an induced
map from X∞ to the 0-component of X+h. If we are lucky and X∞ is actually an
h-group then this will be the end of the story: we will get X+h ' π0(X)+ ×X∞.
This happens in example (3), for instance.

In example (4) an issue arises, which is that the X∞ space is BGL(R) and
therefore has nonabelian π1. But any A∞-monoid will have an abelian π1, so in
this example X∞ cannot be the 0-component of the group completion. The same
problem occurs in example (6), where π1 is the infinite symmetric group Σ∞. In
a moment we will see how to fix up these examples: the short answer is one can
recover the group completion by just altering X∞ in order to get rid of the bad
parts of π1. But to explain this, we need a brief detour on homology.

Quillen discovered a general formula for the homology of certain “well-behaved”
group completions. The idea is essentially as follows. To construct X+h from X
one can examine how π0(X)+ is made from π0(X) and then try to mimic that at
the homotopical level. The difficulty is that if M is a general monoid then the
passage from M to M+ might do all kinds of strange things. But if M satisfies
some mild hypothesis then M+ can be obtained from M by a colimit procedure:
for example, the colimit—in the category of sets—of the diagram

N +1−→ N +1−→ N +1−→ · · ·(47.8)

can be identified with Z in an evident manner. This was secretely what was lying
behind the π0(X) = N examples we looked at above; note how we replaced the
colimit with a homotopical one in order to get X∞.

If M is any monoid, let EM be the translation category for M : the object set
is M and for every x, y ∈ M there is a map ρx : y → yx with the properties that
ρ1 = id and ρaρb = ρba. Let M be the diagram EM → Set that sends every object
to M and each map ρx to right-multiplication-by-x. Let M∞ be the colimit in Set
of M . Note that this has a very simple description: an element in this colimit can
be described as a pair (x, y) where y is the object of EM and x ∈ M(y). The
relations in the colimit just say that (x, y) ∼ (xz, yz) for every x, y, z ∈M .

There is a map from the diagram M to M+ sending the pair (x, y) to xy−1,
and this induces a map of sets M∞ → M+. When M is commutative this is an
isomorphism: this is the usual construction of the group completion via pairs of
elements. The map is even an isomorphism somewhat more generally, whenever
the monoid M admits a certain kind of “calculus of fractions”. We will leave the
reader to dream about the details there.

We now come to the so-called “Group Completion Theorem”, due independently
to Quillen and to Barratt-Priddy. IfX is anA∞-space and T is a ring thenH∗(X;T )
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becomes a ring under the Pontryagin product, given by

Hp(X;T )⊗Hq(X;T ) −→ Hp+q(X ×X;T )
µ∗−→ Hp+q(X;T ).

The degree 0 subring is precisely the monoid ring T [π0(X)], where π0(X) has the
monoid structure inherited from the product on X. The following result is from
[BPr] and [Q5]:

Theorem 47.9 (Quillen, Barratt-Priddy). Let T be a ring and let X be an A∞-
space. Suppose that π0(X) is commutative. Then there is an isomorphism

H∗(X
+h;T ) ∼= H∗(X;T )[π0(X)−1].

(This also holds under somewhat less restrictive hypothesis, where one only assumes
that π0(X) admits a certain kind of calculus of fractions).

Now let us return to the example of the A∞-space X =
∐
nBGLn(R). We

have seen that the map X → X+h induces a map BGL(R) → (X+h)0 (the path-
component of the identity element 0 ∈ π0(X) = N), but that BGL(R) cannot be
(X+h)0 because of π1 issues. However, the group completion theorem shows that
H∗(BGL(R);T )→ H∗((X

+h)0;T ) will be an isomorphism for every ring T : this is
because H∗(X;T )[π0(X)−1] is precisely Z[t, t−1]⊗H∗(BGL(R)). This tells us that
(X+h)0 is pretty close to being BGL(R), but it is just that the π1 is getting in the
way. So it is reasonable to envision that if we could just carefully kill off some of
the π1 in BGL(R) then we might get X+h.

Quillen invented his “plus construction” to do exactly this. This construction is
related to group completion, though not exactly equal to it, and so the terminology
“plus construction” is a bit annoying. If W is a space with a normal subgroup
N ≤ π1(W ) that is perfect (meaning N = [N,N ]) then Quillen defines a new space
W+Q (usually just denoted W+, sadly) by attaching 2-cells to W to kill off N .
This space has the property that π1(W )→ π1(W+Q) has kernel N andW →W+Q

induces isomorphisms on homology with any coefficients. [For more details on the
plus-construction see [Q1, Section 3], [Q2a, Section 12], and [Lo]].

Returning to our space BGL(R), the normal subgroup [GL(R), GL(R)] ⊆
GL(R) = π1(BGL(R)) turns out to be perfect. So we can form BGL(R)+Q, and
the map BGL(R)→ X+h must factor through it:

BGL(R) //

''

X+h

BGL(R)+Q.

99

The two solid-arrow maps are homology isomorphisms (with any coefficients), so
the same is true of the dotted arrow map. But for the dotted arrow map the domain
and codomain are both simple spaces (π1 is abelian and the action on the higher
homotopy groups is trivial). A homology isomorphism between simple spaces is
a weak homotopy equivalence, so we find that BGL(R)+Q ' X+h

0 . That is, the
Quillen plus-construction for BGL(R) gives a model for the 0-component of the
homotopical group completion of X.

The same exact story plays out for
∐
nBΣn to show that BΣ+Q

∞ ' (
∐
nBΣn)+h

0 .
Finally, let us look briefly at example (5), which was X =

∐
P BAut(P ). Here

π0(X) is not N but rather the monoid of isomorphism classes of finitely-generated
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R-projectives under direct sum. This is still commutative and so we can form the
corresponding directed system and construct our X∞ as the homotopy colimit.
But the free R-modules are cofinal in this system, since every projective is a direct
summand of a free. So we find that X∞ is weakly equivalent to the corresponding
homotopy colimit taken over the free R-modules, which is the same space obtained
in example (4). The same homology-based arguments as before now show that
(X+h)0 ' BGL(R)+Q.

We could stay on this subject of group completion for a long time, but let us just
mention one more theme. Suppose that C is a symmetric monoidal category, so that
BC is an A∞-space. Can we do something to C—back in the combinatorial world of
categories—that will mirror the passage from BC to (BC)+h? For example, can we
construct a category C+h having the property that B(C+h) ' (BC)+h? This was
another question considered by Quillen, and the answer—of course—is yes. This is
known as Quillen’s S−1S-construction, though in our case it would technically be
C−1C. We will give a brief overview, but see [Gr0] for details.

Let (C,⊕) be a monoidal category where every map is an isomorphism. Define
C−1C to be the category with object set ob(C) × ob(C), and where a morphism
(X1, X2) → (Y1, Y2) is an equivalence class of triples [c, f : c ⊕ X1 → Y1, g : c ⊕
X2 → Y2] where the maps f and g are isomorphisms. The equivalence relation
has [c, f, g] ∼ [c′, f ′, g′] if there is an isomorphism c → c′ making the two evident
diagrams commute. If (C,⊕) is symmetric monoidal then one can define an action
of C on C−1C by c� (X1, X2) = (X1, c⊕X2), and this is readily checked to be an
invertible action (the inverse is given by c� (X1, X2) = (c⊕X1, X2)).

Continuing to assume that C is symmetric monoidal, we get an induced monoidal
structure on C−1C where (X1, X2)⊕ (Y1, Y2) = (X1 ⊕ Y1, X2 ⊕ Y2). The symmetry
isomorphism is needed for the induced behavior on maps. It is easy enough to
check that π0(C−1C) ∼= (π0C)+. In fact we have the analogous statement at the
homotopical level:

Theorem 47.10 (Quillen). Suppose (C,⊕) is a symmetric monoidal category where
every map is an isomorphism. Then B(C−1C) ' (BC)+h.

Although Theorem 47.10 is stated for discrete categories, one can play similar
games in the generalized setting of topological categories. Here is one example:

Theorem 47.11. Let X be a compact Hausdorff space, and let VX denote the
topological category of complex vector bundles on X with the maps being the iso-
morphisms. Then
(a) If V = Vpt then BV '∐nBU(n) and B(V−1V) ' (

∐
nBU(n))+h ' Z×BU .

(b) BVX '
∐
n Map(X,BU(n)) and B(V−1

X VX) ' Map(X,Z×BU). In particular,
πp(BVX) ∼= K−p(X).

47.12. Exact sequences. As we know from our study of K0, sometimes the
Grothendieck group of interest arises not as the group completion of a monoid
but rather as the universal additive group in which exact sequences are forced to
split. To incorporate this kind of framework into our picture we should look for
constructions having the form

(homotopical gadgets involving a notion of exact sequence) −→ (E∞-spaces),
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where historically the domain has been made explicit with progressively more so-
phisticated notions. Going very quickly through some history here:
(a) Quillen defined his “Q-construction”, which takes a category C with a notion of

exact sequence and outputs a spectrum K(C).
(b) Waldhausen developed machinery that takes a so-called “category with a cofi-

brations” D (a category with a well-behaved notion of cofiber sequence) and
outputs a spectrum KWald(D). This allows one to talk about the K-theory
spectrum for certain categories of chain complexes, with their homotopical no-
tion of cofiber sequence.

(c) After the introduction of ∞-categories, it was realized early on that the Wald-
hausen machinery could be adapted to take as its input any stable∞-category.
Blumberg-Gepner-Tabuada [BGT] proved that in this setting one can describe
Waldhausen K-theory as the universal construction satisfying a short list of
familiar axioms (Morita invariance, additivity, and compatibility with colimits,
for those who know what all those words mean).

When C is a symmetric monoidal category equipped with the notion of split-exact
sequence, Quillen’s Q-construction agrees (up to homotopy) with the output of the
C−1C-construction we saw earlier. Likewise, Waldhausen K-theory agrees with
Quillen K-theory in the cases where one would hope for that. For example, if X is
a scheme then the Waldhausen K-theory of perfect complexes over X agrees with
the Quillen Q-construction applied to the category of locally-free coherent sheaves
on X, and if X is affine then this in turn agrees with the S−1S-construction applied
to the category of finitely-generated projective R-modules where R = O(X), which
in turn agrees with K0(R)×BGL(R)+Q ' (

∐
P BAut(P ))

+h.

47.13. This is all very interesting, but what is the punchline?
In all of our discussion of K-theory throughout this book, the groups Ki(X)

for i 6= 0 have always been a bit nebulous. All too often we end up getting our
hands on them by using Bott periodicity to shift them to a K0, which often feels
unsatisfying. Even the relative groups K0(X,A) are a bit intimidating; here we saw
different geometric models (e.g. Atiyah’s difference bundles, or chain complexes of
bundles, or the L∞ model from ???) but a preferred model never seemed to rise to
the top.

Keeping the above comments in mind, let us now return to the beginnings—but
from a somewhat different perspective—and see if we can come to terms with some
of this. If X is a compact Hausdorff topological space let Vect(X) be the space of
vector bundles on X, regarded as an A∞-space via direct sum. The homotopy type
is

Vect(X) '
∐
n≥0

Map(X,BU(n)).

K-theory (and really we should say connective K-theory) is the study of the ho-
motopical group completion Vect(X)+h, but as we have discussed this is a priori a
somewhat nebulous object. There is no known general procedure for understand-
ing the homotopy groups of M+h in terms of the homotopy groups of the original
A∞-space M .

