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PREFACE 5

Preface

For a long time I have wanted to learn about the interactions between math-
ematical physics and topology. I remember looking at Atiyah’s little book The
geometry and physics of knots [At] as a graduate student, and understanding very
little. Over the years, as my knowledge of mathematics grew, I periodically came
back to that little book—as well as other introductory texts on the subject. Each
time I found myself almost as lost as when I was a graduate student. I could un-
derstand some bits of the topology going on, but for me it was clouded by all kinds
of strange formulas from physics and differential geometry (often with a morass of
indices) for which I had no intuition. It was clear that learning this material was
going to take a serious time commitment, and as a young professor—eventually
one with a family—time is something that is hard to come by. Each year I would
declare to myself “I’m going to start learning physics this year,” but then each year
my time would be sucked away by writing papers in my research program, teaching
courses, writing referee reports, and all the other things that go with academic life
and are too depressing to make into a list.

Finally I realized that nothing was ever going to change, and I would never
learn physics—unless I found a way to incorporate that process into the obligations
that I already had. So I arranged to teach a course on this subject. In some ways
it was a crazy thing to do, and it had some consequences: for example, my research
program took a complete nosedive during this time, because all my energy went into
learning the material I was putting into my lectures. But it was fun, and exciting,
and somehow this process got me over a hump.

The notes from this course have evolved into the present text. During the
course, my lectures were put into LaTeX by the attending students. Afterwards I
heavily revised what was there, and also added a bunch of additional material. I am
grateful to the students for doing the intial typesetting, for asking good questions
during the course, and for their patience with my limited understanding: these
students were Matthew Arbo, Thomas Bell, Kevin Donahue, John Foster, Jaree
Hudson, Liz Henning, Joseph Loubert, Kristy Pelatt, Min Ro, Dylan Rupel, Patrick
Schultz, AJ Stewart, Michael Sun, and Jason Winerip.

WARNING: The present document is a work in progress. Certain sections
have not been revised, further sections are being added, some things are occasionally
moved around, etc. There are plenty of false or misleading statements that are
gradually being identified and removed. Use at your own risk!





CHAPTER 1

Introduction

For this first lecture all you need to know about quantum field theory is that
it is a mysterious area of modern physics that is built around the “Feynman path
integral”. I say it is mysterious because these path integrals are not rigorously
defined and often seem to be divergent. Quantum field theory seems to consist
of a collection of techniques for getting useful information out of these ill-defined
integrals.

Work dating back to the late 1970s shows that QFT techniques can be used to
obtain topological invariants of manifolds. Schwartz did this in 1978 for an invari-
ant called the Reidemeister torsion, and Witten did this for Donaldson invariants
and the Jones polynomial in several papers dating from the mid 80s. Shortly after
Witten’s work Atiyah wrote down a definition of “topological quantum field the-
ory”, and observed that Witten’s constructions factored through this. One has the
following picture:

QFT techniques

��
�O
�O
�O
�O
�O
�O
�O
�O

***j*j*j*j*j*j*j*j*j*j*j

TQFT

ttiiiiiiiiiiiiiiiii

topological invariants of manifolds

Here the squiggly lines indicate non-rigorous material!
Much effort has been spent over the past twenty-years in developing rigorous

approaches to constructing TQFTs, avoiding the path integral techniques. The
names Reshetikin and Turaev come to mind here, but there are many others as
well. However, this course will not focus on this material. Our goal will instead be
to understand what we can about Feynman integrals and the squiggly lines above.
We will try to fill in the necessary background from physics so that we have some
basic idea of what QFT techniques are all about. There’s quite a bit of material to
cover:

Classical mechanics //

��

Classical field theory

��
Quantum mechanics // Quantum field theory.

The plan is to spend about a week on each of these areas, giving some kind of
survey of the basics.
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8 1. INTRODUCTION

A good reference for this foundational material is the set of lecture notes by
Rabin [R]. However, Rabin’s lectures get technical pretty quickly and are also short
on examples. We will try to remedy that.

1.0.1. Introduction to TQFTs. Let k be a field (feel free to just think about
k = C). A “(d+ 1)-dimensional TQFT” consists of
(1) For every closed, oriented d-manifold M a vector space Z(M) over k;
(2) For every oriented (d + 1)-manifold W together with a homeomorphism

h : ∂∆W →M1 qM2, a linear map

φW,h : Z(M1)→ Z(M2).

Here M1 denotes M1 with the opposite orientation.
(3) Isomorphisms Z(∅) ∼= k and Z(M1 qM2) ∼= Z(M1) ⊗ Z(M2) for every closed,

oriented d-manifolds M1 and M2.
This data must satisfy a long list of properties which are somewhat complicated
to state in this form. For this introductory lecture let us just give the basic ideas
behind a few of the properties:

(i) (Composition) Suppose W1 is a cobordism from M1 to M2, and W2 is a
cobordism from M2 to M3. An example of this is depicted here:

M1 W1 W2

W2

M3

M2 M2

Gluing W1 and W2 results in a “composite” cobordism W3 from M1 to M3,
and we ask that φW3 = φW2 ◦ φW1 .

(ii) φM×I : Z(M)→ Z(M) is the identity map
(iii) Each Z(M) is finite-dimensional and the map

Z(M)⊗ Z(M) ∼= Z(M qM)
φM×I−→ Z(∅) ∼= k

is a perfect pairing. Here M × I is being thought of as a cobordism between
M qM and ∅.

