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1. Introduction

A tower of homotopy fiber sequences gives rise to a spectral sequence on homo-
topy groups. In modern times such towers are ubiquitous, and most of the familiar
spectral sequences in topology can be constructed in this way. A pairing of towers
W∗ ∧X∗ → Y∗ consists of maps Wm ∧Xn → Ym+n which commute (on-the-nose)
with the maps in the towers. It is a piece of folklore that a pairing of towers gives
rise to a pairing of the associated homotopy spectral sequences. This paper gives a
careful proof of this general fact, for towers of spaces and towers of spectra.

Of course the main result is well-known, and in one form or another has been used
continuously for the past forty years; the paper is therefore mostly expository. The
only thing which might possibly be considered ‘new’ is the adaptation of the results
to the modern category of symmetric spectra, given in section 6. The reason the
paper exists at all is that I was trying to understand these spectrum-level results,
and found the existing literature extremely frustrating. After a long time I finally
gave up and decided to rebuild everything from scratch, and that is what the present
paper does. After all the machinery is laid out and the sign conventions in place,
the actual results are fairly simple.

When producing a pairing of spectral sequences, the work often divides into two
parts. One part is completely formal, and says that in a certain kind of situation
there is automatically a pairing. The non-formal part involves either getting into
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such a situation to begin with, or else interpreting what the formal machinery ac-
tually produced. The present paper deals only with the formal part; its companion
[D] works through the non-formal part in a few standard examples.

Other references for multiplicative structures on spectral sequences are: [FS,
Appendix A], [BK2], [GM, p. 162], [K], [MS, Thm. 4.2], [V], [Sp, Chap. 9.4], [Wh,
XIII.8].

1.1. Summary. The main difficulty with this material is the need to be careful
about details. Among other things, one has to get the signs right. This entails,
for instance, having an explicit choice in mind for the differential in a long exact
sequence on homotopy groups. One also has to be careful about keeping track of
orientations on spheres. Several sections of the paper are devoted to details like
this, as well as to recalling some basic material: sections 2 and 3 handle the case
of spaces, and then Appendix C deals with the case of spectra.

Sections 4 deals with products. The ultimate reason homotopy spectral se-
quences are multiplicative is Proposition 4.1—everything else is just elaboration.
I find this easier to understand than other discussions in the literature, but the
reader should check those out for himself. A treatment of products similar to the
one given here is in [Ad, pp. 236–243].

Sections 5 and 6 give the basic multiplicativity results for towers of spaces and
spectra. For spectra, our category of choice is that of symmetric spectra [HSS],
mostly because of the simplicity and elegance of the basic definitions. The results
of [MMSS, S] show that theorems proven in this category will work in any of the
other modern categories of spectra. It is also true that our proofs are generic enough
that they should work in most other categories, with only slight modifications.

When dealing with pairings of towers, it’s important that everything commute
on-the-nose. A pairing that commutes only up to homotopy will not necessarily
induce a pairing of spectral sequences—section 7 gives an example. Moreover, the
conditions that would have to be checked to know there is an induced pairing
are unwieldy in practice. This causes certain difficulties associated with the fact
that not every symmetric spectrum is cofibrant and fibrant. If one has an on-the-
nose pairing between towers and then applies a fibrant- (or cofibrant-) replacement
functor to all the objects, there is not necessarily a pairing between the new towers.
The bulk of the work in section 6 is to get around this problem via a small trick,
but it’s a trick that ends up being useful in many situations.

There are three appendices. Appendix A is a reference for certain conventions,
but is not used for anything else in this paper. Appendix B deals with some
technical issues needed for the trick in section 6. Finally, Appendix C gives a
careful background treatment for basic results about the category of spectra, in
particular about sign conventions for the boundaries in long exact sequences.

1.2. Notation and terminology. Here we list some things from the paper which
might cause confusion. First, the cofiber of a map A→ B refers to the pushout of
∗ ← A→ B, and is denoted B/A; note that A→ B need not be a monomorphism.
The phrase ‘homotopy cofiber’ is never abbreviated as ‘cofiber’.

If one has a construction on a model category—for instance, a monoidal product
∧—then we denote its derived functor on the homotopy category by an underline—
for instance, ∧ . The derived functor is unique up to unique isomorphism, and so
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we always assume a specific one has been chosen. The notation Ho(−,−) refers to
the set of maps in the homotopy category.

The symbol W⊥ denotes an augmented tower, described in the beginning of
section 6.

The difference between ‘homotopy cofiber sequence’ and ‘rigid homotopy cofiber
sequence’ is explained in Appendix C.4. In essence, the former refers to something
going on in a homotopy category, whereas the latter refers to something in a model
category. This difference is non-vacuous.

If the pieces of a filtration get smaller as the indices gets bigger, we write the
filtration as F p. If the pieces get bigger as the indices get bigger, we write Fp. So
F p+1 ⊆ F p, but Fp ⊆ Fp+1. Note that a cellular filtration of a space is of the first
type if the pieces are indexed by codimension (hence the superscript), and of the
second type if the pieces are indexed by dimension (hence the subscript).

2. Preliminaries

2.1. Orientations. We give R the usual orientation, and Rn the product orienta-
tion. The interval I = [0, 1] has 0 as basepoint, and is oriented as a subspace of R.
Let Sn−1 and Dn denote the unit sphere and unit ball in Rn, with (−1, 0, . . . , 0) as
their basepoint. Dn inherits an orientation from Rn, and Sn−1 inherits the bound-
ary orientation from Dn (see remark below). We fix once and for all a family of
orientation-preserving, basepoint-preserving homeomorphisms Dn/Sn−1 → Sn and
I → D1. Since all such homeomorphisms are homotopic, the particular choice will
not influence anything we do.

Remark 2.2. Boundary orientations. Recall that if M is an oriented manifold-
with-boundary then there exists an embedding I × ∂M →M which is the identity
on {0} × ∂M . The orientation of ∂M is chosen so that any such embedding is
order-reversing, where I × ∂M has the product orientation. This is the convention
forced on us if we want (1) ∂I to have the usual orientation, and (2) ∂(M ×N) =
(∂M) × N ∪ (−1)dimMM × ∂N , where the sign indicates how the orientation on
the second component compares to the product orientation on M × ∂N .

Remark 2.3. We’ve chosen (−1, 0, . . . , 0) for the basepoint of Dn because this
makes D1 homeomorphic to I as a pointed, oriented space. It also ensures that
S0, oriented as ∂D1, has the non-basepoint oriented postively—this is the ‘correct’
convention, necessary for S0 ∧X to have the same orientation as X.

For any pointed space A, let CA = A ∧ I and ΣA = A ∧ (I/∂I) ∼= A ∧ S1. The
suspension coordinate has been placed on the right because this will work better
with the adjointness formula Hom(X ∧ S1, Y ) = Hom(X,F (S1, Y )), particularly
when we start working with spectra.

We will occasionally deal with orientations on spaces which are not manifolds
(like Sp ∨ Sp), or at least are not a priori manifolds (like Sp ∧ Sq). These will
always be spaces X with a finite number of singular points, and we really mean an
orientation on the deleted space X − {singular points}.

Exercise 2.4. CSp−1 inherits an orientation as a quotient of Sp−1×I. Check that
the induced orientation on ∂(CSp−1) is (−1)p−1 times the original orientation of
Sp−1 × {1}—for short, ∂(CSp−1) = (−1)p−1Sp−1.
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2.5. Relative homotopy groups. Let f : A → B be a map between pointed
spaces. For p ≥ 1 define πp(B,A) to be the set of equivalence classes of diagrams
D of the form

(2.1) Sp−1

��

��

// A

��
Dp // B

(where the horizontal maps preserve the basepoint, of course). Two diagrams D

and D′ are regarded as equivalent if there is a diagram

Sp−1 × I
��

��

// A

��
Dp × I // B

of basepoint-preserving homotopies which restricts to D under the inclusion {0} ↪→
I and to D′ under {1} ↪→ I. Note that πp(B,A) depends on the map f ; we are
leaving this out of the notation only because the map is usually clear from context.

When p ≥ 2, we pinch the equatorial disk Dp−1 in Dp and choose an orientation-
preserving homeomorphism Dp/Dp−1 → Dp ∨Dp. This gives a diagram

Sp−1 //

��

Sp−1 ∨ Sp−1

��
Dp // Dp ∨Dp

and allows us to define a product on πp(B,A) in the usual way. One can check that
this makes πp(B,A) into a group for p ≥ 2 and an abelian group for p > 2.

The set πp(B, ∗) will be abbreviated as πpB. Note that this is canonically iso-
morphic to [Dp/Sp−1, B]∗, and therefore to [Sp, B]∗ via our fixed homeomorphism
Dp/Sp−1 ∼= Sp. We will use this identification freely in what follows. Note also
that functoriality gives a natural map πp(B,A)→ πp(B/A, ∗), for any map A→ B.

Remark 2.6. If f : A→ B is a map of pointed spaces, the homotopy fiber of f is
defined to be the pullback

hofib(f) //

��

F (I,B)

��
A

f // B

where F (I,B) is the space of basepoint-preserving maps I → B, and F (I,B)→ B
sends a path γ to γ(1). Observe that πp(B,A) is isomorphic to πp−1 hofib(f)—we
are choosing to use the former notation because it works better with respect to
products.

We can define a canonical long exact sequence

· · · −→ πp(A, ∗)
f∗−→ πp(B, ∗)

j−→ πp(B,A)
κ−→ πp−1(A, ∗) −→ · · ·

which terminates as
· · · → π0(A, ∗)→ π0(B, ∗).
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If y ∈ πp(B,A) is represented by a diagram D as above, then κ(y) is the element
of πp−1(A, ∗) represented by the map Sp−1 → A. Likewise, if x ∈ πp(B, ∗) is
represented by a map x : Dp/Sp−1 → B then j(x) is the equivalence class of the
diagram

Sp−1

��

��

∗ // A

��
Dp x̄ // B.

Note that everything we have done is functorial in the map f : there were no choices
made in writing down either the groups or the maps in the exact sequences.

Remark 2.7. Sometimes it is tempting to abandon the disks Dn altogether, and
instead work only with the spaces CSn−1. For instance we could have defined
πp(B,A) as equivalence classes of diagrams

Sp−1

��

��

f // A

��
CSp−1 g // B.