One of the “themes” of K-theory is finding models for Vect(X)+h in terms of the
geometry of X, and perhaps it is not surprising to discover that there are many
such models. Some of these are ????. A recent line of research involves describing
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a model in terms of certain kind of topological field theories on X: see [ST], [HST],
[H], and [U] as just a few places to get started in that area.

47.14. Exercises. The exercises below concern discrete monoids M together with
their group completions M+ and homotopical group completions M+h.

Exercise 47.15. Let M = {1, h} where h2 = h. Check that M is a monoid
and M+ = 1. For each n ∈ Z+ find a monoid generated by one element whose
group completion is Z/n. In particular, these are examples where M →M+ is not
injective.

Exercise 47.16. LetM be a monoid. LetM.h denote the monoid whose elements
are words involving h and elements of M , subject to the relations that h2 = h and
mh = h for all m ∈ M . Prove that (M . h)+ = 1 and that B(M . h) ' ∗ (give
a contracting homotopy for the simplicial set B·(M . h)). The monoid M . h acts
like a cone on M .

Exercise 47.17. Using the simplicial model for B·M one sees immediately that
H∗(BM) = TorZ[M ]

∗ (Z,Z). And more generally, if J is anM -module on which all of
the generators act as isomorphisms then J is a π1(BM)-module and H∗(BM ; J) ∼=
TorZ[M ]
∗ (Z, J).

(a) Let M = 〈f〉, the free monoid on one generator f . Let α : S1 → BM be
the evident map sending the 1-simplex of S1 to f . Prove that α induces an
isomorphism on π1 and on H∗(−; J) for every local coefficient system, and is
therefore a weak equivalence.

(b) Generalize part (a) to show that if M is any free discrete monoid then BM is
weakly equivalent to a wedge of circles. Deduce that M+h 'M+.

Exercise 47.18. Following [F] we will produce a 5-element monoid M such that
BM ' S2. Then M+h ' ΩBM ' ΩS2, which has nonvanishing higher homotopy
groups. So this will be an example where M+h 6'M+.

Let M = {1, xij}1≤i,j≤2 with the product given by xijxmn = xin.
(a) Verify that M is associative and that M+ = 1.
(b) Let P1 = {x11, x12} and P2 = {x21, x22}. As subsets of M these are closed

under right multiplication by M . Prove that the map of right Z[M ]-modules
Z[M ] → Z〈P1〉 sending 1 7→ x11 is split surjective, proving that Z〈P1〉 is pro-
jective as a right Z[M ]-module. Repeat for P2.

(c) Show that Z has a projective resolution as right Z[M ]-module taking the form

0 −→ Z〈P1〉 ⊕ Z〈P2〉 −→ Z[M ] −→ Z〈P1〉 −→ Z −→ 0.

Use this to prove that TorZ[M ]
∗ (Z,Z) ∼= H∗(S

2).
(d) π1(BM) ∼= M+ = 1, so by the Hurewicz theorem the map π2(BM)→ H2(BM)

is an isomorphism. Verify that if f : S2 → BM is a generator for π2 then f is
a homotopy equivalence.

Exercise 47.19. Here we will give another example of a monoid M such that
BM ' S2. This monoid will not be finite, but the construction will suggest some
generalizations.

Let L = 〈f〉 be the free monoid on one generator. LetM consists of words in the
symbols f , h1, and h2 subject to the relations that fh1 = h1, fh2 = h2, h2

1 = h1,
and h2

2 = h2. Note that M is the pushout (L . h1) ∗L (L . h2) in the category of
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monoids, so one can think of it as being the monoid L with two cones attached.
We claim that BM ' S2.
(a) As a plausibility check, try to compute H∗(BM) algebraically as TorZ[M ]

∗ (Z,Z).
If we set

R = Z[M ] = Z[f, h1, h2]/(fh1 = h1, fh2 = h2, h
2
1 = h1, h

2
2 = h2)

then try to show that Z = R/(f − 1, h1 − 1, h2 − 1) has a free resolution that
starts out as

· · · → R4 → R3 → R→ Z→ 0

and find a nonzero class in TorR2 (Z,Z).
(b) Here is a better way to compute H∗(BM) = TorZ[M ]

∗ (Z,Z). Set Ni = L . hi ⊆
M . Before diving in, note that we have the inclusion

j : BN1 ∪BL BN2 ↪→ BM

and that the domain of j, being the union of two contractible “cones” over
BL, has the homotopy type of Σ(BL) ' S2. The idea of our computation
will be to break the Tor into pieces analgous to the decomposition of S2 into
two hemispheres. Start by proving that M is the disjoint union of left cosets
sL where s ranges over the set consisting of 1 and all words in M ending in
either h1 or h2. Consequently, Z[M ] is free as a right Z[L]-module, on the
corresponding set of generators. Do something similar to analyze Z[M ] as a
right Z[Ni] module for i = 1, 2, in particular showing that it is free.

(c) Use the generators from the previous part to prove that there is a short exact
sequence

0 −→ Z[M ]⊗Z[L] Z −→ (Z[M ]⊗Z[N1] Z)⊕ (Z[M ]⊗Z[N2] Z) −→ Z −→ 0.

Then use the long exact sequence for Tor
Z[M ]
i (Z,−) to prove that

Tor
Z[M ]
i (Z,Z) ∼= Tor

Z[L]
i−1 (Z,Z) for i ≥ 1 (use the change-of-ring isomorphisms

TorSi (M,S ⊗R N) ∼= TorRi (M,N) that hold when R→ S is flat). Deduce that
H∗(BM) ∼= H∗(S

2).
(d) Prove that j is an isomorphism on π1 and on H∗(−;Z), and so obtain that j is

a weak homotopy equivalence.

Exercise 47.19 is a particular case of the analysis done in [McD2]. In fact it is
not a huge leap to go from the above ideas to seeing how to construct monoids
whose classifying spaces achieve any desired homotopy type.

Exercise 47.20. In Exercise 47.18 we saw a 5-element monoid where Ω(BM) 6'
M+. Are there smaller examples of this?
(a) Prove that up to isomorphism there are exactly two monoids with two elements:

one has BM ' RP∞ and one has BM ' ∗. Both have Ω(BM) 'M+.
(b) Prove that up to isomorphism there are exactly seven monoids with three ele-

ments, and construct them all. One has M+ = Z/3, one has M+ = Z/2, and
all of the others have M+ = 1. Prove that in the first case BM ' BZ/3, in the
second BM ' RP∞, and in all of the other cases BM is contractible. So all of
these monoids have Ω(BM) ' M+. [Hint for the middle case: prove that the
map BM → BZ/2 induced by the monoid map M � Z/2 is an isomorphism
on homology with arbitrary coefficients.]
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(c) Apparently there are 35 monoids with four elements. I do not know if they all
satisfy Ω(BM) 'M+. Explore this!
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Part 8. Appendices

Appendix A. Some point-set topology

Exercise A.1. Let X : I → Top be a diagram of topological spaces and let Z be
locally compact and Hausdorff. Prove that the natural map colimi(Xi × Z) →
(colimiXi)× Z is a homeomorphism. (Hint: Use [Theorem 46.11][Mu].)

Exercise A.2. Consider a diagram of spaces

X0
// //

����

X1
// //

����

· · ·

Y0
// Y1

// · · ·
where the top horizontal maps are injections and the vertical maps are quotient
maps. Prove that colimsXs → colims Ys is a quotient map.

A.3. Nets and sequences.

Exercise A.4 (Crash course on nets). Let X be a space. Recall that a net in X
is a directed set I together with a function x : ob(I)→ X. The net is said to have
limit L ∈ X if for every open set U containing L there is an i ∈ I such that xj ∈ U
for all j ≥ i.
(a) Check that if f : X → Y is continuous and x is a net with limit L then f ◦ x

is a net with limit f(L). (Briefly, we say that continuous functions preserve
convergent nets).

(b) Let x ∈ X and consider the category of open neighborhoods of X where the
maps are opposite arrows to inclusions. Check that this is directed.

(c) Let A ⊆ X. Prove that u ∈ Ā if and only if there is a net in A whose limit in
X is u. That is, Ā is the set of limit points of nets in X that lie in A.

(d) Prove that a map f : X → Y is continuous if and only if it preserves convergent
nets (as in (a)).

(e) If I is a directed set, define a topological space Î = I ∪ {∞} by taking as basis
all the singletons {i} as well as the sets [i,∞) = {j ∈ Î | i ≤ j}, for i ∈ I. Note
that a subset S ⊆ Î containing ∞ is open if and only if it intersects I and is
closed under inclusion of larger elements. Prove that a net x : I → X has limit
L if and only if the function x̂ : Î → X that extends x and has x̂(∞) = L is
continuous.

A map between directed sets f : J → I is a function with the property that
whenever j1 ≤ j2 one has f(j1) ≤ f(j2). A map f is cofinal if for every i ∈ I
there exists j ∈ J such that i ≤ f(j). Given a net x : I → X, a refinement of
x is a net of the form x ◦ f where J is a directed set and f : J → I is a cofinal
map (refinements are also called subnets in the literarure, though it is important
to note that the map f need not be injective).

Given a net x : I → X and a subset S ⊆ X, say that the net consistently
returns to S if {i ∈ I |xi ∈ S} is cofinal in I—or equivalently, for every i ∈ I
there is a j ≥ i such that xj ∈ S. Given a net x : I → X, a point w ∈ X is an
accumulation point of x if the net consistently returns to every neighborhood of
w.



A GEOMETRIC INTRODUCTION TO K-THEORY 487

Exercise A.5 (Crash course on nets, part 2). Given a net x : I → X, prove that w
is an accumulation point of x if and only if there is a refinement of x that converges
to w.

Exercise A.6. Consider the following net in Rω with the box topology:

0, e1,
1
2e2,

1
4e3, . . . , 0, 1

2e1,
1
4e2,

1
8e3, . . . , 0, 1

4e1,
1
8e2,

1
16e3, . . .

This net is indexed on the ordinal ω ·ω. Prove that this net does not converge to 0.

Let X be a space. We will say “(x;L) is a convergent sequence in X” as a
synonym for x being a convergent sequence in X with limit L.

Say that a subset A ⊆ X is sequentially open if every convergent sequence
(x;L) with L ∈ A is eventually in A: that is, there exists an n ≥ 1 such that xk ∈ A
for all k ≥ n. Say that A ⊆ X is sequentially closed if every convergent sequence
(x;L) with values in A has L ∈ A. Note that every open subset is sequentially
open, and every closed subset is sequentially closed.

Say that a function f : X → Y is sequentially continuous is whenever (x;L) is
a convergent sequence in X then (f(x); f(L)) is a convergent sequence in Y . Every
continuous function is sequentially continuous.

Exercise A.7. Let X be a space.
(a) Check that a subset of X is sequentially open if and only if its complement is

sequentially closed. Prove that the sequentially open sets define a topology on
X; we will denote this Xseq. The identity is a continuous map Xseq → X.

(b) Prove that a function f : X → Y is sequentially continuous if and only if
f : Xseq → Y is continuous.

(c) Prove that the following conditions on X are equivalent:
(i) Every sequentially open subset is open.
(ii) Every sequentially closed subset is closed.
(iii) For every space Y , every sequentially continuous map f : X → Y is con-

tinuous.
A topological space X satisfying the above conditions is called sequentially
determined, or often just sequential for brevity.

(d) Prove that an open subset of a sequential space is sequential, and the same for
closed subsets.

(e) Prove that any colimit of a diagram of sequential spaces is again sequential. In
particular, any quotient space of a sequential space is sequential.