How do we get invariants of manifolds from a TQFT? If W is a closed, oriented
(d + 1)-manifold then it can be thought of as a cobordism from ∅ to itself, and
therefore gives rise to a linear map

φW : Z(∅)→ Z(∅).
Since Z(∅) ∼= k, this map is just multiplication by an element of k. This element
(which we will also denote as φW ) is an invariant of W .

Next let us look at some examples. When d = 0, the oriented d-manifolds are
just finite sets with the points labelled by plus and minus signs (for the orientation).
Let us write pt+ and pt− for a point with the two orientations. If Z(pt+) = V , then
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we know Z(pt−) = V ∗ (canonically), and in general Z of any oriented 0-manifold
will be a tensor product of V ’s and V ∗’s.

All cobordisms between oriented 0-dimensional manifolds will break up into
identity cobordisms and the two types

+

−

+

−

Applying φ to the first gives a map k → V ⊗ V ∗, and applying φ to the second
gives V ⊗ V ∗ → k. A little work shows that the second map is just evaluation,
namely it sends a tensor u ⊗ α to α(u). The first map is “coevaluation”, which is
slightly harder to describe. If e1, . . . , en is a basis for V , and f1, . . . , fn is the dual
basis for V ∗, then coevaluation sends 1 to

∑
i ei ⊗ fi. One can check that this is

independent of the choice of basis for V . (For a basis-independent construction,
use the canonical isomorphism V ⊗ V ∗ ∼= End(V ), and then take k → End(V ) to
send 1 to the identity map).

What invariant does this TQFT assign to a circle? By breaking up the circle
into its two hemispheres, one sees that φS1 : k → k is the composite

k
coev−→ V ⊗ V ∗ ev−→ k.

This map sends 1 to
∑
i fi(ei) =

∑
i 1 = dimV .

Exercise 1.0.2. What invariant does the TQFT assign to a disjoint union of
r circles?

Now let us turn to d = 1. Closed 1-manifolds are just disjoint unions of circles,
so the Z(−) construction is in some sense determined by Z(S1). Let V = Z(S1).

The two corbodisms

give maps ε : k → V and tr : V → k. The “pair of pants” cobordism

gives a map µ : V ⊗V → V . We claim that this product makes V into an associative,
commutative algebra with unit ε such that the pairing V ⊗ V → k given by a, b 7→
tr(ab) is perfect. One sees this by drawing lots of pictures:

????
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Exercise 1.0.3. Determine the invariant that this TQFT assigns to each ori-
ented surface Σg, in terms of the above structure on V . [Hint: The invariant
attached to Σ0 is tr(1).]

Finally let us look at d = 2. The point of this whole discussion is to observe
that while things are very easy for d = 0 and d = 1, for d = 2 the situation is much
harder. One must give each vector space Z(Σg), and a homomorphism φW for each
oriented 3-manifold. This is a lot of information!

The most basic example of a (2 + 1)-dimensional TQFT is something called
Chern-Simons theory. It was constructed by Witten in his 1989 paper [W] using
QFT techniques, and much work has since been done to create a rigorous construc-
tion. Here is a pathetic outline, only intended to show how daunting the theory is
to a newcomer. We will only say how to get the invariants of closed 3-manifolds
φM .

Fix a compact Lie group G, and fix an integer k ∈ Z (called the “level”). There
will be one TQFT for each choice of G and k. Let g be the Lie algebra of G.

Let M be a 3-manifold, and let P → M be the trivial G-bundle over M . If A
is a g-valued connection on P , define the “action”

S(A) =
k

4π

∫
M

tr(A ∧ dA+
2
3
A ∧A ∧A).

Then
φM =

∫
A

eiS(A)dA

where this is a Feynman integral over the (infinite-dimensional) space of all connec-
tions A on P . This integral is not really defined! Witten shows that if C1, . . . , Ck
are knots in M then he could also use this kind of integral formalism to construct
invariants

φM,C1,...,Ck

and in this way he recovered the Jones polynomial for knots in R3.
This now lets me state the second goal of the course: Understand the basic

constructions underlying Chern-Simons theory and Witten’s original paper [W] on
this subject.

We will see how far we get with all this!
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A first look into modern physics





CHAPTER 2

Classical mechanics

2.1. Lagrangian mechanics

In the next few lectures we will give a very brief introduction to classical me-
chanics. The classic physics reference is [Go], and the classic mathematical refer-
ence is [A]. I must say, though, that I find both of these books unpleassant to read
(in different ways). I have found the two-volume set [De] more useful. The Rabin
lectures [R] also give a quick introduction.

2.1.1. Motivation. To get ourselve started, consider a mass that hangs ver-
tically from a spring, suspended from the ceiling. Let x(t) be the position of the
mass at time t, where x is measured vertically with x = 0 being the ceiling and the
positive direction going down. We will use the physics notation

ẋ = ẋ(t) =
dx

dt
, ẍ = ẍ(t) =

d2x

dt2
.

Let k be the spring constant, and l its unstretched length. Then Newton’s second
law states that x(t) satisfies the following second order differential equation:

mẍ = F = mg − k(x− l).
If we solve this differential equation (subject to whatever initial values are of interest
to us), then we have understood the motion of the mass.

In this example the object is moving in one dimension. If we had movement in
three dimensions then x(t) would be a vector in R3, and we would have the vector
equation mẍ = F. This consists of three second order differential equations, one in
each of the three coordinates.

