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Introduction

These lectures concern the two Milnor conjectures and their proofs: from [V3],
[OVV], and [M2]. Voevodsky’s proof of the norm residue symbol conjecture—which
is now eight years old—came with an explosion of ideas. The aim of these notes
is to make this explosion a little more accessible to topologists. My intention is
not to give a completely rigorous treatment of this material, but just to outline the
main ideas and point the reader in directions where he can learn more. I’ve tried
to make the lectures accessible to topologists with no specialized knowledge in this
area, at least to the extent that such a person can come away with a general sense
of how homotopy theory enters into the picture.

Let me apologize for two aspects of these notes. Foremost, they reflect only
my own limited understanding of this material. Secondly, I have made certain
expository decisions about which parts of the proofs to present in detail and which
parts to keep in a “black box”—and the reader may well be disappointed in my
choices. I hope that in spite of these shortcomings the notes are still useful.

Sections 1, 2, and 3 each depend heavily on the previous one. Section 4 could
almost be read independently of 2 and 3, except for the need of Remark 2.10.

1. The Milnor conjectures

The Milnor conjectures are two purely algebraic statements in the theory of
fields, having to do with the classification of quadratic forms. In this section we’ll
review the basic theory and summarize the conjectures. Appendix A contains some
supplementary material, where several examples are discussed.
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1.1. Background. Let F be a field. In some sense our goal is to completely classify
symmetric bilinear forms over F . To give such a form (−,−) on Fn is the same
as giving a symmetric n× n matrix A, where aij = (ei, ej). Two matrices A1 and
A2 represent the same form up to a change of basis if and only if A1 = PA2P

T

for some invertible matrix P . The main classical theorem on this topic says that if
char(F ) 6= 2 then every symmetric bilinear form can be diagonalized by a change of
basis. The question remains to decide when two given diagonal matrices D1 and D2

represent equivalent bilinear forms. For instance, do

[
2 0
0 11

]
and

[
3 0
0 1

]
represent

the same form over Q?
To pursue this question one looks for invariants. The most obvious of these is

the rank of the matrix A. This is in fact the unique invariant when the field is
algebraically closed. For suppose a form is represented by a diagonal matrix D,
and let λ be a nonzero scalar. Construct a new basis by replacing the ith basis
element ei by λei. The matrix of the form with respect to this new basis is the
same as D, but with the ith diagonal entry multiplied by λ2. The conclusion is that
multiplying the entries of D by squares does not change the isomorphism class of
the underlying form. This leads immediately to the classical theorem saying that
if every element of F is a square (which we’ll write as F = F 2) then a symmetric
bilinear form is completely classified by its rank.

We now restrict to nondegenerate forms, in which case the matrix A is non-
singular. The element det(A) ∈ F ∗ is not quite an invariant of the bilinear
form, since after a change of basis the determinant of the new matrix will be
det(P ) det(A) det(PT ) = det(P )2 det(A). However, the determinant is a well-
defined invariant if we regard it as an element of F ∗/(F ∗)2. Since 22

3 is not a

square in Q, for instance, this tells us that the matrices

[
2 0
0 11

]
and

[
3 0
0 1

]
don’t

represent isomorphic forms over Q.
The rank and determinant are by far the simplest invariants to write down,

but they are not very strong. They don’t even suffice to distinguish forms over
R. This case is actually a good example to look at. For a1, . . . , an ∈ R∗, let
〈a1, . . . , an〉 denote the form on Rn defined by (ei, ej) = δi,jai. Since every el-
ement of R is either a square or the negative of a square, it follows that every
nondegenerate real form is isomorphic to an 〈a1, . . . , an〉 where each ai ∈ {1,−1}.
When are two such forms isomorphic? Of course one knows the answer, but let’s
think through it. The Witt Cancellation Theorem (true over any field) says that
if 〈x1, . . . , xn, y1, . . . , yk〉 ∼= 〈x1, . . . , xn, z1, . . . , zk〉 then 〈y1, . . . , yk〉 ∼= 〈z1, . . . , zk〉.
So our problem reduces to deciding whether the n-dimensional forms 〈1, 1, . . . , 1〉
and 〈−1, . . . ,−1〉 are isomorphic. When n is odd the determinant distinguishes
them, but when n is even it doesn’t. Of course the thing to say is that the associ-
ated quadratic form takes only positive values in the first case, and only negative
values in the second—but this is not exactly an ‘algebraic’ way of distinguishing
the forms, in that it uses the ordering on R in an essential way. By the end of this
section we will indeed have purely algebraic invariants we can use here.

1.2. The Grothendieck-Witt ring. In a moment we’ll return to the problem of
finding invariants more sophisticated than the rank and determinant, but first we
need a little more machinery. From now on char(F ) 6= 2. By a quadratic space
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I mean a pair (V, µ) consisting of a finite-dimensional vector space and a non-
degenerate bilinear form µ. To systemize their study one defines the Grothendieck-
Witt ring GW (F ). This is the free abelian group generated by isomorphism classes
of pairs (V, µ), with the usual relation identifying the direct sum of quadratic spaces
with the sum in the group. The multiplication is given by tensor product of vector
spaces.

The classical theory of bilinear forms allows us to give a complete descrip-
tion of the abelian group GW (F ) in terms of generators and relations. Recall
that 〈a1, . . . , an〉 denotes the n-dimensional space Fn with (ei, ej) = δijai. So
〈a1, . . . , an〉 = 〈a1〉 + · · · + 〈an〉 in GW (F ). The fact that every symmetric bilin-
ear form is diagonalizable tells us that GW (F ) is generated by the elements 〈a〉 for
a ∈ F ∗, and we have already observed the relation 〈ab2〉 = 〈a〉 for any a, b ∈ F ∗. As
an easy exercise, one can also give a complete description for when two-dimensional
forms are isomorphic: one must be able to pass from one to the other via the two
relations

〈ab2〉 = 〈a〉 and 〈a, b〉 = 〈a+ b, ab(a+ b)〉(1.3)

where in the second we assume a, b ∈ F ∗ and a + b 6= 0. As an example, working
over Q we have

〈3,−2〉 = 〈12,−2〉 = 〈10,−240〉 = 〈90,−15〉.
To completely determine all relations in GW (F ), one shows that if two forms
〈a1, . . . , an〉 and 〈b1, . . . , bn〉 are isomorphic then there is a chain of isomorphic
diagonal forms connecting one to the other, where each link of the chain differs in
exactly two elements. Thus, (1.3) is a complete set of relations for GW (F ). The
reader may consult [S1, 2.9.4] for complete details here.

The multiplication in GW (F ) can be described compactly by

〈a1, . . . , an〉 · 〈b1, . . . , bk〉 =
∑
i,j

〈aibj〉.

1.4. The Witt ring. The Witt ring W (F ) is the quotient of GW (F ) by the ideal
generated by the so-called ‘hyperbolic plane’ 〈1,−1〉. HistoricallyW (F ) was studied
long before GW (F ), probably because it can be defined without formally adjoining
additive inverses as was done for GW (F ). One can check that the forms 〈a,−a〉
and 〈1,−1〉 are isomorphic, and therefore if one regards hyperbolic forms as being
zero then 〈a1, . . . , an〉 and 〈−a1, . . . ,−an〉 are additive inverses. So W (F ) can be
described as a set of equivalence classes of quadratic spaces, and doesn’t require
working with ‘virtual’ objects.

Because 〈a,−a〉 ∼= 〈1,−1〉 for any a, it follows that the ideal
(
〈1,−1〉

)
is precisely

the additive subgroup of GW (F ) generated by 〈1,−1〉. As an abelian group, it is
just a copy of Z. So we have the exact sequence 0→ Z→ GW (F )→W (F )→ 0.

Let GI(F ) be the kernel of the dimension function dim: GW (F ) → Z, usu-
ally called the augmentation ideal. Let I(F ) be the image of the composite
GI(F ) ↪→ GW (F ) � W (F ); one can check that I(F ) consists precisely of equiva-
lence classes of even-dimensional quadratic spaces. Note that I is additively gen-
erated by forms 〈1, a〉, and therefore In is additively generated by n-fold products
〈1, a1〉〈1, a2〉 · · · 〈1, an〉.

The dimension function gives an isomorphism W/I → Z/2. The determinant
gives us a group homomorphism GW (F ) → F ∗/(F ∗)2, but it does not extend to
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the Witt ring because det〈1,−1〉 = −1. One defines the discriminant of 〈a1, . . . , an〉
to be (−1)

n(n−1)
2 · (a1 · · · an), and with this definition the discriminant gives a map

of sets W (F )→ F ∗/(F ∗)2. It is not a homomorphism, but if we restrict to I(F )→
F ∗/(F ∗)2 then it is a homomorphism. As the discriminant of 〈1, a〉〈1, b〉 is a square,
the elements of I2 all map to 1. So we get an induced map I/I2 → F ∗/(F ∗)2, which
is obviously surjective. It is actually an isomorphism—to see this, note that

〈x, y〉〈−1, y〉 = 〈−x, xy,−y, y2〉 = 〈1,−x,−y, xy〉
and so 〈x, y〉 ≡ 〈1, xy〉 (mod I2). It follows inductively that 〈a1, . . . , a2n〉 ≡
〈1, 1, . . . , 1, a1a2 · · · a2n〉 (mod I2). So if 〈a1, . . . , a2n〉 is a form whose discrim-
inant is a square, it is equivalent mod I2 to either 〈1, 1, . . . , 1〉 = 2n〈1〉 (if n
is even) or 〈1, 1, . . . , 1,−1〉 = (2n − 2)〈1〉 (if n is odd). In the former case
2n〈1〉 = 2〈1〉 · n〈1〉 ∈ I2, and in the latter case (2n− 2)〈1〉 = 2〈1〉 · (n− 1)〈1〉 ∈ I2.
In either case we have 〈a1, . . . , a2n〉 ∈ I2, and this proves injectivity.

The examples in the previous paragraph are very special, but they suggest why
one might hope for ‘higher’ invariants which give isomorphisms between the groups
In/In+1 and something more explicitly defined in terms of the field F . This is what
the Milnor conjecture is about.

Remark 1.5. For future reference, note that 2〈1〉 = 〈1, 1〉 ∈ I, and therefore the
groups In/In+1 are Z/2-vector spaces. Also observe that GI(F ) does not intersect
the kernel of GW (F )→W (F ), and so GI(F )→ I(F ) is an isomorphism. It follows
that (GI)n/(GI)n+1 ∼= In/In+1, for all n.

1.6. More invariants. Recall that the Brauer group Br(F ) is a set of equiva-
lence classes of central, simple F -algebras, with the group structure coming from
tensor product. The inverse of such an algebra is its opposite algebra, where the
order of multiplication has been reversed.

From a quadratic space (V, µ) one can construct the associated Clifford algebra
C(µ): this is the quotient of the tensor algebra TF (V ) by the relations generated
by v ⊗ v = µ(v, v). Clifford algebras are Z/2-graded by tensor length. If µ is
even-dimensional then C(µ) is a central simple algebra, and if µ is odd-dimensional
then the even part C0(q) is a central simple algebra. So we get an invariant of
quadratic spaces taking its values in Br(F ) (see [S1, 9.2.12] for more detail). This
is usually called the Clifford invariant, or sometimes the Witt invariant. Since
any Clifford algebra is isomorphic to its opposite, the invariant always produces a
2-torsion class.