(f) Prove that any first-countable space is sequential (in particular, any metric
space is sequential). Conclude that every CW-complex is sequential.

(g) Suppose X has an open cover {Uα} where each Uα is sequential. Then X is
sequential.

(h) Let J = {0} ∪ { 1
n |n ≥ 1} ⊆ R be equipped with the subspace topology. Check

that a function x : J → X is continuous if and only if x(0) is the limit of the
sequence n 7→ x( 1

n ).
(i) For any space X consider the category J ↓ X whose objects are maps

J → X and whose arrows are commutative triangles that involve an endo-
morphism of J . There is a canonical functor (J ↓ X) → Top sending each
f : J → X to J ; denote the colimit by colimJ→X J . There is a canonical map
θX : colimJ→X J → X. Prove that X is sequentially determined if and only if
θX is a homeomorphism.
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(j) Suppose that Z is a space that is locally compact Hausdorff and is such that
J ×Z is sequentially determined (for example, this holds whenever Z is locally
compact Hausdorff and is first-countable). Use the previous parts to show that
if X is sequentially determined then so is X × Z, for any space X. (Hint: Use
Exercise A.1).

A.8. Separated maps.

Exercise A.9.
(a) LetX be a topological space. Show that the following conditions are equivalent:

(1) X is Hausdorff,
(2) If a net in X converges to two points x1 and x2, then x1 = x2.
(3) The diagonal ∆ ⊆ X ×X is closed.

(b) Let f : X → Y be a continuous map. Show that the following conditions are
equivalent:
(1) If a net in X converges to two points x1 and x2 and f(x1) = f(x2), then

x1 = x2.
(2) For any directed set I, any diagram

I //
��

��

X

f

��
Î //

??

Y

has at most one lifting as shown.
(3) The diagonal ∆ ⊆ X ×Y X is closed.
Maps f satisfying these equivalent conditions are called separated.

A.10. Proper maps. Properness is a relative form of compactness, so let us begin
by stating various equivalent conditions for a space to be compact.

Exercise A.11. Let X be a topological space. Prove that the following conditions
are equivalent:
(1) X is compact;
(2) Every net x : I → X has a convergent refinement (or equivalently, an accumu-

lation point);
(3) For every space Z the projection X × Z → Z is a closed map.
[Hint: (1)⇒(2)⇒(3) are fairly straightforward. For (2)⇒(1), given a cover {Uα}α∈A
with no finite subcover construct a net indexed on the poset of finite subsets of A.
For (3)⇒(2), given a net x : I → X take Z = Î from Exercise A.4.]

Exercise A.12. Let f : X → Y be a map of topological spaces. Prove that the
following are equivalent:
(1) Every net x : I → X whose image in Y converges to a point y has a refinement

that converges to a point x ∈ f−1(y); said differently, every diagram

I //
��

��

X

f

��
Î //

??

Y

has a lifting as shown;
(2) For every space Z and map Z → Y the pullback X ×Y Z → Z is a closed map;
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(3) For every space W the map f × id : X ×W → Y ×W is a closed map;
(4) f is a closed map and for every compact subset K ⊆ Y , the preimage f−1(K)

is compact;
(5) f is a closed map and every fiber is compact.
[Outline: Prove that maps satisfying (1) are closed, and also that property (1)
is stable under pullbacks. Then prove (1)⇒(2)⇒(3)⇒(4)⇒(5)⇒(1). For the last
implication, if x does not have an accumulation point in f−1(y) then every w ∈
f−1(y) has a neighborhood that is not consistently returned to by x. Choose
finitely many of these neighborhoods U1, . . . , Ur that cover f−1(y) and then consider
f(X − (U1 ∪ · · · ∪ Ur)).]
Definition A.13. Let f : X → Y be a continuous map.
(a) f is proper if it satisfies any of the equivalent conditions listed in Exercise A.12.
(b) f is strongly proper if it is proper and separated, i.e. has the additional

property that if a net in X converges to two points x1 and x2 and f(x1) = f(x2)
then x1 = x2.

(c) f is weakly proper if the preimage of every compact subset of Y is compact.

Note that the terms “strongly proper” and “weakly proper” are not standard,
and in fact all three notions are called “proper” in various places in the literature.
There exist examples showing that the three notions are distinct.

Appendix B. Topological vector spaces and tame families

We start by reviewing some standard material about topological vector spaces
over R. There are only two topological vector spaces whose underlying vector
space is Rn: Rn with the standard topology and Rn with the indiscrete topology.
However, when one gets to vector spaces of countably infinite dimension things
become more complicated. We begin by reviewing some tools for comparing two
topologies on the same set, and then proceed from there to a detailed look at R∞.

B.1. Comparing topologies. For some reason the language mathematicians use
for comparing two topologies on a common set is not universally agreed-upon, and
also hard to remember. If T1 and T2 are two topologies on a set S, the following
are equivalent statements:

• T1 has fewer open sets than T2, i.e. T1 ⊆ T2.
• T1 is coarser than T2

• The identity map ST2
→ ST1

is continuous.
• T2 is finer than T1

• T2 is a refinement of T1.
Analysts also use “T2 is stronger than T1” or “T1 is weaker than T2” as equiva-
lent to the above conditions, but unfortunately topologists often reverse the role of
weak/strong here. For example, the “W” in “CW-complex” stands for what topol-
ogists call the weak topology on an ascending union, which is finer than other
topologies one might consider. So the situation is confusing, and as a result we will
try to avoid the weak/strong language. (See [Mu, Section 12] for a similar remark).

If one thinks of a topology as being like a way of distinguishing objects via
characteristics—where the open sets are the characteristics—then the fine/coarse
terms match up with common usage. A finer topology allows more distinctions,
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and so has more open sets. It is useful to remember the slogans

finer = more open sets = easier to map out of.

Finer topologies map to coarser ones. Another way of keeping things straight is
to remember that the indiscrete topology is the coarsest topology; one can usually
figure out the rest from there.

Example B.2. Recall that if {Xα} is a collection of topological spaces then on∏
αXα we have the box and product topologies. A basis for the box topology

consists of rectangles
∏
Uα where each Uα is open in Xα, whereas for the product

topology we take rectangles where only finitely many of the Uα differ from Xα.
So the box topology has more open sets than the product topology, hence the box
topology is the finer one.

Example B.3. More generally, the topology on a limit is the “coarsest topology
such that...”, whereas the topology on a colimit will be the “finest topology such
that...”. This can be deduced from the direction of the arrows, remembering always
that finer topologies map to coarser ones.

Another way to understand the comparison between two topologies is in terms
of the convergent sequences. Continuous maps preserve convergent sequences, so
if id : ST2 → ST1 is continuous and a sequence {xi} converges to x∞ in T2 then it
also converges in T1. So coarser topologies have more convergent sequences than
finer topologies. In the indiscrete topology everything converges to everything.

Convergent sequences do not capture everything about a topology; for that we
need to use convergent nets instead. Recall that a net in a space X is a directed
category I and a function x : I → X. The net x converges to a point x∞ if for every
open set U containing x∞ there exists an i ∈ I such that xj ∈ U for all j ≥ i. It is
a theorem that two topologies T1 and T2 are the same if and only if they have the
same class of convergent nets. Also, a map f : X → Y is continuous if and only if
for every convergent map x : I → X, f(limx) = lim f(x).

Example B.4. Let {Xα} be a collection of topological spaces, and consider the
box and product topologies on the product

∏
αXα. Write πα for the projection

onto Xα. Then a net t : I → ∏
αXα is convergent to T in the product topology if

and only if πα(t) converges to πα(T ) in Xα, for all α.
It is more complex to analyze the situation in the box topology. The net t is

convergent to T in the box topology if for every collection of opens Uα containing
πα(T ), there exists i ∈ I such that for all j ≥ i we have πα(tj) ∈ Uα for all
α. This is a very strong condition. As an example, let {yi} be a sequence in R
that converges to a number y. Write ∆(y) for the diagonal element (y, y, . . .) in∏∞
i=1 R. Then ∆(yi) converges to ∆(y) in the box topology means that for every

countable collection U1, U2, . . . of neighborhoods of y, there is an N such that for
all k ≥ N one has yk ∈

⋂
i Ui. Since we can arrange for the infinite intersection to

be precisely {y}, this means that ∆(yi) converges to ∆(y) only when the sequence
{yi} is eventually constant. More generally, if all the spaces Xα are Hausdorff and
if {ti} is a sequence in

∏
Xα that converges to T in the box topology, then one

can show that there exists a finite set of indices S and a k such that for all i ≥ k,
ti agrees with T at all coordinates except possibly the ones in S. In other words,
the sequence t is eventually constant in all but finitely-many coordinates. This is a
very strong condition on the sequence t.
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B.5. R∞ with the colimit topology. Recall that R∞ consists of tuples
(x1, x2, . . .) with only finitely many nonzero coordinates. As a set we can write

R∞ = colim
n

Rn

where Rn includes into Rn+1 as the subset of tuples whose last coordinate is zero.
There are at least four topologies that naturally suggest themselves:

• Give each Rn its standard topology, and then give R∞ the induced topology
on the colimit. Denote this as R∞colim.

• Regard R∞ ⊆ ∏∞i=1 R and give R∞ the subspace topology induced from
the product topology. Denote this as R∞prod.

• Same as above, but this time give R∞ the subspace topology induced from
the box topology. Denote this by R∞box.

• The metric topology R∞metric, induced by the usual definition of distance
between vectors.

The universal property of the colimit shows that R∞colim will be finer than the other
three topologies. In fact the identity map gives us

R∞colim −→ R∞box −→ R∞metric −→ R∞prod.

All of these topologies have the property that if U is open than so is any translate
U + x for x ∈ R∞, so we can check continuity by looking at open sets around the
origin. For the last map it suffices to observe that an open rectangle B(0, r1) ×
· · · ×B(0, rn)×R×R× · · · contains B(0, r) where r is the minimum of the r’s (or
alternatively, the projection maps are continuous for the metric topology). For the
second map we observe that B(0, ε) contains the product

B(0, ε2 )×B(0, ε4 )×B(0, ε8 ) · · ·
by a routine computation.

To see that the last three topologies are all different we can observe that:
• B(0, 1) is open in R∞metric but not in R∞prod;
• B(0, 1)×B(0, 1

2 )×B(0, 1
4 )× · · · is open in R∞box but not in R∞metric.

Or alternatively,
• The sequence e1, 1√

2
(e1 + e2), 1√

3
(e1 + e2 + e3), . . . converges to 0 in R∞prod

but not in R∞metric;
• The sequence e1, 1

2 (e1 + e2), 1
3 (e1 + e2 + e3), . . . converges to 0 in R∞metric

but not in R∞box.
The reader will have noticed that we have not distinguished the colimit topology

from the box topology. That is because they are the same!

Proposition B.6. The colimit and box topologies on R∞ are identical.

Proof. Our proof requires a sequence of positive numbers s1, s2, . . . having the prop-
erty that each si < 1 and

∏∞
i=1 si is positive. Many such sequences exist, and the

proof below doesn’t depend on a specific choice. But one such sequence has terms
9
10 ,

89
90 ,

889
890 ,

8889
8890 , . . .

Note that
∏∞
i=1 si = 0.8888 . . . = 8

9 . For a rigorous definition, use a1 = 9, b1 = 10,
bn = 10an−1, and an = bn − 1. Set sn = an

bn
.



492 DANIEL DUGGER

We need to show that every neigbhorhood of 0 in the colimit topology is also
open in the box topology. Suppose 0 ∈ U ⊆ R∞ is such a neighborhood. Write
Un = U ∩ Rn, which is an open subset of Rn.