In this case one defines κ by sending an element represented by the above square to
(−1)p−1[f ]. Ultimately this is because κ is a ‘boundary’ map, and by Exercise 2.4
∂(CSp−1) = (−1)p−1Sp−1. If you leave out the sign in the definition of κ, you run
into unpleasant-looking formulas for products later on.

3. The homotopy spectral sequence

By a tower we will simply mean a sequence of pointed spaces Wn with
(basepoint-preserving) maps between them:

· · · −→W3 −→W2 −→W1 −→W0 −→W−1 −→ · · · .
In many cases one has either that Wn = ∗ for n < 0, or that Wn → Wn−1 is the
identity for n < 0; none of the basic ideas will be lost by thinking only of these
simpler cases, if the reader desires.

The long exact sequences for each map in the tower of course patch together
to form an exact couple (except for a truncation—see Remark 3.2 below). We are
free to index the exact couple in any way we want, and our choice will depend on
the kind of tower we’re looking at. There are two basic situations which are most
common:

lim-towers: colimn π∗Wn = 0, and the spectral sequence is used to give infor-
mation about limn π∗Wn. In this situation it often turns out that
limn π∗Wn is actually the same as π∗(holimnWn), and the latter
is what we’re really interested in.

colim-towers: limn π∗Wn = 0, and the spectral sequence is used to give informa-
tion about colimn π∗Wn. Often one also has that Wn → Wn−1 is
the identity for n ≤ 0, in which case we are getting information
about π∗W0.
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In this paper we will use the indexing conventions that are most useful for colim-
towers, because that turns out to be where pairings work best. (See Appendix A
for the lim-tower conventions, however.) We set

Dp,q
1 = πp(Wq, ∗) and Ep,q1 = πp(Wq,Wq+1) p ≥ 1, q ∈ Z,

and the maps j : Dp,q
1 → Ep,q1 and κ : Ep,q1 → Dp−1,q+1

1 are as defined in the last sec-
tion. The differential dr has the form Ep,qr → Ep−1,q+r

r , and the spectral sequence
is drawn on a grid with Ep,qr in the (p, q)-spot. This is usually called Adams in-
dexing, and is designed so that the E∞-term can be read along the vertical lines,
with the group in the (p, q)-spot contributing to the qth filtration piece of a pth
homotopy group.

Remark 3.1. There are many ways to index a spectral sequence, and the ‘best’ way
depends both on personal taste and the situation at hand. Sometimes, for instance,
it is convenient to ‘flip’ the above indexing and draw our Ep,qr in the (−p, q) spot—
this is nice if our pth homotopy groups are secretly (−p)th cohomology groups. We
have settled on the indexing scheme which seems easiest to remember, and easiest
to draw; but the reader is welcome to re-index things however he wants. For a
Serre cohomology spectral sequence one would set Ep,q1 = π−p−q(Wp,Wp+1), for
example.

Remark 3.2. Note that we don’t really have a spectral sequence, or even an exact
couple; this is because π0 and π1 need not be abelian groups, and the long exact
homotopy sequences need not be exact at the final π0. One can either choose not
to define the Ep,qr for r > 1, p ≤ 2 because of these difficulties—in which case
we have a ‘fringed’ spectral sequence—or else one follows [BK, IX.4] and obtains
an ‘extended’ spectral sequence in which those Ep,qr are defined but may only be
pointed sets or non-abelian groups. Either way, there is stuff to worry about.

One way we could avoid these issues is to state results under the restriction that
the Wn’s are connected, with abelian fundamental groups. Another way is to state
results only in the range p ≥ 3. We won’t dwell on this; in this paper we’ll implicitly
assume the reader is in a situation where these fringe problems aren’t there.

As with any spectral sequence, one defines a nested sequence of subgroups

0 ⊆ Bp,q2 ⊆ · · · ⊆ Bp,qr ⊆ Bp,qr+1 ⊆ · · · ⊆ Z
p,q
r+1 ⊆ Zp,qr ⊆ · · · ⊆ Zp,q2 ⊆ Ep,q1 ,

so that Zp,qr consists of all elements which are killed by d1 through dr−1, and
Ep,qr = Zp,qr /Bp,qr . We will need the following elementary result:

Lemma 3.3. Let α ∈ Ep,q1 = πp(Wq,Wq+1).

(a) α lies in Zp,qr if and only if α can be represented by a diagram D as in (2.1)
in which the map Sp−1 →Wq+1 factors (on-the-nose) through Wq+r. In other
words, there is a commutative diagram

Sp−1 // //

h

zz ��

Dp

��
Wq+r

// Wq+1
// Wq

in which the right-hand-square represents the element α.
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(b) If α and h are as above then dr(α) can be represented by the diagram

Sp−2 // //

∗
��

Dp−1

��
Wq+r+1

// Wq+r

where the left vertical arrow collapses everything to the basepoint, and the right

vertical arrow is the composite Dp−1 → Dp−1/Sp−2 ∼= Sp−1 h−→Wq+r.

Proof. Part (a) is an application of the homotopy-extension-property. Choose a
diagram as in (2.1) representing α, and let α0 denote the ‘top’ map Sp−1 →Wq+1.
From analyzing the exact couple, the fact that α lies in Zr means that the (pointed)
homotopy class α0 : Sp−1 →Wq+1 lifts to Wq+r. So there is a map h : Sp−1 →Wq+r

for which the composite Sp−1 → Wq+r → Wq+1 is homotopic to α0. Choose a
basepoint-preserving homotopy H : Sp−1 × I → Wq+1 from α0 to this composite.
Projecting further down into Wq, we can glue this to the original map Dp →Wq to
get H ′ : (Dp × {0}) ∪ (Sp−1 × I)→Wq. The homotopy-extension-property for the
pair (Dp, Sp−1) lets us extend H ′ over Dp × I. Restricting H ′ to time t = 0 gives
the original diagram representing a, whereas restricting to t = 1 gives a diagram
where we have the required lifting to Wq+r.

Part (b) is a simple thought exercise. �

3.4. Convergence.
Let πp(W−) denote colimn πpWn. Note that the terminology is misleading, be-

cause W− isn’t a space whose homotopy group we’re looking at. Define a filtration
on πp(W−) by letting F qπp(W−) denote those elements in the image of πp(Wq). Let
Grq πp(W−) = F q/F q+1. Given α ∈ F qπp(W−), choose a map β : Dp/Sp−1 → Wq

which lifts α (up to homotopy). Then j(β) is an element in πp(Wq,Wq+1) = Ep,q1 .

Exercise 3.5.

(a) Check that j(β) is an infinite cycle, and that its class in E∞ doesn’t de-
pend on the lifting β—in other words, verify that we have a well-defined map
F qπp(W−)→ Ep,q∞ .

(b) Check that F q+1 maps to zero under this map, and so there is an induced map
Γ: Grq πp(W−)→ Ep,q∞ .

(c) Verify that Γ is an injection.

Here is one basic convergence result:

Proposition 3.6. Suppose W∗ is a colim-tower (either of spaces or spectra).

(a) If RE∞ = 0 then Γ is an isomorphism.
(b) If lim1

n π∗Wn = 0, the spectral sequence converges conditionally.
(c) If both conditions from (a) and (b) hold, and also

⋂
q F

qπp(W−) = 0, the
spectral sequence converges strongly.

(d) Suppose both conditions from (a) and (b) hold, and also that for each α ∈
πp(W−) there exists an N such that α has at most one pre-image in πp(WN ).
Then the spectral sequence converges strongly. (Note in particular that the
condition is satisfied if Wn →Wn−1 is the identity for all n� 0).
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The reader should refer to [Bd] for an explanation of the RE∞ = 0 condition.
The most common situation in which it is satisfied is when for each p, q there exists
an N such that Ep,qr = Ep,qr+1 for all r ≥ N .

Proof. The statement in (b) is really just the definition of conditional convergence
[Bd, Defn. 5.10]. The statement in (a) follows from [Bd, Lemma 5.6, Lemma 5.9(a)].
Part (c) is essentially [Bd, Theorem 8.10]—Boardman’s group W is ∩qF q(π∗(W−))
in this case.

For (d) we will show that the given condition implies ∩qF qπp(W−) = 0. Suppose
α is in this intersection, and pick an N such that α has at most one pre-image in
πp(WN ). The condition that α be in the intersection shows that it has exactly one
pre-image, which we’ll denote x. Then x is in ∩qIm(πp(Wq) → πp(Wn)). By [Bd,
Lemma 5.9(a)], the RE∞ = 0 condition implies that this intersection is zero. So
x = 0, and therefore α = 0. �

4. Products in π∗(−,−)

We choose once and for all a family of orientation-preserving, basepoint-
preserving homeomorphisms Dp+q → Dp × Dq. These will of course carry the
boundary homeomorphically to the boundary, in an orientation-preserving sense.

Let f : A→ B and g : C → D be two maps between pointed spaces. Let P be the
pushout of A ∧D ← A ∧C → B ∧C, and note that there is a canonical map P →
B∧D. One can construct a natural pairing πp(B,A)⊗πq(D,C)→ πp+q(B∧D,P )
in the following way. Suppose given two diagrams

Sp−1

��

��

// A

��

Sq−1

��

��

// C

��
Dp // B Dq // D.

From these we form the new diagram

Sp+q−1

��

��

∼= // (Sp−1 ×Dq)
∐
Sp−1×Sq−1(Dp × Sq−1)

��

// (A ∧D)
∐

(A∧C)(B ∧ C)

��
Dp+q

∼= // Dp ×Dq // B ∧D
which defines an element in πp+q(B ∧ D,P ). One easily checks that this product
is well-defined and bilinear.

Now suppose that x ∈ πp(B,A) and y ∈ πq(D,C) are represented by the di-
agrams above. Then κ(x · y) is an element of πp+q−1(P, ∗), and the inclusion
j : (P, ∗)→ (P,A ∧ C) gives us j∗(κ(xy)) ∈ πp+q−1(P,A ∧ C).

Likewise, κx is represented by the diagram

Sp−2 //

��

∗ //

��

∗

��
Dp−1 // Dp−1/Sp−2 // A,
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and multiplying by the element y in a way similar to the above yields

∂(Dp−1 ×Dq) //

��

(Dp−1/∂Dp−1) ∧ Sq−1 //

��

A ∧ C

��

A ∧ C

��
Dp−1 ×Dq // (Dp−1/Sp−2) ∧Dq // A ∧D // P.