Newton’s law gives a perfectly complete approach to the equations of motion
for a system of particles. But if one applies these methods in 100 examples, getting
progressively more difficult, one finds that the information contained in Newton’s
equations is not organized very efficiently, or in a way that interacts well with
whatever underlying geometry there may be in the given system. Let us give a
simple example of this.

Example 2.1.2. Consider the Atwood machine, consisting of two masses m1

and m2 tied together by a rope of length l that hangs over a pulley. Let x1 and x2

denote the vertical positions of each mass, measured downward from the baseline
of the pulley. Notice that x2 = l − x1 (in the idea situation where the pulley has
zero diameter!)

13



14 2. CLASSICAL MECHANICS

m1

m2

x1

x2

If we approach this system using Newton’s laws then there are two equations,
one for each mass:

m1ẍ1 = m1g − T, m2ẍ2 = m2g − T.
Here T denotes the tension in the rope, which is experienced as an upwards force
by both masses. The constraint x2 = l − x1 gives ẍ2 = ẍ1, and then subtracting
the two equations allows us to eliminate T and obtain

(m1 +m2)ẍ1 = (m1 −m2)g.

Notice that we can now completely solve for x1, hence also x2, and thereby deter-
mine the motion of the system (given some initial values for position and velocity,
of course).

But look what happened here. First of all, it was clear from the beginning
that there was really only one independent unknown function. Yet the method of
Newton’s laws forced us to write down two equations, containing the “constraint
force” T , only to then have T eliminated in the end. It would be nice if we could
have eliminated T from the very beginning, so that we didn’t have to think about
it at all!

The above example is somewhat simplistic, as it only contains two objects
moving in one dimension and so it is not very difficult to solve. Imagine instead a
system of 10 objects moving in three dimensions, with various constraints between
them. Now we will have 30 equations, and it might not be so easy to see how to
eliminate the constraint forces to reduce this down to a more manageable size. We
will see that this is one of the things that Lagrangian mechanics will accomplish
for us: it gives us an approach to mechanical systems where these extra “constraint
forces” disappear, becoming absorbed into the geometry of the situation.

As a second motivating example, consider a vertical cone with the vertex at
the bottom, centered around the z-axis. Let α denote the angle the cone makes
with the z-axis (so that the cone is given by the equation r = z tanα). Imagine a
bead that sits on the interior edge of the cone and rolls around—we would like to
describe its motion.

m
α

z
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If this is approached via Newton’s laws then we set things up in Cartesian
coordinates and we have to introduce the constraint force, which in this case is the
normal force that the cone exerts on the bead (that keeps the bead from falling to
the ground). We will get three second-order differential equations, one for each of
the Cartesian coordinates. But clearly this is really a two-dimensional problem, and
we would be much better off using the cylindrical coordinates r and θ to describe
the motion: we really should be worrying about only two differential equations.

2.1.3. The Lagrangian approach. Let’s return to the Atwood machine. I
am going to describe a different method for writing down the equations of motion,
and then we will apply the same method for the cone problem. For the moment I
am not going to explain why the method works, only demonstrate it.

First we identify a set of independent position coordinates that completely
describe the system. For the Atwood machine we can just take x1 (since x2 is
determined by x1).

Next we write down a certain function L(x1, ẋ1), where here x1 and ẋ1 are
regarded as formal variables. In all the cases we will nconsider the function L will
be the kinetic energy of the system minus the potential energy. For the Atwood
machine this is

L = K.E.− P.E. =
(1

2
m1ẋ

2
1 +

1
2
m2ẋ

2
2

)
−
(
−m1x1g −m2x2g

)
.

But we want to write L as a function of x1 and ẋ1, in which case we have

L(x1, ẋ1) =
1
2
(m1 +m2)ẋ2

1 + g(m1 −m2)x1 + gm2l.

Next we write down the so-called “Euler-Lagrange equations”, which are the
equations of motion for our system. There is one for each position coordinate, so
in this example that means a single equation:

∂L

∂x1
=

d

dt

(
∂L

∂ẋ1

)
.

For our Atwood machine this is

(m1 −m2)g =
d

dt

(
(m1 +m2)ẋ1

)
= (m1 +m2)ẍ1.

Note that we have obtained the same differential equation as in our first treatment
of the problem, but in this case it came to us right away, not as the result of
simplifying a system of two equations. Although this example is very simple, this
demonstrates the general idea.

So let us next look at the cone problem. We will use the cylindrical coordinates r
and θ to describe the position of the bead. In Cartesian coordinates the Lagrangian
is

L =
1
2
m(ẋ2 + ẏ2 + ż2)−mgz.

To change into cylindrical coordinates we recall that

x = r cos θ, y = r sin θ, z = r cotα

and so

ẋ = ṙ cos θ − r(sin θ)θ̇, ẏ = ṙ sin θ + r(cos θ)θ̇, ż = ṙ cotα.
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Note that ẋ2 + ẏ2 = ṙ2 + r2θ̇2, and so

L(r, θ, ṙ, θ̇) =
1
2
m

(
(1 + cot2 α)ṙ2 + r2θ̇2

)
−mgr cotα.

The Euler-Lagrange equations are
∂L

∂r
=

d

dt

(
∂L

∂ṙ

)
and

∂L

∂θ
=

d

dt

(
∂L

∂θ̇

)
,

which become

mrθ̇2 −mg cotα = m(csc2 α)r̈, 0 =
d

dt

(
mr2θ̇

)
.

The second equation says that the quantity mr2θ̇ is a constant of motion, mean-
ing that it assumes the same value at all points in the bead’s path (if you know
some physics you might recognize this as the angular momentum about the z-axis).
We will write

mr2θ̇ = C.