There exists an r1 > 0 such that B(0, r1) ⊆ U ∩ R1. By Lemma B.7 below,
there exists r2 > 0 such that B(0, s1r1)×B(0, r2) ⊆ U ∩R2. Applying Lemma B.7
again, there exists r3 > 0 such that B(0, s2s1r1)×B(0, s2r2)×B(0, r3) ⊆ U ∩ R3.
Continuing in this way, we can choose rn for all n having the property that

B(0, sn−1 · · · s1r1)×B(0, sn−1 · · · s2r2)×B(0, sn−1 · · · s3r3)×· · ·×B(0, rn) ⊆ U∩Rn.
Set Sn−1

k = sksk+1 · · · sn−1, with the convention that Sn−1
n = 1. So our statement

becomes

B(0, Sn−1
1 r1)×B(0, Sn−1

2 r2)× · · · ×B(0, Sn−1
n rn) ⊆ U ∩ Rn.

Set tk = S∞k =
∏∞
i=k si. Note that t1 > 0 and then it follows inductively that

tk > 0 for all k. Since si < 1 for all i we also have tk < 1, and even more that
tk < Sn−1

k for all n. Consider W = R∞ ∩ [B(0, t1r1)×B(0, t2r2)× · · · ]. We claim
that W ⊆ U , proving that U is open in R∞box.

Let x ∈W . Then x ∈ Rn for some n. Since tk < Sn−1
k we have that

x ∈ B(0, Sn−1
1 r1)×B(0, Sn−1

2 r2)× · · · ×B(0, Sn−1
n−1rn−1)×B(0, rn).

But this product of balls is contained in U ∩ Rn, hence x ∈ U . �

Lemma B.7. Let R be an open rectangle in Rn−1 containing 0 and let U ⊆ Rn
be an open set containing R × {0}. For s ∈ R let sR = {sx |x ∈ R}. Then for all
0 ≤ s < 1 there exists an ε > 0 such that sR× (−ε, ε) ⊆ U .
Proof. Let S be the set of all s ∈ [0, 1) such that the conclusion of the lemma holds.
It is trivial that 0 ∈ S, using that U is an open set containing 0. Note that if s ∈ S
then [0, s] ⊆ S, therefore S is an interval. Let z be the least uppper bound of S,
and assume that z 6= 1.

For a rectangle B(x1, r1) × · · · × B(xa, ra), let us refer to ri as the ith cross-
sectional radius.

Consider ∂(zR), which is a closed bounded subset of Rn and hence compact.
Since z < 1 we have ∂(zR) ⊆ R. For each point x ∈ ∂(zR) there is an open
rectangle around (x, 0) that is contained in U . Such open rectangles cover ∂(zR),
so by compactness we can cover ∂(zR) by finitely many of these. Let u > 0 be
smaller than any of the cross-sectional radii that appear in these finitely many
rectangles, and also smaller than z.

Let s = z − u
2 . Since s < z we have s ∈ S, so there exists an ε > 0 such

that sR × (−ε, ε) ⊆ U . Let σ be smaller than both u and ε. Then the union of
sR × (−ε, ε) with our chosen open rectangles contains sR × (−σ, σ) for s = z but
also for s slightly larger than z. This contradicts z being the least upper bound of
S.

We conclude that z = 1, hence S = [0, 1). This completes the proof. �

Corollary B.8. If a sequence x : N→ R∞colim is convergent with limit L then there
exists an N ≥ 1 and a k ≥ 1 such that L ∈ Rk, xi ∈ Rk for all i ≥ N , and the limit
of x|≥N in Rk equals L.

Proof. This follows by the remarks in Example B.4, but we also include a detailed
proof. We know L ∈ RM for someM . Assume that the sequence x is not eventually
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contained in some Rn. Then there exist i1 < i2 < · · · and M < n1 < n2 < · · ·
such that (xir )nr 6= 0 for every r. If j = nr let Uj = B(0, |(xir )nr |), and if
j /∈ {n1, n2, . . .} set Uj = R. Let U =

∏
j Uj . Then by Proposition B.6 U is an

open neighborhood of 0, hence L + U is a neighborhood of L. Observe that we
have constructed things so that xir /∈ L + U , for every r. This contradicts the
assumption that x converges to L.

We have now proven that the sequence is eventually contained in some Rk, and
we can take k large enough so that the limit L is also in Rk. Now just apply the
projection map R∞ → Rk (which is continuous) to the sequence x|≥N to see that
the limit in Rk is also equal to L. �

It is now easy to check that the vector sum and scalar multiplication maps
R∞colim × R∞colim

+−→ R∞colim and R × R∞colim → R∞colim are continuous, using the box
topology in place of the colimit topology. These maps make R∞colim into a topological
vector space.

Remark B.9. The metric and product topologies also make R∞ into a topological
vector space. To check that the vector sum is continuous, check that if x, y : I → R∞
are nets that converges to a and b (with either the metric or product topology on
R∞) then the net i 7→ xi + yi converges to a+ b. Similar for scalar multiplication.

Next we start to place conditions on topological spaces so that they are reason-
ably well-behaved from an algebraic perspective.

Definition B.10. Let V be a topological vector space. Say that V is reasonable
if
(1) For every indepedent set v1, . . . , vn ∈ V the induced map Rn → 〈v1, . . . , vn〉

sending ei 7→ vi is a homeomorphism, where the target is given the subspace
topology.

(2) Every linear functional φ : V → R is continuous.
(In both (1) and (2) R has the standard Euclidean topology).

Not every topological vector space is reasonable! The space Rnind does not satisfy
property (1), and neither R∞metric nor R∞prod satisfies (2). To see the latter, consider
the linear functional φ : R∞ → R given by x 7→ x1 + x2 + x3 + · · · . The sequence
si = 1

n

∑n
i=1 ei converges to 0 in both R∞metric and R∞prod but its image under φ does

not converge to 0.
Recall that Tychonoff’s theorem says that every finite-dimensional topological

vector space is isomorphic to Rn with either the Euclidean or indiscrete topology.
So condition (1) is equivalent to saying that each 〈v1, . . . , vn〉 with the subspace
topology is Hausdorff.

Proposition B.11. Let V be a reasonable topological vector space. Let F ⊆ V be
a finite-dimensional subspace with a chosen complement W . Then the associated
projection maps πF : V → F and πW : V →W are continuous.

Proof. By condition (1) of being reasonable, F is isomorphic to Rn with the product
topology. Composing with this isomorphism, πF becomes a linear map V → Rn.
Every component of this map is a linear functional, hence continuous by condition
(2). So πF is continuous.

If j : F ↪→ V is the inclusion then the map πW is id−jπF , hence continuous. �
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Let V be a topological vector space over R. The finite-dimensional subspaces of
V , with inclusions, make up a directed category and we have a canonical map

colim
Jfin.dim⊆V

J −→ V

where the colimit is taken in the category of sets. This is a bijection. If we equip
each J with the standard topology and the map is a homeomorphism, we refer to
V as a standard topological vector space.

Example B.12. Rn with the usual topology is a standard topological vector space,
as is R∞ with the colimit topology. For the latter, consider the diagram

colim
Jfin.dim⊆R∞

J // R∞colim.

colim
n

Rn

OO
∼=

99

The subspaces Rn are cofinal in the category of all finite-dimensional subspaces of
R∞, and so the vertical map is a homeomorphism. Hence the horizontal map is a
homeomorphism as well.

By the same line of reasoning, R∞ with the metric or product topologies is not
a standard topological vector space.

Proposition B.13. Let b1, b2, . . . be a basis for R∞. Then the linear map
L : R∞colim → R∞colim sending ei to bi is a homeomorphism.

Proof. The restriction of L to Rn factors through some Rk, and the map Rn → Rk
is continous, so L|Rn is continuous as well. Now pass to the colimit to obtain the
continuity of L.

Let si = L−1(ei). Since L is an isomorphism of vector spaces, {s1, s2, . . . , }
is a basis for R∞. So just as in the last paragraph, the linear map R∞colim →
R∞colim sending ei 7→ si is continuous. But this is precisely L−1, therefore L is a
homeomorphism. �

Corollary B.14. Let b1, b2, . . . be a basis for R∞, and let b̂1, b̂2, . . . be the dual
linear functionals given by b̂j(v) = aj if v =

∑
ajbj. Then each b̂j is continuous as

a map R∞colim → R.

Proof. Let L : R∞colim → R∞colim send ei to bi. Then b̂j = πj ◦ L−1, but both πj and
L−1 are continuous. �

B.15. Topological vector spaces.

Proposition B.16. Let N ≤ ∞. Every linear transformation R∞ → RN is con-
tinuous, and every linear isomorphism R∞ → R∞ is a homeomorphism.

Proof. The second statement follows directly from the first. For the first, observe
that when k < ∞ every linear map Rk → R∞ factors through some Rs. Since
Rk → Rs is continuous, so is Rk → R∞.

So every linear map Rk → RN is contininuous. Now use that R∞ = colimk Rk
to conclude that every linear map R∞ → RN is continuous. �
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Proposition B.17. For every n ≥ 1 the topological vector space (R∞)n is isomor-
phic (as topological vector spaces) to R∞. In particular, the underlying topological
spaces are homeomorphic.

Proof. It suffices to prove this when n = 2. Let φ : R∞ × R∞ → R∞ be the
map (a, b) 7→ (a1, b1, a2, b2, . . .). It is immediate that this is an isomorphism of
vector spaces, but we need to think about the topology aspect. Consider the maps
f : R∞ → R∞ given by ei 7→ e2i−1 and f : R∞ → R∞ given by ei 7→ e2i. These are
continuous by Proposition B.16. The map φ is the composite

R∞ × R∞
f×g // R∞ × R∞ + // R∞.

so φ is continuous.
The inverse φ−1 is a map R∞ → R∞ × R∞. The projections to the two factors

are continuous by Proposition B.16, therefore φ−1 is continous. �

Corollary B.18. The evident map colimk(Rk)n → (R∞)n is a homeomorphism.

Proof. The map is evidently a continuous bijection, but it is not immediate that the
inverse is continuous. This does not seem to follow purely from point-set topology,
due to the usual incompatibilities between the product and colimits.

However, Proposition B.17 implies that (R∞)n is the colimit of its finite-
dimensional subspaces. The family of subspaces (Rk)n is cofinal in these, and
to the result follows. �

B.19. Tame families. In this appendix we prove Proposition 8.17. If E → X is a
family of vector spaces of finite rank, this says that E is tame if either (a) E is a
subfamily of a trivial family, or (b) X is locally compact and E is Hausdorff. The
proofs in the two cases are quite different.

Lemma B.20. Every trivial family of vector spaces of finite rank is tame.

Proof. Let X be a space, and let s1, . . . , sn be a local weak basis of E = X × Rn
defined on an open neighborhood U of a point x ∈ X. Write Si for the composite

U
si−→ E|U π2−→ Rn.