This diagram represents an element of πp+q−1(P,A∧C) which we will call (κx) · y
(by abuse of notation). In a similar manner, one constructs an element x · (κy).

Proposition 4.1. For x and y as above, j∗κ(x · y) = (κx)y + (−1)px(κy) as
elements in πp+q−1(P,A ∧ C).

Proof. By naturality, one reduces to the case where A → B is Sp−1 ↪→ Dp and
C → D is Sq−1 ↪→ Dq. The result becomes a geometric calculation, essentially
boiling down to the identity of oriented manifolds ∂(Dp × Dq) = (Sp−1 × Dq) ∪
(−1)p(Dp × Sq−1); the sign indicates the appropriate change in orientation.

For complete details, let T = Sp−1 ∧Sq−1 and U = (Sp−1 ∧Dq)qT (Dp ∧Sq−1).
Then T ⊆ U , and we are dealing with the three homotopy elements j∗κ(xy),
(κx)y, and x(κy) in πp+q−1(U, T ). The idea will be to produce an injection
D : πp+q−1(U, T ) ↪→ Z⊕ Z, and then verify the identity by checking it in Z⊕ Z.

Note that T is a (p+ q − 2)-sphere, U is a (p+ q − 1)-sphere, and the inclusion
T ↪→ U is basically the inclusion of the equator. So the quotient U/T is a wedge
of two (p + q − 1)-spheres. Everything carries a natural orientation determined
by our chosen orientations of spheres and disks. In particular, U is oriented as
∂(Dp ∧ Dq), and this may be written as U = (Sp−1 ∧ Dq) ∪ (−1)p(Dp ∧ Sq−1).
This implies U/T ∼= (Sp−1 ∧ [Dq/Sq−1])∨ (−1)p([Dp/Sp−1]∧Sq−1) (as always, the
(−1)p describes how the second sphere in the wedge is oriented with respect to the
product orientation on [Dp/Sp−1] ∧ Sq−1.)

We have a natural map πp+q−1(U, T ) → πp+q−1(U/T ): an element represented
by

Sp+q−2

��

��

α0 // T

��
Dp+q−1 α1 // U.

is sent to the map α2 : Dp+q−1/Sq+q−2 → U/T , which is a map from a (p+ q− 1)-
sphere to a wedge of two (p+q−1)-spheres. Such a map has two degrees deg+ α2 and
deg− α2, obtained by projecting away either of the two spheres making up U/T . In
this way we obtain a mapD : πp+q−1(U, T )→ Z⊕Z sending α to (deg+ α2,deg− α2).
One can check geometrically that

D
(
j∗
(
κ(xy)

))
= (1, 1), D(κ(x)y) = (1, 0), and D(xκ(y)) = (0, (−1)p).

To understand these, check that for the element j∗(κ(xy)) the corresponding α2 is
the map Dp+q−1/Sp+q−2 → U/T which pinches an equatorial (p+ q− 2)-sphere to
a point; so the degree is (1, 1). For κ(x)y, the map α2 is basically the inclusion of
the first wedge-summand in U/T . And finally, for xκ(y) the corresponding α2 is
the inclusion of the second wedge-summand. This summand is not oriented in the
standard way, however, and that’s why the degree of the map is (−1)p rather than
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1. In a minute we will see that D is an injection, but if you accept that then we
have verified the identity j∗(κ(xy)) = κ(x)y + (−1)pxκ(y).

The map T ↪→ U is null, so hofib(T → U) ' T × ΩU . From this it’s easy to
compute that πp+q−1(U, T ) ∼= πp+q−2(T ×ΩU) ∼= Z⊕Z. But we know two elements
(κx)y and x(κy) in πp+q−1(U, T ), and we have already calculated that their images
under D are (1, 0) and (0, (−1)p). So the image of D has rank 2, therefore D is an
injection (in fact, an isomorphism). �

Exercise 4.2. Let B/A denote the pushout of ∗ ← A → B, and recall that there
is a map πp(B,A)→ πp(B/A, ∗) induced by the map of pairs (B,A)→ (B/A, ∗).

Check that there is a natural map φ : (B ∧D)/P → [B/A]∧ [D/C] and that the
following diagram commutes:

πk(B,A)⊗ πk(D,C) //

pr⊗pr
��

πk+l(B ∧D,P )

pr

��
πk(B/A)⊗ πl(D/C)

**

πk+l((B ∧D)/P )

φuu
πk+l(B/A ∧D/C).

(Note that, because of naturality, it suffices to check this in the universal case).

5. Pairings of spectral sequences

Now suppose that we have three towers W∗, X∗, and Y∗, with the resulting
homotopy spectral sequences denoted by E∗(W ), E∗(X), and E∗(Y ). Assume
that there are pairings Wm ∧ Xn → Ym+n such that the following squares are
commutative (not just homotopy-commutative!):

Wm+1 ∧Xn
//

��

Ym+n+1

��

Wm ∧Xn+1
oo

��
Wm ∧Xn

// Ym+n Wm ∧Xn.oo

Our first claim is that there is an induced pairing

πk(Wm,Wm+1)⊗ πl(Xn, Xn+1)→ πk+l(Ym+n, Ym+n+1).

This follows from the construction of products in section 4, together with naturality.
In terms of our spectral sequences we have produced a multiplication

Ep,q1 (W )⊗ Es,t1 (X)→ Ep+s,q+t1 (Y ).

It follows from Proposition 4.1 and naturality that the differential d1 = jκ is a
derivation with respect to this product. This immediately implies that the pairing
on E1-terms descends to a well-defined pairing on E2-terms.

We must next show that the d2 differentials behave as derivations with respect
to the product on E2, but this is a similar argument. By Lemma 3.3, elements
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x ∈ Ep,q2 (W ) and y ∈ Es,t2 (X) can be represented by squares

Sp−1 // //

f

zz ��

Dp

��

Ss−1 // //

g

{{ ��

Ds

��
Wq+2

// Wq+1
// Wq Xt+2

// Xt+1
// Xt

in which the indicated lifts exist. The outer ‘squares’ define elements x̄ ∈
πp(Wq,Wq+2) and ȳ ∈ πs(Xt, Xt+2), and Proposition 4.1 gives us an identity

jκ(x̄ȳ) = κ(x̄)ȳ + (−1)px̄κ(ȳ)

in the group πp+s−1

(
(Wq ∧ Xt+2) q(Wq+2∧Xt+2) (Wq+2 ∧ Xt),Wq+2 ∧ Xt+2

)
. By

naturality we get an identity in πp+s−1(Yq+t+2, Yq+t+3) (you could actually put
Yq+t+4 in the second spot for a stronger identity). A little thought shows that this
is the derivation property that we asked for.

Since d2 is a derivation, the multiplication on E2 descends to E3. The same
argument as above shows that d3 is a derivation, and we continue. We have proven:

Proposition 5.1. The product E1(W )⊗ E1(X) → E1(Y ) descends to pairings of
the Er-terms, satisfying the Leibniz rule dr(a · b) = dr(a) · b + (−1)pa · dr(b) for
a ∈ Ep,qr (W ) and b ∈ Es,tr (X). (As always, we are ignoring behavior ‘near the
fringe’).

Remark 5.2. Massey [M] has given a general algebraic criterion for checking when
a product on the D- and E-terms of an exact couple gives rise to a pairing of spectral
sequences. We could have arranged the above argument in terms of those criteria,
but personally I find that more distracting than helpful. Massey’s criteria are direct
translations of what it means for each dr to be a derivation, and in practice I find
it easier just to remember the derivation condition.

Recall that Ep,q∞ =
⋂
r Z

p,q
r /

⋃
Bp,qr . From Proposition 5.1 it follows that E∞

has an induced product. We of course want to know that this product has some-
thing to do with what the spectral sequence is converging to. The pairing of
towers W∗ ∧ X∗ → Y∗ induces a pairing π∗(W−) ⊗ π∗(X−) → π∗(Y−). This re-
spects filtrations, and so descends to a pairing of the associated graded groups
Gr∗ πp(W−)⊗Gr∗ πs(X−)→ Gr∗ πp+s(Y−).

Proposition 5.3. The following diagram is commutative (where Γ is the map from
Exercise 3.5):

Grq πpW− ⊗Grt πsX− //

Γ⊗Γ

��

Grq+t πp+sY−

Γ
��

Ep,q∞ (W )⊗ Es,t∞ (X) // Ep+s,q+t∞ (Y )

Proof. This is a simple matter of chasing through the definitions. �

5.4. Augmented towers of spaces. Suppose A
f−→ B

g−→ C is a sequence of
pointed spaces, where the composite is null (not just null-homotopic). Then there
is an induced map A→ hofib(B → C) which sends a point a to the pair consisting
of f(a) and the constant path from the basepoint to gf(a). The sequence will
be called a rigid homotopy fiber sequence if the composite is null and this
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induced map A→ hofib(B → C) is a weak equivalence. In this case we have a map
B/A→ C and we consider the composite

πk(B,A)
pr−→ πk(B/A) −→ πkC.

It can be checked that the composite is an isomorphism for k > 0. These iso-
morphisms allow us to (canonically) rewrite the long exact sequence for A → B
as

· · · → πkA→ πkB → πkC → πk−1A→ · · ·
terminating in π0A → π0B → π0C (note that the sequence extends one term
further to the right than the sequence from Section 2).

Now suppose given a diagram of pointed spaces

B2 B1 B0

· · · // W2
//

OO

W1
//

OO

W0

OO

// · · ·
where each Wn+1 → Wn → Bn is a rigid homotopy fiber sequence. We will refer
to this as an augmented tower. The long exact sequences from each level patch
together, and the homotopy spectral sequence takes on the form Ep,q1 (W,B) =
πpBq, where p ≥ 0 and q ∈ Z. (Note that the spectral sequence is now defined when
p = 0, and that as always we are ignoring ‘fringe’ behavior when it is unpleasant).

Assume given three such towers (W,B), (X,C), and (Y,D), together with a
pairing of towers W ∧X → Y . Suppose also that we have maps Bm ∧Cn → Dm+n

such that the obvious diagrams

Wm ∧Xn
//

��

Ym+n

��
Bm ∧ Cn // Dm+n

all commute. We will call this data a pairing (W,B) ∧ (X,C) → (Y,D).
Note that the pairings B ∧ C → D give induced pairings of homotopy groups
πrB ⊗ πsC → πr+sD.

