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Abstract. We use Cayley-Dickson algebras to produce Hopf elements
η, ν, and σ in the motivic stable homotopy groups of spheres, and we
prove the relations ην = 0 and νσ = 0 by geometric arguments. Along
the way we develop several basic facts about the motivic stable homo-
topy ring.
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1. Introduction

The work of Morel and Voevodsky [MV, V] has shown how to construct
from the category Sm/k of smooth schemes over a commutative ring k a
corresponding motivic stable homotopy category. This comes to us as the
homotopy category of a model category of motivic symmetric spectra [Ho, J].
Among the motivic spectra are certain “spheres” Sp,q for all p, q ∈ Z, so that
for any motivic spectrum X one obtains the bi-graded stable homotopy
groups π∗,∗(X) = ⊕p,q[Sp,q, X]. This paper deals with the construction of
some elements and relations in the motivic stable homotopy ring π∗,∗(S),
where S is the sphere spectrum.

Classically there are two ways of trying to compute stable homotopy
groups. First there was the hands-on approach of Hopf, Toda, Whitehead,
and others, where one constructs explicit elements and explicit relations.
Of course this is difficult and painstaking. Later on, Serre’s thesis, and its
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ultimate realization in the Adams spectral sequence, greatly reduced the
difficulties in calculation—but at the expense of computing the homotopy
groups of the completions S∧p , not S itself. Fortunately these things are
closely related: πj(S∧p ) is just the p-completion of πj(S).

In the motivic setting the analog of the Adams spectral sequence was
explored in [DI2] over an algebraically closed field. For other fields the
computations are much more challenging, even for fields like R and Q. The
motivic Adams-Novikov spectral sequence over algebraically closed fields
was considered in [HKO]. Recent work of Ormsby-Østvaer studies related
issues over the p-adic fields Qp [OØ1].

In the present paper our goal is to explore a little of the “hands-on”
approach of Hopf, Toda, and Whitehead to motivic homotopy groups. That
is to say, our goal is to construct very explicit elements of these groups and
to demonstrate some relations that they satisfy. Most of our results work
over an arbitrary base; equivalently, they work over the universal base Z.
But in practice it is often useful to assume that the base k is either a field
or the integers Z. Occasionally we will restrict to the case of a field, for
purposes of exposition.

In comparison to Adams spectral sequence computations, the hands-on
constructions considered in this paper are very grueling. The ratio of effort
versus payoff is fairly large. For this reason we give a few remarks about the
motivation for pursuing this line of inquiry.

A drawback of the Adams spectral sequence methods is that the spectral
sequences converge only to the homotopy groups of a suitable completion
S∧H , based on the choice of a prime p. Unlike the classical case, appropriate
finiteness theorems are not available and a priori there can be a significant
difference between the motivic homotopy groups themselves, their comple-
tions, and the homotopy groups of the completed sphere spectrum. The
motivic Adams spectral sequences compute highly interesting objects, re-
gardless of their exact relationship to the motivic stable homotopy groups.
For example, one can use these motivic spectral sequences to learn about
classical and equivariant stable homotopy theory, even without identifying
the motivic completion S∧H precisely. But while these techniques lead to
interesting results, one still cannot help but wonder about the nature of the
“true” motivic homotopy groups.

One important aspect of the motivic stable homotopy groups is that they
act as operations on every (generalized) motivic cohomology theory. And
although it is tautological, it is useful to keep in mind that the motivic
stable homotopy ring π∗,∗(S) equals the ring of universal motivic cohomol-
ogy operations. Studying this ring thereby gives us potential tools relevant
to algebraic K-theory and algebraic cobordism, for example. In contrast,
studying the motivic homotopy groups of the Adams completions only give
tools relevant to completed versions of K-theory and cobordism.
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Another drawback of the motivic Adams spectral sequence approach is
that it only applies in situations where one has very detailed information
about the structure of the motivic Steenrod algebra. This information is
available when working over an essentially smooth scheme over a field whose
characteristic is different from the chosen prime p [HKØ]. However, it is not
clear whether these results can be extended to schemes that are not defined
over a field, such as Spec Z. Moreover, when p equals the characteristic of
the base field the structure of the motivic Steenrod algebra is likely to be
more complicated.

1.1. Background. It follows from Morel’s connectivity theorem [M3] that
the motivic stable homotopy groups of spheres vanish in a certain range:
πp,q(S) = 0 for p < q. The group ⊕pπp,p(S) is called the “0-line”, and was
completely determined by Morel. It will be useful to briefly review this.

Recall that S1,1 = (A1 − 0). For each a ∈ k× let ρa : S0,0 → S1,1 be the
map that sends the basepoint to 1 and the nonbasepoint to a. This gives a
homotopy element ρa in π−1,−1(S). We write ρ for ρ−1 because, as we will
see, this element plays a special role.

Furthermore, performing the Hopf construction (cf. Appendix C) on the
multiplication map (A1−0)×(A1−0)→ (A1−0) gives a map η : S3,2 → S1,1,
and therefore a corresponding element η in π1,1(S). Finally, let us write
ε : S1,1 ∧ S1,1 → S1,1 ∧ S1,1 for the twist map. It represents an element in
π0,0(S).

Morel’s theorem [M1] is the following.

Theorem 1.2 (Morel [M2]). Let k be a perfect field whose characteristic is
not 2. The ring ⊕nπn,n(S) is the free associative algebra generated by the
elements η and ρa (for all a in k×) subject to the following relations:

(i) ηρa = ρaη for all a in k×;
(ii) ρa · ρ1−a = 0 for all a ∈ k − {0, 1};
(iii) η2ρ + 2η = 0;
(iv) ρab = ρa + ρb + ηρaρb, for all a, b ∈ k×;
(v) ρ1 = 0.

Additionally, one has ε = −1− ρη.

The relations in Theorem 1.2 have a number of algebraic consequences,
some of which are interesting for their own sakes. For example, it follows
through a lengthy chain of manipulations that ρaρb = ερbρa [M4, Lemma
2.7(3)]. This is a special case of a more general formula from Proposition
2.5 concerning commutativity in the motivic stable homotopy ring.

There is a map of symmetric monoidal categories

Ho (Spectra)→ Ho (MotSpectra)

that sends a spectrum to the corresponding “constant presheaf”. The techni-
cal details are unimportant here, only that this gives a map πn(S)→ πn,0(S)
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from the classical stable homotopy groups to their motivic analogs. For an
element θ ∈ πn(S) let us write θtop for its image in πn,0(S). So, for example,
we have the elements ηtop in π1,0(S), νtop in π3,0(S), and σtop in π7,0(S).

At this point our exposition has reached the limit of what is available
in the literature. No complete computation has been made of any stable
motivic homotopy group πp,q(S) for p > q. (For some computations of
unstable homotopy groups, though, see [AF]; also, after the present paper
was circulated the paper [OØ2] computed the group π1,0(S) over certain
ground fields).

1.3. Statements of results. Using a version of Cayley-Dickson algebras
we construct elements ν in π3,2(S) and σ in π7,4(S). Taken together with η
in π1,1(S) we call these the motivic Hopf elements. There is also a zeroth
Hopf element: classically this is 2 in π0(S), but in the motivic context it
turns out to be better to take this to be 1 − ε in π0,0(S) (we will see why
momentarily).

Morel shows in [M2] that the relation εη = η follows from commutativity
of the multiplication map µ : (A1 − 0) × (A1 − 0) → A1 − 0. We offer the
general philosophy that properties of the higher Cayley-Dickson algebras
should give rise to relations amongst the Hopf elements. Teasing out such
relations from the properties of the algebras is a tricky business, though. In
this paper we prove the following generalization of Morel’s result:

Theorem 1.4. (1− ε)η = ην = νσ = 0.

The three relations fit an evident pattern: the product of two successive
Hopf elements is zero. We call this the “null-Hopf relation”. Notice that the
pattern of three equations provides some motivation for regarding 1 − ε as
the zeroth Hopf map. The following corollary is worth recording:

Corollary 1.5. εν = −ν.

Proof. εν = (−1− ρη)ν = −ν, since ην = 0. �

As a long-term goal it would be nice to completely determine the subal-
gebra of π∗,∗(S) generated by the motivic Hopf elements, the elements ρa,
and the image of π∗(S)→ π∗,0(S). These constitute the part of π∗,∗(S) that
is “easy to write down”. Completion of this goal seems far away, however.

There are other evident geometric sources for maps between spheres. One
class of examples are the nth power maps Pn : (A1−0)→ (A1−0). These give
elements of π0,0(S), and we completely identify these elements in Theorem
1.6 below. Another group of examples are the diagonal maps ∆p,q : Sp,q →
Sp,q ∧ Sp,q. In classical topology these are all null-homotopic, and most of
them are null motivically as well. There is, however, an exception when
p = q:

Theorem 1.6.
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(a) For n ≥ 0 the diagonal map ∆: Sn,n → Sn,n ∧ Sn,n represents ρn in
π−n,−n(S).

(b) For p > q ≥ 0 the diagonal map ∆: Sp,q → Sp,q∧Sp,q is null homotopic.
(c) For n in Z, the nth power map Pn : (A1 − 0)→ (A1 − 0) represents{

n
2 (1− ε) if n is even,

1 + n−1
2 (1− ε) if n is odd.

The various facts in the above theorem are useful in a variety of cir-
cumstances, but there is a specific reason for including them in the present
paper: all three parts play a role in the proof of the null-Hopf relation from
Theorem 1.4.

1.7. Next Steps. This paper does not exhaust the possibilities of the
“hands-on” approach to motivic stable homotopy groups over Spec Z. An
obvious next step is to consider generalizations of the classical relation
12ν = η3 in π3(S).

This formula as written cannot possibly hold motivically, since the left
side belongs to π3,2(S) while the right side belongs to π3,3(S). An obvious
substitution is to ask whether 12ν equals η2ηtop in π3,2(S). One might
speculate that the 12ν should be replaced by 6(1−ε)ν, but these expressions
are already known to be equal in π3,2(S) by Corollary 1.5.

Another possible extension concerns Toda brackets. Classically, the Toda
bracket 〈η, 2, ν2〉 in π8(S) contains an element called “ε” that is a multi-
plicative generator for the stable homotopy ring. (Beware that this bracket
has indeterminacy generated by ησ.) Motivically, we can form the Toda
bracket 〈η, 1 − ε, ν2〉 in π8,5(S) and obtain a motivic generalization over
Spec Z. (There is a notational conflict here because ε is used in the motivic
context for the twist map in π0,0(S).)

There is much more to say about Toda brackets in this context, but we
will leave the details for future work.

1.8. Organization of the paper. There is a certain amount of technical
machinery needed for the paper, and this has all been deposited into three
appendices. The body of the paper has been written assuming knowledge
of these appendices, but the most efficient way to read the paper might be
to first ignore them, referring back only as needed for technical details. Ap-
pendix A deals with stable splittings of smash products inside of Cartesian
products. Appendix B deals with joins and also certain issues of “canonical
isomorphisms” in homotopy theory. Finally, Appendix C treats the Hopf
construction and related issues; there is a key idea of “melding” two pair-
ings together, and a recondite formula for the Hopf construction of such a
melding (Proposition C.10). This formula is perhaps the most important
technical element in our proof of the null-Hopf relation.
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Concerning the main body of the paper, Section 2 reviews basic facts
about the motivic stable homotopy category and the ring π∗,∗(S). An im-
portant issue here is the precise definition of what it means for a map in
the stable homotopy category to represent an element of π∗,∗(S), and also
formulas for dealing with the “motivic signs” that inevitably arise in calcu-
lations.

Section 3 deals with diagonal maps and power maps, and there we prove
Theorem 1.6. Section 4 reviews the necessary material about Cayley-Dickson
algebras and defines the motivic Hopf elements η, ν, and σ. Finally, in
Section 5 we prove the null-Hopf relation of Theorem 1.4.

1.9. Notation. We remark that the symbols χ and p, when applied to
maps, have a special meaning in this paper. Maps called p are always the
projection from a Cartesian to a smash product, and maps called χ are
certain stable splittings for these projections. See Appendix A for details.

1.10. Acknowledgements. The first author was supported by NSF grant
DMS-0905888. The second author was supported by NSF grant DMS-
1202213.

2. Preliminaries

This section describes certain foundational issues and conventions regard-
ing the motivic stable homotopy category and the motivic stable homotopy
ring π∗,∗(S).

2.1. Basic setup. Fix a commutative ring k (in practice this will usu-
ally be Z or a field). Let Sm/k denote the category of smooth schemes
over Spec k. The category of motivic spaces is the category of simplicial
presheaves sPre(Sm/k). This category carries various Quillen-equivalent
model structures that represent unstable A1-homotopy theory, but for the
purposes of this paper we will mostly use the injective model structure de-
veloped in [MV]. It is very convenient that all objects are cofibrant in this
structure. We will usually shorten “motivic spaces” to just “spaces” for the
rest of the paper.

Most of the paper restricts to the setting of pointed motivic spaces. This is
the associated model category sPre(Sm/k)∗ = (∗↓sPre(Sm/k)) of motivic
spaces under ∗.

As explained in [J], one can stabilize the category of pointed motivic
spaces to form a model catgory of motivic symmetric spectra. We write
MotSpectra for this category. Our aim in this paper is to work in the
homotopy category Ho (MotSpectra) as much as possible, and this is where
all of our theorems take place. As is usual in homotopy theory, however, a
certain amount of work necessarily has to take place at the model category
level.
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It is useful to be able to compare the motivic homotopy category to the
classical homotopy category of topological spaces, and there are a couple
of ways to do this. The “constant presheaf” functor is the left adjoint in
a Quillen pair sSet → sPre(Sm/k) (when we write Quillen pairs we draw
an arrow in the direction of the left adjoint). This stabilizes to a similar
Quillen pair between symmetric spectra categories

Spectra
c−→MotSpectra.