Note that this constant could be determined from whatever initial conditions we set
for the bead’s motion. We can now eliminate θ̇ from the first differential equation
to get a second order differential equation in r. If our goal is to understand the
bead’s motion we should solve this differential equation. We will not do this here,
but let us at least observe the following cute fact. Suppose we want the bead to
spin forever in a horizontal circle. For this we would need ṙ = 0, and so r̈ = 0 as
well. The first Euler-Lagrange equation then gives

θ̇ =

√
g cotα
r

=

√
g cot2 α

z
.

So for each height on the cone, if we give the bead an initial angular velocity
according to the above formula, it will spin around the cone forever staying at the
same height (of course in real life there is friction!) This is kind of a cute fact.

2.1.4. Summary of the Lagrangian approach. Extrapolating from the
two examples we have considered, here is the general setup for Lagrangian me-
chanics. For whatever system we are considering we have a smooth manifold M
consisting of all possible positions—or configurations—for the objects in the sys-
tem. This manifold is called configuration space in the physics literature. For
the Atwood machine M is just the real line (or perhaps an appropriate open in-
terval), whereas for the cone problem M is just the cone itself (but excluding the
singular point at the bottom, where certainly the physics we are developing doesn’t
hold anymore).

Let us write q1, . . . , qn for some choice of local coordinates on M .
Let TM denote the tangent bundle of M . This is also a smooth manifold,

called “phase space” in the physics literature. Then q1, . . . , qn, q̇1, . . . , q̇n are local
coordinates for TM .

The Lagrangian is a particular smooth function L : TM → R.
Given a smooth path γ : I →M , we can write γ in local coordinates as

γ(t) = (q1(t), . . . , qn(t)).
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The Euler-Lagrange equations for γ are a collection of n second-order differential
equations in the functions qi(t), given by

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
.

2.1.5. Coordinate invariance of the Euler-Lagrange equations. I am
not going to give a derivation of the Euler-Lagrange equations from Newton’s law,
because you can find this in any book on classical mechanics. But I want us to
check that the Euler-Lagrange formulation takes the same form in every coordinate
system.

Suppose that u1, . . . , un are another set of local coordinates onM . Then we can
write ui = ui(q1, . . . , qn), where now ui(−, . . . ,−) is a smooth function Rn → Rn.
Then

u̇i =
∑
j

∂ui
∂qj

q̇j .

Since we are learning to think like physicists we have to use the Einstein summation
convention, which says that we drop summation symbols when we can remember
them by a repeated index. So the above equation becomes simply

u̇i =
∂ui
∂qj

q̇j .

Here are two simple consequences:
∂u̇i
∂q̇k

=
∂ui
∂qk

(2.1.6)

and
∂u̇i
∂qk

=
∂2ui
∂qkqj

q̇j =
d

dt

(
∂ui
∂qk

)
.(2.1.7)

Now let us suppose that we have a map γ : I → M which satisfies the Euler-
Lagrange equations with respect to the coordinates qi. That is to say,

∂L

∂qi
=

d

dt

(
∂L

∂q̇i

)
.

When we change into the u-coordinates, we have
∂L

∂qi
=

∂L

∂uj

∂uj
∂qi

+
∂L

∂u̇j

∂u̇j
∂qi

and
∂L

∂q̇i
=

∂L

∂uj

∂uj
∂q̇i

+
∂L

∂u̇j

∂u̇j
∂q̇i

=
∂L

∂u̇j

∂u̇j
∂q̇i

=
∂L

∂u̇j

∂uj
∂qi

.

In the second of the equalities on the previous line we have used that the uj ’s only
depend on the q’s, not the q̇’s, and so ∂uj

∂q̇i
= 0. For the third equality on this line

we have used (2.1.6). Taking time-derivatives of either side of this equation gives

d

dt

(
∂L

∂q̇i

)
=

d

dt

(
∂L

∂u̇j

)
∂uj
∂qi

+
∂L

∂u̇j

d

dt

(
∂uj
∂qi

)
=

d

dt

(
∂L

∂u̇j

)
∂uj
∂qi

+
∂L

∂u̇j

∂u̇j
∂qi

,

where in the last equality we have used (2.1.7).
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Comparing the above expressions for ∂L
∂qi

and d
dt

(
∂L
∂q̇i

)
, we arrive at

∂L

∂uj

∂uj
∂qi

=
d

dt

(
∂L

∂u̇j

)
∂uj
∂qi

.

This is best thought of as a matrix equation of the form (matrix)×(column vector)
= (same matrix) × (column vector):[

∂uj
∂qi

]
i,j

·
[
∂L

∂uj

]
j

=
[
∂uj
∂qi

]
i,j

·
[
d

dt

(
∂L

∂u̇j

)]
j

.

But the matrix [∂ui

∂qj
] is invertible (since it is a coordinate change), and so we must

have
∂L

∂uj
=

d

dt

(
∂L

∂u̇j

)
for all j.

2.2. Harmonic oscillators

Harmonic oscillators are pervasive throughout both classical and quantum me-
chanics, so we need to understand these pretty well. An example to keep in mind is
an infinite lattice of masses connected by springs—a mattress, of sorts. If we jump
up and down at one point on the mattress, then the motion of the other masses
amounts to a kind of “wave” emanating from our location. In this section we will
develop the machinery necessary for analyzing this kind of mechanical system (but
starting out with much simpler examples).