We can regard S1, . . . , Sn as giving a map F : U → Mn×n(R), where the columns
are the Si’s. Since S1(y), . . . , Sn(y) is a basis for Rn, for every y ∈ U , the image
of F actually lies in GLn(R). The inverse map J : GLn(R) → GLn(R) sending
A→ A−1 is continuous (a formula is given using determinants), so we can consider
the composite

U × Rn S−→ E|U id×JF−→ U × Rn

where the second map is (y, v) 7→ (y, JF (y)(v)). This composite is the identity. It
follows that the map S is a homeomorphism, which is what we wanted to prove. �

Proof of Proposition 8.17 in case (a). Assume that E is a subfamily ofX×V where
V is either Rn or R∞colim. Let x ∈ X and let s1, . . . , sn be a local weak basis
defined on an open neighborhood U of x. Let Si be the composite U si−→ E ↪→
X × V π2−→ V . The vectors S1(x), . . . , Sn(x) are linearly independent, so we can
choose a basis {fα}α∈A for V containing these vectors. Let β : V → Rn be the linear
map sending each Si(x) to ei and all the other fα to 0. If V is finite-dimensional
then β is obviously continuous, whereas if V = R∞colim the continuity follows from
Corollary B.14. We will also write β for the associated map X × V → X × Rn.
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Consider now the composites U Si−→ U ×V β−→ U ×Rn π2−→ Rn. Taken together,
they are the columns of a map F : U →Mn×n(R), and we can further consider the
composite

U →Mn×n(R)
det−→ R.

Let W ⊆ U be the preimage of R − 0, which is open and contains x. As in
Lemma B.20 consider the composite

W × Rn S−→ E|W ↪→W × V β−→W × Rn id×JF−→ W × Rn

where J : GLn(R) → GLn(R) is the inverse map. The composition is the identity,
therefore S is a homeomorphism, and so s1, . . . , sn is a local strong basis onW . �

The proof for case (b) requires some technical preliminary work. A classical
result from the theory of topological vector spaces, originally due to Tychonoff,
says that if an n-dimensional topological vector space V is T1 (points are closed)
then V ∼= Rn as topological vector spaces. We take the techniques from that proof
and generalize them to families of vector spaces.

Let E → X be a family of vector spaces and let W ⊆ E be any subset. If S ⊆ R
then write SW for the image of W under the composite S × E ↪→ R × E −→ E.
When S = {λ} we just write λW for {λ}W .

Note that if λ 6= 0 then the multiplication-by-λ map E → E is continuous, as
is multiplication by λ−1. So these are in fact homeomorphisms, and therefore λW
is open whenever W is. In a similar vein, if s : X → E is a section then we can
consider the map +s : E → E. This is continuous, being the composite

E = E ×X X
id×s−→ E ×X E

+−→ E.

But −s : E → E is also continuous, and is the inverse to +s; so again, these are
both homeomorphisms. Thus, if W is open in E then so is the set

s+W = {s(x) + wx |x ∈ X,wx ∈ Ex ∩W}.
We let z : X → E denote the zero-section. Note that this is a continous map, by

the definition of family of vector spaces.

Definition B.21. Let E → X be a family of vector spaces. A subset W ⊆ E is
called balanced if [−1, 1]W ⊆W .

Proposition B.22. Let E → X be a family of vector spaces. Let U be an open
set containing the point z(x), for some x ∈ X. Then there is a balanced open set
V such that z(x) ∈ V ⊆ U .
Proof. Scalar multiplication R × E → E is continuous and (0, z(x)) 7→ z(x). So
there is an ε > 0 and an open set W containing z(x) such that (−ε, ε)W ⊆ U .
Let J be the set of all points v in U having the property that [−1, 1]v ⊆ U . Then
ε
2W ⊆ J ⊆ U . Since ε

2W is open and contains z(x), this shows that J contains a
neighborhood of z(x). Note also that [−1, 1]J ⊆ J by virtue of the definition of J .

Let M be the interior of J . Then M is an open set containing z(x), and M ⊆
J ⊆ U . If 0 < |λ| ≤ 1 then λM ⊆ λJ ⊆ J . But λM is open, so in fact λM ⊆ M .
Note that we only have this for λ 6= 0, though, so we cannot yet conclude that M
is balanced.

For the final step, let T = z−1(M). Since z is continuous, this is an open subset
of X containing x. Consider N = M ∩ p−1(T ). This is open, contains z(x), and
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is contained in U . For λ nonzero in [−1, 1] we have that λN ⊆ N because the
same is true for both M and p−1(T ). For v ∈ N we have that p(v) ∈ T , and so
0 · v = z(p(v)) ∈M . Then 0 · v ∈ N , thus 0N ⊆ N and so N is balanced. �

Proposition B.23. Let E → X be a family of vector spaces of finite rank n. If E
is Hausdorff and X is locally compact, then any weak basis is a strong basis.

Proof. The weak basis gives us a continuous bijection S : X × Rn → E, and we
must show that S−1 is continuous. So for every open subset Ω ⊆ X × Rn we must
prove that S(Ω) is open in E. Let y ∈ S(Ω), so that y = S(x, u) for some x ∈ X
and u ∈ Rn with (x, u) ∈ Ω. There is an open set x ∈ U and an ε > 0 such that
U ×B(u, ε) ⊆ Ω, where B(u, ε) denotes the evident open ball.

We first treat the case where u = 0. Since X is locally compact, there is a
compact set K that contains an open neighborhood W of x. By replacing W with
W ∩U we can assume W ⊆ U . Let Sε be the sphere in Rn of radius ε, and consider
C = S(K×Sε). Since K×Sε is compact, C is also compact. Since E is Hausdorff,
C is therefore closed in E. Observe that the set S(W ×B(0, ε)) does not intersect
C, since S is a bijection. In particular, z(x) = S(x, 0) /∈ C.

Now apply Proposition B.22 to z(x) ∈ E − C, noting that E − C is open. So
there is a balanced open set V of E that contains z(x) and is such that V ⊆ E−C.
Let V ′ = p−1(W ) ∩ V , which is still open and balanced. Since V ′ is balanced and
does not intersect C we must have V ′ ⊆ S(W × B(0, ε)). Indeed, if v ∈ V ′ and
v /∈ S(W × B(0, ε)) then v = S(w, t) for some w ∈ W and t ∈ Rn with |t| ≥ ε.
Since V ⊆ E − C, we in fact have |t| > ε. But since V ′ is balanced we must then
have ε

|t|v ∈ V ′, which contradicts V ⊆ E − C since this vector is S(w, ε|t| t).
So we have z(x) ∈ V ′ ⊆ S(W × B(0, ε)) ⊆ S(U × B(0, ε)) ⊆ S(Ω). Thus, S(Ω)

contains an open neighborhood of y = z(x).
Now consider the general case where u 6= 0. Let k : X → E be the section

k(a) = S(a, u) for a ∈ X. Then −k + S(U × B(u, ε)) = S(U × B(0, ε)) and this
set contains z(x) = s(x, 0). By the case treated already, there is an open set V
of E such that z(x) ∈ V ⊆ S(U × B(0, ε)). Then k + V is an open set such that
y ∈ k + V ⊆ S(U ×B(u, ε)) ⊆ S(Ω), and again we have proven that S(Ω) contains
an open neighborhood of y. Since this holds for all y, we have that S(Ω) is open. �

Proof of Proposition 8.17 in case (b). This follows immediately from Proposi-
tion B.23, using that an open subset of a locally compact space is again locally
compact. �

Appendix C. Bernoulli numbers

There are different conventions for naming the Bernoulli numbers, especially
when one enters the topology literature. We adopt what seems to be the most
common definition, which is the following:

x

ex − 1
=

∞∑
k=0

Bk ·
xk

k!
.
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Expanding the power series yields
x

ex − 1
= 1− x

2
+
x2

12
− x4

720
+

x6

30240
− x8

1209600
+ · · ·

= 1−
(1

2

)
x+

(1

6

)
· x

2

2
−
( 1

30

)
· x

4

4!
+
( 1

42

)
· x

6

6!
−
( 1

30

)
· x

8

8!
· · ·

So we have

k 0 1 2 3 4 5 6 7 8 9

Bk 1 − 1
2

1
6 0 − 1

30 0 1
42 0 − 1

30 0

From the table one guesses that B2n+1 = 0 for n > 0. This is easy to prove: if we
set f(x) = x

ex−1 then we can isolate the odd powers of x by examining f(x)−f(−x).
But algebra yields ( x

ex − 1

)
−
( −x
e−x − 1

)
= −x.

Computing the coefficients of x
ex−1 is not the most efficient way of computing

Bernoulli numbers, as one can deduce from the large denominators in the above
formula. A better method is via a certain recursive formula, and this is best re-
membered by a “mnemonic”:

(B + 1)n = Bn.(C.1)

Do not take this formula literally! It is shorthand for the following procedure. First
expand the left-hand-side via the Binomial Formula, treating B as a formal variable.
Then rewrite the formula by “lowering all indices”, meaning changing every Bi to
a Bi. This gives the desired recursive formula.

For example: (B + 1)2 = B2 yields B2 + 2B + 1 = B2, which in turn gives
B2 + 2B1 + 1 = B2. Cancelling the B2’s we obtain 2B1 + 1 = 0, or B1 = − 1

2 .
Likewise, (B + 1)3 = B3 yields B3 + 3B2 + 3B1 + 1 = B3, thereby giving

B2 = − 1
3 (1 + 3B1) = − 1

3 · − 1
2 = 1

6 .

And so on. For the record here are a few more of the Bernoulli numbers, computed
in this way:

k 0 1 2 4 6 8 10 12 14 16 18

Bk 1 − 1
2

1
6 − 1

30
1
42 − 1

30
5
66 − 691

2730
7
6 − 3617

510
43867
798

Note that we have not yet justified the recursive formula (C.1). We will do this
after a short interlude.

C.2. Sums of powers. The Bernoulli numbers first arose in work of Jakob
Bernoulli on computing formulas for the power sums

1t + 2t + 3t + · · ·+ nt.

Most modern students have seen the formulas

1 + 2 + · · ·+ n = n(n+1)
2 and 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)

6 .

The Bernoulli formulas generalize these to give

1t + 2t + · · ·+ nt = Pt(n)
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where Pt is a degree t+1 polynomial in n with rational coefficients. It is somewhat
surprising that the formulas for the Pt’s can be given using a single set of coefficients,
the Bernoulli numbers.

The Bernoulli formulas are most succinctly written using our mnemonic device
of lowering indices. We write

1t + 2t + · · ·+ nt = 1
t+1

[(
B + (n+ 1)

)t+1 −Bt+1
]
.(C.3)

Let us work through the first few examples of this. For t = 1 we have

1 + 2 + · · ·+ n = 1
2

[
(B + (n+ 1))2 −B2

]
= 1

2

[
B2 + 2B1(n+ 1) + (n+ 1)2 −B2

]
= 1

2

[
(n+ 1)2 − (n+ 1)]

= 1
2 (n+ 1)n.

For t = 2 we have

12 + 22 + · · ·+ n2 = 1
3

[
(B + (n+ 1))3 −B3

]
= 1

3

[
3B2(n+ 1) + 3B1(n+ 1)2 + (n+ 1)3

]
= 1

3 (n+ 1)
[

1
2 − 3

2 (n+ 1) + (n+ 1)2
]

= 1
3 (n+ 1)

[
1
2n+ n2

]
= 1

6 (n+ 1)n(2n+ 1).

We leave it to the reader to derive the t = 3 formula:

13 + 23 + · · ·+ n3 = 1
4n

2(n+ 1)2.

Proof of the Bernoulli formula (C.3). Start with the identity of power series

1 + ex + e2x + · · ·+ enx =
e(n+1)x − 1

ex − 1
=
( x

ex − 1

)
·
(e(n+1)x − 1

x

)
.

The coefficient of xt on the left-hand-side is
1

t!
(1t + 2t + · · ·+ nt).

The coefficient of xt on the right-hand-side is
t∑

k=0

Bk
k!
· (n+ 1)t+1−k

(t+ 1− k)!
.