Now we need to recall some Galois cohomology. Let F̄ be a separable closure
of F , and let G = Gal(F̄ /F ). Consider the short exact sequence of G-modules
0 → Z/2 → F̄ ∗ → F̄ ∗ → 0, where the second map is squaring. Hilbert’s Theorem
90 implies that H1(G; F̄ ∗) = 0, which means that the induced long exact sequence
in Galois cohomology splits up into

0→ H0(G;Z/2)→ F ∗
2−→ F ∗ → H1(G;Z/2)→ 0

and
0→ H2(G;Z/2)→ H2(G; F̄ ∗)

2−→ H2(G; F̄ ∗).

The group H2(G; F̄ ∗) is known to be isomorphic to Br(F ), so we have H0(G;Z/2) =
Z/2, H1(G;Z/2) = F ∗/(F ∗)2, and the 2-torsion in the Brauer group is precisely
H2(G;Z/2). From now on we will write H∗(F ;Z/2) = H∗(G;Z/2).



NOTES ON THE MILNOR CONJECTURES 5

At this point we have the rank map e0 : W (F )→ Z/2 = H0(F ;Z/2), which gives
an isomorphism W/I → Z/2. We have the discriminant e1 : I(F ) → F ∗/(F ∗)2 =
H1(F ;Z/2) which gives an isomorphism I/I2 → F ∗/(F ∗)2, and we have the Clifford
invariant e2 : I2 → H2(F ;Z/2). With a little work one can check that e2 is a
homomorphism, and it kills I3. The question of whether I2/I3 → H2(F ;Z/2) is
an isomorphism is difficult, and wasn’t proven until the early 80s by Merkurjev
[M] (neither surjectivity nor injectivity is obvious). The maps e0, e1, e2 are usually
called the classical invariants of quadratic forms.

The above isomorphisms can be rephrased as follows. The ideal I consists of all
elements where e0 = 0; I2 consists of all elements such that e0 = 0 and e1 = 1; and
by Merkujev’s theorem I3 is precisely the set of elements for which e0, e1, and e2
are all trivial. Quadratic forms will be completely classified by these invariants if
I3 = 0, but unfortunately this is usually not the case. This brings us to the search
for higher invariants. One early result along these lines is due to Delzant [De], who
defined Stiefel-Whitney invariants with values in Galois cohomology. Unfortunately
these are not the ‘right’ invariants, as they do not lead to complete classifications
for elements in In, n ≥ 3.

1.7. Milnor’s work. At this point we find ourselves looking at the two rings
GrIW (F ) and H∗(F ;Z/2), and we have maps between them in dimensions 0, 1,
and 2. I think Milnor, inspired by his work on algebraic K-theory, wrote down the
best ring he could find which would map to both rings above. In [Mi] he defined
what is now called ‘Milnor K-theory’ as

KM
∗ (F ) = TZ(F ∗)/〈a⊗ (1− a)|a ∈ F − {0, 1}〉

where TZ(V ) denotes the tensor algebra over Z on the abelian group V . The grading
comes from the grading on the tensor algebra, in terms of word length. I will write
{a1, . . . , an} for the element a1 ⊗ · · · ⊗ an ∈ KM

n (F ).
Note that when dealing with KM

∗ (F ) one must be careful not to confuse the
addition—which comes from multiplication in F ∗—with the multiplication. So for
instance {a}+{b} = {ab} but {a}·{b} = {a, b}. This is in contrast to the operations
in GW (F ), where one has 〈a〉 + 〈b〉 = 〈a, b〉 and 〈a〉 ⊗ 〈b〉 = 〈ab〉. Unfortunately
it is very easy to get these confused. Note that {a2} = 2{a}, and more generally
{a2, b1, . . . , bn} = 2{a, b1, . . . , bn}.

Remark 1.8. From a modern perspective the name ‘K-theory’ applied to KM
∗ (F )

is somewhat of a misnomer; one should not take it too seriously. The construction
turns out to be more closely tied to algebraic cycles than to algebraic K-theory,
and so I personally like the term ‘Milnor cycle groups’. I doubt this will ever catch
on, however.

Milnor produced two ring homomorphisms η : KM
∗ (F )/2 → H∗(F ;Z/2) and

ν : KM
∗ (F )/2 → GrIW (F ). To define the map ν, note first that we have already

established an isomorphism F ∗/(F ∗)2 → I/I2 sending {a} to 〈a,−1〉 = 〈a〉 − 〈1〉
(this is the inverse of the discriminant). This tells us what ν does to elements in
degree 1. Since these elements generate KM

∗ (F ) multiplicatively, to construct ν it
suffices to verify that the appropriate relations are satisfied in the image. So we
first need to check that

0 =
(
〈a〉−〈1〉

)
·
(
〈1−a〉−〈1〉

)
= 〈a(1−a)〉−〈a〉−〈1−a〉+〈1〉 = 〈a(1−a), 1〉−〈a, 1−a〉,
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but this follows directly from the second relation in (1.3). We also must check that
2{a} maps to 0, but 2{a} = {a2} 7→ 〈a2〉 − 〈1〉 and the latter vanishes by the first
relation in (1.3). For future reference, note that ν({a}) is equal to both 〈a,−1〉 and
〈−a, 1〉 in I/I2, since this group is 2-torsion.

Defining η is similar. We have already noticed that there is a natural iso-
morphism H1(F ;Z/2) ∼= F ∗/(F ∗)2, and so it is clear where the element {a} in
KM

1 (F ) = F ∗ must be sent. The verification that a ∪ (1− a) = 0 in H2(F ;Z/2) is
in [Mi, 6.1].

Milnor observed that both η and ν were isomorphisms in all the cases he could
compute. The claim that η is an isomorphism is nowadays known as the Milnor
conjecture, and was proven by Voevodsky in 1996 [V1]. The claim that ν is an
isomorphism goes under the name Milnor’s conjecture on quadratic forms. For
characteristic 0 it was proven in 1996 by Orlov, Vishik, and Voevodsky [OVV], who
deduced it as a consequence of the work in [V1]. I believe the proof now works
in characteristic p, based on the improved results of [V3]. A second proof, also
in characteristic 0, was outlined by Morel [M2] using the motivic Adams spectral
sequence, and again depended on results from [V1]; unfortunately complete details
of Morel’s proof have yet to appear.

It is interesting that the conjecture on quadratic forms doesn’t have an inde-
pendent proof, and is the less primary of the two. Note that both KM

∗ (F )/2 and
GW (F ) can be completely described in terms of generators and relations (although
the latter does not quite imply that we know all the relations in GrIW (F ), which
is largely the problem). The map ν is easily seen to be surjective, and so the only
question is injectivity. Given this, it is in some ways surprising that the conjecture
is as hard as it is.

Remark 1.9. The map η is called the norm residue symbol , and can be de-
fined for primes other than 2. The Bloch-Kato conjecture is the statement that
η : KM

i (F )/l→ Hi(F ;µ⊗il ) is an isomorphism for l a prime different from char(F ).
This is a direct generalization of the Milnor conjecture to the case of odd primes. A
proof was released by Voevodsky in 2003 [V5] (although certain auxiliary results re-
quired for the proof remain unwritten). I’m not sure anyone has ever considered an
odd-primary analog of Milnor’s conjecture on quadratic forms—what could replace
the Grothendieck-Witt ring here?

At this point it might be useful to think through the Milnor conjectures in a few
concrete examples. For these we refer the reader to Appendix A. Let’s at least note
here that through the work of Milnor, Bass, and Tate (cf. [Mi]) the conjectures
could be verified for all finite fields and for all finite extensions of Q (in fact for all
global fields).

Finally, let’s briefly return to the classification of forms over R. We saw
earlier that this reduces to proving that the n-dimensional forms 〈1, 1, . . . , 1〉
and 〈−1,−1, . . . ,−1〉 are not isomorphic. Can we now do this algebraically?
If they were isomorphic, they would represent the same element of W (R). It
would follow that (2n)〈1〉 = 0 in W (R). Can this happen? The isomorphisms
Z/2[a] ∼= H∗(Z/2;Z/2) ∼= KM

∗ (R)/2 ∼= GrIW (R) show that GrIW (R) is a poly-
nomial algebra on the class 〈−1,−1〉 (the generator a corresponds to the generator
−1 of R∗/(R∗)2, and ν(−1) = 〈−1,−1〉). It follows that 2k〈1〉 = ±〈−1,−1〉k
is a generator for the group Ik/Ik+1 ∼= Z/2. If m = 2ir where r is odd, then
m〈1〉 = 2i〈1〉 · r〈1〉. Since r〈1〉 is the generator for W/I and 2i〈1〉 is a generator
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for Ii/Ii+1, it follows that m〈1〉 is also a generator for Ii/Ii+1. In particular, m〈1〉
is nonzero. So we have proven via algebraic methods (although in this case also
somewhat pathological ones) that 〈1, 1, . . . , 1〉 6∼= 〈−1,−1, . . . ,−1〉.

1.10. Further background reading. There are several good expository papers
on the theory of quadratic forms, for example [Pf1] and [S2]. The book [S1] is a very
thorough and readable resource as well. For the Milnor conjectures themselves there
is [Pf2], which in particular gives several applications of the conjectures; it also gives
detailed references to original papers. The beginning sections of [AEJ] offer a nice
survey concerning the search for ‘higher’ invariants of quadratic forms. It’s worth
pointing out that after Milnor’s work definitions of e3, e4, and e5 were eventually
given—with a lot of hard work—but this was the state of the art until 1996. Finally,
the introduction of [V3] gives a history of work on the Milnor conjecture.
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2. Proof of the conjecture on the norm residue symbol

This section outlines Voevodsky’s proof of the Milnor conjecture on the norm
residue symbol [V1, V3]. Detailed, step-by-step summaries have been given in [M1]
and [Su]. My intention here is not to give a complete, mathematically rigorous
presentation, but rather just to give the flavor of what is involved.

Several steps in the proof involve manipulations with motivic cohomology based
on techniques that were developed in [VSF]. I have avoided giving any details about
these steps, in an attempt to help the exposition. Most of these details are not hard
to understand, however—there are only a few basic techniques to keep track of, and
one can read about them in [VSF] or [MVW]. But I hope that by keeping some of
this stuff in a black box the overall structure of the argument will become clearer.

2.1. Initial observations. The aim is to show that η : KM
∗ (F )/2 → H∗(F ;Z/2)

is an isomorphism. To do this, one of the first things one might try to figure out
is what kind of extra structure KM

∗ (F )/2 and H∗(F ;Z/2) have in common. For
instance, they are both covariant functors in F , and the covariance is compatible
with the norm residue symbol. It turns out they both have transfer maps for
finite separable extensions (which, for those who like to think geometrically, are
the analogs of covering spaces). That is, if j : F ↪→ F ′ is a separable extension of
degree n then there is a map j! : KM

∗ (F ′)→ KM
∗ (F ) such that j!j∗ is multiplication

by n, and similarly for H∗(F ;Z/2). (Note that the construction of transfer maps
for Milnor K-theory is not at all trivial—some ideas were given in [BT, Sec. 5.9],
but the full construction is due to Kato [Ka, Sec. 1.7]). It follows that if n is odd
then KM

∗ (F )/2 → H∗(F ;Z/2) is a retract of the map KM
∗ (F ′)/2 → H∗(F ′;Z/2).