2.2.1. The easiest oscillator problems.

Example 2.2.2. Consider a spring with one end fixed, and a mass m attached
to the other end:

m

Let k denote the spring-constant (measuring the stiffness of the spring), and
let ` be the length of the spring at equilibrium It is a law of physics, called Hooke’s
Law, that if the mass is moved a distance x from equilibrium then the spring exerts
a force equal to F = −kx. We therefore have that

mẍ = F = −k · x = − d

dx

(
k

2
x2

)
.

The quantity k
2x

2 is the potential energy of the spring-mass system.
Using the Lagrangian approach to classical mechanics, we can write

L(x, ẋ) =
1
2
mẋ2 − k

2
x2.
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The Euler-Lagrange equation is then ∂L
∂x = d

dt

(
∂L
∂ẋ

)
, which becomes

−kx =
d

dt

(
mẋ
)

= mẍ.

The solutions of course are x(t) = A cos
(√

k
m t+ φ

)
, where A and φ can be arbi-

trary constants.

Remark 2.2.3. In the above example, suppose that we didn’t know Hooke’s
Law. We would still know from physical experience that x = 0 is an equilibrium
point of the system, which suggests that it is a local minimum for the potential
energy. This would tell us that, at least in a small neighborhood of this equilibrium
point, we would have V (x) ≈ Cx2 for some constant C. Thus we would still know
that locally the potential energy is quadratic. This observation is at the heart of
the ubiquity of harmonic oscillators in physical problems—small motions about a
stable equilibrium point are approximately harmonic.

Example 2.2.4. For our next example, consider a simple pendulum:

If we use the coordinate θ, then the Lagrangian is

L(θ, θ̇) =
1
2
m`2θ̇2 −mg`

(
1− cos(θ)

)
and the Euler-Lagrange equations become

θ̈ = −g
`
(sin θ).

This is a complicated differential equation! But if we only look at small values
of θ—in other words, small oscillations of the pendulum—then we can use the
second-order approximation cos θ ≈ 1− θ2

2 , or

L(θ, θ̇) ≈ 1
2
m`2θ̇2 −mg`θ

2

2
.

The resulting Euler-Lagrange equations are now θ̈ = −g
`
θ, and this gives the har-

monic oscillatory motion one expects.

2.2.5. Generalization to higher dimensions. Suppose we have a physical
system with coordinates q1, . . . , qn, where the Lagrangian has the form

L =

1
2

∑
i,j

mij q̇iq̇j

−
1

2

∑
i,j

kijqiqj


with the first term being the kinetic energy of the system and the second term
the potential energy. We can of course always arrange things so that the matrices
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M = (mij) and K = (kij) are symmetric. Note that the Lagrangian can also be
written

L =
1
2
q̇TMq̇ − 1

2
qTKq = Qm(q̇)−Qk(q).

where

q =

q1...
qn

 , q̇ =

q̇1...
q̇n

 ,
and Qm and Qk are the evident quadratic forms. Since Qm(q̇) is the kinetic energy
of the system, the quadratic form Qm will be positive definite.

Since M is positive-definite, we can choose P such that M = PT · I · P . Then

q̇TMq̇ =
(
q̇TPT

)(
P q̇
)

= ṙT ṙ

where r = Pq, ṙ = P q̇. In these new coordinates we have

L =
1
2
ṙT ṙ − 1

2
rT
(
(PT )−1 ·K · P−1

)
r,

so we next need to diagonalize (PT )−1 ·K · P−1.
Choose an orthogonal matrix Q such that (PT )−1 ·K · P−1 = QTDQ where

D =

λ1

. . .
λn

 .
Introduce the new coordinates s = Qr, and note we also have ṡ = Qṙ. Then
L(s, ṡ) = 1

2 ṡ
T ṡ − 1

2s
TDs, and the Euler-Lagranage equations ∂L

∂si
= d

dt

(
∂L
∂ṡi

)
are

just

−λisi =
d

dt

(
ṡi
)

= s̈i.

The solutions to the above differential equations take on different forms depend-
ing on whether each λi is positive, negative, or zero. When λi > 0 we have that si
is a sine/cosine wave, when λi = 0 we have that si is a first degree polynomial, and
when λi < 0 we have that si is an exponential function.

Assume now, really just to be specific, that all the λi’s are positive. Then we
have

si(t) = Ai cos
(√

λit+ φi
)

for some constants Ai and φi. We can write this in vector form as

s(t) =
∑

Ai cos
(√

λit+ φi
)
· ei,

where the ei’s are the standard basis for Rn. Changing back to our original coor-
dinates, we have that

q(t) = P−1r = P−1Q−1s =
∑

Ai cos
(√

λit+ φi
)(
P−1Q−1ei

)
.

We can make the use of this formula more efficient if we remember two things:
(i) The λi’s are roots of det

(
λI−(PT )−1KP−1

)
, which are the same as the roots

of det
(
λPTP −K

)
= det

(
λM −K

)
.

(ii) The vector P−1Q−1ei lies in the kernel of
(
λiM − K

)
. (We leave it as an

exercise for the reader to check this.)
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In practice, these two facts allow us to write down the solutions q(t) without hav-
ing to find the matrices P and Q (see the examples below). The numbers

√
λi

are called the characteristic frequencies of the system, and the corresponding
vectors P−1Q−1ei are the corresponding normal modes of oscillation.