Alternatively, if the base ring k is embedded in C then we can ‘realize’ our
motivic spaces as ordinary topological spaces, and likewise realize motivic
spectra as ordinary spectra. Unfortunately this doesn’t work well at the
model category level if we use the injective model structure, as we do not
get Quillen pairs. For these comparison purposes it is more convenient to
use the flasque model structure of [I]. We will not need the details in the
present paper, only the fact that this can be done; we occasionally refer to
topological realization in a passing comment.

2.2. Spheres and the ring π∗,∗(S). We begin with the two objects S1,0

and S1,1 in Ho (MotSpectra). Here S1,0 = Σ∞S1, where S1 is the “sim-
plicial circle”, i.e., the constant presheaf with value S1. Likewise, S1,1 is
the suspension spectrum of the representable presheaf (A1 − 0), which has
basepoint given by the rational point 1 in (A1 − 0).

Let us fix motivic spectra S−1,0 and S−1,−1 together with isomorphisms
(in the homotopy category) a1 : S−1,0∧S1,0 → S0,0 and a2 : S−1,−1∧S1,1 →
S0,0. There is some choice involved in these isomorphisms, as they can be
varied by an arbitrary self-homotopy equivalence of the spectrum S0,0. For
a1 it is convenient to fix the corresponding isomorphism a : S−1 ∧ S1 → S0

in Spectra and then let a1 be the image of a under the derived functor of c.
For a2 it is perhaps best to fix a choice once and for all over Spec Z, and to
insist that the topological realization of a2 is a; this is not strictly necessary,
however.

For each integer n, define

Sn,0 =

{
(S1,0)∧(n) if n ≥ 0,
(S−1,0)∧(−n) if n < 0,

Sn,n =

{
(S1,1)∧(n) if n ≥ 0,
(S−1,−1)∧(−n) if n < 0.

Finally, for integers p and q, define

Sp,q = (S1,0)∧(p−q) ∧ (S1,1)∧(q).

We will need the following important result from [D]: for any bidegrees
(p1, q1), . . . , (pn, qn) and (p′1, q

′
1), . . . , (p

′
k, q

′
k) in Z2 such that

∑
i pi =

∑
i p

′
i
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and
∑

i qi =
∑

i q
′
i, there is a uniquely–distinguished “canonical isomor-

phism”
φ : Sp1,q1 ∧ · · · ∧ Spn,qn → Sp′1,q′1 ∧ · · · ∧ Sp′k,q′k

in the homotopy category of motivic spectra. These canonical isomorphisms
have the properties that:

• If φ and φ′ are canonical then so are φ ∧ φ′ and φ−1;
• Identity maps are all canonical, as are the maps a1 and a2;
• The unit maps Sp,q∧S0,0 ∼= Sp,q and S0,0∧Sp,q ∼= Sp,q are canonical;
• Any composition of canonical maps is canonical.

See [D, Remark 1.9] for a complete discussion. We will always denote these
canonical morphisms by the symbol φ. (Note: In this paper we systemati-
cally suppress all associativity isomorphisms; but if we were not suppressing
them, they would also be canonical).

Define πp,q(S) = [Sp,q, S0,0] and write π∗,∗(S) for ⊕p,qπp,q(S). If f ∈
πa,b(S) and g ∈ πc,d(S) define f · g to be the composite

Sa+c,b+d φ−→ Sa,b ∧ Sc,d f∧g−→ S0,0 ∧ S0,0 ∼= S0,0.

By [D, Proposition 6.1(a)] this product makes π∗,∗(S) into an associative
and unital ring, where the subring π0,0(S) is central.

2.3. Representing elements of π∗,∗(S). Let f : Sa,b → Sp,q. We write
|f | for (a−p, b−q), i.e., the bidegree of the motivic stable homotopy element
that f will represent. There are two ways to obtain an element of πa−p,b−q(S)
from f , which we will denote [f ]l and [f ]r. Let [f ]l be the composite

Sa−p,b−q φ−→ Sa,b ∧ S−p,−q f∧id−→ Sp,q ∧ S−p,−q φ−→ S0,0

and let [f ]r be the composite

Sa−p,b−q φ−→ S−p,−q ∧ Sa,b id∧f−→ S−p,−q ∧ Sp,q φ−→ S0,0.

It is proven in [D, Section 6.2] that [gf ]r = [g]r ·[f ]r, whereas [gf ]l = [f ]l ·[g]l.
In this paper we will never use [f ]l, and so we will just write [f ] = [f ]r.

For each a, b, p, q ∈ Z let t(a,b),(p,q) denote the composition

Sa+p,b+q φ−→ Sa,b ∧ Sp,q t−→ Sp,q ∧ Sa,b φ−→ Sa+p,b+q

where t is the twist isomorphism for the smash product. Write τ(a,b),(p,q) =
[t(a,b),(p,q)] ∈ π0,0(S). It is easy to see that τ1,0 = −1, as this formula holds in
Ho (Spectra) and one just pushes it into Ho (MotSpectra) via the functor c.
Let ε = τ1,1. The following formula is then a special case of [D, Proposition
6.6]:

τ(a,b),(p,q) = (−1)(a−b)·(p−q) · εb·q.(2.4)

Note that τ : Z2 × Z2 → π0,0(S)× is bilinear.
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The elements τ(a,b),(p,q) arise in various formulas related to commutativity
of the smash product. For example, the following is from [D, Proposition
1.18]:

Proposition 2.5 (Graded-commutativity). Let f ∈ πa,b(S) and g ∈ πc,d(S).
Then

fg = gf · τ(a,b),(c,d) = gf · (−1)(a−b)(c−d) · εbd.

Remark 2.6. If f : Sa,b → Sp,q then we may consider the two maps f ∧ idr,s

and idr,s ∧f . All three of these maps represent elements in π∗,∗(S), but
not necessarily the same ones. The following two facts are proven in [D,
Proposition 6.11]:

i. [idr,s ∧f ] = [f ]
ii. [f∧idr,s] = τ|f |,(r,s)·[f ] = τ(a−p,b−q),(r,s)[f ] = (−1)(a−p−b+q)·(r−s)ε(b−q)s[f ].

A useful special case says that if f : Sa,b → Sa,b then [f ] = [idr,s ∧f ] =
[f ∧ idr,s].

If g : Sr,s → St,u then combining (i) and (ii) we obtain

iii. [f ∧g] = [(f ∧ idt,u)◦ (ida,b ∧g)] = [f ∧ idt,u] · [ida,b ∧g] = [f ] · [g] · τ|f |,(t,u).

2.7. Homotopy spheres. We will often study maps f : X → Y where X
and Y are homotopy equivalent to motivic spheres but not actual spheres
themselves. In this case one can obtain a corresponding element [f ] of
π∗,∗(S), but only after making specific choices of orientations for X and Y .

To make this precise, let us say that a homotopy sphere is a motivic
spectrum X that is isomorphic to some sphere Sp,q in the motivic stable
homotopy category. An oriented homotopy sphere is a motivic spectrum
X together with a specified isomorphism X → Sp,q in the motivic stable
homotopy category.

A given homotopy sphere has many orientations. The set of orientations is
in bijective correspondence with the set of multiplicative units inside π0,0(S).
We call this set of units the motivic orientation group, which depends
on the base scheme in general. Note that the analog in classical topology
is the group Z/2 = {−1, 1}. By Morel’s Theorem, over perfect fields whose
characteristic is not 2, the motivic orientation group is the group of units in
the Grothendieck-Witt ring GW (k). A formulaic description of this group
seems to be unknown, but we do not actually need to know anything specific
about it for the content of this paper. Nevertheless, understanding this
group is a curious problem and so we do offer the remark below:

Remark 2.8 (Motivic orientations). Recall that GW (k) is obtained by
quotienting the free algebra on symbols 〈a〉 for a ∈ k× by the relations

(1) 〈a〉〈b〉 = 〈ab〉.
(2) 〈a2〉 = 1.
(3) 〈a〉+ 〈b〉 = 〈a + b〉+ 〈ab(a + b)〉.
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The elements 〈a〉 are clearly units in GW (k), and so one obtains a group
map Z/2 ×

[
k×/(k×)2

]
→ GW (k)× by sending the generator of Z/2 to −1

and the element [a] of k×/(k×)2 to 〈a〉.
The map Z/2×

[
k×/(k×)2

]
→ GW (k)× is an isomorphism in some cases

like k = R and k = Qp for p ≡ 1 mod 4, but not in other cases like k = Qp

for p ≡ 3 mod 4.

Remark 2.9 (Suspension data). Here is a fundamental difficulty that occurs
even in classical homotopy theory: given two objects A and B that are
models for the suspension of an object X, there is no canonical isomorphism
between A and B in the homotopy category. In some sense, the problem
boils down to the fact that if we are just handed a model of ΣX then we are
likely to see two cones on X glued together, but we do not know which is the
“top” cone and which is the “bottom”. Mixing the roles of the two cones
tends to alter maps by a factor of −1. So when talking about models for ΣX
it is important to have the two cones distinguished. We define suspension
data for X to be a diagram [C+X ←− X −→ C−X] where both maps are
cofibrations and both C+X and C−X are contractible. We call C+X the
top cone and C−X the bottom cone. Choices of suspension data will appear
throughout the paper, starting in Remark 2.10(2) below. See Appendix B.1
for more discussion of this and related issues.

Remark 2.10 (Induced orientations on constructions). If X and Y are
homotopy spheres then constructions like suspension, smash product, and
the join (see Appendix B) yield other homotopy spheres. If X and Y are
oriented then these constructions inherit orientations in a specified way:

(1) If X and Y have orientations X → Sp,q and Y → Sa,b, then X ∧ Y has
an induced orientation

X ∧ Y −→ Sp,q ∧ Sa,b φ−→ Sp+a,q+b,

where the second map is the canoncal isomorphism.
(2) If X has an orientation X → Sp,q and C+X ←− X −→ C−X constitutes

suspension data for X, then C+X qX C−X has an induced orientation

C+X qX C−X −→ S1,0 ∧X −→ S1,0 ∧ Sp,q φ−→ Sp+1,q,

where the first map is the canonical isomorphism in the homotopy cat-
egory (see Section B.1).

(3) Suppose that X → Sp,q and Y → Sa,b are orientations. Then the join
X ∗ Y (see Appendix B) has an induced orientation

X ∗ Y −→ S1,0 ∧X ∧ Y
'−→ S1,0 ∧ Sp,q ∧ Sa,b φ−→ Sp+a+1,q+b,

where the first map is the canonical isomorphism in the homotopy cat-
egory from Lemma B.5.
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A map f : X → Y between homotopy spheres does not by itself yield an
element of π∗,∗(S). But once X and Y are oriented we obtain the composite

Sa,b
∼= // X // Y

∼= // Sp,q.

If f̃ denotes this composite, then [f̃ ] gives a corresponding element of
πa−p,b−q(S). In the future we will just denote this element by [f ], by abuse
of notation.

There is an important case in which one does not have to worry about
orientations:

Lemma 2.11. Let X be a homotopy sphere and f : X → X be a self-map.
Then f represents a well-defined element of π0,0(S) that is independent of
the choice of orientation on X.

Proof. Choose any two orientations g : X −→ Sp,q and h : X −→ Sp,q. The
diagram

Sp,q
g−1

//

hg−1

��

X
f // X

g // Sp,q

hg−1

��
Sp,q h−1

// X
f // X

h // Sp,q

commutes in the stable homotopy category. This shows that the elements of
π0,0(S) represented by the top and bottom rows are related by conjugation
by the element hg−1 of π0,0(S). But the ring π0,0(S) is commutative, so
conjugation by hg−1 acts as the identity. �

Example 2.12. The following examples specify standard orientations for
the models of spheres that we commonly encounter.

(1) P1 based at [1 : 1] or [0 : 1].
By the standard affine covering diagram of P1 we mean the covering

U1 ← U1∩U2 → U2 where U1 (resp., U2) is the open subscheme of points
[x : y] such that x 6= 0 (resp., y 6= 0). There is an evident isomorphism
of diagrams

U1

∼=
��

U1 ∩ U2
//oo

∼=
��

U2

∼=
��

A1 (A1 − 0)ioo inv // A1

where i is the inclusion and inv sends a point x to x−1. (For example,
U1 → A1 sends [x : y] to y

x). The bottom row of the diagram is sus-
pension data for (A1 − 0). As in Remark 2.10, this gives an orientation
to A1 q(A1−0) A1. The canonical map A1 q(A1−0) A1 → P1 is a weak
equivalence, which gives an orientation on P1 as well.

(2) (An − 0) based at (1, 1, . . . , 1) or at (1, 0, . . . , 0).
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We orient (An − 0) as the join of (A1 − 0) and (An−1 − 0). That is
to say,

[
(A1 − 0) × An−1

]
q(A1−0)×(An−1−0)

[
A1 × (An−1 − 0)

]
has an

orientation using Remark 2.10 and induction. The canonical map[
[(A1 − 0)× An−1

]
q(A1−0)×(An−1−0)

[
A1 × (An−1 − 0)

]
→ (An − 0)

is a weak equivalence, which gives an orientation on (An − 0).
(3) The split unit sphere S2n−1 based at (1, 0, . . . , 0).

Let A2n have coordinates x1, y1, . . . , xn, yn and let S2n−1 ↪→ A2n be
the closed subvariety defined by x1y1 + · · · + xnyn = 1. The quadratic
form on the left of this equation is called the split quadratic form, and
S2n−1 is called the unit sphere with respect to this split form. Let
π : S2n−1 → (An − 0) be the map (x1, y1, . . . , xn, yn) 7→ (x1, x2, . . . , xn).
This is a Zariski-trivial bundle with fibers An−1, and so π is a weak
equivalence (this follows from a standard argument, for example using
the techniques of [DI1, 3.6–3.9]). The standard orientation on (An − 0)
therefore induces an orientation on S2n−1 via π.

Note that there are other weak equivalences S2n−1 → (An − 0), such
as (x1, y1, . . . , xn, yn) 7→ (x1, x2, . . . , xn−1, yn). These maps can induce
different orientations on S2n−1.