So if one had a counterexample to the Milnor conjecture, field extensions of all odd
degrees would still be counterexamples. This is often referred to as “the transfer
argument”.

Another observation is that both functors can be extended to rings other than
fields, and if R is a discrete valuation ring then both functors have a ‘localization
sequence’ relating their values on R, the residue field, and the quotient field. I will
not go into details here, but if F is a field of characteristic p then by using the
Witt vectors over F and the corresponding localization sequence, one can reduce
the Milnor conjecture to the case of characteristic 0 fields. The argument is in [V1,
Lemma 5.2]. In Voevodsky’s updated proof of the Milnor conjecture [V3] this step
is not necessary, but I think it’s useful to realize that the Milnor conjecture is not
hard because of ‘crazy’ things that might happen in characteristic p—it is hard
even in characteristic 0.

2.2. A first look at the proof. The proof goes by induction. We assume the
norm residue map η : KM

∗ (F )/2 → H∗(F ;Z/2) is an isomorphism for all fields F
and all ∗ < n, and then prove it is also an isomorphism for ∗ = n. The basic theme
of the proof, which goes back to Merkurjev, involves two steps:

(1) Verify that ηn is an isomorphism for certain ‘big’ fields—in our case, those
which have no extensions of odd degree and also satisfy Kn(F ) = 2Kn(F ) (so
that one must prove Hn(F ;Z/2) = 0). Notice that when n = 1 the condition
K1 = 2K1 says that F = F 2.

(2) Prove that if F were a field for which ηn is not an isomorphism then one could
expand F to make a ‘bigger’ counterexample, and could keep doing this until
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you’re in the range covered by step (1). This would show that no such F could
exist.

In more detail one shows that for any {a1, . . . , an} ∈ Kn(F ) one can con-
struct an extension F ↪→ F ′ with the property that {a1, . . . , an} ∈ 2Kn(F ′)
and ηn : Kn(F ′)/2 → Hn(F ′;Z/2) still fails to be an isomorphism. By doing
this over and over and taking a big colimit, one gets a counterexample where
KM
n = 2KM

n .

Neither of the above two steps is trivial, but step (1) involves nothing very
fancy—it is a calculation in Galois cohomology which takes a few pages, but is not
especially hard. See [V3, Section 5]. Step (2) is the more subtle and interesting
step. Note that if a = {a1, . . . , an} /∈ 2KM

n (F ) then none of the ai’s can be in F 2.
There are several ways one can extend F to a field F ′ such that a ∈ 2KM

n (F ′): one
can adjoin a square root of any ai, for instance. The problem is to find such an
extension where you have enough control over the horizontal maps in the diagram

KM
n (F )/2 //

ηF

��

KM
n (F ′)/2

ηF ′

��
Hn(F ;Z/2) // Hn(F ′;Z/2)

to show that if ηF fails to be an isomorphism then so does ηF ′ . The selection of
the ‘right’ F ′ is delicate.

We will alter our language at this point, because we will want to bring more
geometry into the picture. Any finitely-generated separable extension F ↪→ F ′

is the function field of a smooth F -variety. A splitting variety for an element
a ∈ KM

n (F ) is a smooth variety X, of finite type over F , with the property that
a ∈ 2KM

n (F (X)). Here F (X) denotes the function field of X. As we just re-
marked, there are many such varieties: X = SpecF [u]/(u2 − a1) is an example.
The particular choice we’ll be interested in is more complicated.

Given b1, . . . , bk ∈ F , let qb be the quadratic form in 2k variables corresponding
to the element

〈1,−b1〉 ⊗ 〈1,−b2〉 ⊗ · · · ⊗ 〈1,−bk〉 ∈ GW (F ).

For example, qb1,b2(x1, . . . , x4) = x21 − b1x22 − b2x23 + b1b2x
2
4. Such q’s are called

Pfister forms, and they have a central role in the modern theory of quadratic
forms (see [S1, Chapter 4], for instance).

For a1, . . . , an ∈ F , define Qa to be the projective quadric in P2n−1

given by the
equation

qa1,...,an−1
(x0, . . . , x[2n−1−1])− anx22n−1 = 0.

In [V3] these are called norm quadrics. A routine argument [V3, Prop. 4.1] shows
that Qa is a splitting variety for a. The reason for choosing to study this particular
splitting variety will not be clear until later; isolating this object is one of the key
aspects of the proof.

The name of the game will be to understand enough about the difference be-
tween KM

n (F )/2 and KM
n (F (Qa))/2 (as well as the corresponding Galois cohomol-

ogy groups) to show that KM
n (F (Qa))/2 → Hn(F (Qa);Z/2) still fails to be an

isomorphism. Voevodsky’s argument uses motivic cohomology—of the quadrics Qa
and other objects—to ‘bridge the gap’ between KM

n (F )/2 and KM
n (F (Qa))/2.
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2.3. Motivic cohomology enters the picture. Motivic cohomology is a bi-
graded functor X 7→ Hp,q(X;Z) defined on the category of smooth F -schemes.
Actually it is defined for all simplicial smooth schemes, as well as for more general
objects. One of the lessons of the last ten years is that one can set up a model
category which contains all these objects, and then a homotopy theorist can deal
with them in much the same ways he deals with ordinary topological spaces. From
now on I will do this implicitly (without ever referring to the machinery involved).

The coefficient groups Hp,q(SpecF ;Z) vanish for q < 0 and for p > q ≥ 0. For us
an important point is that the groups Hn,n(SpecF ;Z) are canonically isomorphic
to KM

n (F ). Proving this is not simple! An account is given in [MVW, Lecture 5].
Finally, we note that one can talk about motivic cohomology with finite coefficients
Hp,q(X;Z/n), related to integral cohomology via the exact sequence

· · · → Hp,q(X;Z)
×n−→ Hp,q(X;Z)→ Hp,q(X;Z/n)→ Hp+1,q(X;Z)→ · · ·

The sequence shows Hn,n(SpecF ;Z/2) ∼= KM
n (F )/2 and Hp,q(SpecF ;Z/2) = 0 for

p > q ≥ 0.
Now, there is also an analagous theory Hp,q

L (X;Z) which is called Lichten-
baum (or étale) motivic cohomology. There is a natural transformation
Hp,q(X;Z) → Hp,q

L (X;Z). The theory H∗,∗L is the closest theory to H∗,∗ which
satisfies descent for the étale topology (essentially meaning that when E → B is
an étale map there is a spectral sequence starting with H∗,∗L (E) and converging
to H∗,∗L (B)). The relation between H∗,∗ and H∗,∗L is formally analagous to that
between a cohomology theory and a certain Bousfield localization of it. It is known
that Hp,q

L (X;Z/n) is canonically isomorphic to étale cohomology Hp
et(X;µ⊗qn ), if

n is prime to char(F ). From this it follows that Hp,q
L (SpecF ;Z/2) is the Galois

cohomology group Hp(F ;Z/2), for all q. At this point we can re-phrase the Milnor
conjecture as the statement that the maps Hp,p(SpecF ;Z/2)→ Hp,p

L (SpecF ;Z/2)
are isomorphisms.

There are other conjectures about the relation between H∗,∗ and H∗,∗L as well.
A conjecture of Lichtenbaum says that Hp,q(X;Z) → Hp,q

L (X;Z) should be an
isomorphism whenever p ≤ q + 1. Note that this would imply a corresponding
statement for Z/n-coefficients, and in particular would imply the Milnor conjecture.
Also, since one knows Hn+1,n(SpecF ;Z) = 0 Lichtenbaum’s conjecture would im-

ply that Hn+1,n
L (SpecF ;Z) also vanishes. This latter statement was conjectured

independently by both Beilinson and Lichtenbaum, and is known as a the Gener-
alized Hilbert’s Theorem 90 (the case n = 1 is a translation of the statement
that H1

Gal(F ; F̄ ∗) = 0, which follows from the classical Hilbert’s Theorem 90).
By knowing enough about how to work with motivic cohomology, Voevodsky

was able to prove the following relation among these conjectures (as well as other
relations which we won’t need):

Proposition 2.4. Fix an n ≥ 0. Assume that Hk+1,k
L (SpecF ;Z(2)) = 0 for all

fields F and all 0 ≤ k ≤ n. Then for any smooth simplicial scheme X over a
field F , the maps Hp,q(X;Z/2)→ Hp,q

L (X;Z/2) are isomorphisms when q ≥ 0 and
p ≤ q ≤ n; and they are monomorphisms for p− 1 = q ≤ n. In particular, applying
this when p = q and X = SpecF verifies the Milnor conjecture in dimensions ≤ n.

It’s worth pointing out that the proof uses nothing special about the prime 2,
and so the statement is valid for all other primes as well.
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For us, the importance of the above proposition is two-fold. First, it says that to
prove the Milnor conjecture one only has to worry about the vanishing of one set of
groups (the Hn+1,n

L ’s) rather than two sets (the kernel and cokernel of η). Secondly,
inductively assuming that the Generalized Hilbert’s Theorem 90 holds up through
dimension n is going to give us a lot more to work with than inductively assuming
the Milnor conjecture up through dimension n. Instead of just knowing stuff about
Hn,n of fields, we know stuff about Hp,q of any smooth simplicial scheme. The
need for this extra information is a key feature of the proof.

2.5. Čech complexes. We only need one more piece of machinery before returning
to the proof of the Milnor conjecture. This piece is hard to motivate, and its
introduction is one of the more ingenious aspects of the proof. The reader will just
have to wait and see how it arises in section 2.6 (see also Remark 3.10).

Let X be any scheme. The Čech complex ČX is the simplicial scheme with
(ČX)n = X ×X × · · · ×X (n+ 1 factors) and the obvious face and degeneracies.
This simplicial scheme can be regarded as augmented by the map X → SpecF .

For a topological space the realization of the associated Čech complex is always
contractible—in fact, choosing any point of X allows one to write down a contract-
ing homotopy for the simplicial space ČX. But in algebraic geometry the scheme
X may not have rational points; i.e., there may not exist any maps SpecF → X
at all! If X does have a rational point then the same trick lets one write down a
contracting homotopy, and therefore ČX behaves as if it were SpecF in all com-
putations. (More formally, ČX is homotopy equivalent to SpecF in the motivic
homotopy category).

Working in the motivic homotopy category, one finds that for any smooth scheme
Y the set of homotopy classes [Y, ČX] is either empty or a singleton. The latter
holds precisely if Y admits a Zariski cover {Uα} such that there exist scheme maps
Uα → X (not necessarily compatible on the intersections). The object ČX has
no ‘higher homotopy information’, only this very simple discrete information about
whether or not certain maps exist. One should think of ČX as very close to being
contractible. I point out again that in topology there is always at least one map
between nonempty spaces, and so ČX is not very interesting.

If E → B is an étale cover, then there is a spectral sequence whose input is
H∗,∗L (E;Z) and which converges to H∗,∗L (B;Z) (this is the étale descent property).
In particular, if X is a smooth scheme and we let F ′ = F (X), X ′ = X ×F F ′, then
X ′ → X and SpecF ′ → SpecF are both étale covers. The scheme X ′ necessarily
has a rational point over F ′, so ČX ′ and SpecF ′ look the same to HL. The étale
descent property then shows that ČX and SpecF also look the same: in other
words, the maps Hp,q

L (SpecF ;Z) → Hp,q
L (ČX;Z) are all isomorphisms (and the

same for finite coefficients). This is not true for H∗,∗ in place of H∗,∗L . One might

paraphrase all this by saying that in the étale world ČX is contractible, just as it
is in topology.