Proposition 5.5. There is a pairing of spectral sequences E∗(W,B)⊗E∗(X,C)→
E∗(Y,D) which on E1-terms is the obvious multiplication πpBq⊗πsCr → πp+sDq+r.

This result is also proven in [FS, Appendix A].

Proof. The pairing is the one produced by Proposition 5.1. Checking that the
multiplication on E1-terms coincides with the above description consists of chasing
through how things are defined, together with Exercise 4.2. �

5.6. The simplicial setting. Up until now we have always worked with topo-
logical spaces, and have benefited from the fact that there are so many useful
isomorphisms around: we have used Dp/Sp−1 ∼= Sp repeatedly, for instance. For
pairings between towers of simplicial sets the treatment becomes more complicated,
because such isomorphisms are no longer available. With enough trouble one could
carry out all our arguments purely in the simplicial setting, but there is also an
easier way out using geometric realization.

By assumptions (T1)–(T4) in Appendix C, it follows that geometric realization
preserves products. So there are natural isomorphisms |K| ∧ |L| → |K ∧ L| for
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pointed simplicial sets K and L. Suppose that W , X, and Y are towers of pointed
simplicial sets, and that we have a pairing W ∧ X → Y . Applying geometric
realization, one obtains maps |Wm| ∧ |Xn| → |Ym+n| commuting with the maps in
the towers |W |, |X|, and |Y |. We can now apply all the results which have been
developed already.
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6. Towers of spectra

This section extends the previous results to the case of spectra. In order to
accomplish this without getting lost in category-specific constructions, we will as-
sume certain generic properties about our category of spectra; these are outlined
in Appendix C. The reader will want to review the notion of rigid homotopy fiber
sequence given there.

Here is some terminology. Suppose given a diagram of spectra

B2 B1 B0

· · · // W2
//

OO

W1
//

OO

W0

OO

// · · ·
The spectra W∗ and the maps between them form a tower. The whole diagram,
consisting of the W ’s and B’s, is an augmented tower, which will be denoted
(W,B) or just W⊥ (the subscript is to remind us there is an augmentation). If
each sequence Wn+1 → Wn → Bn is a rigid homotopy fiber sequence (defined in
section C.4), we will say that W⊥ is a rigid tower, or a tower of rigid homotopy
fiber sequences. A rigid tower gives rise to an exact couple and a homotopy spec-
tral sequence with Ep,q1 (W,B) = πpBq; the boundary of the long exact homotopy
sequence is the one from C.9(a).

Suppose given rigid towers (W,B), (X,C), (Y,D) together with a pairing
(W,B) ∧ (X,C) → (Y,D) (this means the same thing as in section 5.4). One
gets a pairing on E1-terms of the spectral sequence by using the composites

(6.1) Ho(Sk, Bm)⊗Ho(Sl, Cn) // Ho(Sk+l, Bm ∧Cn)

��
Ho(Sk+l, Bm ∧ Cn) // Ho(Sk+l, Dm+n).

Theorem 6.1. Given a pairing between towers of rigid homotopy fiber sequences,
the above pairing on E1-terms descends to a pairing of spectral sequences.

It’s useful to have a result which applies to unaugmented towers. Recall that
given a map f : A→ B between cofibrant spectra there is a cofibrant spectrum Cf
called the canonical homotopy cofiber of f , together with a long exact sequence of
homotopy groups (cf. C.9(k)). Both Cf and the long exact sequence are functorial
in the map f . If W∗ is a tower of cofibrant spectra, then there is a resulting spectral
sequence with Ep,q1 (W ) = Ho (Sp, C(Wq+1 →Wq)).

Suppose given towers of cofibrant spectraW∗, X∗, and Y∗, together with a pairing
W ∧X → Y . Let Bn denote the canonical homotopy cofiber of Wn+1 → Wn, and
define Cn and Dn similarly. There is an induced pairing Bm ∧Cn → Dm+n, which
we explain as follows. Heuristically, a ‘point’ in Bm is specified either by the data
[s ∈ I, w ∈Wm+1] or the data [w ∈Wm], with the relations that [0, w ∈Wm+1] = ∗
and [1 ∈ I, w ∈ Wm+1] = [pw ∈ Wm] (where p is the map Wm+1 → Wm). Given
[s ∈ I, w ∈ Wm+1] ∈ Bm and [t ∈ I, x ∈ Xn+1] ∈ Cn we define the product to be
the point [s+ t−1 ∈ I, p(wx) ∈ Ym+n+1] ∈ Dm+n if s+ t ≥ 1 (where wx ∈ Ym+n+2

and p(wx) is the image of this point in Ym+n+1), and to be the basepoint if s+t ≤ 1.
The reader will be left to check that this respects the identifications, and to see
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that this heuristic description can be translated into a purely category-theoretic
construction of Bm ∧Cn → Dm+n. The following will be deduced as a corollary of
Theorem 6.1.

Theorem 6.2. Given a pairing W ∧X → Y between towers of cofibrant spectra,
there is a pairing of spectral sequences E∗(W )⊗E∗(X)→ E∗(Y ) which on E1-terms
is the pairing induced by Bm ∧ Cn → Dm+n.

6.3. Homotopy-pairings. Proving that spectral sequences are multiplicative is
just a matter of checking the derivation formulas. In the case where our spectra
are fibrant and we are dealing with homotopy groups πk where k ≥ 1, the proof
is exactly the same as the one for towers of spaces. Ultimately, things work for
spectra because we can reduce to this case by suspending enough times. In order
to make this work, we need to navigate through some annoying issues surrounding
cofibrancy and fibrancy. We now develop the tools for doing this. For this section,
the reader should familiarize himself with Appendix B.

Suppose that we have three rigid towers (W,B), (X,C), and (Y,D), but we
only have a homotopy-pairing, meaning that there are maps Wm ∧Xn → Ym+n

and Bm ∧Cn → Dm+n in Ho(Spectra) making the usual squares commute (in
Ho(Spectra)). We will say that this pairing is realizable if there are rigid towers
(W ′, B′), (X ′, C ′), and (Y ′, D′) such that

(i) Each pair consists of cofibrant-fibrant spectra,
(ii) There are isomorphisms in Ho(RgdTow) of the form (W,B) → (W ′, B′),

(X,C)→ (X ′, C ′), and (Y,D)→ (Y ′, D′), and
(iii) There is a pairing of towers (W ′, B′) ∧ (X ′, C ′) → (Y ′, D′) such that the

following diagrams in Ho(Spectra) are commutative:

Wm ∧Xn
//

��

W ′m ∧X ′n // W ′m ∧X ′n

��

Bm ∧Cn //

��

B′m ∧C ′n // B′m ∧ C ′n

��
Ym+n

// Y ′m+n Dm+n
// D′m+n.

Given a tower (W,B) and integers j < k, we let τj≤k(W,B) denote the finite
tower where we have removed Wi and Bi for i > k and i < j. We will say that the
pairing is locally realizable if for any four integers j < k and l < m the homotopy-
pairing between finite towers τj≤k(W,B)∧ τl≤m(X,C) → τj+l≤k+m(Y,D) is real-
izable. When checking that a spectral sequence is multiplicative, one must check
all the derivation formulas—but these only depend on finite sections of the towers.
Using this observation, we will eventually prove the following result.

Proposition 6.4. If the homotopy-pairing W⊥ ∧X⊥ → Y⊥ is locally realizable then
there is an induced pairing of spectral sequences E∗(W,B)⊗E∗(X,C)→ E∗(Y,D)
which on E1-terms is the map

Ho (Sk, Bm)⊗Ho (Sl, Cn)→ Ho (Sk ∧ Sl, Bm ∧Cn)→ Ho (Sk+l, Dm+n).

It is not true that every homotopy-pairing is locally realizable—see section 7 for
a counterexample. However, every ‘honest’ pairing of towers is also a homotopy-
pairing, and we can show that all of these are locally realizable. This is not a
tautology because of the cofibrant-fibrant condition in our notion of ‘realizable’.
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Proposition 6.5. If (W,B) ∧ (X,C) → (Y,D) is a pairing of rigid towers (with-
out any cofibrancy/fibrancy conditions on the spectra) then the resulting homotopy-
pairing is locally realizable.

Proof. Since we are only concerned with local realizability, we can assume all the
towers are finite. Using Lemma B.2 there are towers QW∗, FW∗ and maps

FW∗
∼
� QW∗

∼
−�W∗

such that

(1) QW∗ is a tower of cofibrations between cofibrant spectra, and
(2) FW∗ is a tower of cofibrations between cofibrant-fibrant spectra.

Let QBn denote the cofiber of QWn+1 → QWn, and define FBn similarly. We
apply the same lemma to X∗ and Y∗ to get QX∗, QY∗, FX∗, FY∗, QC∗, etc. Note
that there are induced weak equivalences of rigid towers

(FW,FB)
∼←− (QW,QB)

∼−→ (W,B) and (FX,FC)
∼←− (QX,QC)

∼−→ (X,C).

Now by Lemma B.3 the tower QW ∧QX is cofibrant. So we can get a lifting in
the diagram

QY∗

∼
����

QW ∧QX

44

// W ∧X // Y.

Also by Lemma B.3, the map QW ∧QX → FW ∧FX is a trivial cofibration (since
it is the composite QW ∧QX → QW ∧FX → FW ∧FX and QW , QX, FW , and
FX are all cofibrant towers). So we get a lifting in the diagram

QW ∧QX
��

��

// QY // FY

FW ∧ FX.

55

The pairing passes to cofibers to give (FW,FB) ∧ (FX,FC) → (FY, FD), and a
routine diagram chase shows that this is compatible with the original pairing under
the various weak equivalences. So we have produced the desired realization. �

6.6. Proofs of the main results. We start with several lemmas. If (W,B) is a
tower of spectra, let (S1 ∧W, S1 ∧B) be the tower whose nth level is S1 ∧Wn, with
the obvious structure maps. One defines W ∧ S1 similarly. If the objects W∗ and
B∗ are cofibrant then these are still towers of rigid homotopy cofiber sequences.

Lemma 6.7. When the spectra in W∗ and B∗ are cofibrant there is a canonical
‘right suspension’ isomorphism of spectral sequences Ep,q∗ (W ) → Ep+1,q

∗ (W ∧ S1)
which on E1-terms is the map x 7→ xσ defined in section C.3(b).