3. Diagonal maps and power maps

Le X be an unstable, oriented, homotopy sphere that is equivalent to Sp,q

for some p ≥ q ≥ 0. The diagonal ∆X : X → X∧X represents an element in
π−p,−q(S). When X = Sp,q we write ∆p,q = ∆Sp,q . Our goal in this section
is the following result.

Theorem 3.1. Let p ≥ q ≥ 0. The element [∆p,q] in π−p,−q(S) is zero if
p > q, and it is ρq if p = q.

In classical algebraic topology these diagonal maps are all null (except for
∆S0) because of the following lemma.

Lemma 3.2. If X is a simplicial suspension then ∆X is null.

Proof. We assume that X = S1,0 ∧ Z and we consider the commutative
diagram

S1,0 ∧ Z

∆X

��

∆1,0∧∆Z

++VVVVVVVVVVVVVVVVVVV

S1,0 ∧ Z ∧ S1,0 ∧ Z
1∧T∧1 // S1,0 ∧ S1,0 ∧ Z ∧ Z.

Since the horizontal map is an isomorphism in the homotopy category, it is
sufficient to check that ∆1,0 is null. But this is true in the homotopy category
of sSet∗, and therefore is true in pointed motivic spaces—the latter follows
using the left Quillen functor c : sSet∗ → sPre∗(Sm/k). �
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Our next goal will be to show that [∆1,1] = ρ in π−1,−1(S). We will
exhibit an explicit geometric homotopy, but to do this we will need to sus-
pend so that we are looking at maps S2,1 → S3,2 instead of S1,1 → S2,2.
The point is that (A2 − 0) gives a convenient geometric model for S3,2 (see
Example 2.12(2)).

We start by considering the two maps

∆1,1, id∧ρ : (A1 − 0) −→ (A1 − 0) ∧ (A1 − 0)

(for the second, we implicitly identify the space A1 − 0 in the domain with
(A1 − 0) ∧ S0,0). We will model the suspensions of these two maps via
conveniently chosen suspension data.

Let C be the pushout [(A1 − 0) × A1] q(A1−0)×{1} [A1 × {1}]; by left
properness, C is contractible (recall that all constructions occur in the
presheaf category). Below we will provide several maps C → A2 − 0,
so note that to specify such a map it suffices to give a polynomial for-
mula (x, t) 7→ f(x, t) = (f1(x, t), f2(x, t)) with the “formal” properties that
f(x, t) 6= (0, 0) whenever x 6= 0, and f(x, 1) 6= (0, 0) for all x. Rigor-
ously, this amounts to the ideal-theoretic conditions that f1, f2 ∈ k[x, t],
x ∈ Rad(f1, f2) and (f1(x, 1), f2(x, 1)) = k[x].

Let D = C q(A1−0) C where (A1 − 0) is embedded in both copies of C as
the presheaf (A1 − 0) × {0}. Note that [C � (A1 − 0) � C] is suspension
data for (A1−0), and so D is a model for the suspension of (A1−0). Let us
adopt the notation where we use (x, t) for the coordinates in the first copy
of C, and (y, s) for the coordinates in the second copy of C. Heuristically,
D consists of two kinds of points (x, t) and (y, s), which are identified when
s = t = 0 and x = y. Let us also use (z, w) for the coordinates on the target
(A2 − 0).

Define the map δ : D → (A2 − 0) by the following formulas:

(x, t) 7→ (x, (1− t)x + t) = (1− t)(x, x) + t(x, 1),

(y, s) 7→ ((1− s)y + s, y) = (1− s)(y, y) + s(1, y).

The reader can verify that these formulas do specify two maps C → (A2−0)
that agree on (A1 − 0)× {0}, and hence determine a map δ : D → (A2 − 0)
as claimed. In a moment we will show that δ gives a model for Σ∆1,1 in the
motivic stable homotopy category.

Let us also define a map R : D → (A2 − 0) by the formulas:

(x, t) 7→ (x,−1 + 2t),

(y, s) 7→ (y,−1).

Once again, these formulas do specify two maps C → (A2 − 0) that agree
on (A1− 0)×{0}, and hence determine a map D → (A2− 0). We will show
that R gives a model for Σ(id∧ρ).

Because the formulas are rather unenlightening, we give pictures that
depict the maps δ and R. Each picture shows a map D → (A2−0), with the
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two different shadings representing the image of the “top” and “bottom”
halves of D, i.e., the two copies of C. Note that the pictures have been
drawn as if the second coordinate on C were an interval [0, 1] instead of
A1. Really, the two shaded regions should each stretch out infinitely in both
directions; but this would produce a picture with too much overlap to be
useful.
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In the picture for δ the reader should note the diagonal (A1−0) ↪→ (A2−0),
and the picture should be interpreted as giving two deformations of the
diagonal: one deformation swings the punctured-line about (1, 1) until it
becomes the w = 1 punctured-line (at which time it can be “filled in” to an
A1, not just an A1 − 0). The second swings the punctured line in the other
direction until it becomes z = 1, and again is filled in to an A1 at that time.
This is our map δ : D → (A2 − 0).

The picture for R is simpler to interpret. We map A1 − 0 to A2 − 0 via
x 7→ (x,−1); one deformation moves this vertically up to x 7→ (x, 1) and
then fills it in to a map from A1, whereas the second deformation leaves it
constant and then fills it in. This gives us two maps C → A2 − 0 which
patch together to define R : D → A2 − 0.

Having introduced δ and R, our next step is to show that they represent
the elements [∆1,1] and ρ in π−1,−1(S).

Lemma 3.3.

(a) The map δ : D → (A2 − 0) represents [∆1,1] in π−1,−1(S).
(b) The map R : D → (A2 − 0) represents ρ in π−1,−1(S).

Proof. Write G = A1 − 0. For δ, consider the diagram

[
G ∧ A1

]
qG∧G

[
A1 ∧G

]
))SSSSSSSSSSSSSS

C qG C

δ′
55lllllllllllllll

δ ))SSSSSSSSSSSSSSS

[
G×A1

]
qG×G

[
A1 ×G

]
OO

//

��

A2−0
A1×1∪1×A1

A2 − 0.

55kkkkkkkkkkkkkkk
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Here δ′ takes the first copy of C to (A1−0)∧A1 via (x, t) 7→ (x, (1− t)x+ t),
and takes the second copy of C to A1 ∧ (A1 − 0) via the formula (y, s) 7→
((1− s)y + s, y). The smash products are important; they allow us to define
δ′ on the two copies of A1×{1} in the two copies of C. Note that the outer
parallelogram obviously commutes.

The five unlabeled arrows are all weak equivalences between homotopy
spheres. Orient each of the spheres in the following way:

• The top sphere is oriented as the suspension of (A1 − 0) ∧ (A1 − 0).
• The middle sphere is oriented as the join (A1 − 0) ∗ (A1 − 0).
• A2 − 0 is oriented in the standard way.
• (A2 − 0)/(A1 × 1 ∪ 1 × A1) is oriented so that the projection map

from A2 − 0 is orientation-preserving.

The five weak equivalences are then readily checked to be orientation-
preserving. This part of the argument only serves to verify that the standard
orientations on the top and bottom spaces (in the middle column) match
up when we map to [A2 − 0]/(A1 × 1 ∪ 1× A1).

The commutativity of the outer parallelogram now implies that δ and δ′

represent the same element of π−1,−1(S). Since δ′ is clearly a model for the
suspension of ∆1,1, this completes the proof that [δ] = [∆1,1].

The same argument shows that R is a model for the suspension of id∧ρ.
Here, we use a map R′ that takes the first copy of C to A1 ∧ (A1 − 0) via
(x, t) 7→ (x,−1 + 2t), and takes the second copy of C to (A1 − 0) ∧ A1 via
(y, s) 7→ (y,−1). �

Our final step is to show that δ and R are homotopic. We will give a
series of homotopies that deforms δ to R. Since the formulas are again
rather unenlightening we accompany them with a sequence of pictures that
depict the three intermediate stages; see Figure 3 below. Each picture is a
map D → (A2−0), and we will give four homotopies showing how to deform
each picture to the next. These pictures will not make complete sense until
one compares to the formulas in the arguments below, but it nevertheless
might be useful to a look at the pictures first.

These pictures (and the explicit formulas in the proof below) can seem
unmotivated. It is useful to know that each homotopy is a standard straight-
line homotopy. If one has the idea of deforming δ to R, and the only tool
one is allowed to use is a straight-line homotopy, a bit of stumbling around
quickly leads to the above chain of maps; there is nothing deep here.

Lemma 3.4. The maps δ and R are homotopic as unbased maps D →
(A2 − 0).

Proof. We will give a sequence of maps H : D × A1 → (A2 − 0), each
giving an A1-homotopy from H0 to H1. These will assemble into a
chain of homotopies from δ to R. Note that D × A1 is isomorphic to
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(C × A1)q(A1−0)×A1 (C × A1) and that C × A1 is isomorphic to[
(A1 − 0)× A1 × A1

]
q(A1−0)×{1}×A1

[
A1 × {1} × A1

]
.

To specify a map C×A1 → (A2−0), it suffices to give a polynomial formula
(x, t, u) 7→ f(x, t, u) = (f1(x, t, u), f2(x, t, u)) with the “formal” properties
that f(x, t, u) 6= (0, 0) whenever x 6= 0, and f(x, 1, u) 6= (0, 0) for all x and
u. Rigorously, this amounts to the ideal-theoretic conditions that f1, f2 ∈
k[x, t, u], x ∈ Rad(f1, f2) and (f1(x, 1, u), f2(x, 1, u)) = k[x, u].

Here are three maps D → (A2 − 0):

f1 : (x, t) 7→ (x, x + t), (y, s) 7→ (y + s, y)

f2 : (x, t) 7→ (x, x + t), (y, s) 7→ (y, y − s)

f3 : (x, t) 7→ (x, t), (y, s) 7→ (y,−s)

and here are four homotopies:

H1 :

{
(x, t, u) 7→ (x, (1− t + ut)x + t)
(y, s, u) 7→ ((1− s + us)y + s, y).

H2 :

{
(x, t, u) 7→ (x, x + t),
(y, s, u) 7→ (y + (1− u)s, y − us).

H3 :

{
(x, t, u) 7→ (x, x + t− ux)
(y, s, u) 7→ (y, y − s− uy).

H4 :

{
(x, t, u) 7→ (x, (1− u)t + u(2t− 1))
(y, s, u) 7→ (y, (u− 1)s− u).

We leave it to the reader to verify that each formula really does define a
map D × A1 → (A2 − 0), and that these give A1-homotopies

δ ' f1 ' f2 ' f3 ' R.

�

Proposition 3.5. The diagonal map (A1−0)→ (A1−0)∧(A1−0) represents
ρ in π−1,−1(S).

Proof. Consider the two maps δ,R : D → A2 − 0. These are based maps if
D and A2−0 are both given the basepoint (1, 1) (in the case of D, choose the
point (1, 1) in the first copy of C). Since δ and R are unbased homotopic,
Lemma 3.6 below yields that Σ∞δ = Σ∞R in the stable homotopy category.
We therefore obtain [∆] = [δ] = [R] = ρ, with the first and last equalities
by Lemma 3.3. �

Lemma 3.6. Let X and Y be pointed motivic spaces, and let f, g : X → Y
be two maps. If f and g are homotopic as unbased maps then Σ∞f = Σ∞g
in the motivic stable homotopy category.
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Figure 1. The sequence of homotopies from δ to R

Proof. For any motivic space A, let CuA = [A × c(∆1)]/[A × {1}] denote
the unbased simplicial cone on a space A, and let ΣuA be the unbased
suspension functor

ΣuA = (CuA)qA×{0} (CuA).

Equip ΣuA with the basepoint given by the “cone point” in the first copy of
CuA. When A is pointed, let ΣA be the usual based simplicial suspension,
i.e. ΣA = (ΣuA)/(Σu∗). Note that the projection ΣuA → ΣA is a natural
based motivic weak equivalence.

Applying Σu and Σ to f and g, and then stabilizing via Σ∞(−), yields
the diagram

Σ∞(ΣuX)
Σ∞(Σuf)//

Σ∞(Σug)
//

'
��

Σ∞(ΣuY )

'
��

Σ∞(ΣX)
Σ∞(Σf) //

Σ∞(Σg)
// Σ∞(ΣY ).

Since f and g are unbased homotopic, Σuf and Σug are based homotopic.
Hence Σ∞(Σuf) = Σ∞(Σug) in the stable homotopy category. The above
diagram then shows that Σ∞(Σf) = Σ∞(Σg), and hence Σ∞f = Σ∞g. �

Our identification of [∆1,1] with ρ gives a nice geometric explanation for
the following relation in π∗,∗(S).
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Corollary 3.7. In π∗,∗(S), there is the relation ερ = ρε = ρ.

Proof. We already know from Proposition 2.5 that ε is central, as it lies in
π0,0(S). Using the model for ε as the twist map on S1,1, note that ε∆1,1 =
∆1,1 as maps S1,1 → S1,1 ∧ S1,1 �

We can finally conclude the proof of the main result of this section.

Proof of Theorem 3.1. If p > q then Sp,q is a simplicial suspension, and
so ∆p,q is null by Lemma 3.2. For the case where p = q we consider the
commutative diagram

Sq,q

∆q,q

��

S1,1 ∧ · · · ∧ S1,1

∆1,1∧···∧∆1,1

��
Sq,q ∧ Sq,q T // (S1,1 ∧ S1,1) ∧ · · · ∧ (S1,1 ∧ S1,1)

where T is an appropriate composition of twist and associativity maps, in-
volving

(
q
2

)
twists. Note that [T ] = ε(

q
2), using Remark 2.6. The diagram

then gives
ρq = [∆1,1]q = [T ] · [∆q,q] = ε(

q
2)[∆q,q]

using Proposition 3.5 for the first equality. Rearranging gives [∆q,q] =
ε(

q
2)ρq = ρq, using ερ = ρ in the final step. �

The following result about arbitrary motivic homotopy ring spectra is a
direct consequence of our work above.