2.6. The proof. Now I am going to give a complete summary of the proof
as it appears in [V1, V3]. Instead of proving the Milnor conjecture in its
original form one instead concentrates on the more manageable conjecture that
Hi+1,i
L (SpecF ;Z(2)) = 0 for all i and all fields F . One assumes this has been

proven in the range 0 ≤ i < n, and then shows that it also follows for i = n.
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Suppose that F is a field with Hn+1,n
L (F ;Z(2)) 6= 0. The transfer argument shows

that any extension field of odd degree would still be a counterexample, so we can
assume F has no extensions of odd degree. One checks via some Galois cohomology
computations—see [V3, section 5]—that if such a field has KM

n (F ) = 2KM
n (F )

then Hn+1,n
L (SpecF ;Z(2)) = 0. So our counterexample cannot have KM

n (F ) =

2KM
n (F ). By the reasoning from section 2.2, it will suffice to show that for every

a1, . . . , an ∈ F the field F (Qa) is still a counterexample. We will in fact show that

Hn+1,n
L (F ;Z(2))→ Hn+1,n

L (F (Qa);Z(2)) is injective.

Suppose u is in the kernel of the above map, and consider the diagram

Hn+1,n
L (SpecF ;Z(2)) //

∼=
��

Hn+1,n
L (SpecF (Qa);Z(2))

Hn+1,n(ČQa;Z(2)) // Hn+1,n
L (ČQa;Z(2)).

Let u′ denote the image of u in Hn+1,n
L (ČQa;Z(2)). One can show (after some

extensive manipulations with motivic cohomology) that the hypothesis on u implies
that u′ is the image of an element in Hn+1,n(ČQa;Z(2)). It will therefore be
sufficient to show that this group is zero.

Let C̃ be defined by the cofiber sequence (ČQa)+ → (SpecF )+ → C̃. This

means H̃∗,∗(C̃) fits in an exact sequence

→ Hp−1,q(ČQa)→ H̃p,q(C̃)→ Hp,q(SpecF )→ Hp,q(ČQa)→ H̃p+1,q(C̃)→ · · ·

So the reduced motivic cohomology of C̃ detects the ‘difference’ between the mo-
tivic cohomology of ČQa and SpecF . The fact that Hi,n(SpecF ;Z) = 0 for

i > n shows that Hn+1,n(ČQa;Z(2)) ∼= H̃n+2,n(C̃;Z(2)). Since Qa has a ra-

tional point (and therefore ČQa is contractible) over a degree 2 extension of F ,
it follows from the transfer argument that the above group is killed by 2. To
show that the group is zero it is therefore sufficient to prove that the image of
H̃n+2,n(C̃;Z(2)) → H̃n+2,n(C̃;Z/2) is zero. This is the same as the image of

H̃n+2,n(C̃;Z)→ H̃n+2,n(C̃;Z/2), which I’ll denote by H̃n+2,n
int (C̃;Z/2).

So far most of what we have done is formal; but now we come to the crux of
the argument. For any smooth scheme X one has cohomology operations acting on
H∗,∗(X;Z/2). In particular, one can produce analogs of the Steenrod operations:

the Bockstein acts with bi-degree (1, 0), and Sq2
i

acts with bi-degree (2i, 2i−1).
From these one defines the Milnor Qi’s, which have bi-degree (2i+1 − 1, 2i − 1). In

ordinary topology these are defined inductively by Q0 = β and Qi = [Qi−1, Sq
2i ],

whereas motivically one has to add some extra terms to this commutator (these
arise because the motivic cohomology of a point is nontrivial). One shows that
Qi ◦ Qi = 0, and that Qi = βq + qβ for a certain operation q. It follows from
the latter formula that Qi maps elements in H̃int to elements in H̃int. All of these
facts also work in ordinary topology, it’s just that the proofs here are a little more
complex.

The next result is [V3, Cor. 3.8]. It is the first of two main ingredients needed
to complete the proof.



NOTES ON THE MILNOR CONJECTURES 13

Proposition 2.7. Let X be a smooth quadric in P2n , and let C̃X be defined by
the cofiber sequence (ČX)+ → (SpecF )+ → C̃X. Then for i ≤ n, every element

of H̃∗,∗(C̃X;Z/2) that is killed by Qi is also in the image of Qi.

This is a purely ‘topological’ result, in that its proof uses no algebraic geometry.
It follows from the most basic properties of the Steenrod operations, motivic co-
homology (like Thom isomorphism), and elementary facts about the characteristic
numbers of quadrics. The argument is purely homotopy-theoretic.

The second main result we will need is where all the algebraic geometry enters
the picture. Voevodsky deduces it from results of Rost, who showed that the motive
of Qa splits off a certain direct summand. See [V3, Th. 4.9].

Proposition 2.8. H̃2n,2n−1

(C̃;Z(2)) = 0.

Using the above two propositions we can complete the proof of the Milnor con-
jecture. In order to draw a concrete picture, let us just assume n = 4 for the
moment. We are trying to show that H̃6,4

int(C̃;Z/2) = 0. Consider the diagram

Hp,q(SpecF ;Z/2) //

��

Hp,q(ČQa;Z/2)

��
Hp,q
L (SpecF ;Z/2)

∼= // Hp,q
L (ČQa;Z/2).

Our inductive assumption together with Proposition 2.4 implies that the vertical
maps are isomorphisms for p ≤ q ≤ n−1, and monomorphisms for p−1 = q ≤ n−1.
So the top horizontal map is an isomorphism in the first range and a monomorphism
in the second. The long exact sequence in motivic cohomology then shows that
H̃p,q(C̃;Z/2) = 0 for p ≤ q ≤ n − 1. This is where our induction hypothesis has

gotten us. The following diagram depicts what we now know about H̃p,q(C̃;Z/2)

(the group marked ?? is H̃6,4, the one we care about):

6

?

-�

q

p
0

0 0

0 0 0

0 0 0 0

??

1

1

∗
Q1

Q1

* ∗

Q2

*

Q2
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At this point Proposition 2.7 shows that Q1 : H6,4 → H9,5 is injective, and that
Q2 : H9,5 → H16,8 is injective. Since the Qi’s take integral elements to integral
elements, we have an inclusion

Q2Q1 : H̃6,4
int(C̃;Z/2) ↪→ H̃16,8

int (C̃;Z/2).

But it follows directly from Proposition 2.8 that H̃16,8
int (C̃;Z/2) = 0, and so we are

done.
The argument for general n follows exactly this pattern: one uses the composite

of the operations Q1, Q2, . . . , Qn−2, but everything else is the same.

2.9. Summary. Here is a list of some of the key elements of the proof:

(1) The re-interpretation of the Milnor conjecture as a comparison of different
bi-graded motivic cohomology theories. An extensive knowledge about such
theories allows one to deduce statements for any smooth simplicial scheme
from statements only about fields (cf. Proposition 2.4).

(2) Choice of the splitting variety Qa (needed for Propositions 2.7 and 2.8).

(3) The introduction and use of Čech complexes.
(4) The construction of Steenrod operations on motivic cohomology and develop-

ment of their basic properties, leading to the proof of Proposition 2.7.
(5) The ‘geometric’ results of Rost on motives of quadrics, which lead to Proposi-

tion 2.8.

2.10. A notable consequence. The integral motivic cohomology groups of a
point Hp,q(SpecF ) are largely unknown—the exception is when q = 0, 1. How-
ever, the proof of the Milnor conjecture tells us exactly what Hp,q(SpecF ;Z/2)
is. First of all, independently of the Milnor conjecture it can be shown to vanish
when p ≥ q and when q < 0. By Proposition 2.4 (noting that we now know the
hypothesis to be satisfied for all n), it follows that

Hp,q(SpecF ;Z/2)→ Hp
et(SpecF ;µ⊗q2 )

is an isomorphism when p ≤ q and q ≥ 0. As µ⊗q2
∼= µ2, the étale cohomology

groups are periodic in q; that is, H∗et(SpecF ;µ⊗∗2 ) ∼= H∗Gal(F ;Z/2)[τ, τ−1] where τ
has degree (0, 1).

The conclusion is that H∗,∗(SpecF ;Z/2) ∼= H∗Gal(F ;Z/2)[τ ], where τ is the
canonical class in H0,1 and the Galois cohomology is regarded as the subalgebra
lying in degrees (k, k). Of course the Milnor conjecture tells us that the Galois
cohomology is the same as mod 2 Milnor K-theory, and so we can also write
H∗,∗(SpecF ;Z/2) ∼=

(
KM
∗ (F )/2

)
[τ ].

2.11. Further reading. Both the original papers of Voevodsky [V1, V3] are very
readable, and remain the best sources for the proof. Summaries have also been given
in [M1] and [Su]. A proof of the general Bloch-Kato conjecture was recently given
in [V5]—the proof is similar in broad outline to the 2-primary case we described
here, but with several important differences. See the introduction to [V5].

Of course in this section I have completely avoided discussing the two main
elements of the proof, namely Propositions 2.7 and 2.8. The proof of Proposition 2.7
is in [V1, V3] and is written in a way that can be understood by most homotopy
theorists. Proposition 2.8 depends on results of Rost, which seem to be largely
unpublished. See [R1, R2] for summaries.

For more about why Čech complexes arise in the proof, see Proposition 3.9 in
the next section.



NOTES ON THE MILNOR CONJECTURES 15

3. Proof of the conjecture on quadratic forms

In this section and the next I will discuss two proofs of Milnor’s conjecture on
quadratic forms. The first is from [OVV], the second was announced in [M2]. Both
depend on Voevodsky’s proof of the norm residue conjecture. As I keep saying,
I’m only going to give a vague outline of how the proofs go, but with references for
where to find more information on various aspects. The present section deals with
the [OVV] proof.

3.1. Preliminaries. Recall that we are concerned with the map ν : KM
∗ (F )/2 →

GrIW (F ) defined by ν({a1, . . . , an}) = 〈1,−a1〉 · · · 〈1,−an〉. The fact that I is
additively generated by the forms 〈1, x〉 shows that ν is obviously surjective; so our
task is to prove injectivity. In general, the product 〈1, b1〉 · · · 〈1, bn〉 is called an
n-fold Pfister form, and denoted 〈〈b1, . . . , bn〉〉. Note that it has dimension 2n.
The proof is intimately tied up with the study of such forms.

Milnor proved that the map ν : KM
2 (F )/2→ I2/I3 is an isomorphism. He used

ideas of Delzant [De] to define Stiefel-Whitney invariants for quadratic forms, which
in dimension 2 give a map I2/I3 → KM

2 (F )/2. One could explicitly check that this
was an inverse to ν. Unfortunately, this last statement generally fails in larger
dimensions; the Stiefel-Whitney invariants don’t carry enough information. See
[Mi, 4.1, 4.2].

3.2. The Orlov-Vishik-Voevodsky proof. We first need to recall some results
about Pfister forms proven in the 70’s. The first is an easy corollary of the so-called
Main Theorem of Arason-Pfister (cf. [S1, 4.5.6]). For a proof, see [EL, pp. 192-193].