Likewise, there is a ‘left suspension’ isomorphism Ep,q∗ (W )→ Ep+1,q
∗ (S1∧W ) which

on E1-terms is x 7→ (−1)pσx.

Proof. One has to check that the suspension isomorphisms commute with the dif-
ferentials in the spectral sequences, but this follows from C.9(f). Note that the signs
are in the left-suspension isomorphism because of the formula dr(σx) = −dr(x), for
x ∈ Ep,qr . �



MULTIPLICATIVE STRUCTURES ON HOMOTOPY SPECTRAL SEQUENCES, PART I 17

Lemma 6.8. Suppose that the spectra W∗ and B∗ are fibrant, and let w ∈
Ep,q1 (W,B) where p > 0. If w survives to Er then there is a commutative dia-
gram

Wq+r
// Wq+r−1

// · · · // Wq+1
// Wq

Σ∞(Sp−1)

OO

Σ∞(Sp−1)

OO

· · · Σ∞(Sp−1)

OO

// Σ∞Dp

OO

such that the induced map Σ∞(Dp/Sp−1)→ Bq represents w. Also, given any such
diagram the composite Σ∞Sp−1 →Wq+r → Bq+r represents dr(w).

Proof. Given a map X → Y between fibrant spectra one defines πk(Y,X) to be
equivalence classes of diagrams, analogously to what was done in section 2. It is a
formal exercise to check that one gets an induced long exact sequence—the proof
is exactly the same as the unstable case. If F → E → B is a rigid homotopy fiber
sequence one compares the long exact sequences:

πkF // πkE // πk(E,F ) //

��

πk−1F // πk−1E

πkF // πkE // πkB // πk−1F // πk−1E.

The second square obviously commutes, and the third square commutes by the first
part of Remark C.10. So the map πk(E,F ) → πkB is an isomorphism, and this
proves the r = 1 case. The proof for general r is the same as for the unstable case,
using the homotopy extension property. �

Proof of Theorem 6.1. We assume that d1 through dr−1 have been checked to be
derivations, and we verify the identity dr(wx) = dr(w)x + (−1)pw(dx). The first
case to consider is where all the spectra are fibrant and we have w ∈ Ep,qr (W,B)
and x ∈ Es,tr (X,C) where p, s ≥ 0. Here we can use exactly the same method as
for Top∗: the above lemma lets us reduce to a universal case. We will not write out
the details again because they are the same as in Propositions 4.1 and 5.5. Note,
however, that the argument uses (S2) and (S4) from section C.1.

Now assume we are in the general case: we have w ∈ Ep,qr (W,B) and x ∈
Es,tr (X,C) and must verify that dr(wx) = dr(w)x + (−1)pw(dx). This equation
only depends on finite sections of the towers. Using the method of Proposition 6.5,
we can replace finite sections of the towers (W,B), (X,C), and (Y,D) by towers of
cofibrant objects; therefore we have reduced to this case.

Choose M and N large enough so that σMx and yσN have positive dimension.
There is the obvious pairing of towers

(SM ∧W, SM ∧B) ∧ (X ∧ SN , C ∧ SN )→ (SM ∧ Y ∧ SN ,SM ∧D ∧ SN )

(note that we needed the spectra to be cofibrant to know these are towers of rigid
homotopy cofiber sequences). The derivation condition for this new pairing, if we
knew it, would say that

dr(σ
Mx · yσN ) = dr(σ

Mx) · yσN + (−1)p+MσMx · dr(yσN ).
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By Lemma 6.7 (applied repeatedly) we can re-write the two sides as

(−1)MσMdr(xy)σN = (−1)MσM (drx)yσN + (−1)p+MσMx(dry)σN

= (−1)MσM
(

(drx)y + (−1)px(dry)
)
σN .

By cancelling the signs and the σ’s (which are isomorphisms), we obtain the desired
relation.

So at this point we have reduced to the case where p, s ≥ 1. Once again, using
the method of Proposition 6.5 we can ‘locally’ replace the towers W⊥, X⊥, Y⊥ by
towers of fibrant spectra. But now we are back in the case handled in the first
paragraph, so we are done. �

Proof of Theorem 6.2. Recall that W , X, and Y are towers of cofibrant objects,
and B, C, and D denote the canonical homotopy cofibers for the respective towers.
Each of the towers W , X, and Y can be replaced by the corresponding telescopic
tower TW , TX, or TY from section B.4. Proposition B.5 shows these are towers
consisting of cofibrations between cofibrant objects, and come with weak equiva-
lences to W , X, and Y . We augment them with the cofibers TB, TC, and TD in
each level. One readily checks that the spectra TB and B are in fact canonically
isomorphic (and the same for C and D). So we can identify the spectral sequences
E∗(TW, TB) ∼= E∗(W,B), etc.

By the discussion in section B.4 there is a pairing TW ∧ TX → TY compatible
with X ∧ Y → Z. On cofibers this induces maps TB ∧ TC → TD, which exactly
coincide with the maps B ∧C → D we started with. Finally, Theorem 6.1 gives us
a pairing E∗(TW, TB)⊗E∗(TX, TC)→ E∗(TY, TD), and using the isomorphisms
from above this gets translated to E∗(W )⊗ E∗(X)→ E∗(Y ). �

Proof of Proposition 6.4. The proof of Theorem 6.1 works verbatim. �

6.9. Towers of function spectra. We close this section with one last result which
is sometimes useful. Recall from section B.7 that if W⊥ is a rigid tower and A is a
cofibrant spectrum, then there is a ‘derived tower’ of function spectra Fder(A,W⊥)
and a resulting homotopy spectral sequence which we’ll denote E∗(A,W⊥).

Suppose that (W,B), (X,C), and (Y,D) are rigid towers with a homotopy pairing
W⊥ ∧X⊥ → Y⊥. It is immediate that if M and N are cofibrant spectra then there
is an induced homotopy-pairing Fder(M,W⊥)∧ Fder(N,X⊥)→ Fder(M ∧N,Y⊥).

Proposition 6.10. If the original homotopy-pairing W⊥ ∧X⊥ → Y⊥ is locally
realizable, so is the induced pairing on towers of function spectra. So for cofi-
brant spectra M and N there is a naturally defined pairing of spectral sequences
E∗(M,W⊥)⊗ E∗(N,X⊥)→ E∗(M ∧N,Y⊥) which on E1-terms is induced by

F(M,B)∧ F(N,C)→ F(M ∧N,B ∧C)→ F(M ∧N,D).

Proof. Only the first statement requires justification, but it is a routine exercise in
abstract homotopy theory—one just has to chase through certain diagrams. �

7. A counterexample

We give an example showing that a homotopy-pairing between towers (defined
in 6.3) does not necessarily induce a pairing of spectral sequences. A related prob-
lem arises when the pairings commute on-the-nose but where the homotopy fiber
sequences are not rigid.
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Let (W,B) be the following tower of rigid homotopy cofiber sequences:

Sk−1 Sk

∗ // Sk−1 //

OO

Dk.

OO

Here the maps are the obvious ones and the indexing is so that W0 = Dk. Actually
we want to regard W as a tower of spectra, so we mean to apply Σ∞ to everything.
Let (X,C) be the similar tower

Sl−1 Sl

∗ // Sl−1 //

OO

Dl

OO

and let (Y,D) be the tower

Sk+l−2 Sk+l−1 ∗

∗ // Sk+l−2 //

OO

Dk+l−1 //

OO

Dk+l−1.

OO

If desired, we could extend all of these to infinite towers in the obvious way. We
will give a homotopy-pairing W⊥ ∧X⊥ → Y⊥ which does not give rise to a pairing
of spectral sequences, and is therefore not locally realizable.

When either m or n is zero let Wm ∧Xn → Ym+n be the trivial map (collapsing
everything to the basepoint), and let it be the canonical identification Sk−1∧Sl−1 →
Sk+l−2 when m = n = 1. Similarly we let Bm ∧ Cn → Dm+n be the trivial map
for m = n = 0 and the canonical identification when either m = 1 or n = 1. This
defines a homotopy-pairing of towers.

Let w be the obvious element in Ek,01 (W ) = πk(Σ∞Sk), and similarly for x ∈
El,01 (X). Note that dw and dx are the obvious generators as well, by C.9(b). Then

wx = 0, but (dw)x + (−1)kw(dx) is twice the generator in Ek+l−1,1
1 (Y ) when l is

even. So we do not have d(wx) = (dw)x+ (−1)lw(dx).
If one modifies the above towers by changing all the Dn’s to ∗’s, then one gets

a similar example where the pairing is on-the-nose (not just a homotopy-pairing)
but the layers of the towers are not rigid homotopy cofiber sequences.

Appendix A. lim-towers

Pairings do not work especially well in the case of lim-towers, because it is hard
to relate the pairing on the tower to whatever the spectral sequence is converging to.
However, in the interest of providing a useful reference we will set down the usual
indexing conventions and properties of lim-towers. The material in this section
most naturally follows that of Section 3.

So assume W∗ is a tower of spaces (or spectra) with the property that
colimn π∗Wn = 0. Let πp(W ) denote limn πpWn—we’ll call this the pth homo-
topy group of the tower. The spectral sequence will be used to give information
about πpW , therefore we want to choose our indexing conventions so that Ep,q∞
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contributes to this group. For lim-towers, we set

Dp,q
1 = πp+1Wq−1 and Ep,q1 = πp+1(Wq−1,Wq).

The maps i, j, and k in the exact couple are the same as always, and the differentials
still have the form dr : Ep,qr → Ep−1,q+r

r .
The group πpW comes with a natural filtration, defined by setting

F qπp(W ) = ker
(
πpW → πpWq−1

)
.

That is, F q contains all the elements which die at level q− 1. Set Grq = F q/F q+1.
Suppose given an element α ∈ F qπpW . Then α gives us a homotopy class in

[Sp,Wq]∗ which becomes zero in Wq−1. Choose a specific representative a : Sp →
Wq, and choose a specific null homotopy Dp+1 → Wq−1. This data defines an
element in πp+1(Wq−1,Wq) = Ep,q1 , which by construction is an infinite cycle; so it
represents a class in Ep,q∞ .

Exercise A.1.

(a) Check that the class in Ep,q∞ does not depend on the choices made in the con-
struction, so we have a well-defined map F qπpW → Ep,q∞ . (You will have to
use the assumption that colimn π∗Wn = 0.)