Equating coefficients and rearranging yields the Bernoulli formula immediately. �

Now let us return to our recursive formula (C.1) for computing the Bernoulli
numbers. Note that it is an immediate consequence of (C.3) by taking n = 0 to get
0 = (B + 1)t+1 −Bt+1.
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C.4. Miscellaneous facts.

Theorem C.5 (Claussen/von Staudt).
(a) (−1)nB2n ≡

∑
p

1
p mod Z, where the sum is taken over all primes p such that

p− 1 divides 2n.
(b) When expressed as a fraction in lowest terms, B2n has square-free denominator

consisting of the product of all primes p such that p− 1 divides 2n.

For example, we can now immediately predict that the denominator of B20 will
be 2 · 3 · 5 · 11 = 330. Note that the primes 2 and 3 will always appear in the
denominators of Bernoulli numbers.

The following strange fact is relevant to the appearance of Bernoulli numbers in
topology:

Proposition C.6. For any even n and any k ∈ Z, k
n(kn−1)Bn

n ∈ Z.

Proof. We follow Milnor and Stasheff here [MS]. Write

f(x) = 1 + ex + e2x + · · ·+ e(k−1)x =
ekx − 1

ex − 1
.

Note that
f (r)(0) = 1r + 2r + · · ·+ (k − 1)r.

In particular, the derivatives of f evaluated at 0 are all integers.
Next consider the logarithmic derivative

f ′(x)

f(x)
= D(log(f(x))) =

kekx

ekx − 1
− ex

ex − 1

= k
[ 1

1− e−kx
]
−
[ 1

1− e−x
]

=
1

x

[ −kx
e−kx − 1

− −x
e−x − 1

]
=

1

x

[∑
Bi
i! (−kx)i −

∑
Bi
i! (−x)i

]
=
∑
i

(−1)i Bii! (ki − 1)xi−1

= k−1
2 + B2

2! (k2 − 1)x+ B4

4! (k4 − 1)x3 + · · ·
The (2t− 1)st derivative of this expression, evaluated at 0, is B2t

2t (k2t − 1).
However, iterated use of the quotient rule shows that the (2t − 1)st derivative

of f ′(x)/f(x), evaluated at 0, can be written as an integral linear combination of
f(0), f ′(0), f ′′(0), . . . divided by f(0)2t. Since f(0) = k and all the deriviates of f
have integral values at 0, this gives

B2t

2t
(k2t − 1) · k2t ∈ Z.

�

Appendix D. The algebra of symmetric functions

Let S = Z[x1, . . . , xn] be equipped with the evident Σn-action that permutes the
indices. It is a well-known theorem that the ring of invariants is a polynomial ring
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on the elementary symmetric functions:

SΣn ∼= Z[σ1, . . . , σn].

Let sk = xk1 + xk2 + · · ·+ xkn, the kth power sum of the variables xi. Since sk is a
Σn-invariant we have

sk = Sk(σ1, . . . , σn)

for a unique polynomial Sk in n variables (with integer coefficients). The polynomial
Sk is called the kth Newton polynomial.

Let us calculate the simplest examples of the Newton polynomials. Clearly
s1 = σ1, and so S1(σ1, . . . , σn) = σ1. For s2 we compute that

s2 = x2
1 + · · ·+ x2

n = (x1 + · · ·+ xn)2 − 2(x1x2 + x1x3 + · · ·+ xn−1xn) = σ2
1 − 2σ2.

These calculations get more difficult as the exponents get larger.
It is useful to adopt the following notation when working with the ring of invari-

ants. If m is a monomial in the xi’s then [m] denotes the sum of all elements in the
Σn-orbit of m. For example,

[x1x2] = σ2, [xk1 ] = sk, and [x2
1x2] =

∑
i 6=j

x2
ixj .

If H ≤ Σn is the stabilizer of m then we can also write

[m] =
∑

g∈Σn/H

gm.

Let us use the above notation to help work out the third Newton polynomial.
Elementary algebra easily yields the equation

s3 = [x3
1] = [x1]3 − 3[x2

1x2]− 6[x1x2x3].

Here one considers the product (x1 + · · ·+ xn)3 and reasons that a term like x2
1x2

appears three times in the expansion, and terms like x1x2x3 appear six times. Via
a similar process we work out that

[x2
1x2] = [x1] · [x1x2]− 3[x1x2x3].

Putting everything together, we have found that

s3 = σ3
1 − 3(σ1σ2 − 3σ3)− 6σ3 = σ3

1 − 3σ1σ2 + 3σ3.

This final expression is the third Newton polynomial S3.

Lemma D.1 (The Newton identities). For k ≥ 2 one has the identity

sk = σ1sk−1 − σ2sk−2 + · · ·+ (−1)kσk−1s1 + (−1)k+1kσk.

Consequently, there is analogous inductive formula for the Newton polynomials:

Sk = σ1Sk−1 − σ2Sk−2 + · · ·+ (−1)kσk−1S1 + (−1)k+1kσk.

Proof. The key is the formula

[x1x2 · · ·xj−1x
k
j ] = [x1 · · ·xj ] · [xk−1

1 ]− [x1 · · ·xjxk−1
j+1 ]

which holds for k > 2, whereas when k = 2 we have

[x1x2 · · ·xj−1x
2
j ] = [x1 · · ·xj ] · [x1]− (j + 1)[x1 · · ·xjxj+1].

In the latter case the point is that a term x1 . . . xj+1 appears j + 1 times in the
product [x1 . . . xj ] · [x1].
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When k = 2 the identity from the statement of the lemma has already been
verified by direct computation. For k > 2 start with the simple formula

sk = [xk1 ] = [x1] · [xk−1
1 ]− [x1x

k−1
2 ] = σ1sk−1 − [x1x

k−1
2 ].

Next observe that

[x1x
k−1
2 ] =

{
[x1x2] · [xk−2

1 ]− [x1x2x
k−2
3 ] if k > 3,

[x1x2] · [xk−2
1 ]− 3[x1x2x3] if k = 3.

If k = 3 we are now done, otherwise repeat the above induction step. The details
are left to the reader. �

As an application of Lemma D.1 observe that we have

S3 = σ1S2 − σ2S1 + 3σ3 = σ1(σ2
1 − 2σ2)− σ2σ1 + 3σ3 = σ3

1 − 3σ1σ2 + 3σ3,

agreeing with our earlier calculation. Here is a table showing the first few Newton
polynomials:

Table 4.2. Newton polynomials

k Sk
1 σ1

2 σ2
1 − 2σ2

3 σ3
1 − 3σ1σ2 + 3σ3

4 σ4
1 − 4σ2

1σ2 + 4σ1σ3 + 2σ2
2 − 4σ4

5 σ5
1 − 5σ3

1σ2 + 4σ2
1σ3 + 5σ1σ

2
2 − 3σ2σ3 − 5σ1σ4 + 5σ5

The Newton polynomials also show up in the following:

Proposition D.3. Let α = α1t + α2t
2 + · · · ∈ R[[t]], where R is a commutative

ring. Then
d
dt

(
log(1 + α)

)
= α′

1+α = µ1 + µ2t+ µ3t
2 + · · ·

where µk = (−1)kSk(α1, . . . , αk).

Proof. Equate coefficients in the identity

α1 + 2α2t+ 3α3t
3 + · · · = (1 + α1t+ α2t

2 + · · · ) · (1 + µ1t+ µ2t
2 + · · · ).

This gives a series of identities for each µk that parallel the Newton identities. The
result then follows by an easy induction. �

Appendix E. Homotopically compact pairs

By a pair of topological spaces we mean an ordered pair (X,A) where A is
a subspace of A. A map of pairs (X,A) → (Y,B) is a map f : X → Y such that
f(A) ⊆ B, and such a map is said to be a weak equivalence if both f : X → Y and
f |A : A → B are weak equivalences. Two maps f, g : (X,A) → (Y,B) are said to
be homotopic if there is a map H : (X × I, A × I) → (Y,B) such that H|X×0 = f
and H|X×1 = g.

Define a topological space X to be homotopically compact if it is weakly
equivalent to a finite CW-complex. Likewise, define a pair of topological spaces
(X,A) to be homotopically compact if there exists a finite CW-pair (X ′, A′) and a
weak equivalence (X ′, A′) → (X,A). In this case we call (X ′, A′) a finite model
for (X,A).
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Proposition E.1. A pair (X,A) is homotopically compact if and only if both X
and A are homotopically compact.

Proof. The “only if” direction is trivial, and the other direction is an immediate
consequence of the slightly more general lemma below. �

Lemma E.2. Let f : A → X be a map, where both A and X are homotopically
compact. Let γa : Ã → A be any finite model for A. Then there exists a finite
CW-complex X̃ , containing Ã as a subcomplex, together with a weak equivalence
X̃ → X such that the square

Ã // //

γA

��

X̃

γX

��
A

f // X
commutes.

Proof. Let γX : X̃ → X be any finite model X. Since [Ã,X̃ ]→ [Ã,X] is a bijection,
there is a map f̃ : Ã → X̃ such that γX f̃ ' fγA. By cellular approximation, we may
assume that f̃ is cellular. Choose such a homotopy. Let CX denote the mapping
cylinder of f̃ , and let γC : CX → X be the evident map. Note that γC gives a finite
model for X, and that the diagram

Ã // //

'
��

CX

'
��

A
f // X

commutes. Here Ã ↪→ CX is the canonical inclusion into the top of the mapping
cylinder. Since (CX , Ã) is a finite CW-pair, the lemma is proven. �

Proposition E.3. Let (X,A) be homotopically compact. If f0 : (X0, A0)→ (X,A)
and f1 : (X1, A1) → (X,A) are finite models for (X,A), then there exists a map
(X0, A0)→ (X1, A1) such that the triangle

(X0, A0)
' //

'
��

(X,A)

(X1, A1)

'

99

commutes up to homotopy. Additionally, there exists a zig-zag of finite models

(Y0, B0) //

'
**

(Y1, B1)

'

%%

(Y2, B2)

'
��

oo // · · · (Yr, Br)oo

'
uu

(X,A)

such that (Y0, B0)→ (X,A) equals (X0, A0)→ (X,A) and (Yr, Br)→ (X,A) equals
(X1, A1)→ (X,A). That is, the category of finite models of (X,A) is connected.

Proof. First use that [A0, A1]→ [A0, A] is a bijection to produce a map g : A0 → A1

whose image under the bijection is f0|A. We may assume that g is cellular. Choose
a homotopy from f0|A to f1|A ◦ g, and using the Homotopy Extension Property
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extend this to a homotopy H : X0 × I → X such that H0 = f0. Let f ′ = H1. We
now have a commutative diagram

A0
//

��

��

X1

'
��

X0
f ′ // X

and so by the Relative Homotopy Lifting Property (???) there exists a map
h : X0 → X1 such that the upper triangle commutes and the lower triangle com-
mutes up to a homotopy relative to A0. And again, we map assume that h is cellular.
Putting our two homotopies together, we get the required homotopy-commutative
triangle.

For the final statement of the proposition we can use a four-step zig-zag as
follows:

(X0, A0)
i0 //

'
f0 ((

(X0 × I, A0 × I)

'J

��

(X0, A0)
h //

'
f1hvv

i1oo (X1, A1)

'
f1oo(X,A).

The map labelled J is a homotopy for the triangle in the first part of the proposition.
We leave the details for the reader. �

For us what is very useful about the class of homotopically compact spaces is
that it includes all algebraic varieties:

Theorem E.4. If X is an algebraic variety over C then X is homotopically com-
pact.