Proposition 3.3 (Elman-Lam). 〈〈a1, . . . , an〉〉 ≡ 〈〈b1, . . . , bn〉〉 (mod In+1) if and
only if 〈〈a1, . . . , an〉〉 = 〈〈b1, . . . , bn〉〉 in GW (F ).

Combining the result for n = 2 with Milnor’s theorem that KM
2 (F ) → I2/I3 is

an isomorphism, we get the following (note that the minus signs are there because
ν({a1, . . . , an}) = 〈〈−a1, . . . ,−an〉〉):
Corollary 3.4. 〈〈a1, a2〉〉 = 〈〈b1, b2〉〉 in GW (F ) if and only if {−a1,−a2} =
{−b1,−b2} in KM

∗ (F )/2.

Say that two n-fold Pfister forms A = 〈〈a1, . . . , an〉〉 and B = 〈〈b1, . . . , bn〉〉 are
simply-p-equivalent if there are two indices i, j where 〈〈ai, aj〉〉 = 〈〈bi, bj〉〉 and
ak = bk for all k /∈ {i, j}. The forms A and B are chain-p-equivalent if there is a
chain of forms starting with A and ending with B in which every link of the chain is
a simple-p-equivalence. Note that it follows immediately from the previous corollary
that if A and B are chain-p-equivalent then {−a1, . . . ,−an} = {−b1, . . . ,−bn}.

The following result is [EL, Main Theorem 3.2]:

Proposition 3.5. Let A = 〈〈a1, . . . , an〉〉 and B = 〈〈b1, . . . , bn〉〉. The following
are equivalent:

(a) A and B are chain-p-equivalent.
(b) {−a1, . . . ,−an} = {−b1, . . . ,−bn} in KM

∗ (F )/2.
(c) A ≡ B (mod In+1).
(d) A = B in GW (F ).

Note that (a)⇒ (b)⇒ (c) is trivial, and (c)⇒ (d) was mentioned above. So the
new content is in (d) ⇒ (a). I will not give the proof, but refer the reader to [S1,
4.1.2]. The result below is a restatement of (c)⇒ (b):
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Corollary 3.6. The equality ν({a1, . . . , an}) = ν({b1, . . . , bn}) can only occur if
{a1, . . . , an} = {b1, . . . , bn}.

Unfortunately the above corollary does not show that ν is injective, as a typical
element x ∈ KM

∗ (F )/2 is a sum of terms {a1, . . . , an}. A term {a1, . . . , an} is
called a pure symbol, whereas a general x ∈ KM

∗ (F ) is just a symbol. The key
ingredient needed from [OVV] is the following:

Proposition 3.7. If x ∈ KM
∗ (F )/2 is a nonzero element then there is a field

extension F ↪→ F ′ such that the image of x in KM
∗ (F ′)/2 is a nonzero pure symbol.

It is easy to see that the previous two results prove the injectivity of ν. If
x ∈ KM

n (F )/2 is a nonzero element in the kernel of ν, then by passing to F ′ we
find a nonzero pure symbol which is also in the kernel. Corollary 3.6 shows this to
be impossible, however.

We are therefore reduced to proving Proposition 3.7. If we write x = a1+. . .+ak,
where each ai is a pure symbol, then we know we can make ai vanish by passing to
the function field F (Qai) (where Qai is the splitting variety produced in the last
section). Our goal will be to show that ai is the only term that vanishes:

Proposition 3.8 (Orlov-Vishik-Voevodsky). If a = {a1, . . . , an} is nonzero in
KM
n (F )/2, then the kernel of KM

n (F )/2→ KM
n (F (Qa))/2 is precisely Z/2 (gener-

ated by a).

Granting this for the moment, let i be the largest index for which x is nonzero
in KM

n (F ′)/2, where F ′ = F (Qa1 × · · · × Qai). Since x will become zero over

F ′(Qai+1
), the above result says that x = ai+1 in KM

n (F ′)/2. This is precisely
what we wanted.

So finally we have reduced to the same kind of problem we tackled in the last
section, namely controlling the map KM

n (F )/2 → KM
n (F (Qa))/2. The techniques

needed to prove Proposition 3.8 are exactly the same as those from the last section.
There is a again a homotopical ingredient and a geometric ingredient.

Proposition 3.9. If X is a smooth scheme over F , then for every n ≥ 0 there is
an exact sequence of the form

0→ Hn,n−1(ČX;Z/2)→ Hn,n(SpecF ;Z/2)→ Hn,n(SpecF (X);Z/2).

Recall that Hn,n(SpecE;Z/2) ∼= KM
n (E)/2 for any field E. So the above se-

quence is giving us control over the kernel of KM
∗ (F )/2 → KM

∗ (F (Qa))/2. The
proof uses the conclusion from Proposition 2.4 (which is known by Voevodsky’s
proof of the Milnor conjecture) and some standard manipulations with motivic
cohomology. See [OVV, Prop. 2.3].

Remark 3.10. In some sense Proposition 3.9 explains why Čech complexes are
destined to come up in the proofs of these conjectures.

If the above proposition is thought of as a ‘homotopical’ part of the proof, the
geometric part is the following. It is deduced using Rost’s results on the motive of
Qa; see [OVV, Prop. 2.5].

Proposition 3.11. There is a surjection Z/2→ H2n−1,2n−1−1(ČQa;Z/2).

The previous two results immediately yield a proof of 3.8. By Proposition 3.9 we
must show that Hn,n−1(ČQa;Z/2) ∼= Z/2 (and we know the group is nontrivial).
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But we saw in the last section that Hn,n−1(ČQa;Z/2) ∼= Hn+1,n−1(C̃Qa;Z/2),

where C̃Qa is the homotopy cofiber of (ČQa)+ → (SpecF )+. We also saw

that the operation Qn−2 · · ·Q2Q1 gives a monomorphism Hn+1,n−1(C̃Qa;Z/2) ↪→
H2n−1,2n−1−1(C̃Qa;Z/2). But now we are done, since by 3.11 the latter group has
at most two elements.

This completes the proof of the injectivity of ν.
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4. Quadratic forms and the Adams spectral sequence

In [M2] Morel announced a proof of the quadratic form conjecture over character-
istic zero fields, using the motivic Adams spectral sequence. The approach depends
on having computed the motivic Steenrod algebra, but I’m not sure what the status
of this is—certainly no written account is presently available. Despite this frustrat-
ing point, Morel’s proof is very exciting; while it uses Voevodsky’s computation
of H∗,∗(SpecF ;Z/2)—see Remark 2.10—it somehow avoids using any other deep
results about quadratic forms! So I’d like to attempt a sketch.

The arguments below take place in the motivic stable homotopy category. All
the reader needs to know as background is that it formally behaves much as the
usual stable homotopy category, and that there is a bigraded family of spheres Sp,q.
The suspension (in the triangulated category sense) of Sp,q is Sp+1,q, and S2,1 is
the suspension spectrum of the variety P1.

4.1. Outline. We have our maps νn : KM
n (F )/2 → In/In+1, and need to prove

that they are injective. We will see that the Adams spectral sequence machinery
gives us, more or less for free, maps sn : In/In+1 → KM

n (F )/(2, J) where J is a
subgroup of boundaries from the spectral sequence. The composite snνn is the
natural projection, and so the whole game is to show that J is zero. That is,
one needs to prove the vanishing of a line of differentials. Using the multiplicative
structure of the spectral sequence and the algebra of the E2-term, this reduces just
to proving that the differentials on a certain ‘generic’ element vanish. This allows
one to reduce to the case of the prime field Q, then to R, and ultimately to a purely
topological problem.

4.2. Basic setup. Now I’ll expand on this general outline. The first step is to
produce a map q : GW (F )→ {S0,0, S0,0} where {−,−} denotes maps in the motivic
stable homotopy category. Recall from Section 1.2 that one knows a complete
description of GW (F ) in terms of generators and relations. For a ∈ F ∗ we let
q(〈a〉) be the map P1 → P1 defined in homogeneous coordinates by [x, y]→ [x, ay].
By writing down explicit A1-homotopies one can verify that the relations in GW (F )
are satisfied in {S0,0, S0,0}, and so q extends to a well-defined map of abelian groups.
It is actually a ring map. Further details about all this are given in [M3].

Now we build an Adams tower for S0,0 based on the motivic cohomology spec-
trum HZ/2. Set W0 = S0,0, and define W1 by the homotopy fiber sequence
W1 → S0,0 → HZ/2. Then consider the map W1

∼= S0,0 ∧W1 → HZ/2 ∧W1,
and let W2 be the homotopy fiber. Repeat the process to define W3, W4, etc. This
gives us a tower of cofibrations

H ∧W2 H ∧W1 H ∧W0

· · · // W2

OO

// W1

OO

// W0,

OO

where we have written H for HZ/2. For any Y the tower yields a filtration on
{Y, S0,0} by letting Fn be the subgroup of all elements in the image of {Y,Wn}
(note that there is no a priori guarantee that the filtration is Hausdorff.) The tower
yields a homotopy spectral sequence whose abutment has something to do with the
associated graded of the groups {S∗,0 ∧ Y, S0,0}. If the filtration is not Hausdorff
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these associated graded groups may not be telling us much about {S∗,0 ∧ Y, S0,0},
but this will not matter for our application. We will be interested in the case
Y = S0,0.

Set Ea,b1 = {Sa,0, H ∧ Wb}, so that dr : Ea,br → Ea−1,b+rr . My indexing has

been chosen so that the picture of the spectral sequence has Ea,b1 in spot (a, b) on
a grid, rather than at spot (b − a, a) as is more typical for the Adams spectral
sequence—but the picture itself is the same in the end. Formal considerations give
inclusions

Fk{Sn,0, S0,0}/Fk+1{Sn,0, S0,0} ↪→ En,k∞
(however, there is no a priori reason to believe the map is surjective). In particular,
if F∗ is the filtration on {S0,0, S0,0} then we have inclusions Fk/Fk+1 ↪→ E0,k

∞ .
Let GI(F ) be the kernel of the mod 2 dimension function dim: GW (F )→ Z/2.

The powers GI(F )n define a filtration on GW (F ). One can check that q maps GI1
into F1. Since the Adams filtration Fn on π0,0(S0,0) will be multiplicative, one finds
that q maps GIn into Fn. So we get maps (GI)n/(GI)n+1 → Fn/Fn+1 → E0,n

∞ .
In a moment I’ll say more about what the Adams spectral sequence looks like

in this case, but first let’s relate GI to what we really care about. One easily
checks that GI = GI ⊕ Z, where the Z is the subgroup generated by 〈1, 1〉 =
2〈1〉. So GIn = GIn ⊕ Z, where the Z is generated by 2n〈1〉. It follows that
GIn/GIn+1 ∼= [GIn/GIn+1]⊕Z/2. Finally, recall from Remark 1.5 that the natural
map GI → I is an isomorphism. Putting everything together, we have produced
invariants [In/In+1]⊕ Z/2→ E0,n

∞ .