(b) Observe that F q+1πpW maps to zero, so induces Grq πpW → Ep,q∞ .
(c) Verify that the map in (b) is an inclusion.

The reason our map Grq πpW → Ep,q∞ is not a surjection is easy to understand,
and worth remembering. An element of Ep,q∞ gives us a homotopy class in [Sp,Wq]
which can be lifted arbitrarily far up the tower: it can be lifted to Wq+10, Wq+100,
Wq+1000, etc. However, this is not the same as saying that it can be lifted to an
element of limn πpWn.

Here is a summary of some useful convergence properties:

Proposition A.2. Assume that W∗ is a lim-tower (of spaces or spectra).

(i) If RE∞ = 0 then the map Grq πpW → Ep,q∞ is an isomorphism and the spectral
sequence converges strongly to π∗W .

(ii) If lim1
n π∗Wn = 0, then the natural map πp(holimnWn)→ πpW is an isomor-

phism.
(iii) If Wn = ∗ for n� 0 and RE∞ = 0, then lim1

n π∗(Wn) = 0 as well.

Proof. Part (a) follows as in the proof of [Bd, Thm 8.13]. Part (b) follows from the
Milnor exact sequence

0→ lim1
n πpWn → πp(holim

n
Wn)→ lim

n
πp(Wn)→ 0.

Part (c) follows from [Bd, Lemma 5.9(b)]. �

Appendix B. Manipulating towers

This section contains some basic observations that are helpful when manipulating
towers. They are used in section 6, and in the applications from [D].
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B.1. Finite towers and smash products. Let Jn denote the indexing category
n → (n− 1) → · · · → 1 → 0. We will call an element of SpectraJn an n-tower.
Note that any n-tower X∗ may be regarded as an infinite tower by setting Xk = ∗
for k > n and Xk = X0 for k < 0.

There is a so-called Reedy model category structure on SpectraJn such that a
map of n-towers X∗ → Y∗ is a

(1) weak equivalence iff each Xi → Yi is a weak equivalence;
(2) fibration iff each Xi → Yi is a fibration;
(3) cofibration iff each Xi qXi+1 Yi+1 → Yi is a cofibration.

Note that the cofibrant objects are towers in which Xn is cofibrant and every Xi →
Xi−1 is a cofibration. The model structure gives us the following, in particular:

Lemma B.2. If X∗ is an n-tower, then there exist n-towers QX∗ and FX∗ together

with maps FX∗
∼
� QX∗

∼
−� X∗ such that every object of FX∗ is cofibrant-fibrant,

every object of QX∗ is cofibrant, and every map in QX∗ and FX∗ is a cofibration.

Proof. QX∗ is a cofibrant-replacement for X∗, and FX∗ is a fibrant-replacement
for QX∗. �

Suppose that X∗ is an m-tower and Y∗ is an n-tower. We define an (n+m)-tower
X ∧ Y by setting

(X ∧ Y )k = colim
i+j≥k

Xi ∧ Yj .

The colimit is over the obvious indexing category. There is a pushout diagram∐
i+j=k

[
(Xi+1 ∧ Yj)q(Xi+1∧Yj+1) (Xi ∧ Yj+1)

]
//

��

(X ∧ Y )k+1

��∐
i+j=k(Xi ∧ Yj) // (X ∧ Y )k.

From this one can deduce the following lemma (we will actually only need the case
where X∗ or Y∗ is the trivial tower ∗, which is a little easier to prove):

Lemma B.3. If f : X∗ � X ′∗ and g : Y∗ � Y ′∗ are cofibrations of m-towers and
n-towers, respectively, then the map f�g : (X ∧ Y ′) q(X∧Y ) (X ′ ∧ Y ) → X ′ ∧ Y ′
is a cofibration of (m + n)-towers. If either of the maps f and g is also a weak
equivalence, then so is f�g.

B.4. Telescopic replacements for infinite towers. We describe a construction
which replaces an infinite tower by a ‘nicer’ one, in a way that preserves pairings.

First suppose given a sequence of spectra · · · → E2 → E1 → E0. Let T0 = E0,
and let T1 be the pushout of

T0 E1 ∧ Σ∞S0 i1 //oo E1 ∧ Σ∞I+.

The right map is induced by the inclusion {1} ↪→ I. Note that if E1 is cofibrant
then E1 ∧ Σ∞S0 → E1 ∧ Σ∞I+ is a trivial cofibration, and so T0 → T1 is a
trivial cofibration (which admits a retraction T1 → T0). There is a composite map

E2 → E1
i0−→ E1 ∧ Σ∞I+ → T1, and we let T2 be the pushout of

T1 E2 ∧ Σ∞S0 i1 //oo E2 ∧ Σ∞I+.
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This gives us a sequence of maps T0 → T1 → T2 → · · · , and we define TE to be the
colimit. This is the telescope of the sequence E∗. It comes with a map E0 → TE,
and if all the E∗ are cofibrant this is a trivial cofibration; also, there is a retraction
TE → E0.

If (W,B) is a rigid tower, denote the telescope of the sequence · · · →Wn+1 →Wn

by TWn. Note that there are canonical maps TWn+1 → TWn, and let TBn be the
cofiber. We have a map of augmented towers (TW, TB) → (W,B). The proof of
the following result is routine:

Proposition B.5. If the Wn’s were all cofibrant then (TW, TB) is a tower of rigid
homotopy cofiber sequences, the maps TWn+1 → TWn are all cofibrations, and the
map of towers (TW, TB)→ (W,B) is a weak equivalence.

Now suppose that W⊥ ∧ X⊥ → Y⊥ is a pairing of rigid towers. We claim that
there are pairings TW⊥ ∧ TX⊥ → TY⊥ making the diagram

TW⊥ ∧ TX⊥ //

��

TY⊥

��
W⊥ ∧X⊥ // Y⊥

commute. We’ll justify this by defining the product heuristically. Loosely speaking,
a ‘point’ in TWm may be specified by giving a ‘level’ k ≥ m, a ‘point’ w ∈ Wk,
and a parameter t ∈ I. If t = 1 this data is identified with the data [k − 1, pw, 0]
where pw denotes the image of w in Wm−1. Given data [k,w ∈ Wk, t ∈ I] and
[l, x ∈ Xl, s ∈ I], the product is defined to be the point specified by [k+ l− 1, p(w ·
x) ∈ Yk+l−1, t + s − 1] if t + s ≥ 1, and the point [k + l, w · x ∈ Yk+l, t + s] if
t + s ≤ 1. The reader may check that this respects the identifications, makes the
above diagram commute, and the definition of the pairing can be translated into a
purely category-theoretic construction (the latter is not very pleasant, but it can
de done). The product extends to the cofibers TB ∧ TC → TD in the expected
way.

B.6. The homotopy category of rigid towers. Infinite towers of rigid homo-
topy fiber sequences (W,B) form a category which we’ll denote as RgdTow. Let W
denote the subcategory consisting of maps (W,B) → (X,C) such that Wn → Xn

and Bn → Cn are weak equivalences for all n. Finally, let Ho(RgdTow) denote
the localization W−1(RgdTow)—we will ignore the question of whether this local-
ization actually exists in our universe, since we will use it only as a useful way of
organizing certain ideas.

Every rigid tower gives rise to a spectral sequence E∗(W,B), and this construc-
tion is functorial. Moreover, a weak equivalence of rigid towers induces an isomor-
phism on spectral sequences. So we actually have a functor from Ho(RgdTow) to
the category of spectral sequences. This observation is helpful in Section 6.3.

By an objectwise-fibrant replacement of a rigid tower (W,B) we mean a rigid
tower (W ′, B′) in which all the objects are fibrant, together with a chosen weak
equivalence (W,B) → (W ′, B′). The objectwise-fibrant replacements of (W,B)
form a category in the obvious way, and this category is contractible—the functor
F from section C.3(c) gives a natural zig-zag from any (W ′, B′) to the distinguished
object (FW,FB).
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B.7. Towers of function spectra. If W⊥ = (W,B) is a rigid tower and X is
a cofibrant spectrum, we let Fder(X,W⊥) denote any tower obtained by choosing
an objectwise-fibrant replacement (W,B) → (W ′, B′) and then forming the rigid
tower (F(X,W ′),F(X,B′)). The fact that the category of choices is contractible
may be interpreted as saying the function tower Fder(X,W⊥) is ‘homotopically
unique’. It implies that the homotopy spectral sequence of Fder(X,W⊥) is unique
up to unique isomorphism—given two objectwise-fibrant replacements W⊥ → W ′⊥
and W⊥ → W ′′⊥, there is a uniquely defined isomorphism between E∗(F(X,W ′⊥))
and E∗(F(X,W ′′⊥)) obtained by zig-zagging through our category of objectwise-
fibrant replacements. Another way of saying the same thing is to observe that the
homotopy category of objectwise-fibrant replacements is a contractible groupoid.

Appendix C. Spectra

Let Top denote a subcategory of topological spaces which is complete and co-
complete, contains every finite CW-complex and every cellular map between them,
and has the structure of a closed symmetric monoidal category. We denote the
tensor by ×. We also assume that:

(T1) On the subcategory of finite CW -complexes the functor × coincides with the
‘usual’ Cartesian product.

(T2) If A ↪→ X is a cellular inclusion between finite CW -complexes, the quotient
X/A in Top coincides with the usual quotient of topological spaces.

(T3) For the geometric realization functor | − | : sSet → Top, the natural maps
|∆m ×∆n| → |∆m| × |∆n| are isomorphisms, for all m,n ≥ 0.

(T4) Top has a model category structure in which the weak equivalences are the
usual ones, the fibrations are the Serre fibrations, and such that the monoidal
product × satisfies the analogue of Quillen’s SM7.

For example, one can take Top to be the category of compactly-generated spaces
(cf. [Ho] for a good reference) or the category of ∆-generated spaces introduced
by Jeff Smith. We let ∧ and F(−,−) denote the associated symmetric monoidal
structure on the pointed category Top∗.

C.1. Basic notions. Our preferred model for spectra is the category of symmetric
spectra based on topological spaces. Rather than assume the reader has any detailed
knowledge of this category, however, we just list the basic properties we will need.
We assume given a certain pointed category Spectra together with the following
additional information:

(S1) A cofibrantly-generated, proper model category structure on Spectra which is
Quillen-equivalent to the model category of Bousfield-Friedlander spectra.