Example 2.2.6. Consider a system of two identical masses attached by a
spring:

Assume that the spring constant is k and the equilibrium length is `, and that
the two masses are both equal to m. Let us assume that initially the left mass is at
the origin and the right mass is at `. If we tap one of the masses then the system
will start to move: let x1 = x1(t) and x2 = x2(t) denote the positions of each mass
at time t.

The Lagrangian for this system is L = 1
2m(ẋ2

1 + ẋ2
2)− 1

2k(x2−x1− `)2. This is
not one of the quadratic Lagrangians we have been considering in this section, since
it contains some linear terms—but we can make it quadratic by a simple change of
coordinates. Set s1 = x1, s2 = x2 − `, and note that the Lagrangian is now

L =
1
2
m(ṡ21 + ṡ22)−

1
2
k(s2 − s1)2.

Note also that si represents the deviation of the ith object from its equilibrium
position.

In the language of our discussion of quadratic Lagrangians, we now have

M =
[
m 0
0 m

]
, K =

[
k −k
−k k

]
.

The squares of the characteristic frequencies are the roots of∣∣∣∣ λm− k k
k λm− k

∣∣∣∣ = 0.

These roots are λ = 0 with eigenvector
[
1
1

]
and λ = 2k

m with eigenvector
[

1
−1

]
, so

the motion of our system will take the form

s(t) = A cos

(√
2k
m
t+ φ

)[
1
−1

]
+
(
Bt+ C

) [1
1

]
.

Here A, B, C, and φ are undertermined constants. Physically, the first term corre-
sponds to a “vibration” where the center of mass stays fixed and the two objects
simultaneously move in and out from that center. The second term is a “transla-
tion”, where the entire system moves with constant velocity. Physicists have a nice
technique for ignoring the translational motion by instead working in coordinates
with respect to the center of mass; we will not pursue this, but it is a nice exercise
to work it out.

Example 2.2.7. For our next example consider a system with three masses
and two springs:
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Assume that the two objects on the ends have mass m, and the middle object
has mass M . Assume the two springs are identical, with spring constant k and
equilibrium length `. Let s1, s2, and s3 be the deviations of the three objects from
their equilibrium positions (where the objects are labelled 1, 2, 3 from left to right).

The Lagrangian for this system is L =
∑

1
2miṡ

2
i − 1

2k
(
(s2 − s1)2 + (s3 − s2)2

)
,

so we have

M =

m 0 0
0 M 0
0 0 m

 , K = k

 1 −1 0
−1 2 −1
0 −1 1

 .
Based on our previous example we can guess one of the characteristic fre-

quences: λ = 0 corresponding to normal mode

1
1
1

. Using a little physical intuition

we can also guess another normal mode: where the center object remains fixed and
the two springs vibrate in sync. Here the characteristic frequency corresponds to

λ = k
m and the normal mode is

 1
0
−1

. I don’t know an easy way to guess the final

characteristic frequency: doing the algebra reveals it to have

λ =
k

m

(
1 +

2m
M

)
, normal mode =

 1
− 2m
M
1

 .
Note that in this vibrational mode the two outer objects move in the same direction,
whereas the central object moves in the opposite direction to preserve the center
of mass.

2.2.8. Problems in two-dimensional space. The previous two examples
dealt with spring-mass systems distributed along a line. The same techniques allow
us to deal with spring-mass systems in any number of dimensions; we will be content
with analyzing spring-mass systems in the plane. For example, we might consider
a system like the following:

Maybe they are three equal masses connected by springs with the same spring
constant (but different equilibrium lengths), or maybe two of the masses are the
same and the third is different. Physicists use such systems, for instance, to ap-
proximate vibrations of molecules.

In the examples we consider all the masses will be equal, and all the spring
constants will be equal. Let m denote the mass and k denote the spring constant.



2.2. HARMONIC OSCILLATORS 23

Rather than looking at one geometrical configuration at a time, it turns out its not
too hard to just deal with them all at once. Assume that our objects are labelled
by indices a, b, c, . . ., and let let X̃a, Ỹa be the positions when the system is at
equilibrium. Let dab be the distance from a to b in the equilibrium state, so that

dab =
√

(X̃a − X̃b)2 + (Ỹa − Ỹb)2.

While the system is in motion, let Xa = Xa(t) and Ya = Ya(t) denote the
position of object a. As in our one-dimensional examples, we perform the change
of coordinates sa = Xa − X̃a, ta = Ya − Ỹa.

The kinetic energy of the system is given by
1
2
m
∑
a

(ṡ2a+ṫ
2
a), while the potential

energy equals∑
a,b cnctd

1
2
k
[√

(Xb −Xa)2 + (Yb − Ya)2 − dab
]2

=
∑

a,b cnctd

1
2
k
[√

(sb − sa + X̃b − X̃a)2 + (tb − ta + Ỹb − Ỹa)2 − dab
]2
.

The sums here are over all pairs (a, b) that are connected by a spring—said differ-
ently, the sum is over all springs. This potential is not quadratic in the coordinates,
and so we need to analyze its quadratic approximation. Note that our choice of
coordinates guarantees that when we take a Taylor expansion of the above expres-
sion, all of the linear terms in s and t will vanish. We will make use of this to
simplify our analysis.

Setting Aab = X̃b − X̃a, Bab = Ỹb − Ỹa, then up to linear terms the potential
energy is
k

2

∑
a,b cnctd

[
(sb − sa)2 + (tb − ta)2

− 2dab
√
A2
ab + 2Aab(sb − sa) + (sb − sa)2 +B2

ab + 2Bab(tb − ta) + (tb − ta)2
]
.