4.3. Analysis of the spectral sequence. So far the discussion has been mostly
formal. We have produced a spectral sequence, but not said anything concrete
about it. The usefulness of the above invariants hinges on what E0,n

∞ looks like. If

things work as in ordinary topology, then the E2 term will turn out to be Ea,b2 =

ExtbH∗∗H(Σb+a,0H∗∗, H∗∗) where I’ve again written H = HZ/2 and Σk,0 denotes
a grading shift on the bi-graded module H∗∗. So we need to know the algebra
H∗∗H, but unfortunately there is no published source for this calculation. In [V2]
Voevodsky defines Steenrod operations and shows that they satisfy analogs of the
usual Adem relations; he doesn’t show that these generate all of H∗∗H, though.
However, let’s assume we knew this—so we are assuming H∗∗H is the algebra
Voevodsky denotes A∗∗ and calls the motivic Steenrod algebra [V2, Section 11].

The form of H∗∗H is very close to that of the usual Steenrod algebra, and so
one has a chance at doing some of the Ext computations. In fact, it is not very
hard. Some hints about this are given in Appendix B, but for now let me just tell
you the important points:

(1) Ep,q2 = 0 if p < 0.

(2) E0,0
2 = Z/2.

(3) For n ≥ 1, E0,n
2 = Hn,n ⊕ Z/2. The inclusion ⊕nHn,n ↪→ ⊕nE0,n

2 is a ring
homomorphism, where the domain is regarded as a subring of H∗∗.

Most of these computations make essential use of Remark 2.10, and therefore de-
pend on Voevodsky’s proof of the norm residue conjecture. Also note the connection
between (3) and Milnor K-theory, given by the isomorphism Hn,n ∼= KM

n (F )/2.

The above two facts show that everything in E0,n
2 is a permanent cycle and thus

E0,n
∞ = (Z/2⊕KM

n (F )/2)/J where J is the subgroup of all boundaries. Recall that
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one has maps

KM
n (F )/2

νn−→ In/In+1 → E0,n
∞
∼= [KM

n (F )/2⊕ Z/2]/J.

The composition can be checked to be the obvious one. To prove that νn is in-
jective, we need to prove that J = 0. That is, we need to prove the vanishing
of all differentials landing in E0,∗ (which necessarily come from E1,∗). As for the
computation of the E1,∗ column, here are the additional facts we need:

(4) E1,0
2 = 0.

(5) E1,1
2 = H0,1 ⊕H2,2 ∼= Z/2⊕H2,2.

(6) The images of the two maps

E0,1
2 ⊗ E1,n−1

2 → E1,n
2 E1,n−1

2 ⊗ E0,1
2 → E1,n

2

generate E1,n
2 as an abelian group.

(7) The composite H1,1 ⊗H2,2 ↪→ E0,1
2 ⊗ E1,1

2 → E1,2
2 is zero.

Again, let me say that none of these computations is particularly difficult, and
the reader can find some hints in Appendix B. Portions of columns 0 and 1 of our
E2-term are shown below:

Z/2

H1,1 ⊕ Z/2

H2,2 ⊕ Z/2

H3,3 ⊕ Z/2

H4,4 ⊕ Z/2

0

H2,2 ⊕ Z/2

??

??

??

•

6

-

Remark 4.4. If one only looks at the Z/2’s appearing in the above diagram, the
picture looks just like the ordinary topological Adams spectral sequence. The Z/2’s
in our 0th column indeed turn out to be “hn0 ’s”, just as in topology. The Z/2 in

E1,1
2 is a little more complicated, though—it doesn’t just come from Sq2, like the

usual h1 does (see Appendix B for what it does come from).

We need to prove that all the differentials leaving the E1,∗ column vanish. By
fact (6) and the multiplicative structure of the spectral sequence, it is sufficient to

prove that all differentials leaving E1,1
2 vanish (starting with d2 : E1,1

2 → E0,3
2 ). We

will do this in several steps.
The following result basically shows that, just as in ordinary topology, all the

Z/2’s in column 0 survive to E∞.

Lemma 4.5. The image of dr : E1,1
r → E0,r+1

r lies in the subgroup Hr+1,r+1, for
every r ≥ 2.
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Proof. Suppose there is an element x ∈ E1,1
r such that dr(x) does not lie inHr+1,r+1

(or rather its image in Er). We can write x = a + y where a ∈ H2,2 = KM
2 (F )/2

and y ∈ H0,1 ∼= Z/2. In expressing a as a sum of pure symbols, one notes that
only a finite number of elements of F are involved. By naturality of the spectral
sequence, we can therefore assume F is a finitely-generated extension of Q.

But now we can choose an embedding F ↪→ C, and again use naturality. The
groups KM

n (C)/2 are all zero, and therefore our assumption implies that over C we

have E0,r+1
r+1 = 0 (in other words, the Z/2 in E0,r+1

2 dies in the spectral sequence).
But there is a ‘topological realization map’ from our spectral sequence over C to
the usual Adams spectral sequence in topology, where we know that none of the
Z/2’s in E0,∗ ever die. �

Remark 4.6. There is also a purely algebraic proof of the above result. One
reduces via naturality to the case of algebraically closed fields, where all the Hn,n’s
are zero. Then one shows that the Z/2’s in the 0th column form a polynomial

algebra, and that the composite Z/2 ⊗ Z/2 ↪→ E1,1
2 ⊗ E0,1

2 → E1,2
2 is zero (just as

in ordinary topology). The fact that the spectral sequences is multiplicative takes
care of the rest.

Lemma 4.7. For a ∈ H2,2 one has dr(a) = 0, for every r.

Proof. It follows from facts (3) and (7), together with the multiplicative structure
of the spectral sequence, that everything in the image of dr : H2,2 → Hr+1,r+1 is
killed by H1,1. This is the key to the proof.

Let z = dr(a). Consider the naturality of the spectral sequence for the map
j : F → F (t). It follows from the previous paragraph that j(z) = dr(ja) is killed by
F (t)∗. In particular, {t} · j(z) = 0 in KM

r+2(F (t))/2. But by [Mi, Lem. 2.1] there

is a map ∂t : K
M
r+2(F (t))/2→ KM

r+1(F )/2 with the property that ∂t({t} · j(z)) = z.
So we conclude that z = 0, as desired. �

Proposition 4.8. All differentials leaving E1,1 are zero.

Proof. Recall E1,1
2
∼= H0,1 ⊕ H2,2 ∼= Z/2 ⊕ H2,2. By the previous lemma we are

reduced to analyzing the maps dr : H0,1 → Hr+1,r+1. Since H0,1(Q)→ H0,1(F ) is
an isomorphism, it suffices to prove the result in the case F = Q.

Now use naturality with respect to the field extension Q ↪→ R. The maps
KM
n (Q)/2 → KM

n (R)/2 are isomorphisms for n ≥ 3 (see Appendix A), so now
we’ve reduced to F = R. But here we can again use a ‘topological realization’ map
to compare our Adams spectral sequence to the corresponding one in the context of
Z/2-equivariant homotopy theory. This map is readily seen to be an isomorphism
on the E0,∗ column: the point is that the Z/2-equivariant cohomology groups Hn,n

are isomorphic to the corresponding mod 2 motivic cohomology groups over R (see
[Du, 2.8, 2.11], for instance). We are essentially seeing a reflection of the fact that
GW (R) may be identified with the Burnside ring of Z/2, which coincides with
{S0,0, S0,0} in the Z/2-equivariant stable homotopy category. In any case, we are
finally reduced to showing the vanishing of certain differentials in a topological
Adams spectral sequence: the paper [LZ] seems to essentially do this (but I haven’t
thought about this part carefully—I’m relying on remarks from [M2]). �

This completes Morel’s proof of the quadratic form conjecture for characteristic
zero fields (modulo the identification of H∗∗H, which we assumed).
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Remark 4.9. We restricted to characteristic zero fields because the identification
of H∗∗H has never been claimed in characteristic p. If we make the wild guess that
in positive characteristic H∗∗H still has the same form, most of the argument goes
through verbatim. There are two exceptions, where we used topological realization
functors. The first place was to show that the image of the dr’s didn’t touch the
Z/2’s in E0,∗

2 , but Remark 4.6 mentioned that this could be done another way. The
second place we used topological realization was at the final stage of the argument,
to analyze the differentials dr : H0,1 → Hr+1,r+1. As before, this reduces to the
case of a prime field. But for F a finite field one has KM

n (F ) = 0 for n ≥ 2, so for
prime fields there is in fact nothing to check.

In summary, the same general argument would work in characteristic p if one
knew that H∗∗H had the same form.

4.10. Further reading. There is very little completed literature on the subjects
discussed in this section. Several documents are available on Morel’s website, how-
ever; the draft [M5] is particularly relevant, although it only slightly expands on
[M2]. For information on the motivic Steenrod algebra, see [V2]. Finally, Morel
recently released another proof of Milnor’s quadratic form conjecture, using very
different methods. See [M4].
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Appendix A. Some examples of the Milnor conjectures

This is a supplement to Section 1. We examine the Milnor conjectures in the
cases of certain special fields F .

(a) F is algebraically closed. Since F = F 2, every nondegenerate form is isomorphic
to one of the form 〈1, 1, . . . , 1〉. So GW (F ) ∼= Z, and W (F ) ∼= Z/2 with I(F ) = 0.
Thus, GrIW (F ) ∼= Z/2.

The absolute Galois group is trivial, so H∗(F ;Z/2) = Z/2.
Finally, the fact that F = F 2 implies that KM

∗ (F )/2 = 0 for ∗ ≥ 1. This is
because the generators all lie in KM

1 (F ), and if a = x2 then {a} = {x2} = 2{x} =
0 ∈ KM

1 (F )/2.

(b) F = F 2. This case is suggested by the previous one. We only need to check
that the hypothesis implies H∗(F ;Z/2) = 0 for ∗ ≥ 1. Strangely, I haven’t been
able to find an easy proof of this.

(c) F = R. In this case we know forms are classified by their rank and signature,
and it follows that GW (R) is the free abelian group generated by 〈1〉 and 〈−1〉.
Also, 〈−1〉2 = 〈1〉. So GW (R) ∼= Z[x]/(x2 − 1), and W (R) ∼= Z with I(R) = 2Z.
Hence GrIW (R) ∼= Z/2[a].

The absolute Galois group of R is Z/2, so H∗(R;Z/2) = H∗(Z/2;Z/2) = Z/2[a].
Finally we consider KM

∗ (R)/2. The group KM
1 (R)/2 = R∗/(R∗)2 ∼= {1,−1} (the

set consisting of 1 and −1). A similar calculation, based on the fact that every
element of R is a square up to sign, shows that KM

i (R)/2 ∼= Z/2 for every i, with
the nonzero element being {−1,−1, . . . ,−1}. So KM

∗ (R)/2 ∼= Z/2[a] as well.

(d) F = Fq, q odd. Here F ∗ ∼= Z/(q − 1) and so KM
1 /2 = F ∗/(F ∗)2 ∼= Z/2. If g

is the generator, then {g, g, . . . , g} generates KM
n /2 (but may be zero). In fact one

can show (cf. [Mi, Ex. 1.5]) that {g, g} = 0 in KM
2 , from which it follows that

KM
∗ = 0 for ∗ ≥ 2. So KM

∗ (F )/2 ∼= Z/2⊕ Z/2, in degrees 0 and 1.

For a finite field the absolute Galois group is Ẑ, the profinite completion of Z.
The Galois cohomology H∗(Ẑ;Z/2) is just the mod 2 cohomology of BZ ' S1; so
it is Z/2⊕ Z/2, with the generators in degrees 0 and 1.