Corollary 3.8. Let E be a motivic homotopy ring spectrum, i.e., a monoid
in the motivic stable homotopy category. Write ρ̄ for the image of ρ under
the unit map π∗,∗(S) → π∗,∗(E). For each n ≥ 0, there is an isomorphism
E∗,∗(Sn,n) ∼= E∗,∗⊕E∗,∗x as E∗,∗-modules, where x is a generator of bidegree
(n, n). The ring structure is completely determined by graded commutativity
in the sense of Proposition 2.5 together with the fact that x2 = ρ̄nx.

In other words, the ring E∗,∗(Sn,n) is an ε-graded-commutative E∗,∗-
algebra on one generator x of bidegree (n, n), subject to the single relation
x2 = ρ̄nx.

Proof. The statement about E∗,∗(Sn,n) as an E∗,∗-module is formal; the
generator x is the map Sn,n ∼= Sn,n ∧ S0,0 id∧u−→ Sn,n ∧E, where u : S0,0 → E
is the unit map. The graded commutativity of E∗,∗(Sn,n) is by [D, Remark
6.14]. It only remains to calculate x2, which is the composite

Sn,n ∆ // Sn,n ∧ Sn,n x∧x // (Sn,n ∧ E) ∧ (Sn,n ∧ E)1∧T∧1// Sn,n ∧ Sn,n ∧ E ∧ E

φ∧µ
��

S2n,2n ∧ E.

It is useful to write this as h(x ∧ x)∆ where h = (φ ∧ µ)(1 ∧ T ∧ 1).
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Let f : S0,0 → Sn,n be a map representing ρn. Then the class ρ̄n in En,n

is represented by the composite

S0,0 f−→ Sn,n ∼= Sn,n ∧ S0,0 id∧u−→ Sn,n ∧ E,

which can also be written as x ◦ f . So ρ̄n ·x is represented by the composite

Sn,n ∼= S0,0 ∧ Sn,n xf∧x−→ (Sn,n ∧ E) ∧ (Sn,n ∧ E) h−→ S2n,n ∧ E.

Note that the first two maps in this composite may be written as

Sn,n ∼= S0,0 ∧ Sn,n f∧1−→ Sn,n ∧ Sn,n x∧x−→ (Sn,n ∧ E) ∧ (Sn,n ∧ E).

Comparing our representation of x2 to that of ρ̄n · x, to show that they
are equal it will suffice to prove that ∆: Sn,n → Sn,n ∧ Sn,n represents the

same homotopy class as Sn,n ∼= S0,0 ∧ Sn,n f∧idn,n−→ Sn,n ∧ Sn,n. That is, we
must verify that [∆] = [f ∧ idn,n].

But [f ∧ idn,n] equals εn[f ] = εnρn = ρn by Remark 2.6 and Corollary 3.7.
This equals [∆n,n] by Theorem 3.1. �

Remark 3.9. When E is mod 2 motivic cohomology, Corollary 3.8 is es-
sentially [V1, Lemma 6.8]. The proof in [V1] uses special properties about
motivic cohomology (specifically, the isomorphism between certain motivic
cohomology groups and Milnor K-theory). Our argument avoids these dif-
ficult results. In some sense, our proof is a universal argument that reflects
the spirit of Grothendieck’s original “motivic” philosophy.

3.10. Power maps. The following result is a simple corollary of Theo-
rem 3.1. In the remainder of the paper we will only need to use the case
n = −1, which could be proven more directly, but it seems natural to include
the entire result.

Proposition 3.11. For any integer n, let Pn : (A1 − 0) → (A1 − 0) be the
nth power map z 7→ zn. In π0,0(S) one has

[Pn] =

{
n
2 (1− ε) if n is even,
1 + n−1

2 (1− ε) if n is odd.

Proof. We will prove that [Pn] = 1−ε[Pn−1]; multiplication by ε then yields
that [Pn−1] = ε−ε[Pn]. The main result follows by induction (in the positive
and negative directions) starting with the trivial base case n = 0.

Consider the following diagram:

A1 − 0
∆ //

∆s ((QQQQQQQQQQQQ (A1 − 0)× (A1 − 0)
id×Pn−1// (A1 − 0)× (A1 − 0)

µ // A1 − 0

(A1 − 0) ∧ (A1 − 0)

χ

OO

id∧Pn−1

// (A1 − 0) ∧ (A1 − 0).

χ

OO

η

66mmmmmmmmmmmm
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Here χ is the stable splitting of the map from the Cartesian product to the
smash product—see Appendix A. This diagram is commutative except for
the left triangle, where we have the relation

∆ = χ∆s + j(π1 + π2)∆(3.12)

by Lemma A.14, where π1 and π2 are the two projections (A1−0)×(A1−0)→
(A1−0)∨(A1−0) and j : (A1−0)∨(A1−0)→ (A1−0)×(A1−0) is the usual
inclusion of the wedge into the product. Note that Pn is the composition
along the top of the diagram.

We now compute that

[Pn] = [µ(id×Pn−1)∆]

= [µ(id×Pn−1)(χ∆s + jπ1∆ + jπ2∆)]

= [µ(id×Pn−1)χ∆s] + [µ(id×Pn−1)jπ1∆] + [µ(id×Pn−1)jπ2∆]

= [η(id∧Pn−1)∆s] + [id] + [Pn−1]

= [η][Pn−1][∆s] + 1 + [Pn−1].

In the last equality we have used that [id∧Pn−1] = [Pn−1], by Remark 2.6.
Now use that [∆s] = ρ, elements of π0,0(S) commute, and that ηρ =

−(1 + ε) (see the last statement in Theorem 1.2). The above equation
becomes [Pn] = −(1 + ε)[Pn−1] + 1 + [Pn−1], or [Pn] = 1− ε[Pn−1]. �

4. Cayley-Dickson algebras and Hopf maps

In this section we introduce the particular Cayley-Dickson algebras needed
for our work. We then apply the general Hopf construction from Section C
to define motivic Hopf elements η, ν, and σ in π∗,∗(S). We also review some
basic properties of η, due to Morel.

4.1. Fundamentals. We begin by reviewing the notion of generalized
Cayley-Dickson algebras from [A] and [Sch]. For momentary convenience,
let k be a field not of characteristic 2; we will explain below in Remark 4.3
how to deal with the integers and fields of characteristic 2.

An involutive algebra is a k-vector space A equipped with a (possi-
bly nonassociative) unital bilinear pairing A × A → A and a linear anti-
automorphism (−)∗ : A→ A whose square is the identity, and such that

x + x∗ = 2t(x) · 1A, xx∗ = x∗x = n(x) · 1A

for some linear function t : A→ k and some quadratic form n : A→ k. Given
such an algebra together with a γ in k×, one can form the Cayley-Dickson
double of A with respect to γ. This is the algebra Dγ(A) whose underlying
vector space is A⊕A and where the multiplication and involution are given
by the formulas

(a, b) · (c, d) = (ac− γd∗b, da + bc∗), (a, b)∗ = (a∗,−b).
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It is easy to check that this is again an involutive algebra, with t(a, b) = t(a)
and n(a, b) = n(a)+γn(b). We will sometimes write D(A) for Dγ(A), when
the constant γ is understood.

Because the Cayley-Dickson doubling process yields a new involutive al-
gebra, it can be repeated. Let γ = (γ0, γ1, γ2, . . .) be a sequence of elements
in k×. Start with A0 = k with the trivial involution, and inductively de-
fine Ai = Dγi−1(Ai−1). This gives a sequence of Cayley-Dickson algebras
A0, A1, A2, . . ., where An has dimension 2n over k. This sequence depends
on the choice of γ. Here are some well-known properties of these Cayley-
Dickson algebras:
(1) A1 is commutative, associative, and normed in the sense that n(xy) =

n(x)n(y) for all x and y in A1;
(2) A2 is associative and normed (but non-commutative in general);
(3) A3 is normed (but non-commutative and non-associative in general).

The standard example of these algebras occurs with k = R and γi = 1
for all i. This data gives A0 = R, A1 = C, A2 = H, and A3 = O (as well
as more complicated algebras at later stages). In each of these algebras,
the norm form n(x) is the usual sum-of-squares form on the underlying real
vector space, under an appropriate choice of basis.

Because motivic homotopy theory takes schemes, rather than rings, as its
basic objects, we will often make the trivial change in point-of-view from
Cayley-Dickson algebras to “Cayley-Dickson varieties”. If A is a Cayley-
Dickson algebra over k of dimension 2n, then the associated variety is iso-
morphic to the affine space A2n

, equipped with the corresponding bilinear
map A2n ×A2n → A2n

and involution A2n → A2n
. We will write A both for

the algebra and for the associated affine space. Let S(A) denote the closed
subvariety of A defined by the equation n(x) = 1. We call this subvariety
the “unit sphere” inside of A, although the word “sphere” should be loosely
interpreted. If A is normed, then we obtain a pairing

S(A)× S(A)→ S(A).

The rest of this section will exploit these pairings in motivic homotopy
theory.

4.2. Cayley-Dickson algebras with split norms. In motivic homotopy
theory, the affine quadrics x2

1 + x2
2 + · · ·+ x2

n = 1 are not models for motivic
spheres unless the ground field contains a square root of −1. This limits
the usefulness of the classical Cayley-Dickson algebras (where γi = 1 for
all i), at least as far as producing elements in π∗,∗(S). Instead, we will
focus on the sequence of Cayley-Dickson algebras corresponding to γ =
(−1, 1, 1, 1, · · · ). From now on let Ai denote the ith algebra in this sequence.
We will shortly see that the norm form in Ai is, under a suitable choice of
basis, equal to the split form; therefore S(Ai) is a model for a motivic sphere
(see Example 2.12(3)).
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We start by analyzing A1. This is A2 equipped with the mutiplication
(a, b)(c, d) = (ac + bd, da + bc) and involution (a, b)∗ = (a,−b). With the
change of basis (a, b) 7→ (a + b, a − b), we can write the multiplication as
(a, b)(c, d) = (ac, bd) and the involution as (a, b)∗ = (b, a). In this new
basis, (1, 1) is the identity element of A1, and the norm form is n(a, b) = ab.
We will abandon the “old” Cayley-Dickson basis for A1 and from now on
always use this new basis (in essence, we simply forget that A1 came to us
as D(A0)).

Observe that the unit sphere S(A1) is the subvariety of A2 defined by
xy = 1, which is isomorphic to (A1 − 0). So S(A1) is a model for S1,1.

Remark 4.3. If 2 is not invertible in k, then we cannot perform the same
change-of-basis when analyzing A1. This case includes the integers and fields
of characteristic 2. Instead, we can simply ignore A0 altogether and rather
define A1 to be the ring k×k, together with A2 = D1(A1) and A3 = D1(A2).
This is just a small shift in perspective.

The next algebra A2 is D1(A1), which is A4 with the following multipli-
cation:

(a1, a2, b1, b2) · (c1, c2,d1, d2) = (ac− d∗b, da + bc∗)

= (a1c1 − d2b1, a2c2 − d1b2, d1a1 + b1c2, d2a2 + b2c1).

The involution is (a1, a2, b1, b2)∗ = (a2, a1,−b1,−b2), and the norm form is
readily checked to be

n(a1, a2, b1, b2) = a1a2 + b1b2.

This is the split quadratic form on A4.
The algebra A3 = D1(A2) has underlying variety A8. We will not write

out the formulas for multiplication and involution here, although they are
easy enough to deduce. The norm form on A3 is once again the split form.

The algebras A1, A2, and A3 all have normed multiplications, in the sense
that n(xy) = n(x)n(y) for all x and y.

It is useful to regard A1, A2, and A3 as analogs of the classical algebras
C, H, and O. We call them the “split complex numbers”, the “split quater-
nions”, and the “split octonions”, respectively. One should not take the
comparisons too seriously: for example, A1 has zero divisors whereas C is a
field. Nevertheless, they are normed algebras that turn out to play roles in
motivic homotopy that are entirely analogous to the roles that C, H, and O
play in ordinary homotopy theory. We will adopt the notation

AC = A1, AH = A2, AO = A3;

SC = S(AC), SH = S(AH), SO = S(AO).
The multiplications in AC, AH, and AO restrict to give pairings SC × SC →
SC, SH × SH → SH, and SO × SO → SO. Note that

SC ' S1,1, SH ' S3,2, SO ' S7,4.
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More generally, S(An) is a model for S2n−1,2n−1
for all n.

Recall the isomorphism SC
'−→ A1 − 0 given by (a1, a2) 7→ a1. This

provides an orientation on SC. Under this isomorphism, the product map
SC × SC → SC coincides with the usual multiplication map on (A1 − 0).

We orient SH via the weak equivalence SH
'−→ (A2 − 0) that sends

(a1, a2, b1, b2) to (a1, b1), using the standard orientation on (A2 − 0) from
Example 2.12(2). Similarly, we orient SO via the analogous weak equiva-
lence SO

'−→ (A4 − 0).

Remark 4.4. The algebra AH is isomorphic to the algebra of 2×2 matrices,
via the isomorphism

(a1, a2, b1, b2) 7→
[

a1 b1

−b2 a2

]
.

This is easy to check using the formula for multiplication in AH. Under
this isomorphism, the conjugate of a matrix A corresponds to the classical
adjoint of A, i.e.,

M =
[
a b
c d

]
7→M∗ = adjM =

[
d −b
−c a

]
.

The norm form is equal to the determinant, and consequently one has SH ∼=
SL2. The pairing SH × SH → SH is just the usual product on SL2.