Proof. When X is a subvariety of some Cn this is a consequence of [Hir2, Theorem
on page 170 and Remark 1.10]. For the general case we do an induction on the
size of an affine cover for X. Suppose that {U1, . . . , Un} is an affine cover, and let
A = U2 ∪ · · · ∪ Un. Then we have the pushout diagram

U1 ∩A //

��

A

��
U1

// X,

which is also a homotopy pushout by [DI, Corollary 1.6]. By induction we know
that A is homotopically compact. Moreover, since U1 is affine it is a subvariety of
some Cn, and therefore the same is true of U1 ∩ A. So both U1 and U1 ∩ A are
homotopically compact by the base case. The result then follows by Lemma E.5
below. �

Lemma E.5. Let A, X, and Y be homotopically compact spaces. Then the homo-
topy pushout of any diagram X ← A→ Y is also homotopically compact.
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Proof. Let f : A → X and g : A → Y denote the maps, and choose a finite model
Ã → A. By Lemma E.2 (applied twice) there exists a diagram

X̃

'
��

Ã //

'
��

oo Ỹ

'
��

X A //oo Y.

where (X̃ ,Ã) and (Ỹ ,Ã) are finite CW-pairs. The homotopy pushout of X ← A→
Y is therefore weakly equivalent to that of X̃ ← Ã → Ỹ , and the latter clearly has
the homotopy type of a finite CW-complex (in fact, in the latter case the pushout
is itself a model for the homotopy pushout). �

Corollary E.6. If (X,A) is a pair of algebraic varieties over C then (X,A) is
homotopically compact.

Proof. This follows from Theorem E.4 and Proposition E.1. �

Appendix F. Reducing the length of complexes in K-theory

Appendix G. Abelian categories and exact categories

The first part of this book developed K-theory in the context of modules over a
ring R. This can be generalized in various ways, e.g. to abelian categories, to exact
categories, or (perhaps) to triangulated categories. While not strictly necessary for
most of our present purposes, it is good to have a basic sense of how some of these
generalizations work.

This section discusses the foundations of abelian categories, Serre quotients, and
exact categories. We outline the theory via a series of exercises. Most readers will
probably not want to do all of these exercises; many of them are things one can
just accept and move on. But doing some portion of them gives a nice introduction
to the ins and outs of working with these objects.

G.1. Abelian categories. A zero object in a category C is an object ∗ that is
both initial and terminal. This means that C(∗, X) and C(X, ∗) are both singletons,
for every objectX. Most often we will be in settings where C is enriched over abelian
groups, meaning that the hom-sets have abelian group structures with respect to
which composition is bi-additive. In such settings a zero object is usually denoted
by 0.

In a category with a zero object a kernel of a map f : A→ B is a map K → A
that makes a pullback diagram

K //

��

A

f
��

0 // B.

Dually, a cokernel of A → B is a map B → C that makes an analogous pushout
diagram. Note that by abuse of terminology we often refer to the object K as the
kernel of f , but in fact it is really the map K → A that is the kernel. We write ker f
for the domain of the kernel and coker f for the codomain of the cokernel. When
we say that “the kernel of f is zero” we mean that it is the unique map 0→ A, and
dually for the cokernel.
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We will use categorical notions of monomorphisms and epimorphisms. The for-
mer will be denoted by // // and the latter by // // .

Exercise G.2.
(a) Prove that a pullback of a monomorphism is a monomorphism, and dually for

epimorphisms. Deduce that a kernel of a map is always a monomorphism and
the cokernel of a map is always an epimorphism.

(b) Suppose that C is enriched over abelian groups and has a zero object. Prove that
f : A → B is a monomorphism (resp. epimorphism) if and only if C(X,A) →
C(X,B) (resp. C(B,X)→ C(A,X)) is a monomorphism for every object X.

(c) In the setting of (b) prove that a map is a monomorphism if and only if its
kernel is zero, and dually for epimorphisms and cokernels.

Definition G.3. An abelian category is a category enriched over abelian groups
that has a zero object, finite coproducts and products which are equal, all kernels
and cokernels, and where every monomorphism is the kernel of a map and every
epimorphism is the cokernel of a map.

Abelian categories were first introduced in [Bu] under the name “exact category”
(a phrase that now means something different). The concept had been indepen-
dently developed by Grothendieck and was used as the foundation for his treatment
of homological algebra in [Gro]. Gabriel later developed the foundations of abelian
categories extensively in [Ga], and this remains a very good reference. Note that
the definition of abelian category as we have given it above is not identical to the
one given in [Gro] and [Ga], but they are equivalent.

Here are a few examples:
• The category of modules over a ring (this is really the canonical example).
• The category of torsion abelian groups. More generally, if R is a commu-

tative ring and S is a multiplicative system then the category of S-torsion
modules (modules M where S−1M = 0) is an abelian category.

• If R is Noetherian, the category of finitely-generated R-modules is abelian.
Note that without the Noetherian hypothesis this category would not be
guaranteed to have kernels.

• If A is an abelian category and I is a small category then the category of
functors Func(I,A) is again an abelian category.

• If X is a topological space then the category of sheaves of abelian groups
on X is an abelian category.

Exercise G.4. Let A be an abelian category.
(a) If f : A → B is a monomorphism prove that f is the kernel of the map B →

coker(f) (“every monomorphism is the kernel of its cokernel”). Note the dual
result for epimorphisms.

(b) Prove that if a map is both a monomorphism and an epimorphism then it is
an isomorphism.

(c) Prove that A has pullbacks and pushouts (hint: construct these as certain
kernels and cokernels). If

A
f //

p

��

B

q

��
C

g // D
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is a pullback square, prove that ker f → ker g is an isomorphism; then prove
the dual result about pushout squares and cokernels. Give an example in Ab
of a pullback square that is not a pushout, and also vice versa.

Prove that if the above is a pullback square and g is an epimorphism, then
it is also a pushout square and f is an epimorphism. Dually, if the diagram is a
pushout square and f is a monomorphism, then the diagram is also a pullback
square and g is a monomorphism.

(d) Prove that the following conditions are equivalent:
(i) 0 −→ A

j−→ B
p−→ C −→ 0 is such that j is the kernel of p and p is the

cokernel of j;
(ii) 0 −→ A

j−→ B
p−→ C −→ 0 yields left-exact sequences of abelian groups

after applying Hom(X,−) and after applying Hom(−, X), for every X.
These equivalent conditions provide the notion of “short exact sequence” in an
abelian category.

(e) The image of a map f : A → B is defined to be the kernel of the map
B → coker(f). Likewise, the coimage of f is the cokernel of ker(f) → A.
There is a canonical map from the coimage to the image; prove that this is an
isomorphism. Consequently, the canonical map A→ im(f) is an epimorphism
and coim(f)→ B is a monomorphism. [Hint: This is a little tricky, so refer to
the diagram and outline below:

PB

{{ ��

// Z

u

��
ker(f)

i // A // // coker(i)

α

��

coim(f)

im(f)

v

��

// // B

��

// coker(f)

W // PO

88

We are trying to show that α is an isomorphism, so first assume u : Z → coker(i)
is such that αu = 0. Form the pullback PB and argue that the map PB → A
factors through ker(f) and hence PB → coker(i) is zero. Then conclude u = 0
since PB → Z is an epimorphism. A dual argument shows that if v : im(f)→
W is such that vα = 0 then v = 0. ]

(f) Given a sequence A f−→ B
g−→ C such that gf = 0 there is a canonical map

im(f) → ker(g). Say that the sequence is exact at B if this canonical map is
an isomorphism. Prove that a sequence 0 −→ A

f−→ B
g−→ C −→ 0 is exact in

the sense of (e) if and only if it is exact at each spot. Show that a long exact
sequence breaks up into a collection of interlocking short exact sequences as
usual.

(g) Prove the Snake Lemma: Given a diagram with exact rows

A //

a
��

B //

b
��

C //

c
��

0

0 // A′ // B′ // C ′
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there is an exact sequence

ker(a) −→ ker(b) −→ ker(c)
∂−→ coker(a) −→ coker(b) −→ coker(c)

where all of the maps except for ∂ are the evident ones. If A → B is injective
then so is ker(a) → ker(b), and if B′ → C ′ is surjective then so is coker(b) →
coker(c). [Hint: Construct the pullback PB

PB //

��

ker(c)

��
A

>>

// B // C

and the induced map A → PB, and prove that the cokernel of A → PB
is ker(c) (use that the pullback of an epimorphism is an epimorphism). The
map PB → B′ factors through A′, and therefore one gets an induced map
coker(A → PB) → coker(a). This constructs ∂, and everything else is tedious
but mostly routine.]

Suppose given an exact functor F : A → B between abelian categories. The
kernel of F is defined to be the full subcategory of A consisting of objects X for
which F (X) ∼= 0. Such a subcategory has the property given in the following
definition:

Definition G.5. A full subcategory S ⊆ A is called a Serre subcategory if it has
the property that whenever 0 → A → B → C → 0 is an exact sequence in A then
B is in S if and only if A and C are in S. That is, a full subcategory is Serre if
and only if it is closed under subobjects, quotients, and extensions.

Is every Serre subcategory the kernel of an exact functor? It turns out the answer
is yes. One can construct a quotient abelian category A/S where the objects in S

are all identified with 0 and where A/S has the expected universal property. The
projection functor A→ A/S is exact and has kernel equal to S.

The next couple of exercises will take the reader through the basic theory behind
all of this.

Exercise G.6.
(a) Given a Serre subcategory S ⊆ A, define a map f : A → B to be an S-

equivalence if ker f and coker f are in S. Prove that the S-equivalences have
the two-out-of-three property: if A f−→ B

g−→ C are composable maps in A and
two of f , g, and gf are S-equivalences, then so is the third. [Hint: Produce a
long exact sequence of the form 0→ ker(f)→ ker(gf)→ ker(g)→ coker(f)→
coker(gf)→ coker(g)→ 0.]

(b) If f is an S-equivalence and a monomorphism prove that any pushout of f is
also those things. Dually, if g is an S-equivalence and an epimorphism prove
than any pullback is as well.

(c) Prove that if f : A → B is an S-equivalence and a monomorphism then any
pullback of f is also those things, and dually for epimorphisms and pushouts.
[This one is tricky, so use the following outline. Starting with the pullback
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diagram on the left form the pushout diagram on the right:

P //

��

C

p

��

A⊕ C π2 // //

−f⊕p
��

C

��
A

f // B B // Q.

Prove that B → Q is an epimorphism and is equal to the cokernel of f , hence
Q is in S. Then prove that the square on the right is also a pullback, so that
the kernels of the two vertical maps are isomorphic. Use this to prove that the
cokernel of P → C is a suboject of Q and hence lies in S.]

(d) Prove that the S-equivalences are closed under pullbacks and pushouts. [Hint:
First show that any S-equivalence can be factored as an epimorphism followed
by a monomorphism, both of which are themselves S-equivalences.]

(e) Let R be a commutative ring and S ⊆ R a multiplicative system. Recall that
an R-module M is said to be S-torsion if S−1M = 0. Check that the S-torsion
modules form a Serre subcategory, and that the S-equivalences are the maps
f : M → N such that S−1f is an isomorphism.

Exercise G.7. Let A be an abelian category and S ⊆ A a Serre subcategory.
Define a new category A/S as follows: the objects are the same as those of A, and
morphisms from A to B consist of equivalence classes of certain zig-zags:

A/S(A,B) = { A A′∼S

oo // B′ B∼S

oo }/∼ .