(S2) A Quillen pair Σ∞ : Top∗ � Spectra : Ω∞, such that if X is a finite CW-
complex then Σ∞X corresponds to the ‘usual’ stabilization of X under the
Quillen equivalence from (a).

(S3) A symmetric monoidal smash product ∧ on Spectra satisfying the analog of
Quillen’s SM7, whose unit is Σ∞S0. We assume chosen a specific derived
functor ∧ on Ho(Spectra): this is a bifunctor with a natural transformation
X ∧Y → X ∧ Y of functors Spectra × Spectra → Ho(Spectra) which is an
isomorphism when X and Y are cofibrant.

(S4) A natural isomorphism ηX,Y : Σ∞(X ∧ Y )→ Σ∞X ∧ Σ∞Y .
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(S5) A bifunctor F(−,−) which together with ∧ makes Spectra into a closed sym-
metric monoidal category. (It then follows that F(−,−) also satisfies the
relevant analog of SM7). We assume a specific derived functor F(−,−) has
been chosen on the homotopy category.

(S6) A cofibrant object S−1 together with a chosen isomorphism c : Σ∞S1∧S−1 →
Σ∞S0 in Ho(Spectra). We define Sk = Σ∞Sk for k ≥ 0 and Sk = (S−1)∧−k

for k < 0. Note that we have specific maps

ak : Sk = S1 ∧ · · · ∧ S1 = Σ∞S1 ∧ · · · ∧ Σ∞S1 → Σ∞(S1 ∧ · · · ∧ S1)→ Σ∞Sk

for k ≥ 1, where the last map is obtained by choosing any orientation-
preserving map of spaces (S1)∧k → Sk. Also, in addition to the map c we have
its twist: this is the composite ct : S−1 ∧ S1 → S1 ∧ S−1 → S0. Based on these
we can define specific ‘associativity’ maps ak,l : Sk ∧ Sl → Sk+l: if k, l ≥ 0 or
if k, l ≤ 0 we use the associativity isomorphism for ∧; if k > 0 and l < 0 we
use the associativity isomorphisms and the map c (repeatedly); if k < 0 and
l > 0 we use associativity and ct. It follows that for any n1, n2, . . . , nk ∈ Z we
have a chosen identification Sn1 ∧Sn2 ∧ · · · ∧Snk ' Sn1+···+nk in Ho(Spectra).

Remark C.2. For a spectrum E, we will sometimes write πkE for Ho (Sk, E)—
however, with this abbreviated notation it is easy to forget that we are not really
dealing with homotopy classes of maps unless E is fibrant.

The above properties are satisfied by the category of symmetric spectra based
on topological spaces from [HSS, Section 6]. From them one can derive all of the
expected properties of Spectra. Some of the properties we develop below are needed
for [D] rather than the present paper.

C.3. Basic properties. Here are the first three we will need:

(a) Suppose X � Y is a fibration between fibrant objects, with fiber F . Suppose
also that

F // X

F̃ // //

'

OO

X̃

'

OO

is a commutative square where F̃ � X̃ is a cofibration between cofibrant
objects, and the vertical maps are weak equivalences. Then the induced map
X̃/F̃ → Y is a weak equivalence.

(b) The two suspension maps

σl : Ho (Sk, A)→ Ho (S1 ∧Sk,S1 ∧A)
a1,k←− Ho (Sk+1,S1 ∧A)

and

σr : Ho (Sk, A)→ Ho (Sk ∧S1, A∧ S1)
ak,1←− Ho (Sk+1, A∧S1),

are isomorphisms. We will use the notation σl(x) = σx and σr(x) = xσ.

(c) There is a fibrant-replacement functor X
∼
� FX such that F (∗) = ∗.

Proof of (c). This can be deduced from the small-object argument, and is the only
place we need the full power of the cofibrantly-generated assumption from (S1). If
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{Aa � Ba} is a set of generating trivial cofibrations, we let F1X be the pushout of∐
Aa //

��

X

��∐
Ba // F1X

where the coproduct ranges over all maps Aa → X which do not factor through
the initial object . We continue with the usual constructions from the small-object
argument to define F2X, F3X, etc., but at each stage we leave out any maps which
factored through the initial object. The object FX = colimk FkX is the desired
fibrant-replacement. �

C.4. Homotopy cofiber sequences. Given a map f : A → B between cofibrant
spectra, we define the canonical homotopy cofiber of f , denoted Cf , to be the
pushout of

A
∼= //

f

��

A ∧ Σ∞S0 i // A ∧ Σ∞I

��
B // Cf

where i : S0 → I is the boundary inclusion. Since A is cofibrant it follows that
A ∧ Σ∞I is contractible, and A ∧ Σ∞S0 → A ∧ Σ∞I is a cofibration. So B → Cf
is a cofibration, and since B is cofibrant so is Cf . Note that there is a canonical
isomorphism from A ∧ Σ∞(I/∂I) to the cofiber of B → Cf , and so a canonical
map Cf → A ∧ Σ∞S1. This gives us the sequence A → B → Cf → A∧Σ∞S1 in
Ho(Spectra), and we’ll call such a sequence a canonical triangle.

We define a triangulation on Ho(Spectra) by taking X 7→ X ∧Σ∞S1 to be the
shift automorphism, and taking the distinguished triangles to be those which are
isomorphic to a canonical triangle for some map f : A → B between cofibrant
objects. Finally, a sequence A→ B → C in Spectra is called a homotopy cofiber
sequence if it can be completed in Ho(Spectra) to a distinguished triangle A →
B → C → A∧S1.

A sequence A→ B → C in Spectra is a rigid homotopy cofiber sequence if
the composite A→ C is null (not just null-homotopic), and there exists a diagram

A // B

Ã

'

OO

// // B̃

'

OO

such that f̃ : Ã � B̃ is a cofibration between cofibrant objects, the vertical maps
are weak equivalences, and the induced map B/A → C is a weak equivalence as
well. The sequence Sk → ∗ → Sk+1 is an example of a homotopy cofiber sequence
which is not rigid.

Remark C.5. The difference between ‘homotopy cofiber sequence’ and ‘rigid ho-
motopy cofiber sequence’ is like the difference between diagrams in a homotopy
category and the homotopy category of diagrams. To say that M → N → Q is a
homotopy cofiber sequence is to say that, working entirely in Ho(Spectra), there is
an isomorphism between M → N → Q and a sequence of the form A� B → B/A
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with A and B cofibrant. It is a rigid homotopy cofiber sequence if there is a zig-zag
of weak equivalences from the diagram M → N → Q to a diagram A� B → B/A,
where the intermediate sequences have null composites; the zig-zag is a diagram in
Spectra as opposed to a diagram in the homotopy category.

Hovey [Ho] defines a homotopy cofiber sequence to be a distinguished triangle in
Ho(Spectra)—so in our language it is a homotopy cofiber sequence M → N → Q
with a chosen map Q→M ∧S1. This is another way of dealing with the same issue,
but when talking about towers and spectral sequences it becomes inconvenient;
having to specify the connecting homomorphism for each layer of the tower is too
much data to have to worry about.

Exercise C.6. Here is a series of claims, whose justifications we leave to the reader:

(a) Since f̃ : Ã � B̃ is a map between cofibrant objects, we have a natural map

Cf̃ → Ã ∧ S1. Putting this together with the weak equivalences Cf̃ → C and
Ã → A gives a map C → A ∧ S1 in Ho(Spectra). The definition of this map

does not depend on the choice of Ã, B̃, and f̃ . We will refer to this as the ‘map
induced by the rigid homotopy cofiber sequence A→ B → C’.

(b) For the rigid homotopy cofiber sequence Σ∞Sk−1 ↪→ Σ∞Dk → Σ∞Sk, the
induced map Σ∞Sk → Σ∞Sk−1 ∧S1 is (−1)k times the canonical identification.

(c) Suppose given the diagram

A //

'
��

B

'
��

// C

'
��

X // Y // Z

in which the composites A → C and X → Z are both null. The top row is a
rigid homotopy cofiber sequence if and only if the bottom row is one.

(d) There are the obvious dual notions of homotopy fiber sequence, and rigid
homotopy fiber sequence. The classes of rigid homotopy cofiber sequences
and rigid homotopy fiber sequences are the same, by C.3(a) and its dual.

(e) Suppose that X → Y → Z is a rigid homotopy fiber/cofiber sequence. If X, Y ,
and Z are all fibrant and A is a cofibrant spectrum, then the induced sequence
F(A,X) → F(A, Y ) → F(A,Z) is also a rigid homotopy cofiber sequence.
Dually, if X, Y , and Z are all cofibrant and E is a fibrant spectrum, then
F(Z,E)→ F(Y,E)→ F(X,E) is a rigid homotopy fiber sequence.

(f) By the dual of (a) it follows that if X → Y → Z is a rigid homotopy fiber
sequence then there is a canonically defined map in the homotopy category
F(S1, Z)→ X.

(g) Suppose A → B → C is a rigid homotopy cofiber sequence between cofibrant
objects, with induced map C → A∧S1 in Ho(Spectra). Let E be a fibrant spec-
trum. For the rigid homotopy fiber sequence F(C,E) → F(B,E) → F(A,E),
the induced map F(S1,F(A,E))→ F(C,E) coincides with the composite

F(S1,F(A,E)) ∼= F(S1 ∧A,E)→ F(A∧S1,E)→ F(C,E),

where the second map is induced by the twist.
(h) Let A → B → C be a rigid homotopy cofiber sequence between cofibrant

objects, with induced map f : C → A∧S1. If X is another cofibrant object,
then both A ∧X → B ∧X → C ∧X and X ∧ A→ X ∧ B → X ∧ C are rigid
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homotopy cofiber sequences. The induced map for the first is the composite
C ∧X → A∧ S1 ∧X → A∧X ∧ S1, and for the second is X ∧C → X ∧A∧ S1.

C.7. Eilenberg-MacLane spectra. Let Ab denote the category of abelian
groups. We will assume

(S7) There is a functor H : Ab→ Spectra such that
(i) H(0) = ∗;
(ii) Ho (Sk, HA) = 0 if k 6= 0;
(iii) Each HA is fibrant;
(iv) There is a natural isomorphism A→ Ho (S0, HA);
(v) There is a natural transformation HA ∧HB → H(A⊗B); and

(vi) If 0 → A → B → C → 0 is an exact sequence of abelian groups then
HA→ HB → HC is a rigid homotopy fiber sequence.