Remark 4.5. The ‘splitting’ of the algebra AC gives us coordinates having
the property that the multiplication rule does not mix the two coordinates:
that is, (a, b)(c, d) = (ac, bd). This non-mixing property propagates some-
what into AH, and we will need to use this at a key stage below. Let
ω : AH → A2 be the map (a1, a2, b1, b2) 7→ (a1, b2). Then the diagram

AH ×AH
µ //

id×ω
��

AH

ω

��
AH × A2

µ′ // A2

commutes, where µ′ is given by (a1, a2, b1, b2)∗(x, y) = (a1x−yb1, ya2+b2x).
In words, for all u and v in AH, the first and last coordinates of uv only
depend on the first and last coordinates of v. It is somewhat more intuitive to
see this using the isomorphism of Remark 4.4, where the map µ′ corresponds
to the usual action of matrices on column vectors (up to some sporadic
signs).

4.6. The Hopf maps. The basic definition of the motivic Hopf maps now
proceeds just as in classical homotopy theory. The reader should review
Appendix C at this point, for the definition and properties of the Hopf
construction.

Definition 4.7.
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(1) The first Hopf map η is defined to be the element of π1,1(S) represented
by the Hopf construction of the multiplication map SC × SC → SC.

(2) The second Hopf map ν is defined to be the element of π3,2(S) repre-
sented by the Hopf construction of the multiplication map SH×SH → SH.

(3) The third Hopf map σ is defined to be the element of π7,4(S) represented
by the Hopf construction of the multiplication map SO × SO → SO.

The following result and its proof are due to Morel [M2, Lemma 6.2.3]:

Lemma 4.8. The elements η and ηε are equal in π1,1(S).

Proof. Multiplication on SC is commutative. Recall that ε is represented
by the twist map on SC ∧ SC. The diagram

SC ∧ SC

ε
��

χ // SC × SC
µ //

T
��

SC

=
��

SC ∧ SC χ
// SC × SC µ

// SC

commutes by Lemma A.9, where µ is multiplication and T is the twist map.
The horizontal compositions represent η. �

The above lemma deduces an identity involving the Hopf elements as a
consequence of the commutativity of AC. The point of the next section will
be to deduce some other identities from deeper properties of the Cayley-
Dickson algebras.

Remark 4.9. The above proof works unstably, but only after three sim-
plicial suspensions. As explained in Appendix A.1, the map χ exists as an
unstable map Σ(S1,1 ∧ S1,1) → Σ(S1,1 × S1,1), which gives a model for η
in the unstable group π3,2(S2,1). But the left square in the diagram is only
guaranteed to commute after an additional two suspensions, by Lemma A.9.
The necessity of some of these suspensions is demonstrated by the fact that
classically one does not have η = −η in π3(S2).

The next result is also due to Morel [M2, Lemma 6.2.3]. We include this
result and its proof only for didactic purposes. The proof demonstrates
how one must be careful with orientations, canonical isomorphisms, and
commutativity relations.

Proposition 4.10. Let P1 and (A2 − 0) be oriented as in Example 2.12.
The usual projection π : (A2 − 0)→ P1 represents the element η in π1,1(S).

Proof. We have the diagram

SC ∧ SC
χ //

(−)−1∧id
��

SC × SC
f //

(−)−1×id
��

SC

=
��

SC ∧ SC χ
// SC × SC µ

// SC,
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where µ is multiplication and f is the map (x, y) 7→ x−1y. By definition, η
is the composition along the bottom of the diagram. Recall that the inverse
map on SC represents ε, by Proposition 3.11; therefore (−)−1∧ id represents
ε as well, using Remark 2.6. Since η equals ηε by Lemma 4.8, it suffices to
show that the composition along the top of the diagram is equivalent to π,
i.e., that π is the Hopf construction on f .

Let U1 ←− U1 ∩ U2 −→ U2 be the standard affine cover of P1, as in
Example 2.12(1). Taking the preimage under π gives a cover of (A2− 0), so
we get the diagram

π−1U1

��

π−1(U1 ∩ U2)

��

oo // π−1U2

��
U1 U1 ∩ U2

oo // U2,

(4.11)

where (A2 − 0) and P1 are the homotopy pushouts of the top and bottom
rows respectively.

Diagram (4.11) is isomorphic to the diagram

(A1 − 0)× A1

(x,y) 7→x−1y

��

(A1 − 0)× (A1 − 0) i //

f
��

ioo A1 × (A1 − 0)

(x,y) 7→xy−1

��
A1 (A1 − 0) inv //ioo A1

(4.12)

where all maps labelled i are the inclusions. This new diagram in turn maps,
via a natural weak equivalence, to the diagram

(A1 − 0)

��

(A1 − 0)× (A1 − 0)
π2 //π1oo

f
��

(A1 − 0)

��
∗ (A1 − 0) //oo ∗.

(4.13)

Diagram (4.13) induces a map on homotopy pushouts of the rows, which is
equal to the Hopf construction H(f) on f by definition (see Appendix C).
So we have produced a zig-zag of equivalences between π and H(f). The
weak equivalences in this zig-zag turn out to be orientation-preserving, which
follows by the definition of our standard orientations in Example 2.12. It
follows that [π] = [H(f)]. �

Remark 4.14 (Nontriviality of η, ν, and σ). It is worth pointing out that
if our base k is a field of characteristic not equal to 2 then none of η, ν, and
σ are equal to the zero element. Here it is useful to work unstably: since the
splitting χ exists after one suspension, η, ν, and σ can be modelled by unsta-
ble maps S3,2 → S2,1, S7,4 → S4,2, and S15,8 → S8,4. A completely routine
modification of the standard argument from [SE, Lemma 1.5.3] shows that
the homotopy cofibers of these maps have nontrivial cup products in their
mod 2 motivic cohomology—more precisely, the maps have Hopf invariant
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one in the usual sense that the square of the generator in bidegree (2n, n)
equals the generator in dimension (4n, 2n), for n = 1, 2, 4 in the three re-
spective cases. Properties of the motivic Steenrod squares then show the
existence of the expected Steenrod operations in the cohomology of the
cofibers, which proves that the maps are not stably trivial.

The assumption that the base is a field not of characteristic 2 is because
it is in that setting that we know the necessary results about the Steenrod
operations in motivic cohomology. It of course follows that η, ν, and σ are
non-zero over Z as well. One can presumably use motivic F3-cohomology to
detect ν and σ over fields of characteristic 2. We do not know whether η is
non-zero over fields of characteristic 2.

When the base is a field of characteristic zero, another approach is to
reduce to the case k ↪→ C and then apply the topological realization from
motivic homotopy theory to classical homotopy theory. The motivic ele-
ments η, ν, and σ all map to elements of Hopf invariant one.

5. The null-Hopf relation

The goal of this section is to prove with geometric arguments that ην and
νσ are both zero. The proofs for these two results follow essentially the same
pattern, but in the case of νσ = 0 one part of the argument develops some
complications that require a non-obvious workaround. Our approach in this
section will be to first concentrate on the ην = 0 proof, so that the reader
can see the basic strategy of what is happening. Then we repeat most of the
steps for the case of the νσ = 0 argument, explaining what the differences
are.

We begin our work by returning to Cayley-Dickson algebras:

Lemma 5.1. Let A be an associative involutive k-algebra, let γ be in k×,
and let t be an element of A having norm 1. The map θt : Dγ(A)→ Dγ(A)
given by θt(a, b) = (a, tb) is an involution-preserving endomorphism of the
Cayley-Dickson double Dγ(A). In particular, θt is norm-preserving.

Proof. Verify that θt is an involution-preserving endomorphism directly
with the formulas for Dγ(A) given at the beginning of Section 4.1. Since
n(x) = xx∗, it follows that θt also preserves the norm. �

From Lemma 5.1, we find that there is a pairing

θ : S(A)× S(DγA)→ S(DγA)

given by θ(t, x) = θt(x). In particular, this yields maps

α : SC × SH → SH and β : SH × SO → SO.

Note that these maps commute with multiplication in the sense that

α(t, ab) = α(t, a)α(t, b) and β(a, xy) = β(a, x)β(a, y).
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In other words, the diagram

SC × SH × SH
∆×1×1//

1×µ

��

SC × SC × SH × SH
1×T×1// SC × SH × SC × SH

α×α
��

SH × SH

µ

��
SC × SH α

// SH,

(5.2)

commutes, where ∆ and T are the evident diagonal and twist maps. A
similar diagram commutes for SH, SO, and β.

Lemma 5.3. The Hopf construction on α represents η.

Proof. Recall the orientation-preserving weak equivalence π : SH → (A2−0)
that takes (a1, a2, b1, b2) to (a1, b1), as well as the isomorphism p : SC →
(A1 − 0) that sends (t1, t2) to t1. We have a commutative diagram

SC ∧ SH
χ //

'
��

SC × SH

'
��

α // SH

'
��

(A1 − 0) ∧ (A2 − 0) χ
// (A1 − 0)× (A2 − 0)

α′
// A2 − 0,

where α′ : (A1 − 0) × (A2 − 0) → (A2 − 0) is given by (t, (x, y)) 7→ (x, ty).
The diagram shows that the Hopf constructions H(α) and H(α′) represent
the same map in π∗,∗(S), so we will now focus on the latter.

Recall that we have fixed an isomorphism (in the homotopy category)
between (A2 − 0) and the join (A1 − 0) ∗ (A1 − 0). Under this isomorphism,
α′ coincides with the melding π2#µ, where π2 and µ are the projection and
multiplication maps (A1 − 0)× (A1 − 0)→ (A1 − 0). See Appendix C.6 for
the definition of π2#µ.

Proposition C.10 gives a formula for H(π2#µ). But H(π2) is null by
Lemma C.2, and so that formula simplifies to just

[H(α′)] = [H(π2#µ)] = τ(1,1),(1,1) · [H(µ)] = ε[H(µ)] = εη = η.

The element τ(1,1),(1,1) is computed by Equation (2.4), and the last equality
is by Lemma 4.8. �

The next result is the desired null-Hopf relation.

Proposition 5.4. ην = 0.

Proof. We will examine what happens when both routes around Diagram
(5.2) are precomposed with the splitting map χ : SC∧SH∧SH → SC×SH×SH.
Note that throughout this proof we work in the stable category.
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We will begin with the lower-left composition. To analyze α(1×µ)χ, use
the commutative diagram

SC ∧ SH ∧ SH

1∧χ
��

1∧H(µ)

((PPPPPPPPPPPP

SC ∧ (SH × SH)

χ

��

1∧µ
// SC ∧ SH

χ

��

H(α)

$$IIIIIIIII

SC × SH × SH 1×µ
// SC × SH α

// SH.

The square commutes because χ is natural, and the two triangles commute
by definition of the Hopf construction. The left vertical composite equals
χ by Remark A.20. Recall from Lemma 5.3 that H(α) = η, and of course
H(µ) = ν by definition. So we have that

[α(1× µ)χ] = [H(α)] · [1 ∧H(µ)] = [H(α)] · [H(µ)] = ην.

The second equality uses Remark 2.6(i).
Next we analyze what happens when we compose χ : SC ∧ SH ∧ SH →

SC×SH×SH with the top-right part of Diagram (5.2). We will obtain zero,
which will finish the proof. This is mostly an application of Proposition C.10,
where the maps f : SC × SH → SH and g : SC × SH → SH are both equal to
α.

First recall from Corollary A.13(b) that the identity map on SH × SH
can be written as idSH×SH = χp + j1π1 + j2π2 where π1 and π2 are the two
projections SH × SH → SH; j1, j2 : SH → SH × SH are the two inclusions as
horizontal and vertical slices; and p is the projection from the product to
the smash product. The composite of interest can therefore be written as a
sum of three composites of the form

SC ∧ SH ∧ SH
χ−→ SC × SH × SH

h−→ SH × SH
u−→ SH

where h denotes the composition SC×SH×SH → SH×SH along the top-right
part of Diagram (5.2), and u is one of µχp, µj1π1 = π1, and µj2π2 = π2.
But in the latter two cases the composites are clearly null; in the case of π1,
for example, this follows from the diagram

SC ∧ SH ∧ SH

))

χ // SC × SH × SH
π1h //

��

SH

SC × SH × ∗
α

88qqqqqqqqqqq

and the fact that the dotted composite is null by the defining properties of
χ (Proposition A.12).

So it remains to analyze the composite

SC∧SH∧SH
χ−→ SC×SH×SH

h−→ SH×SH
p−→ SH∧SH

χ−→ SH∧SH
µ−→ SH.
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This is equal to H(µ) ◦ H(α#α), using Lemma C.9 for the second factor.
Proposition C.10 says that [H(α#α)] equals

τ(1,1),(3,2)[H(α)] + τ(1,1),(3,2)[H(α)] + (τ(1,1),(3,2))
2[H(α)] · [H(α)] · [∆S1,1 ].

Now use [∆S1,1 ] = ρ from Theorem 3.1; [H(α)] = η from Lemma 5.3; and
τ(1,1),(3,2) = 1 by Equation (2.4). We obtain H(α#α) = 2η + η2ρ, which
equals zero by Theorem 1.2(ii). �

We next duplicate the above arguments to prove the analogous Hopf re-
lation νσ = 0, using the pairing β : SH×SO → SO. This time we go through
the steps in reverse order, saving what is now the hardest step for last.

Proposition 5.5. νσ = 0.

Proof. The proof is very similar to the proof of Proposition 5.4. One starts
with the commutative diagram analogous to Diagram (5.2) showing that β
respects multiplication, and then precomposes the two routes around the
diagram with χ. By exactly the same arguments as before, the composition
along the bottom-left part of the diagram gives [H(β)] · σ, and composition
along the top-right part of the diagram gives

σ ·
[
τ(3,2),(7,4)[H(β)] + τ(3,2),(7,4)[H(β)] +

(
τ(3,2),(7,4)

)2[∆S3,2 ]
]

(using Proposition C.10). But here the diagonal map is equal to zero by
Theorem 3.1, because S3,2 is a simplicial suspension. Using that τ(3,2),(7,4) =
−1 by Equation (2.4), our formula becomes

[H(β)] · σ = σ · [−2H(β)] = 2[H(β)] · σ,

We have used graded-commutativity from Proposition 2.5 in the second
equality. This shows that [H(β)] · σ = 0. Finally, use that [H(β)] = −ν by
Lemma 5.6 below. �

Our next goal is to compute the Hopf construction H(β). Recall that the
pairing β : SH × SO → SO sends [t, (x, y)] 7→ (x, ty). The idea is to realize
SO as the join of two copies of S3,2, corresponding to the two coordinates x
and y. Under this equivalence, β becomes the melding π2#µ (Section C.6),
where π2 and µ are the projection and multiplication maps SH × SH → SH.
Proposition C.10 then shows that [H(β)] = τ(3,2),(3,2)ν = −ν.