Here the indicated maps are S-equivalences, and two zig-zags are equivalent if there
is a commutative diagram

A′

∼S

~~

// B′

A Γ∼S

oo //

OO

��

Θ

OO

��

B

∼S

``

∼S

oo

∼S~~
A′′

∼S

``

// B′′

with the original two zig-zags forming the upper and lower edges. Note that it is
not immediately clear that this relation is transitive, and it is also not clear how
to define composition in A/S—these will both be explained shortly. [Warning: If
A is not small then there are potential set-theoretic issues in the above definition,
as A/S(A,B) is not clearly a set. One can bypass this issue by using Grothendieck
universes, but see also the comment in (a) below.]
(a) Prove that given a commutative diagram as on the left (below) there exists a

commutative diagram on the right having the same upper and lower edges.

A′

∼S

~~ ��

// B′

��

A′

∼S

~~

// B′

A Γ∼S

oo // Θ B

∼S

``

∼S

oo

∼S~~

A Γ̃∼S

oo //

OO

��

Θ̃

OO

��

B.

∼S

``

∼S

oo

∼S~~
A′′

∼S

`` OO

// B′′

OO

A′′

∼S

``

// B′′
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Use this to prove that the relation used to define A/S(A,B) is transitive, hence
an equivalence relation. [Hint: Exercise G.6(d).]

(b) Prove that every zig-zag in A/S(A,B) is equivalent to a zig-zag where A′ →
A is a monomorphism and B → B′ is an epimorphism—call these “special”
zig-zags. Prove additionally that if two special zig-zags are equivalent then
there is a diagram as above where the middle zig-zag is also special. [Note:
This only requires Exercise G.6(c)]. [Discussion: This implies that we can
redefine A/S(A,B) via the analogous definitions that only involve special zig-
zags. In abelian categories where the objects have underlying sets, this provides
a constraint that allows us to avoid the set-theoretic issues mentioned above.]

(c) The set A/S(A,B) is sometimes described as

colim
A′↪→A,B�B′

HomA(A′, B′)

where A′ ↪→ A is a monomorphism that is an S-equivalence and B � B′ is an
epimorphism that is an S-equivalence. The colimit is taken over a certain cate-
gory that can be easily reconstructed by looking at the definition of A/S(A,B)
above. Do this reconstruction and prove that the two descriptions of the mor-
phism sets are the same. [Also, check that when we fix A the category whose
objects are monomorphisms A′ ↪→ A that are S-equivalences is cofiltered.]

(d) Prove that every zig-zag in A/S(A,B) is equivalent to one in which A′ → A is
the identity map, and also to one in which B → B′ is the identity map (note
that we are not claiming that both maps can be made to be the identity at
once).

(e) Define composition in A/S as follows. Given classes U ∈ A/S(A,B) and V ∈
A/S(B,C) represent U by a zig-zag where the final map is the identity and
represent V by a zig-zag where the initial map is the identity. Then take the
evident concatenation of zig-zags. Check that this is well-defined.

(f) Given U, V ∈ A/S(A,B) define U + V as follows. First represent U and V
by special zig-zags, then prove that one can in fact represent them by zig-zags
where the first and third map in U are equal to the first and third map in
V (respectively). Define U + V to be the zig-zag obtained by adding the two
middle maps (it might be useful to also think about the description of the hom-
sets from (c)). Verify that this is well-defined and makes A/S into a category
enriched over abelian groups.

(g) Verify that A/S is an abelian category (this is somewhat long and tedious).
(h) Prove that all objects in S are isomorphic to 0 in A/S.
(i) Let π : A → A/S be the identity on objects and send a map f : A → B to the

zig-zag A id←− A f−→ B
id←− B. Prove the following:

(i) A zig-zag A A′
∼Soo // B′ B

∼Soo represents 0 in A/S(A,B) if and
only if A′ → B′ factors through an object in S. In particular, if f ∈
A(A,B) then π(f) = 0 if and only if f factors through an object in S.

(ii) π sends monomorphisms to monomorphisms, and (dually) epimorphisms
to epimorphisms.

(iii) π is an exact functor.
(iv) π sends S-equivalences to isomorphisms.

(j) Given A in A, π(A) ∼= 0 if and only if A is in S. Likewise, given f : A → B in
A one has that π(f) is an isomorphism if and only if f is an S-equivalence.
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(k) Prove that if F : A → B is an exact functor between abelian categories and
F (X) ∼= 0 for every X in S, then there is a unique functor F̄ : A/S→ B making
the evident triangle commute.

(l) For every pair of objects X,Y in A and a map X
u−→ Y in A/S, there exist

maps X → Ŷ and X̂ → Y in A together with commutative diagrams

X // Ŷ

∼=
��

X̂

∼=
��

// Y

X
u // Y X

u // Y

in A/S.
(m) Given a monomorphism W � Z in A/S there exists a monomorphism Ŵ � Ẑ

in A and a commutative diagram

Ŵ // //

∼=
��

Ẑ

∼=
��

W // // Z

in A/S where the vertical maps are isomorphisms.
(n) Every exact sequence in A/S is isomorphic to the image under π of an exact

sequence in A.
[Compare parts (l) and (m) to Corollary 4.11. The connection will be clearer
after Exercise G.11 below.]

Remark G.8. The category A/S from the above exercise is called the Gabriel
quotient or Serre quotient of abelian categories. Often it is just called the
quotient. It was first constructed by Gabriel [Ga], and in that reference Serre
categories were called épaisse (“thick”) subcategories.

The construction of A/S is elegant from a theoretical perspective, but it can
be hard to work with in practice. In many nice situations, though, A/S can be
identified with a subcategory of A. For this to work out, we need to have enough
objects in A/S that “see” all of the objects in S as zero and also “see” all of the
S-equivalences as if they were isomorphisms. We explore this next.

Exercise G.9. Let S ⊆ A be a Serre subcategory.
(a) Say that an object X of A is S-null if HomA(A,X) = 0 for all A in S. Likewise,

say that X is S-local if for every S-equivalence A → B the induced map
HomA(B,X) → HomA(A,X) is an isomorphism. Prove that if X is S-local
then it is S-null, and give a counterexample to the converse.

(b) Verify that if X is S-local then any solid-arrow diagram below has a unique
lifting as shown:

A

∼S
��

// X.

B

>>

(c) If X and Y are S-local and f : X → Y is an S-equivalence, prove that f is in
fact an isomorphism.

(d) Prove that the following are equivalent:
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(i) X is S-local,
(ii) HomA(A,X) = 0 = Ext1

A(A,X) for all A in S,
(iii) For every A in A the map HomA(A,X) → HomA/S(πA, πX) is an iso-

morphism.
[Hint: For (i)⇒(iii) construct the inverse to the given map.]

(e) Let R be a commutative ring and S ⊆ R a multiplicative system. Let S be
the Serre subcategory of S-torsion modules. Verify that a module M is S-local
if and only if it is S-local (meaning that every element of S acts invertibly on
M).

The above exercise suggests the idea that we try to embed A/S into A via the
S-local objects. So for every object X in A/S (equivalently, an object of A) we need
to attach a corresponding S-local object. The case of S-torsion R-modules suggests
that this sometimes can be done in a universal way, as in the following definition:

Definition G.10. Let S ⊆ A be a Serre subcategory. An S-localization of an
object X in A is an object XS and an S-equivalence X → XS satisfying the following
universal property:

X //

��

Y S-local.

XS

∃!

::

That is, X → XS is univeral among maps to S-local objects. The Serre subcategory
S is called localizing if every object has an S-localization.

Exercise G.11. Suppose S ⊆ A is a Serre subcategory.
(a) If S is localizing, show that there exists a functor T : A/S→ A sending each X

to its S-localization XS and that this functor is right adjoint to π.
(b) Conversely to the situation in (a), assume given a functor T : A/S → A that

is right adjoint to π (but without assuming that S is localizing). Prove the
following:
(i) The image of T lies in the S-local objects.
(ii) The co-unit επX : πT (πX)→ πX is an isomorphism, for every X. Since π

is surjective on objects, this implies that every co-unit is an isomorphism
(one then says that T is a “section” of π).

(iii) Applying the functor π to the unit X → TπX yields an isomorphism, for
every X.

(iv) The unit map X → TπX is an S-localization, for every X. Hence S is
localizing.

[Note that many texts define a localizing subcategory to be a Serre subcategory
where π admits a right adjoint. The above shows this definition to be equivalent
to ours.]

(c) Continue to assume that T is the right adjoint to π. Prove that T is fully-
faithful, thereby identifying A/S with the full subcategory of A consisting of
the S-local objects.

(d) Let R be a commutative ring and S ⊆ R a multiplicative system. Prove that
the quotient category R-Mod /S is equivalent to the category of S−1R-modules.

G.12. Exact categories. The notion of an “exact category” was introduced in
[Q3]. It is a weakening of the notion of abelian category in which one does not
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require the existence of kernels and cokernels for all maps, but only for certain
select classes. A good example to keep in mind is the category of finitely-generated
projectives over a ring R, where one is only guaranteed kernels (resp. cokernels)
for split surjections (resp. split injections). The basic tools of K-theory can be
developed in this weakened context, and this allows (for example) for tools that
apply to the groups K(R) and G(R) simultaneously.

Let A be a category enriched over abelian groups that has finite products and
coproducts, which are equal. Suppose given a subclass of monomomorphisms and
a subclass of epimorphisms, called “admissible” monomomorphisms and epimor-
phisms (respectively). In this situation we say that A is an exact category if the
following criteria are satisfied:
(1) Admissible monomorphisms are closed under composition and isomorphism,

and dually for admissible epimorphisms.
(2) Pullbacks of admissible epimorphisms exist and are again admissible epimor-

phisms, and dually for pushouts of admissible monomorphisms.
(3) Admissible monomorphisms have cokernels, and those are admissible epimor-

phisms; moreover, every admissible monomorphism is the kernel of its cokernel.
Dually for admissible epimorphisms.

(4) For every pair of objects X and Y , the inclusion X ↪→ X ⊕ Y is an admissible
monomorphism (the projection X ⊕ Y → Y is its cokernel and therefore an
admissible epimorphism).

Given an exact category, define a sequence A i−→ B
p−→ C to be exact if i is an

admissible monomorphism and p is its cokernel (and note that this is equivalent to
saying that p is an admissible epimorphism and i is its kernel).

Here are a few examples:
• Every abelian category can be considered an exact category by declaring

all monomorphisms and epimorphisms to be admissible.
• Let R be a ring and let P(R) be the full subcategory of R-Mod consisting of

the finitely-generated projectives. Define a monomorphism in P(R) to be
admissible if its cokernel is a projective R-module, and likewise define an
epimorphism to be admissible if its kernel is a projective R-module. Then
P(R) is an exact category.

• Let R be a ring and A ⊆ R-Mod any full subcategory that is closed under
direct sums. Define an epimorphism f : A→ B to be admissible if it is split
and ker f is in A, and dually for admissible epimorphisms. Then A is an
exact category.

• Suppose that A is an abelian category and B ⊆ A is a full subcategory
with the property that if X ∈ ob(B) and X ∼= Y in A then Y ∈ ob(B).
Suppose also that B is closed under extensions: if 0→ X ′ → X → X ′′ → 0
is an exact sequence in A and X ′, X ′′ ∈ ob(B) then X ∈ ob(B). Define a
monomorphism in B to be admissible if it is a monomorphism in A and its
cokernel (as a map in A) lies in B, and dually for admissible epimorphisms.
Then B is an exact category.
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