Since
√
a+ x ≈

√
a+ x

2
√
a
− x2

8a
√
a
, then up to second order, this is equal to

k

2

∑
a,b cnctd

[
(sb − sa)2 + (tb − ta)2

− 2dab

(
dab +

(sb − sa)2 + (tb − ta)2

2dab
−
(
4Aab(sb − sa) + 4Bab(tb − ta)

)2
8(dab)3

)]
.

Thus up to second order the potential energy is therefore
k

2

∑
a,b cnctd

1
(dab)2

[
Aab(sb − sa) +Bab(tb − ta)

]2
.

So we have obtained

L ≈
∑
a

1
2
m
(
ṡ2a + ṫ2a

)
− k

2

∑
a,b cnctd

(
Aab(sb − sa) +Bab(tb − ta)

dab

)2

.(2.2.9)
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Remark 2.2.10. Formula (2.2.9) admits a nice interpretation. Note that
1
dab

[Aab, Bab] is simply the unit vector point from object a to object b in their
equilibrium positions. In our potential energy term, the quantity inside the square
is simply the dot product of this unit vector with [sb, tb]− [sa, ta]. As shown in the
following picture, this is simply the length of the projection of the perturbed spring
onto the line determined by its equilibrium position.

(X̃a,Ỹa)

(Xa,Ya)

(X̃b,Ỹb)

(Xb,Yb)

projection of perturbed spring

perturbed spring

In other words, up to quadratic approximation we can assume that each spring is
only being expanded or contracted along its original axis. Unfortunately I don’t
know an a priori explanation of this, it is only an observation coming out of the
above calculation. I am grateful to Kevin Donahue for pointing this out to me.

Remark 2.2.11. Notice that it is clear how one generalizes formula (2.2.9) to
spring-mass systems in three dimensions, or in any number of dimensions.

Example 2.2.12. Consider again three objects of the same mass m, tied to-
gether by three springs in the following configuration:

Assume that the springs all have the same spring constant k, and that the
equilibrium positions of the three objects are (0, 0), (0, 1), and (1, 0). In this order
label the objects by 1, 2, and 3, and let si, ti give the deviation of object i from its
equilibrium position.

According to (2.2.9) the Lagrangian for this system is

L =
m

2

∑
i

(ṡ2i + ṫ2i )−
k

2

(
(t2 − t1)2 + (s3 − s1)2 +

1
2
((s3 − s2)− (t3 − t2))2

)
.

Our matrices are therefore M = mI and K = kJ where

J =



1 0 0 0 −1 0
0 1 0 −1 0 0
0 0 1

2 − 1
2 − 1

2
1
2

0 −1 1
2

3
2

1
2 − 1

2

−1 0 − 1
2

1
2

3
2 − 1

2

0 0 1
2 − 1

2 − 1
2

1
2


.
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The roots of det(λM−K) = 0 are products of k
m with the eigenvalues of J . Feeding

this matrix into a computer, one finds that the possible λ’s are 0 (with multiplicity
three), k

m , 2k
m , and 3k

m . The corresponding normal modes (the eigenvectors of J)
are

1
0
1
0
1
0

 ,


0
1
0
1
0
1

 ,


0
0
1
0
0
−1

 (λ = 0)


−1
−1
1
0
0
1

 (λ = k
m ),


−1
1
0
−1
1
0

 (λ = 2k
m ),


1
1
1
−2
−2
1

 (λ = 3k
m ).

Let us discuss what all this means geometrically. Based on our previous ex-
amples the reader would probably have guessed the λ = 0 eigenvalue, together
with the first two of its normal modes: these correspond to the uniform motion
of the system in the x-direction or in the y-direction. But why is there a third
normal mode associated to λ = 0? The reason turns out to be that the group of
affine transformation of the plane is 3-dimensional, not 2-dimensional. Recall that
the group of affine transformations (or “rigid motions”) is a semi-direct product of
SO(2) and R2, corresponding to the subgroups of rotations and translations. The
translations are things we have already accounted for, but we also need to account
for uniform rotational motion of the system. This is the third normal mode for
λ = 0. We claim that the vector [0, 0, 1, 0, 0,−1] corresponds to an “infinitesimal
clockwise rotation” about the point (0, 0). To see this, let Rθ be the clockwise rota-
tion of the plane, centered at the origin, through θ radians. The initial equilibrium
configuration has objects at (0, 0), (0, 1), and (1, 0). Applying Rθ puts the three ob-
jects at (0, 0), (sin θ, cos θ), and (cos θ,− sin θ). Converting this new configuration
into s, t-coordinates gives

[0, 0, sin θ, cos θ − 1, cos θ − 1,− sin θ].

We can regard this as a path in θ and take the derivative when θ = 0: this gives
the vector

[0, 0, 1, 0, 0,−1].
It is in this sense that the vector represents an infinitesimal clockwise rotation about
(0, 0).

What if we had performed a rotation about another point, rather than the
origin? The answer is that we would get some linear combination of our three
eigenvectors for λ = 0. The reader is encouraged to think through this, or to give
it a try.

Now let us turn to the other three eigenvalues and their normal modes. These
correspond to true “vibrations” of the system, and we can interpret them geomet-
rically as in the following pictures:

(i) (ii) (iii)
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Picture (i) depicts the normal mode for λ = k
m , the arrows indicating one

direction of vibration. All the objects move simultaneously in the direction of the
arrows, and then they stop and move in the opposite directions, back and forth
forever. This mode and the mode in (iii) (for λ = 3k

m ) are the easiest to have an
intuitive feeling for. The mode in (ii) is less intuitive for most people—but it is a
valid mode nevertheless.