The difficulty comes in realizing SO as a join, in a way that is compatible
with the β-action by SH. To understand the problem, it is useful to review
how this would work in classical topology. Let S be the unit sphere inside the
classical octonions O, consisting of pairs (x, y) ∈ H×H such that |x|2+|y|2 =
1. Let U1 ⊆ S be the set of pairs where x 6= 0, and let U2 ⊆ S be the set
of pairs where y 6= 0. There are evident projections q1 : U1 → S3 and
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q2 : U2 → S3 given by q1(x, y) = x
|x| and q2(x, y) = y

|y| . The diagram

U1

q1

��

U1 ∩ U2
oo //

q1×q2

��

U2

q2

��
S3 S3 × S3

π1oo π2 // S3

is commutative; the homotopy colimit of the top row is S, and the homotopy
colimit of the bottom row is the join S3 ∗ S3. All of the vertical maps are
homotopy equivalences. Moreover, if we let S(H) = S3 act on S3 × S3

trivially on the first factor and by left multiplication on the second factor,
then the S(H)-actions on S and S3 × S3 are compatible with respect to the
maps in the above diagram. This identifies S(H)×S → S with the melding
of the two evident S(H)-actions on S3.

Unfortunately, the above argument does not work in the motivic setting.
We do not have square roots, so we cannot normalize vectors; likewise, the
homotopies that show the vertical maps in the diagram to be equivalences
all use square roots. So the above simple argument breaks down in several
spots.

We get around these difficulties by using a special property of the split
quaternions AH. Basically, we use the splitting to reduce the action to a
different model of the same sphere, where it is easier to see the melding.

Lemma 5.6. The Hopf construction on β represents −ν.

Proof. Recall the pairing µ′ : AH×A2 → A2 given by (a1, a2, b1, b2)∗(x, y) =
(a1x−yb1, ya2 + b2x) from Remark 4.5, as well as the commutative diagram

AH ×AH
µ //

id×ω
��

AH

ω

��
AH × A2

µ′ // A2.

Note that µ′ restricts to give SH× (A2−0)→ A2−0, and ω restricts to give
an equivalence SH → A2 − 0.

Consider now the commutative diagram

SH × SO
β //

id×ω′

��

SO

ω′

��
SH × (A4 − 0)

β′ // A4 − 0

where ω′(x, y) = (ω(x), ω(y)) and β′(t, (u, v)) = (u, t ∗ v) for u and v in
A2. The vertical maps are weak equivalences by the argument from Ex-
ample 2.12(3). So the Hopf constructions for β and β′ represent the same
element of π∗,∗(S).
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We know how to identify the variety A4− 0 as the join (A2− 0) ∗ (A2− 0)
(Example 2.12(2)). Under this identification, the pairing β′ is the melding
π2#µ′ where π2 and µ′ are, respectively, the projection and multiplication
maps SH × (A2 − 0)→ (A2 − 0).

Proposition C.10 now yields the formula

[H(β′)] = [H(π2#µ′)] = τ(3,2),(3,2)[H(µ′)] = −[H(µ′)]

using that H(π2) = 0 from Lemma C.2. Finally, we turn to the commutative
square

SH × SH
µ //

id×ω
��

SH

ω
��

SH × (A2 − 0)
µ′ // A2 − 0.

The vertical maps are equivalences, so H(µ′) and H(µ) represent the same
element of π∗,∗(S). Since H(µ) is equal to ν by definition, we have

[H(β)] = [H(β′)] = −[H(µ′)] = −[H(µ)] = −ν.

�

Remark 5.7. In the proof of Lemma 5.6, we have not established that
ω′ : SO → (A4 − 0) and ω : SH → (A2 − 0) are orientation-preserving. By
Proposition C.4, this issue is irrelevant because the homotopy elements rep-
resented by Hopf constructions are independent of these orientations.

Appendix A. Stable splittings of products

These appendices develop certain technical homotopy-theoretic construc-
tions that are used in the body of the paper. Appendices A and B, as well
as the first part of Appendix C, build on ideas that appear in the papers of
Morel [M1, M2]. Our aim here is to offer additional details that are necessary
for our proofs. This applies, in particular, to the proof of Proposition C.10,
which is the most important technical tool for the paper. These appendices
are largely structured with the goal of providing a comprehensible proof of
Proposition C.10.

A.1. Generalities. For most of the applications in this paper, it suffices
to work in the stable category of motivic spectra. This is also true for the
splittings we are about to discuss, and for the Hopf construction developed
in Section C. However, for didactic reasons we are briefly going to work
unstably and be careful about the number of suspensions required at various
stages.

Let j : A ↪→ B be a cofibration of pointed motivic spaces, and let the
quotient map be p : B → B/A. Suppose that there is a map α : ΣB → ΣA
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that splits Σj in the homotopy category, i.e., α(Σj) ' idΣA. For any pointed
object X, we have an exact sequence

· · · ←− [B/A, X]∗ ←− [ΣA,X]∗
(Σj)∗←− [ΣB,X]∗

(Σp)∗←− [Σ(B/A), X]∗ ← · · ·

of sets. Then α∗ is a splitting for (Σj)∗, so (Σj)∗ is surjective. It follows
that we have an exact sequence of groups

1←− [ΣA,X]∗
(Σj)∗←− [ΣB,X]∗

(Σp)∗←− [Σ(B/A), X]∗ ←− 1.

Because α is not necessarily the suspension of a map B → A, the map α∗

is not necessarily a group homomorphism. So the exact sequence is not
necessarily split-exact. Although the groups in the above sequence need not
be abelian, we will still write + for the group operation and 0 for the identity.
When X equals ΣB, the element idΣB −(Σj)α of [ΣB,ΣB]∗ belongs to the
kernel of (Σj)∗ and is therefore in the image of (Σp)∗.

Definition A.2. The map χ : Σ(B/A) → ΣB is the unique map in the
homotopy category of pointed spaces such that idΣB equals (Σj)α + χ(Σp).

Lemma A.3. The map χ satisfies:
(1) (Σp)χ = idΣ(B/A).
(2) αχ = 0.

Proof. Let X be Σ(B/A). Compute that (Σp)∗((Σp)χ − idΣB/A) is zero.
Since (Σp)∗ is one-to-one, we get that (Σp)χ− idΣB/A is zero.

For the second, let X be ΣA. Compute that (Σp)∗(αχ) is zero. Since
(Σp)∗ is one-to-one, we get that αχ is zero. �

We now suspend once more to obtain the sequence

0←− [Σ2A,X]∗
(Σ2j)∗←− [Σ2B,X]∗

(Σ2p)∗←− [Σ2(B/A), X]∗ ←− 0.(A.4)

This is now a short exact sequence of abelian groups, and it is split-exact
because the map (Σα)∗ is a group homomorphism.

With at least two suspensions, we have the following converse to Lemma
A.3.

Lemma A.5. Let i ≥ 2. Suppose x : Σi(B/A)→ ΣiB is such that
(1) (Σip)x equals idΣi(B/A).
(2) (Σi−1α)x equals zero.

Then Σx equals Σiχ in [Σi+1(B/A),Σi+1B]∗.

Proof. We simply compute:

Σx = id ◦(Σx) = [(Σij)(Σi−1α) + (Σi−1χ)(Σip)](Σx)

= (Σij)(Σi−1α)(Σx) + (Σi−1χ)(Σip)(Σx)

= Σiχ,
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where the second equality comes from Definition A.2 and the fourth equality
comes from the given properties of x. In the third equality we have used
(A + B)(Σx) = A(Σx) + B(Σx); note that the analogous formula without
the suspension does not hold in general. �

Remark A.6. We will often apply Lemma A.5 in the case i = ∞, where
the statement yields that the stable homotopy class of χ is characterized by
the given two properties.

A.7. Splittings of products. Now let X and Y be pointed spaces, and
specialize to the cofiber sequence

X ∨ Y
j // X × Y

p // X ∧ Y.(A.8)

Let π1 : X × Y → X and π2 : X × Y → Y be the two projection maps. Let
α be the homotopy class Σπ1 + Σπ2 : Σ(X × Y )→ ΣX ∨ΣY , defined using
the group structure on [Σ(X × Y ),Σ(X ∨ Y )]∗. The composition α(Σj) is
the identity (up to homotopy), i.e. Σπ1 + Σπ2 splits Σj.

By Definition A.2, we obtain a map χ : Σ(X ∧ Y )→ Σ(X × Y ), uniquely
defined up to based homotopy. This map is a splitting for Σp and satisfies
(Σπ1 + Σπ2)χ = 0. Moreover, Lemma A.5 says that χ is completely charac-
terized by these criteria, up to suspension. When necessary for clarity, we
will write χ(X, Y ) for the map χ : Σ(X ∧ Y )→ Σ(X × Y ).

The definition of χ shows that it is natural in X and Y . That is, if Z
and W are also pointed and f : X → Z and g : Y →W are two based maps,
then the diagram

Σ(X ∧ Y )
χ //

Σ(f∧g)
��

Σ(X × Y )

Σ(f×g)
��

Σ(Z ∧W ) χ
// Σ(Z ×W )

commutes in the based homotopy category. This is a routine argument,
boiling down to the fact that projections and inclusions are natural.

In several cases we will need to understand the compatibility of χ with
the twist maps where one interchanges the roles of X and Y :

Lemma A.9. The diagram

Σ(X × Y )
ΣT× // Σ(Y ×X)

Σ(X ∧ Y )

χ(X,Y )

OO

ΣT∧
// Σ(Y ∧X)

χ(Y,X)

OO

commutes (up to homotopy) after two suspensions, where T× and T∧ are the
evident twist maps.



34 DANIEL DUGGER AND DANIEL C. ISAKSEN

Proof. Let f denote the composite

Σ(X ∧ Y ) ΣT∧−→ Σ(Y ∧X)
χ(Y,X)−→ Σ(Y ×X)

ΣT×−→ Σ(X × Y ).

We want to show that Σ2f equals Σ2χ(X, Y ). By Lemma A.5, it suffices
to prove that (Σπ1 + Σπ2)f = 0 and (Σp)f = idΣ(X∧Y ). These follow from
naturality of the twist maps and the corresponding properties of χ(Y, X).

�

Remark A.10. Lemma A.9 is almost true after one suspension, but we
need the extra suspension because of the restriction i ≥ 2 from Lemma A.5.

A.11. Stable considerations. From now on we disregard the suspensions
required for the careful statement of unstable results. That is, we work in
the stable category of spectra. When X is a pointed space, we will often
abuse notation and write X again for Σ∞X. Also, it will be convenient to
now let χ denote the desuspension of the splitting Σ(X ∧ Y ) → Σ(X × Y )
produced in the last section. So χ is now a map X ∧ Y → X × Y .

Proposition A.12 below is a stable version of Lemma A.5, with a slight
strengenthing due to stability.

Proposition A.12. The map χ is the unique stable homotopy class X∧Y →
X × Y such that pχ is the identity on X ∧ Y and π1χ = π2χ = 0 is zero.

Proof. Lemma A.5 implies that χ is the unique stable homotopy class such
that pχ = idX∧Y and (π1 + π2)χ = 0. It suffices for us to show that the
second condition is equivalent to π1χ = π2χ = 0. Clearly the latter implies
the former, since (π1 +π2)χ = π1χ+π2χ (and note that this uses stability).
Conversely, if (π1+π2)χ = 0 then multiplying by π1 on the left gives π1χ = 0
since the composite π1π2 is null. Similarly, left multiplication by π2 gives
π2χ = 0. �

Corollary A.13. In the stable homotopy category,
(a) π1 + π2 + p : X × Y → X ∨ Y ∨ (X ∧ Y ) is an isomorphism, and j ∨ χ

is a homotopy inverse.
(b) j(π1 + π2) + χp is the identity on X × Y .

Proof. For part (a), use that (π1 + π2)j = idX∨Y ; pj = 0; (π1 + π2)χ = 0;
and pχ = idX∧Y . For part (b), j(π1 + π2) + χp is idX×Y by Definition
A.2. �

Let ∆× : X → X×X and ∆∧ : X → X∧X be the evident diagonal maps.

Lemma A.14. Let X be any pointed motivic space. Then the two maps ∆×
and χ∆∧ + j(π1 + π2)∆× are equal maps X → X ×X.

Proof. Start with j(π1 + π2) + χp = 1 from Corollary A.13, and apply ∆×
on the right. Finally, note that ∆∧ = p∆×. �

Later we will need the following calculation of χ in a specific example.
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Lemma A.15. Let S0,0 consist of the two points 1 and −1, where 1 is the
basepoint. Let i, j, and k be the based maps S0,0 → S0,0×S0,0 that take −1 to
(1,−1), (−1, 1), and (−1,−1) respectively. Then χ : S0,0∧S0,0 → S0,0×S0,0

is stably equal to the composition of the isomorphism S0,0 ∧ S0,0
∼=−→ S0,0

with the map k − i− j.

Proof. We apply Proposition A.12. The result follows from the observations
that

(1) pi and pj are zero, whereas pk is the identity.
(2) π1i is zero, but π1j and π1k are the identity.
(3) π2j is zero, but π2i and π2k are the identity.

�

A.16. Higher splittings. Given based spaces X1, . . . , Xn and a subset
S = {i1, . . . , ik} of {1, . . . , n}, write X×S for Xi1×· · ·×Xik (where i1 < i2 <
· · · < ik). Also, write X∧S for Xi1∧· · ·∧Xik . Write pS : X1×· · ·×Xn → X∧S

for the composition

X1 × · · · ×Xn
π−→ X×S p−→ X∧S ,

where π is the evident projection.