Again noting that F ∗/(F ∗)2 ∼= Z/2, it follows that the Grothendieck-Witt group
is generated by 〈1〉 and 〈g〉. A simple counting argument (cf. [S1, Lem. 2.3.7])
shows that every element of F∗q is a sum of two squares. Writing g = a2 + b2 one
finds that

〈1, 1〉 = 〈a2, b2〉 = 〈a2 + b2, a2b2(a2 + b2)〉 = 〈a2 + b2, a2 + b2〉 = 〈g, g〉.
That is, 2(〈1〉 − 〈g〉) = 0. It follows that GW (F ) = Z ⊕ Z/2, with corresponding
generators 〈1〉 and 〈1〉 − 〈g〉.

The computation of the Witt group depends on whether or not −1 is a square;
since F ∗ = Z/(q − 1) and −1 has order 2, then −1 is a square precisely when
4|(q − 1). So if q ≡ 1(mod 4) then 〈1〉 = 〈−1〉 and W (F ) ∼= Z/2 ⊕ Z/2; in this
case I(F ) = (〈1〉 − 〈g〉) ∼= Z/2. If q ≡ 3(mod 4) then 〈g〉 = 〈−1〉 and we have
W (F ) ∼= Z/4 with I(F ) = (2). In either case GrIW (F ) ∼= Z/2⊕ Z/2.
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Remark A.1. Although Milnor’s quadratic form conjecture says that GrIW (F )
depends only on the absolute Galois group of F , this example makes it clear that
the same cannot be said for W (F ) itself.

(e) F = Q. This case is considerably harder, so we will only make a few observa-
tions. Note that as an abelian group one has

Q∗ ∼= Z/2×
(
⊕pZ

)
,

by the fundamental theorem of arithmetic; the direct sum is over the set of all
primes. Here the isomorphism sends a fraction q to its sign (in the Z/2 factor)
together with the list of exponents in the prime factorization of q. So KM

1 (Q)/2 ∼=
Z/2⊕ (⊕pZ/2).

As the above isomorphism may suggest, to go further it becomes convenient to
work with one completion at a time. The case F = R has already been discussed,
so what is left is the p-adics. We will return to F = Q after discussing them.

(f) F = Qp. We will concentrate on the case where p is odd; the case p = 2 is
similar, and can be left to the reader. We know KM

1 (Qp)/2 ∼= H1(Qp;Z/2) ∼=
Q∗p/(Q∗p)2. A little thought (cf. [S1, 5.6.2]) shows this group is Z/2 ⊕ Z/2, with
elements represented by 1, g, p, and pg, where 1 < g < p is any integer which
generates the multiplicative group F∗p. By [Se, Section II.5.2] one hasH2(Qp;Z/2) ∼=
Z/2 and Hi(Qp;Z/2) = 0 for i ≥ 3.

The fact that KM
1 (Qp)/2 only has four elements tells us that KM

∗ (Qp)/2 can’t be
too big. By finding the appropriate relations to write down, Calvin Moore proved
that KM

∗ (Qp)/2 = 0 for ∗ ≥ 3 [Mi, Ex. 1.7], and that KM
2 (Qp)/2 = Z/2. This is

an exercise for the reader.
The group GW (Qp) will be generated by the four elements 〈1〉, 〈g〉, 〈p〉, and

〈pg〉. The theory again depends on whether or not −1 is a square, which is when
p ≡ 1(mod 4). When p ≡ 1(mod 4) one has 〈1〉 = 〈−1〉 and so 〈x〉 = 〈−x〉 for any
x. As a result 〈g, g〉 = 〈g,−g〉 = 〈1,−1〉 = 〈1, 1〉, and similarly 〈p, p〉 = 〈pg, pg〉 =
〈1, 1〉. One finds that GW (Qp) = Z ⊕ (Z/2)3 with corresponding generators 〈1〉,
〈1〉 − 〈p〉, 〈1〉 − 〈g〉, and 〈1〉 − 〈pg〉. Since 〈1,−1〉 = 2〈1〉, W (Qp) = (Z/2)4 with
the same generators. I is generated by 〈1, p〉, 〈1, g〉, and 〈1, pg〉; I2 is generated by
〈1, p, g, pg〉, and I3 = 0. So GrIW = Z/2 ⊕ (Z/2 ⊕ Z/2) ⊕ Z/2. Note that this is
the first example we’ve seen where I2 6= 2I.

When p ≡ 3(mod 4) we can take g = −1. One has 〈1, 1〉 = 〈−1,−1〉 by the same
reasoning as for Fp (−1 is the sum of two squares), and so 〈p, p〉 = 〈−p,−p〉. Note
that

〈p, p, p, p〉 = 〈p,−p,−p, p〉 = 〈1,−1,−1, 1〉 = 〈1, 1, 1, 1〉
and so 4(〈1〉 − 〈p〉) = 0. Also,

〈p, p, p〉 = 〈p,−p,−p〉 = 〈1,−1,−p〉 and 〈1, 1, 1〉 = 〈1,−1,−1〉.
So 3(〈1〉 − 〈p〉) = 〈−1〉 − 〈−p〉. Of course GW (Qp) is generated by 〈1〉, 〈1〉 − 〈−1〉,
〈1〉 − 〈p〉, and 〈1〉 − 〈−p〉, and the previous computation shows the last generator
is not needed. So we have a surjective map Z ⊕ Z/2 ⊕ Z/4 → GW (Qp) sending
the standard generators to 〈1〉, 〈1〉 − 〈−1〉, and 〈1〉 − 〈p〉. This is readily checked
to be injective once one knows that 〈1, 1〉 6∼= 〈p, p〉. If these forms were isomorphic
it would follow by reduction mod some power of p that 〈1, 1〉 was isotropic over
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some Fpe ; that is, we would have 〈1, 1〉 ∼= 〈1,−1〉. But we’ve already computed
GW (Fpe), and know this is not the case.

The Witt ring is W (Qp) ∼= Z/4 ⊕ Z/4 with generators 〈1〉 and 〈1〉 − 〈p〉. The
ideal I is generated by 2〈1〉 and 〈1〉 − 〈p〉; I2 is generated by 2(〈1〉 − 〈p〉); I3 = 0.
Again we have GrIW ∼= Z/2⊕ (Z/2⊕ Z/2)⊕ Z/2.

(g) Return to F = Q. Our understanding of the higher Milnor K-groups of Q is
based on passing to the various completions Qp and R. A computation of Bass and
Tate [Mi, Lem. A.1] gives an exact sequence

0→ KM
2 (Q)/2→ KM

2 (R)/2⊕
(
⊕pKM

2 (Qp)/2
)
→ Z/2→ 0,

and we already know KM
2 (Qp)/2 ∼= KM

2 (R)/2 ∼= Z/2. A computation of Tate [Mi,
Th. A.2, Ex. 1.8] shows that for ∗ ≥ 3 one has

KM
∗ (Q)/2 ∼= ⊕pKM

∗ (Qp)/2⊕KM
∗ (R)/2 ∼= 0⊕ Z/2.

To compute H∗(Q;Z/2) we again work one completion at a time. A theorem of
Tate [Se, Section II.6.3, Th. B] says that for i ≥ 3 one has

Hi(Q;Z/2) ∼= Hi(R;Z/2)×
∏
p

Hi(Qp;Z/2) ∼= Hi(R;Z/2) ∼= Z/2.

Our computation of Q∗/(Q∗)2 ∼= H1(Q;Z/2) shows that the map H1(Q;Z/2) →
H1(R;Z/2)×

∏
pH

1(Qp;Z/2) is injective. More of Tate’s work [Se, Sec. II.6.3, Th.

A] identifies the dual of the kernel with the kernel of H2(Q;Z/2)→ H2(R;Z/2)×
(⊕pH2(Qp;Z/2))—thus, this latter map is also injective. Using this, [Se, Sec. II.6.3,
Th. C] gives a short exact sequence

0→ H2(Q;Z/2)→ H2(R;Z/2)⊕ (⊕pH2(Qp;Z/2))→ Z/2→ 0.

As we have already remarked that H2(Qp;Z/2) = H2(R;Z/2) = Z/2, this com-
pletes the calculation of H∗(Q;Z/2).

The method for computing the Witt group W (Q) proceeds similarly by working
one prime at a time. See [S1, Section 5.3]. One has an isomorphism of groups
W (Q) ∼= Z⊕ (⊕pW (Fp)) [S1, Thm. 5.3.4]. With enough trouble one can compute
GrIW (Q), but we will leave this for the reader to consider.

Remark A.2. Note that the verification of the Milnor conjectures for F = Q tells
us exactly how to classify quadratic forms over Q by invariants. First one needs
the invariants over R (which are just rank and signature), and then one needs
the invariants over each Qp—but for Qp one has I3 = 0, and so p-adic forms are
classified by the three classical invariants e0, e1, and e2. These observations are
essentially the content of the classical Hasse-Minkowski theorem.

The method we’ve used above, of working one completion at a time, works for all
global fields; this is due to Tate for Galois cohomology, and Bass and Tate for KM

∗ .
In this way one verifies the Milnor conjecture for this class of fields [Mi, Lemma
6.2]. Note in particular that the class includes all finite extensions of Q.
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Appendix B. More on the motivic Adams spectral sequence

This final section is a supplement to Section 4. I will give some hints on comput-
ing the E2-term of the motivic Adams spectral sequence, for the reader who would
like to try this at home. The computations are not hard, but there are several small
issues that are worth mentioning.

B.1. Setting things up. H∗∗H is the algebra of operations on mod 2 motivic
cohomology. We will write this as A from now on. There is the Bockstein β ∈ A1,0

and there are squaring operations Sq2i ∈ A2i,i. We set Sq2i+1 = βSq2i ∈ A2i+1,i.
Finally, there is an inclusion of rings H∗∗ → A sending an element t to the operation
left-multiplication-by-t. Under our standing assumptions about A (see Section 4),
it is free as a left H∗∗-module with a basis consisting of the admissible sequences
Sqi1Sqi2 · · ·Sqik .

There are two main differences between what happens next and what happens
in ordinary topology. These are:

(a) The vector space H∗∗ = H∗∗(pt), regarded as a left A-module, is nontrivial.
(b) The image of H∗∗ ↪→ A is not central.

The above two facts are connected. Let t ∈ H∗∗ and let Sq denote some Steenrod
operation. It is not true in general that Sq(t · x) = t · Sq(x)—instead there is a
Cartan formula for the left-hand side [V2, 9.7], which involves Steenrod operations
on t. So the operations Sq · t and t · Sq are not the same element of A. There is
one notable exception, which is when all the Steenrod squares vanish on t. This
happens for elements in Hn,n, for dimension reasons. So we have

(c) Every element of Hn,n is central in A.

It is important that we can completely understand H∗∗ as an A-module. This
will follow from (1) the fact that H∗∗ ∼=

(
⊕nHn,n

)
[τ ] (see Remark 2.10); (2) all

Steenrod operations vanish on Hn,n for dimension reasons; (3) all Sqi’s vanish on
τ except for Sq1, and Sq1(τ) = ρ = {−1} ∈ H1,1; (4) the Cartan formula. In
particular we note the following two facts about H∗∗, which are all that will be
needed later (the second fact only needs Remark 2.10):

(d) The map Sq2 : Hn−1,n → Hn+1,n+1 is zero for all n ≥ 1.
(e) The map Hp,q ⊗Hi,j → Hp+i,q+j is surjective for q ≥ p ≥ 0 and j ≥ i ≥ 0.