In particular, note that if R is a ring then the multiplication R⊗R→ R gives rise
to a multiplication HR ∧HR→ HR.

For the category of symmetric spectra based on topological spaces, one can define
HA to be the symmetric spectrum whose nth space is AG((S1)∧n;A)—this is the
space defined in [DT] consisting of configurations of points in (S1)∧n labelled by
elements of A. It can be checked that H(−) satisfies the above properties.

C.8. Cohomology theories.
Given objects E,X ∈ Ho(Spectra), one defines Ep(X) = Ho (S−p ∧X,E) and

Ep(X) = πp(E ∧ X). Observe that a map E ∧F → G induces a corresponding
pairing Ep(X) ⊗ F q(Y ) → Gp+q(X ∧Y ) in the expected way; this involves using
the twist map X ∧S−q → S−q ∧X.

The pairing F(X,E)∧ F(Y, F ) → F(X ∧Y,E ∧F ) also yields a pairing of
graded abelian groups[
⊕pHo (S−p,F(X,E))

]
⊗
[
⊕qHo (S−q,F(Y, F ))

]
→ ⊕rHo

(
S−r,F(X ∧Y,G)

)
.

We will leave it to the reader to check that the adjunctions Ho (S−p,F(X,E)) ∼=
Ho (S−p ∧X,E) induce isomorphisms between this graded pairing and the graded
pairing E∗(X) ⊗ F ∗(Y ) → G∗(X ∧ Y ) (this is just a matter of keeping the signs
straight). This is a general fact about closed symmetric monoidal categories, and
doesn’t use anything special about Ho(Spectra).

C.9. Boundary maps. In the following list, parts (a), (g), and (h) define bound-
ary homomorphisms for long exact sequences of homotopy groups, homology
groups, and cohomology groups, respectively. The other parts gives basic corol-
laries of these definitions (some of the proofs are sketched below).

(a) If F → E → B is a rigid homotopy fiber sequence, we define ∂k : πkB → πk−1F
to be (−1)k times the composite

Ho(Sk, B) = Ho(Sk−1 ∧ S1, B) = Ho(Sk−1,F(S1, B)) −→ Ho(Sk−1, F ).

(b) For the rigid homotopy fiber sequence Σ∞Sk−1 → Σ∞Dk → Σ∞Sk, the bound-
ary map ∂k sends the canonical generator of πk(Σ∞Sk) to the canonical gen-
erator of πk−1(Σ∞Sk−1).

(c) Let A → B → C be a rigid homotopy cofiber sequence between cofibrant
objects, and let E be a fibrant spectrum. Then F(C,E)→ F(B,E)→ F(A,E)
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is a rigid homotopy fiber sequence and the associated boundary map ∂k is equal
to (−1)k times the composite

Ho (Sk ∧A,E)
∼= // Ho (Sk−1 ∧S1 ∧A,E)

t

��
Ho (Sk−1 ∧A∧ S1, E) // Ho (Sk−1 ∧C,E)

(using the canonical adjunctions Ho (Sk,F(A,E)) = Ho (Sk ∧A,E), etc.)
(d) If E is a fibrant spectrum then F(Σ∞Sk, E)→ F(Σ∞Dk, E)→ F(Σ∞Sk−1, E)

is a rigid homotopy fiber sequence. The diagram

πt F(Sk−1, E)
∂ //

∼=
��

πt−1 F(Sk, E)

∼=
��

Ho (St ∧ Sk−1, E) // Ho (St−1 ∧ Sk, E)

commutes up to (−1)t−1, where the bottom map is induced by the canonical
identification.

(e) If A → B → C is a rigid homotopy fiber sequence, it is also a rigid homotopy
cofiber sequence; so there is an induced map C → A∧S1. The map ∂k is equal
to (−1)k times the composite

Ho (Sk, C)→ Ho (Sk, A∧S1) ∼= Ho (Sk−1 ∧S1, A∧ S1) ∼= Ho (Sk−1, A)

where the final map is the inverse to the right-suspension map.
(f) If A→ B → C is a rigid homotopy cofiber sequence between cofibrant objects,

then S1 ∧A→ S1 ∧B → S1 ∧C and A ∧ S1 → B ∧ S1 → C ∧ S1 are both rigid
homotopy cofiber sequences. For the diagrams

Ho(Sk, C)
σl //

∂C
��

Ho(Sk+1,S1 ∧ C)

∂S1∧C
��

Ho(Sk, C)
σr //

∂C
��

Ho(Sk+1, C ∧ S1)

∂C∧S1

��
Ho(Sk−1, A)

σl // Ho(Sk,S1 ∧A) Ho(Sk−1, A)
σr // Ho(Sk, A ∧ S1),

the first one anti-commutes and the second one commutes. This may be written
as ∂(σx) = −σ(∂x) and ∂(xσ) = (∂x)σ.

(g) If E is a spectrum and A → B → C is a rigid homotopy cofiber sequence,
define the homology boundary map d : Ek(C) → Ek−1(A) as (−1)k times the
composite

πk(E ∧C)→ πk(E ∧A∧S1) ∼= πk−1(E ∧A)

where the second map is the inverse to the right-suspension map. When E, A,
B, and C are all cofibrant then E ∧ A→ E ∧ B → E ∧ C is a rigid homotopy
cofiber sequence, and the above map is just the associated ∂k defined in (a).

(h) The diagram

En(C)
d //

σr

��

En−1(A)

σr

��
En+1(C ∧S1)

d // En(A∧S1)

commutes; that is, d(xσ) = d(x)σ.
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(i) In the situation of (g), define the cohomology boundary map δ∗ : Ek(A) →
Ek+1(C) to be the boundary map ∂−k for F(C,E)→ F(B,E)→ F(A,E). So
it is (−1)k times the composite

Ho (S−k ∧A,E)
∼= // Ho (S−k−1 ∧ S1 ∧A,E)

t

��
Ho (S−k−1 ∧A∧S1, E) // Ho (S−k−1 ∧C,E).

(j) If E is a multiplicative spectrum then there is a slant product Ep(X) ⊗
Eq(X ∧Y ) → E−p+q(Y ) defined as follows. If α ∈ Ep(X) is represented by
S−p ∧X → E and x ∈ Eq(X ∧Y ) is represented by Sq → E ∧X ∧Y , then α\x
is represented by S−p ∧ (−) applied to the map

Sq // E ∧X ∧Y
1∧(Sp∧α)∧1 // E ∧ (Sp ∧E)∧Y

t∧1∧1

��
Sp ∧E ∧E ∧Y

1∧µ∧1 // Sp ∧E ∧Y

One checks that (δα)\x = (−1)|α|α\(dx).
(k) If f : A → B is a map between cofibrant objects, let Cf denote the canonical

homotopy cofiber defined in C.4. If Cyl f denotes the pushout of B ← A →
A∧Σ∞I+ then the cofiber of A→ Cyl f is canonically the same as Cf . There
is a diagram

A // B // Cf

A // Cyl f //

OO

Cf

in which the vertical maps are weak equivalences. On the bottom we have a
rigid homotopy cofiber sequence (the top is not one, because the composite
is not null). So we have the associated map ∂k : Ho (Sk, Cf) → Ho (Sk−1, A)
defined in (a). This gives a long exact sequence

· · · −→ Ho (Sk, A) −→ Ho (Sk, B) −→ Ho (Sk, Cf)
∂−→ Ho (Sk−1, A) −→ · · ·

which is functorial in the map f .

Remark C.10. The sign in (a) was chosen to make (b) true. It follows by natu-
rality that for a diagram of the form

F // E // B

Σ∞Sk−1

f

OO

// // Σ∞Dk

OO

// Σ∞Sk

g

OO

in which k ≥ 1 and the bottom row is the usual cofiber sequence, one has ∂([g]) =
[f ]. This makes sense in light of ∂ being a ‘boundary’ map. In part (g) the sign
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was chosen so that the diagram

Ho (Sn, E ∧ Sn)
d // Ho (Sn−1, E ∧ Sn−1)

Ho (S0, E)

σn
r

OO

σn−1
r

55

commutes, where the horizontal map is the homology boundary for the cofiber
sequence Sn−1 → Dn → Sn and the vertical maps are iterated right-suspension
maps. This agrees with the standard conventions for singular cohomology. Finally,
the sign in (i) was chosen so as to make (j) true.

Proofs of the above claims. Part (c) is an immediate consequence of C.6(g). As
a result of (c), one deduces that in the homotopy fiber sequence F(S1,E) →
F(I,E) → F(S0,E) = E, the boundary map ∂k : Ho (Sk,E) → Ho (Sk−1,F(S1,E))
is (−1)k−1 times the canonical adjunction. This follows from C.6(b), which
says that the rigid homotopy cofiber sequence S0 ↪→ I → S1 has induced map
S1 → S0 ∧ S1 equal to −1. We will apply this observation to prove (b).

First observe that for any point x ∈ Dk we may consider the straight-line path
from the basepoint to x, and we may project this path onto Dk/Sk−1. This gives
us a map Dk → F(I, Sk). (To be completely precise, we use the given description
to write down a map of spaces Dk ∧ I → Sk. Then we apply Σ∞ and use the
isomorphism from (S4) to get Σ∞Dk ∧Σ∞I → Σ∞Sk. Finally we take the adjoint
of this map.) We in fact have a diagram

Sk−1 //

��

Dk

��

// Sk

F (S1, Sk) // F (I, Sk) // Sk

We have already remarked that for the bottom fiber sequence ∂k is (−1)k−1 times
the canonical adjunction. The adjoint of the left vertical map may be checked to
have degree (−1)k−1, so these signs cancel and we have proven (b). An easy way
to check that the map has the claimed degree is to just draw the following picture,
showing the image of the map Sk−1 ∧ I → Dk sending (v, t) 7→ tv.

&%
'$t������PPPP@
@

������1-PPPq@@R

A
AK
��*

Dk

OrientingDk as the image of Sk−1∧I means orienting it as ∂Dk×(outward normal),
whereas the usual orientation of Dk is (outward normal) × ∂Dk. These differ by
the sign (−1)k−1.

Part (d) is immediate from (c), C.6(b), and the definition in (a). By naturality
it suffices to check part (e) when A → B → C is Sk−1 → Dk → Sk, but in this
case the identification follows from (b) and C.6(b).

Part (f) follows from the description of the boundary map given in (e), together
with C.6(h). The remaining parts are all routine. �
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