Proposition A.17. The map
∑

S pS : X1 × · · · ×Xn →
∨

S X∧S is a weak
equivalence in the stable category, where the sum and wedge range over all
nonempty subsets S of {1, . . . , n}.

Proof. This follows from induction and part (a) of Corollary A.13. �

Proposition A.17 allows us to make the following definition.

Definition A.18. Let χS : X∧S → X1 × · · · ×Xn be the unique homotopy
class of maps such that:

(1) pSχS = id.
(2) pT χS = 0 for all T 6= S.

Definition A.18 generalizes the properties of the 2-fold splitting that pχ
is the identity, while π1χ and π2χ are both zero. We will usually write just
χ instead of χS . Just as for the 2-fold splittings, the maps χS are natural
in the objects X1, . . . , Xn.

Analogously to Lemma A.9, Proposition A.19 shows that the higher split-
tings respect permutations of the factors.

Proposition A.19. If σ is a permutation of {1, . . . , n}, then the diagram

X1 ∧ · · · ∧Xn
//

χ

��

Xσ1 ∧ · · · ∧Xσn

χ

��
X1 × · · · ×Xn

// Xσ1 × · · · ×Xσn

is commutative, where the horizontal maps are permutations of factors.
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Proof. The proof is similar to the proof of Lemma A.9. �

Now let X1, . . . , Xn be formal symbols, and let w be a parenthesized word
made form these symbols using the two operations × and ∧. For example,
w might be (X1 ×X3) ∧ (X4 ×X2). Let w′ be a word obtained from w by
changing one × symbol to a ∧ symbol, e.g. w′ = (X1 ∧ X3) ∧ (X4 × X2).
We can regard both w and w′ as functors Ho (C)n → Ho (C), and we let
p denote the evident natural transformation w → w′. In our example, p
is more precisely pX1,X3 ∧ (idX4 × idX2). There is also an evident natural
transformation w′ → w made from maps of the form χS , and we denote this
just by χ.

Remark A.20. One has the following “coherence results” for the maps χ
and p:

(i) Given any two sequences of maps

w = w1
χ−→ w2

χ−→ · · · χ−→ wr = v

and
w = w′

1
χ−→ w′

2
χ−→ · · · χ−→ ws = v

with the same source and target, the two composite natural transfor-
mations are equal.

(ii) Given any two sequences of maps

w = w1
p−→ w2

p−→ · · · p−→ wr = v

and
w = w′

1
p−→ w′

2
p−→ · · · p−→ ws = v

with the same source and target, the two composite natural transfor-
mations are equal.

(iii) Let “χ-map” now refer to any composition as in (i), and “p-map” refer
to any composition as in (ii). From now on, if a map is labelled as χ
or p it means it belongs to one of these classes.

Let α be a composition as in (i) and let β be a composition as in
(ii), and assume that the last word of α coincides with the first word in
β (so that βα makes sense). Moreover, assume that the “spots” which
β turns from × to ∧ form a subset of the “spots” which α turns from
∧ to ×. Then βα is a χ-map. (This generalizes the splitting property
pχ = id).

We will not give proofs for the claims in Remark A.20, since proving them
in the stated generality involves an unpleasant amount of bookkeeping. In
all three cases, the proofs boil down to Proposition A.17. When we use
Remark A.20 in the context of this paper, it will always be in cases where
only three or four maps are involved. In those cases, it is easy enough to
check the claims by hand.
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Example A.21. Here are some examples to demonstrate the use of Re-
mark A.20.
(1) The compositions

X ∧ Y ∧ Z
1∧χ(Y,Z) // X ∧ (Y × Z)

χ(X,Y×Z) // X × Y × Z

X ∧ Y ∧ Z
χ(X,Y )∧1// (X × Y ) ∧ Z

χ(X×Y,Z) // X × Y × Z

are both equal to χ(X, Y, Z) in the homotopy category.
(2) The composition

W∧X∧Y ∧Z
χ(W,X)∧χ(Y,Z)// (W×X)∧(Y ×Z)

χ(W×X,Y×Z) // W×X×Y ×Z

is equal to χ(W,X, Y, Z) in the homotopy category.
(3) The triangle

X ∧ Y ∧ Z
χ //

χ(X,Y )∧1 ((PPPPPPPPPPPP X × Y × Z

p
��

(X × Y ) ∧ Z

commutes for any objects X, Y , and Z.

Appendix B. Joins and other homotopically canonical
constructions

In the next two sections we will need to deal with several homotopical
constructions. In each situation, the output is not just a single object but
rather a whole contractible category of objects. Things become complicated
when we want to identify the outputs of different multi-layered constructions
as being essentially the same. We start with a brief review of the machinery
needed to handle these kinds of situations.

B.1. Canonical constructions. Suppose that M is a model category, I
is a small category, and X : I → M is a diagram. Homotopy theorists are
faced with the troublesome fact that there is not a single homotopy colimit
for X; rather, there are many different models for the homotopy colimit, but
they are all weakly equivalent to each other. The trouble really begins when
one needs to choose a weak equivalence between two different models, and
then use this to perform further constructions. One cannot choose the weak
equivalence arbitrarily and expect to obtain consistent results later on.

As an elementary example, suppose that A and B are models for
hocolimI X, and choose a weak equivalence A → B. If at some later stage
one similarly chooses a weak equivalence B → A, then the composition
A→ B → A may or may not be homotopic to the identity.

One way to control these issues is as follows. In good cases, one can
define a model category structure on the category of diagrams MI , where
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the weak equivalences and fibrations are the objectwise ones [H, Theorem
11.6.1]. Let Cof(X) be the category of cofibrant approximations to X in this
model structure. This category is contractible [H, Theorem 14.6.2], and the
colimit of any object in Cof(X) gives a model for hocolimI X. The image
of the composition

Cof(X) colim−→ M→ Ho (M)
is a contractible groupoid; so for any two objects A and B in the image,
there is a unique isomorphism A → B that is also in the image. Note that
there might be many different isomorphisms in Ho (M) from A to B, but
only one of them lies in the image of the above composite. In this sense
there is a “homotopically canonical” isomorphism between A and B.

The considerations of the previous paragraph give a solution to our prob-
lem, but it is not a simple one. Given two models A and B for hocolimI X,
we only can get our hands on the canonical homotopy equivalence between
them by finding diagrams D and D′ in Cof(X) and specifying A and B as
the colimit of these diagrams—in essence, one must specify why A and B
are models for hocolimI X, and only then does one get the comparison map.

A simple example demonstrates what is happening here. The suspension
of a topological space X is a homotopy colimit for the diagram ∗ ←− X −→
∗. Given two spaces A and B that happen to have the homotopy type of
ΣX, there is not a unique way to get a weak equivalence A → B, even
up to homotopy. However, if one specifies a decomposition into “top” and
“bottom” cones for both A and B, then one does obtain a comparison map
that is unique up to homotopy. The choice of top and bottom cones gives a
diagram [C+ ←− X −→ C−] that is a cofibrant model for ∗ ←− X −→ ∗.

Now suppose that I and J are two small categories, and let X : I → M

and Y : J →M be two diagrams. We think of hocolimI X as a contractible
groupoid inside of Ho (M), and likewise for hocolimJ Y . Let A and B be
specific models for these two homotopy colimits, and let A→ B be a map.
For any other models Â and B̂ for the two homotopy colimits, we immedi-
ately obtain corresponding maps Â → B̂ in Ho (M). Namely, we have the
composite Â ∼= A −→ B ∼= B̂, where the first and last isomorphisms are the
ones from the respective contractible groupoids. In this case, we say that
the maps A→ B and Â→ B̂ are “canonically isomorphic”.

Often in practice, we have a certain procedure for producing a map be-
tween models for hocolimI X and hocolimJ Y . We want to know that this
procedure, applied to A and B, or applied to Â and B̂, gives maps that are
canonically isomorphic—i.e., conjugate to each other via the contractible
groupoids for hocolimI X and hocolimJ Y . This is often the case, but it is
something that needs to be checked ; it is not automatic.

Unfortunately, there is no known efficient and carefree way to keep track
of all of these kinds of compatibilities. While a direct approach works in
simple arguments, this becomes harder in multi-layered constructions. We
will see some examples in the remainder of these appendices. One precise



MOTIVIC HOPF ELEMENTS AND RELATIONS 39

but cumbersome technique is to work always at the level of diagrams, i.e.,
work in MI and related categories as much as possible, rather than work
in Ho (M). This has the effect of pinning down precise models and precise
maps between models. We follow this approach in most of our arguments.

As one specific place in which these ideas will be applied, consider the
study of suspensions in a model category. Let I be the pushout category
0 ←− 1 −→ 2. The category MI has a model structure where the weak
equivalences are objectwise and where the cofibrant objects are diagrams

X0 ←− X1 −→ X2

such that each Xi is cofibrant and both maps are cofibrations.

Definition B.2. Let X be any object of M. Suspension data for X is a
cofibrant diagram C+ ←− QX −→ C− where C+ and C− are contractible,
together with a weak equivalence QX → X.

See also Remark 2.9 for a discussion of suspension data. This is the same
as specifying a cofibrant replacement for ∗ ←− X −→ ∗ in MI . Every
collection of suspension data gives rise to a model for the suspension of X,
namely the pushout C+ qQX C−.

In many places in mathematics one learns how to handle technical details
and then immediately starts to leave them in the background, seemingly
ignored. Our discussion of canonical constructions is one of these instances.
While there are real issues that require attention whenever such construc-
tions appear, giving complete details in proofs quickly becomes an obstruc-
tion rather than an aid to comprehension; such details are best left to the
reader. Certain canonical equivalences will be ubiquitous throughout the
rest of these appendices—a clear example is in the statement of Lemma C.9,
but most often the equivalences are appearing with less acknowledgement.
The present section was meant to provide a kind of “global” acknowledge-
ment that this is what is going on.

B.3. Joins.
We now construct the join of two objects and establish a connection be-

tween the join and the splitting maps χ from Appendix A.

Definition B.4. Given objects X and Y , the join X ∗ Y is the homotopy
colimit of the diagram X ←− X × Y −→ Y .

Note that the diagram

X

��

X × Y

��

oo // Y

��
∗ X × Yoo // ∗

yields a canonical map X ∗ Y
γ−→ Σ(X × Y ).
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Lemma B.5. The composite

X ∗ Y
γ−→ Σ(X × Y )

Σp−→ Σ(X ∧ Y )

is a weak equivalence.

Proof. Let X � CX and Y � CY be cofibrations with contractible target.
Consider the diagram

X ∨ CY
��

��

X ∨ Y // //
��

��

oooo CX ∨ Y
��

��
X × CY

��

X × Y

��

oooo // // CX × Y

��
X ∧ CY X ∧ Y // //oooo CX ∧ Y.

The pushout of each row is a model for the homotopy pushout, because of
the horizontal cofibrations. The pushout of the top row is CX ∨ CY ; the
pushout of the middle row is a model for X ∗ Y , and the pushout of the
last row is a model for Σ(X ∧ Y ) because both X ∧ CY and CX ∧ Y are
contractible.

The columns of the diagram are homotopy cofiber sequences, so taking
homotopy pushouts of each row gives a new homotopy cofiber sequence

CX ∨ CY � X ∗ Y → Σ(X ∧ Y ).

But CX ∨ CY is contractible, so the second map is a weak equivalence.
There is an evident weak equivalence between the two diagrams

X × CY

��

X × Y //oo

��

CX × Y

��
X ∧ CY X ∧ Y //oo CX ∧ Y

X

��

X × Y

��

//oo Y

��
∗ X ∧ Y //oo ∗

mapping the diagram on the left to the one on the right. On taking homo-
topy pushouts of the rows, the first diagram gives the weak equivalence of
the previous paragraph, while the second diagram gives (Σp)γ. �

Proposition B.6 below shows that γ is a model for χ, once we identify
X ∗ Y with Σ(X ∧ Y ).

Proposition B.6. The map χ is equal to the composition

Σ(X ∧ Y ) '−→ X ∗ Y
γ−→ Σ(X × Y ),

where the first map is the homotopy inverse to (Σp)γ.

Proof. Let χ′ be the composition under consideration. By Proposi-
tion A.12, it suffices to show that (Σp)χ′ is the identity on Σ(X ∧ Y ) and
that (Σπ1)χ′ = (Σπ2)χ′ = 0. The first of these is immediate from the defi-
nition of χ′. For the second, observe that (Σπ1)γ and (Σπ2)γ are both zero.
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For example, in the first case this follows from the diagram

X

��

X × Y //oo

��

Y

��
X

��

X //oo

��

∗
��

∗ X //oo ∗.
Upon taking homotopy colimits of the rows, the diagram induces (Σπ1)γ,
but the homotopy colimit of the middle row is contractible. �

We will also need the following simple result.

Proposition B.7. Let D : I → sPre(Sm/k) be a diagram of motivic spaces,
and let X be a fixed motivic space. Then there is a canonical equivalence
between hocolimI [X ∗Di] and X ∗ (hocolimI D).

Proof. Let J be the pushout indexing category 1 ←− 0 −→ 2 and let
D : I × J → sPre(Sm/k) be the evident diagram where

D(i, 1) = X, D(i, 0) = D(i)×X, D(i, 2) = D(i)

(the maps in D are the obvious ones). A standard result in the the-
ory of homotopy colimits gives canonical equivalences between hocolim D,
hocolimI [hocolimJ D], and hocolimJ [hocolimI D], where the latter two ex-
pressions indicate the evident iterated homotopy colimits along slices of
I × J . Now just observe that hocolimI [hocolimJ D] = hocolimI(X ∗ Di)
and hocolimJ [hocolimI D] is canonically equivalent to X ∗ [hocolimI D]; the
latter uses that homotopy colimits commute with products by a fixed space,
which is a standard property of simplicial presheaf categories (following from
the analogous result for sSet). �

Appendix C. The Hopf construction

We now describe and study the Hopf construction.