We are aiming to compute ExtaA(H∗∗,Σb,0H∗∗). In ordinary topology we could
use the normalized bar construction to do this, but one has to be careful here
because H∗∗, as a left A-module, is not the quotient of A by a two-sided ideal.
One way to see this is to use the fact that Sq1(τ) = ρ. Under the quotient map
A→ H∗∗ sending θ to θ(1), Sq1 maps to zero but Sq1τ does not (it maps to ρ).

So instead of the normalized bar construction we must use the unnormalized one.
This can be extremely annoying, but for the most part it turns out not to influence
the “low-dimensional” calculations we’re aiming for. It is almost certainly an issue
when computing past column two of the Adams E2 term, though. Anyway, let

Bn = A⊗H∗∗ A⊗H∗∗ · · · ⊗H∗∗ A⊗H∗∗ H∗∗

(n + 1 copies of A). The final H∗∗ can be dropped off, of course, but it’s useful
to keep it there because the A-module structure on H∗∗ is nontrivial and enters
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into the definition of the boundary map. If we denote the generators of Bn as
x = a[θ1|θ2| · · · |θn]t then the differential is

d(x) = (aθ1)[θ2| · · · |θn]t+ a[θ1θ2|θ3| · · · |θn]t+ · · ·+ a[θ1| · · · |θn−1]θn(t).

The good news is that our coefficients have characteristic 2, and so we don’t have
to worry about signs. Note that Bn, as a left H∗∗-module, is free on generators
1[θ1| · · · |θn]1 where each θi is an admissible sequence of Steenrod operations (and
we must include the possibility of the null sequence Sq0 = 1). We will often drop
the 1’s off of either end of the bar element, for convenience.

Generators of HomA(Bn, H
∗∗) can be specified by giving a bar element

[θ1| · · · |θn] together with an element t ∈ H∗∗. This data defines a homomorphism
Bn → H∗∗ sending the generator [θ1| · · · |θn] to t and all other generators of Bn to
zero. Let’s denote this homomorphism by t[θ1| · · · |θn]∗. These elements generate
HomA(Bn, H

∗∗) as an abelian group.
The last general point to make concerns the multiplicative structure in the cobar

construction. If we were working with ExtA(k, k) where k is commutative and A
is an augmented k-algebra, multiplying two of the above generators in the cobar
complex just amounts to concatenating the bar elements—the labels t ∈ k commute
with the θ’s, and so can be grouped together: e.g. t[θ1| · · · |θn] · u[α1| · · · |αk] =
tu[θ1| · · · |θn|α1| · · · |αk]. In our case, the fact that H∗∗ is not central in A immensely
complicates the product on the cobar complex: very roughly, the u has to be
commuted across each θi, and in each case a resulting Cartan formula will introduce
new terms into the product. Luckily there is one case where these complications
aren’t there, which is when u ∈ Hn,n—for then u is in the center of A, and the
product works just as above. We record this observation for future use:

(f) t[θ1| · · · |θn]∗ · u[α1| · · · |αk]∗ = tu[θ1| · · · |θn|α1| · · · |αk]∗ when u ∈ Hq,q.

B.2. Computations. We are trying to compute the groups ExtaA(H∗∗,Σb,0H∗∗),
and from here on everything is fairly straightforward. As an example let’s look at
b = 1. Since Hp,q 6= 0 only when 0 ≤ p ≤ q, one sees that HomA(B0, H

∗∗) = 0 and
HomA(B1,Σ

1,0H∗∗) ∼= H0,0 ⊕H1,1. The generators for this group are elements of
the form s[Sq1]∗ and t[Sq2]∗, where s ∈ H0,0 and t ∈ H1,1.

We likewise find that HomA(B2,Σ
1,0H∗∗) ∼= H0,1⊕H0,1⊕H0,1⊕H0,1, generated

by elements s[Sq1|1]∗, s[1|Sq1]∗, t[Sq2|1]∗, and t[1|Sq2]∗. A similar analysis shows
that HomA(Bn,Σ

1,0H∗∗) only has such ‘degenerate’ terms for n ≥ 2. No degenerate
terms like these contribute elements to Ext (at worst they can contribute relations
to Ext). So the Extn’s vanish for n ≥ 2. An analysis of the coboundary shows that
everything in dimension 1 is a cycle. So we find that

0 = Ext0(H∗∗,Σ1,0H∗∗) = Extn(H∗∗,Σ1,0H∗∗), for n ≥ 2

and
Ext1(H∗∗,Σ1,0H∗∗) ∼= H0,0 ⊕H1,1

with a typical element in the latter group having the form s[Sq1]∗+ t[Sq2]∗ (where
s ∈ H0,0 and t ∈ H1,1).

In general, one sees for degree reasons that the ‘non-degenerate’ terms in
HomA(Bn,Σ

n,0H∗∗) all have the form t[θ1| · · · |θn]∗ where each θi is either Sq1
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or Sq2. In HomA(Bn−1,Σ
n,0H∗∗) one has non-degenerate terms u[θ1| · · · |θn−1]∗ of

the following types:

(i) Each θi ∈ {Sq1, Sq2}, and at least one Sq2 occurs. Here u ∈ Hj−1,j where j
is the number of Sq2’s.

(ii) Each θi ∈ {Sq1, Sq2, Sq3}, and exactly one Sq3 occurs. Here u ∈ Hj+1,j+1

where j is the number of Sq2’s.
(iii) Each θi ∈ {Sq1, Sq2, Sq2Sq1}, and exactly one Sq2Sq1 occurs. Here one has

u ∈ Hj+1,j+1 where j is the number of Sq2’s.
(iv) Each θi ∈ {Sq1, Sq2, Sq4}, and exactly one Sq4 occurs. Here u ∈ Hj+2,j+2

where j is the number of Sq2’s.

To analyze the part of the boundary Bn → Bn−1 that we care about, one
only needs to know the Adem relations Sq1Sq2 = Sq3 and Sq2Sq2 = τSq3Sq1.
(In fact, since Sq3Sq1 doesn’t appear in any of the bar elements relevant to
Hom(Bn−1,Σ

n,0H∗∗), one may as well pretend Sq2Sq2 = 0.) From this it’s easy to
compute that Extn(H∗∗,Σn,0H∗∗) ∼= H0,0 ⊕ Hn,n where a typical element has
the form s[Sq1|Sq1| · · · |Sq1]∗ + t[Sq2|Sq2| · · · |Sq2]∗. The computation uses re-
mark B.1(d). Also, one sees that all elements s[Sq1|Sq2]∗ and s[Sq2|Sq1]∗ are
zero in Ext2 (being the coboundaries of s[Sq3]∗ and s[Sq2Sq1]∗, respectively). Us-
ing remark (f) from Section B.1, this completely determines ⊕n Extn(H∗∗,ΣnH∗∗)
as a subring of the whole Ext-algebra.

The next step is to compute Ext0(H∗∗,Σ1,0H∗,∗), Ext1(H∗∗,Σ2,0H∗,∗), and
Ext2(H∗∗,Σ3,0H∗,∗) completely. The first group is readily seen to vanish. For
the second group one has to grind out another term of the bar construction, but
it’s a very small term. One finds that

Ext1(H∗∗,Σ2,0H∗,∗) ∼= H0,1 ⊕H2,2

where the generators have the form s[Sq2]∗ + (Sq1s)[Sq3]∗ and t[Sq4]∗. To get the
Ext2 group one will need three more Adem relations, namely

Sq2Sq3 = Sq5 + Sq4Sq1, Sq2Sq4 = Sq6 + τSq5Sq1, and Sq3Sq2 = ρSq3Sq1.

Then the same kind of coboundary calculations (but a few more of them) show that

Ext2(H∗∗,Σ3,0H∗,∗) ∼= H1,2 ⊕H2,2

where the generators are s[Sq2|Sq2]∗ + (Sq1s)[Sq3|Sq2]∗ and t[Sq1|Sq4]∗ =
t[Sq4|Sq1]∗ (these last two classes are the same in Ext). It is important to
note that all elements u[Sq2|Sq4]∗ and u[Sq4|Sq2]∗ are coboundaries (of u[Sq6]∗

and u[Sq4Sq2]∗, respectively). This justifies fact (7) on page 20. To jus-
tify fact (6) from that same page (for n = 2), one notices that the cycles
s[Sq2|Sq2]∗ + (Sq1s)[Sq3|Sq2]∗ and t[Sq4|Sq1]∗ decompose as a products(

s1[Sq2]∗ + (Sq1s1)[Sq3]∗
)
· (s2[Sq2]∗) and

(
t1[Sq4]∗

)
·
(
t2[Sq1]∗

)
for some s1 ∈ H0,1, s2 ∈ H1,1, t1 ∈ H2,2, and t2 ∈ H0,0. This uses remarks (e)
and (f) from Section B.1, together with the fact that (Sq1s1)s2 = Sq1(s1s2) for
s2 ∈ H2,2 (by the Cartan formula).

The final step is to analyze the groups Extn−1(H∗∗,Σn,0H∗∗) for n ≥ 4; these
complete the E1,∗ column of the Adams spectral sequence. One doesn’t have to
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compute them explicitly, just enough to know that every element is decomposable
as a sum of products from Extn−2(H∗∗,Σn−1,0H∗∗) and Ext1(H∗∗,Σ1,0H∗∗).

The calculations involve nothing more than what we’ve done so far, except for
more sweat. It’s fairly easy to write down all the cocycles made up from the classes
of types (i)-(iv) listed previously. All bar elements which have a Sq4 in them are
cocycles, for instance. But note that such a bar element will either begin or end
with a Sq1 or a Sq2, so that it decomposes as a product of smaller degree cocycles
(this again depends on B.1(e,f)). One also finds cocycles of the form

s[Sq1|Sq1| · · · |Sq3|Sq1| · · · |Sq1]∗ + s[Sq1|Sq1| · · · |Sq2Sq1|Sq1| · · · |Sq1]∗,

but for each of these a common [Sq1]∗ can be pulled off of either the left or right
side—again showing it to be decomposable.

Certainly there are cocycles which are not decomposable, like ones of the form

s[Sq2|Sq1| · · · |Sq1|Sq3]∗ + s[Sq2Sq1|Sq1| · · · |Sq1|Sq2]∗.

But this is the coboundary of s[Sq2Sq1|Sq1| · · · |Sq1|Sq3], and so vanishes in Ext.
Anyway, I am definitely not going to give all the details. But with enough

diligence one can see that all elements of Extn−1(H∗∗,Σn,0H∗∗) for n ≥ 3 do
indeed decompose into products.

Remark B.3. A final note about Adem relations, for those who want to try
their hand at further calculations. Every formula I’ve seen for the motivic
Adem relations—in publications or preprints—seems to either contain typos or
else is just plain wrong. A good test for a given formula is to see whether it
gives Sq3Sq2 = ρSq3Sq1 (this formula follows from the smaller Adem relation
Sq2Sq2 = τSq3Sq1, the derivation property of the Bockstein, the fact that β2 = 0,
and the identity Sq3 = βSq2).
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