Definition C.1. Let X, Y , and Z be pointed spaces, and let h : X×Y → Z
be a pointed map. The Hopf construction of h is the map H(h) : X ∗Y →
ΣZ obtained by taking homotopy colimits of the rows of the diagram

X

��

X × Y //oo

��

Y

��
∗ Z //oo ∗.

We often regard H(h) as a map Σ(X ∧ Y ) → ΣZ (or as just a map
X∧Y → Z) using the standard equivalence X ∗Y ' Σ(X∧Y ) from Lemma
B.5.

Lemma C.2 below is a simple example of the Hopf construction.

Lemma C.2. Let π1 : X × Y → X and π2 : X × Y → Y be the evident
projection maps. The maps H(π1) and H(π2) are trivial.
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Proof. Consider the diagram from the end of the proof of Proposition B.6.
The map H(π1) is obtained by taking the homotopy colimits of the rows,
but the homotopy colimit of the middle row is contractible.

The argument for H(π2) is identical. �

Using the model for χ given in Proposition B.6, we can give an alternative
model for the Hopf construction on h : X × Y → Z:

Proposition C.3. Let X, Y , and Z be pointed spaces, and let h : X×Y → Z
be a pointed map. The Hopf construction H(h) equals the composite

X ∗ Y
'−→ Σ(X ∧ Y )

χ−→ Σ(X × Y ) Σh−→ ΣZ,

where the first map is the weak equivalence from Lemma B.5.

Proof. The diagram

X

��

X × Y //oo

��

Y

��
∗
��

X × Y //oo

h��

∗
��

∗ Z //oo ∗.

shows that H(h) is equal to (Σh)γ, where γ is from Section B.3. By Propo-
sition B.6, the composition X ∗ Y

'−→ Σ(X ∧ Y )
χ−→ Σ(X × Y ) is equal to

γ. �

The following simple result will save us a bit of trouble in the body of the
paper.

Proposition C.4. Let f : X×Y → Y be a pointed map, where X and Y are
oriented homotopy spheres. Then [H(f)] does not depend on the orientation
of Y .

Proof. Let σ : Y → Y be an automorphism in the homotopy category, and
consider the diagram

X ∧ Y

1∧σ
��

χ // X × Y

1×σ
��

f // Y

σ

��
X ∧ Y

χ // X × Y
g // Y

where g = σf(1 × σ−1). We must show that [H(f)] = [H(g)]. But the
diagram yields

[σ] · [H(f)] = [H(g)] · [1 ∧ σ] = [H(g)] · [σ]

using Remark 2.6 in the last step. Since [σ] is central and invertible,
[H(f)] = [H(g)]. �
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For the following proposition, regard S0,0 as the group scheme Z/2. This
result is not needed in the present paper, but we include it for future refer-
ence.

Proposition C.5. The Hopf construction on µ : S0,0 × S0,0 → S0,0 (the
product map) represents the element −2 in π0,0(S).

Proof. The composition

ΣS0,0 ∼=−→ Σ(S0,0 ∧ S0,0)
χ−→ Σ(S0,0 × S0,0)

Σµ−→ ΣS0,0

is the Hopf construction on µ, which is equal to (Σµ)(Σk−Σi−Σj), where
i, j, and k are as in Lemma A.15. This is evidently the same as Σ(µk) −
Σ(µi) − Σ(µj). But µk is null, and both µi and µj are the identity maps.
It follows that (Σµ)(Σk − Σi− Σj) equals −2. �

C.6. Hopf constructions of meldings. Let X, Y1, Y2, Z1, and Z2 be
pointed spaces and let f1 : X ×Y1 → Z1 and f2 : X ×Y2 → Z2 be two based
maps. Consider the diagram

X × Y1

f1 ��

X × Y1 × Y2

α(f1,f2)
��

//oo X × Y2

f2��
Z1 Z1 × Z2

//oo Z2,

(C.7)

where the horizontal maps are the evident projections and α(f1, f2) is the
composite

X×Y1×Y2
∆×1×1 // X×X×Y1×Y2

1×T×1 // X×Y1×X×Y2
f1×f2 // Z1×Z2.

Definition C.8. The melding f1#f2 of the pairings f1 and f2 is the pairing

X × (Y1 ∗ Y2)→ Z1 ∗ Z2

obtained by taking homotopy pushouts of the rows of Diagram (C.7).

Lemma C.9 below gives a tool for computing Hopf constructions of meld-
ings.

Lemma C.9. The Hopf construction H(f1#f2) : X ∗ (Y1 ∗Y2)→ Σ(Z1 ∗Z2)
is canonically identified with the double suspension of the composite

X ∧ Y1 ∧ Y2
χ−→ X × Y1 × Y2

α(f1,f2)−→ Z1 × Z2
p−→ Z1 ∧ Z2.
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Proof. This is an exercise in the manipulation of homotopy colimits. Con-
sider the rectangular box

X

$$JJJ
JJJ

X × Y1

$$JJJ
J

oo // Y1

$$JJJ
JJJ

∗ Z1
oo // ∗

X

$$JJJ
JJJ

OO

��

X×(Y1×Y2)
$$JJJ

oo //

OO

��

Y1 × Y2

OO

��

$$JJJ
JJ

∗

OO

��

Z1 × Z2

OO

��

oo // ∗

OO

��

X

$$JJJ
JJJ

X × Y2
oo //

$$JJJ
J Y2

$$JJJJJ

∗ Z2
oo // ∗.

All of the horizontal and vertical maps are the evident projections, while the
three maps in the middle column coming out of the page are f1, α(f1, f2),
and f2.

Let Pf be the front 3× 3 diagram, and let Pb be the back 3× 3 diagram.
The whole diagram is a natural transformation Pb → Pf . We will compute
the induced map g : hocolim Pb → hocolim Pf in two different ways.

We can calculate the homotopy colimit of a 3× 3 grid in two ways: first
take homotopy pushouts of the rows, and then take the homotopy pushout
of the resulting column; or first take the homotopy pushouts of the columns,
and then take the homotopy pushout of the resulting row. If we first take
homotopy colimits of the columns, then we obtain the diagram

X

��?
??

??
??

X × (Y1 ∗ Y2)
f1#f2

��?
??

??
?

oo // Y1 ∗ Y2

��?
??

??
??

∗ Z1 ∗ Z2
oo // ∗.

Now take homotopy colimits along the rows to yield H(f1#f2).
On the other hand, if we first take homotopy colimits along the rows,

then we obtain the left face of the diagram

X ∗ Y1
//

H(f1) ))TTTTTTTTT ∗

))TTTTTTTTTTTTT

ΣZ1
// ∗

X ∗ (Y1 × Y2) //

OO

��

H(α)
))SSSSSS

X ∗ (Y1 × Y2)

OO

��

))SSSSSS

Σ(Z1 × Z2) //

OO

��

Σ(Z1 × Z2)

OO

��

X ∗ Y2
//

H(f2) ))TTTTTTTTT ∗

))TTTTTTTTTTTTT

ΣZ2
// ∗,
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where α is α(f1, f2). Taking the homotopy pushouts of the columns and
applying the evident canonical isomorphisms, we get the commutative dia-
gram

Σ2X ∧ Y1 ∧ Y2

g̃ &&MMMMMMMMMM

Σ2
(
1∧χ

)
// Σ2X ∧ (Y1 × Y2)

ΣH(α)

''OOOOOOOOOOO

Σ2Z1 ∧ Z2 χ
// Σ2(Z1 × Z2).

Note that Proposition B.7 has been used for one of the columns. Here g̃ is
canonically equivalent to the map g : hocolim Pb → hocolim Pf that we are
trying to understand, and the horizontal maps have been identified with the
help of Proposition B.6.

Ignoring suspensions for simplicity, the above parallelogram allows us to
write

g̃ = pχg̃ = p ◦H(α) ◦ (1 ∧ χ) = pαχ(1 ∧ χ) = pαχ.

We have used the symbol χ for slightly different things; Remark A.20 makes
sense of this.

In the end, the maps H(f1#f2), g, and g̃ = pαχ are canonically identified.
�

Before stating the next result we introduce a piece of notation. If X is
an oriented homotopy sphere then write |X| for the unique pair (p, q) ∈ Z2

such that X ' Sp,q (uniqueness follows, for example, by base-extending to a
field and then using motivic cohomology calculations). Recall that if X and
Y are oriented homotopy spheres then the twist map T : X ∧ Y → Y ∧ X
represents an element τ|X|,|Y | = [T ] in π0,0(S). As discussed in Section 2.3, if
X ' Sp,q and Y ' Ss,t then τ|X|,|Y | = τ(p,q),(s,t) = (−1)(p−q)(s−t) · εqt. These
elements are central in π∗,∗(S) because every element of π0,0(S) is central.

In analyses that involve extensive sign calculations, it is very convenient to
drop the absolute value signs and write τX,Y for τ|X|,|Y |. In fact we carry this
to an extreme: if the name of a homotopy sphere appears inside a subscript
for a τ -expression, it is to be interpreted as the associated bidegree. For
example, τX+Y−Z,W is shorthand for τ|X|+|Y |−|Z|,|W |. In practice this never
leads to any confusion. Since τ(−),(−) is bilinear and takes values in the
2-torsion subgroup of the multiplicative group π0,0(S)×, we can also write
formulas like

τX+Y−Z,W = τX,W τY,W τ−1
Z,W τX,W = τX,W τY,W τZ,W τX,W .

The following proposition gives a key formula used in the paper. The
complexity of the signs is unfortunate, but there seems to be no avoiding
this. The lack of symmetry in the signs on the first two terms is tied to the
asymmetry in the signs for [idr,s ∧f ] and [f ∧ idr,s] appearing in Remark 2.6.
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Proposition C.10. Suppose given oriented homotopy spheres X, Y1, Y2,
Z1, and Z2, together with pointed maps f : X×Y1 → Z1 and g : X×Y2 → Z2.
Let f∗ and g∗ denote the composites

Y1
∼= ∗×Y1 −→ X ×Y1

f−→ Z1 and Y2
∼= ∗×Y2 −→ X ×Y2

g−→ Z2.

Then [H(f#g)] equals

τX+Y1−Z1,Z2 [H(f)] · [g∗]+τX,Y1τY1−Z1,Z2 [f
∗] · [H(g)]

+ τX,Y2τX+Y1−Z1,Z2 [H(f)] · [H(g)] · [∆X ].

Proof. By Lemma C.9 the map H(f#g) can be modelled by the composite

X ∧ Y1 ∧ Y2
χ // X×Y1×Y2

∆××1 // X×X×Y1×Y2
1×T×1// X×Y1×X×Y2

f×g
��

Z1 ∧ Z2 Z1 × Z2.
poo

We use the fact that ∆××1 = (j1×1)+(j2×1)+(χ∆∧×1) from Lemma A.14.
So our composite is the sum of three pieces, which we analyze separately.

The j1-composite. This piece is the composition along the top right in
the diagram

X ∧ Y1 ∧ Y2

χ∧id ((QQQQQQQQQQQQ
χ // X × Y1 × Y2

p
��

f×g∗ // Z1 × Z2

p

��
(X × Y1) ∧ Y2

f∧g∗
// Z1 ∧ Z2.

The composite along the bottom is H(f) ∧ g∗. Remark 2.6(iii) yields the
formula [H(f) ∧ g∗] = [H(f)] · [g∗] · τX+Y1−Z1,Z2 .

The j2-composite. This piece is the composition along the top right in
the diagram

X ∧ Y1 ∧ Y2

T∧1
��

χ // X × Y1 × Y2
T×1 // Y1 ×X × Y2

f∗×g //

p
��

Z1 × Z2

p

��
Y1 ∧X ∧ Y2

χ
33ffffffffffffffffffffffff 1∧χ // Y1 ∧ (X × Y2)

f∗∧g // Z1 ∧ Z2.

The upper left region commutes by Proposition A.19, and the middle region
commutes by Remark A.20. The composition along the bottom left of the
diagram is (f∗ ∧ H(g))(T ∧ 1). Finally, Remark 2.6(iii) yields the formula
[f∗ ∧H(g)][T ∧ 1] = [f∗] · [H(g)] · τY1−Z1,Z2 · τX,Y1 .
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The χ∆∧-composite. Here we examine the diagram

X ∧ Y1 ∧ Y2
χ //

∆∧∧1
��

X × Y1 × Y2

∆∧×1
��

(X ∧X) ∧ Y1 ∧ Y2

1∧T∧1
��

χ

**UUUUUUUUUUUUUUU

χ // (X ∧X)× Y1 × Y2

χ

��
X ∧ Y1 ∧X ∧ Y2

χ∧χ
��

χ

**UUUUUUUUUUUUUUUU X ×X × Y1 × Y2

1×T×1
��

(X × Y1) ∧ (X × Y2)

f∧g
��

X × Y1 ×X × Y2p
oo

f×g
��

Z1 ∧ Z2 Z1 × Z2.p
oo

The parallelogram in the center commutes by Proposition A.19, and the ad-
jacent triangles commute by Remark A.20. The composition along the top,
right, and bottom is the composite in which we are interested, whereas the
composition along the left is [H(f)∧H(g)]·τX,Y1 ·[∆∧∧1]. By Remark 2.6(ii),
we have

[∆∧ ∧ 1] = [∆∧] · τ−X,Y1+Y2 = [∆∧] · τX,Y1τX,Y2 ,

and by Remark 2.6(iii) we have

[H(f) ∧H(g)] = [H(f)] · [H(g)] · τX+Y1−Z1,Z2 .

Putting everything together now gives that our χ∆∧-composite equals

[H(f)] · [H(g)] · τX+Y1−Z1,Z2 · τX,Y1 · [∆∧] · τX,Y1τX,Y2 .

Note that the two τX,Y1 terms cancel, leading to the expression given in the
statement of the proposition. �
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