The reader is encouraged to work out the normal modes and characteristic
frequencies for some other spring-mass systems.

2.2.13. Concluding remarks about quadratic Lagrangians. One impor-
tant thing to remember about the case of quadratic Lagrangians is that the associ-
ated Euler-Lagrange equations are linear (they look like q̈i = kiqi). Consequently,
the solutions form a vector space: different types of motion can combine in a very
simple way (i.e., they add). This is usually not true for non-quadratic Lagrangians.

For our second remark, suppose we have a spring-mass system and we jiggle one
of the masses. For example, maybe we have a large rectangular lattice of masses
tied together by springs—something like a two-dimensional mattress. If we go jump
up and down at one point of the mattress, we are jiggling one of the masses. What
happens? Physical intuition tells us that the jiggling propogates outward to the
other masses in some way. How do we analyze this mathematically? We will not
go into detail here, but we want to set up the method for solution.

To get us started, let us return to the simplest example of a system with a
single mass and a single spring. But this time let us add an external force (the
“jiggling”). We picture this as follows:

Fext
m

Here the box on the right labelled Fext is some machine that exerts an external
force Fext(t) (varying with time) on the object. We can analyze this physical system
with Newton’s Second Law, which yields

mẍ = Ftotal = −kx+ Fext = − ∂

∂x

(
k

2
x2 − Fext(t)x

)
.

So we can treat the external force as giving a new term equal to −Fext(t)x in
the potential energy. Our Lagrangian therefore becomes

L(x, ẋ) =
1
2
mẋ2 − k

2
x2 + Fext(t)x.

Based on this simple example we can now generalize. Imagine that we have a
two-dimensional spring-mass system, with objects indexed by a, b, c, . . .. As usual
we use the coordinates sa, ta, sb, tb, . . . giving the deviations from the equilibrium
positions. We have previously learned how to write down the Lagrangian for such
a system. Suppose now that we add an external force, acting on the mass ma. The
lesson of the previous example is that the Lagrangian for this new system will be

Lnew = Lold + Fhoriz(t)sa + Fvert(t)ta
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where Fhoriz and Fvert are the two components of the external force. We leave it to
the reader to verify this claim. If we have several external forces acting on different
masses ma,mb,mc, . . . then that just amounts to adding more analogous terms to
the Lagrangian.

2.2.14. A first look at field theory.
Consider an infinite string of masses connected by springs, stretched out along

a line:

Let us assume that all the objects have the same mass m, and that all the
springs have the same spring constant k and the same equilibrium length `. Let si
denote the deviation of the ith object from its equilibrium position. Then as in our
previous examples, we have

L =
1
2
m
∑
i

ṡ2i −
k

2

∑
i

(si+1 − si)2 =
1
2
m
∑
i

ṡ2i −
k`2

2

∑
i

(
si+1 − si

`

)2

.

Now imagine passing to the continuum limit, where ` → 0. In this limit the
spring-mass system becomes a flexible rod, with a uniform density σ and a “tensile
strength” ????. In the discrete system we had a displacement si corresponding to
the object originally at position `i. In the continuum limit we have a displacement
sx for every x ∈ R (corresponding to the point of the rod originally at location x).

In the discrete system the si’s are actually functions of time si(t), and so in
the limit we will have sx also depending on time.

Let us change notation a bit, and write ϕ(x) = sx and ϕ(x, t) = sx(t). A
“configuration” of the rod system is a (continuous, or perhaps smooth) map ϕ : R→
R, and if we allow it to change over time then it can be regarded as a map R2 → R.

The expression ṡi in our discrete system becomes ∂ϕ
∂t in the continuum version,

and the expression si+1−si

` becomes ∂ϕ
∂x . The Lagrangian becomes

L(ϕ, ϕ̇) =
1
2

∫ (m
dx

)(∂ϕ
∂t

)2

dx− 1
2

∫ (
k`2

dx

)(
∂ϕ

∂x

)2

dx

=
1
2

∫
σ

(
∂ϕ

∂t

)2

dx− 1
2

∫
ρ

(
∂ϕ

∂x

)2

dx

where σ is density and ρ has units of force. We can also write

L(ϕ, ϕ̇) =
σ

2

∫ [(
∂ϕ

∂t

)2

−
( ρ
σ

)(∂ϕ
∂x

)2
]
dx.

The units of
ρ

σ
are

kg m
s2

kg
m

=
m2

s2
, which suggests the square of a velocity.

Two Dimensional Waves

[Picture]

a x ∈ R2 (sa, ta) (sx, tx) = ϕ(x) ∈ R2 ϕ : R2 → R2
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L =
∑
i

1
2
m
(
ṡ2i + ṫ2i

)
− k

2

∑
springs

[
Aab(sb − sa) +Bab(tb − ta)

dab

]2

L(ϕ, ϕ̇) =
1
2

∫
σ

((
∂ϕ1

∂t

)2

+
(
∂ϕ2

∂t

))
dxdy− 1

2

∫
ρ

((
∂ϕ1

∂x

)2

+
(
∂ϕ2

∂x

))
dxdy

Similar Thing for Fields ϕ : R2 → R

Consider an infinite 2-dimensional lattice of springs in R3 with each mass con-
strained to move only perpendicular to the plane. Specifically, let sa, ta, and ua be
the displacements from rest of the mass a in the x-, y-, and z-directions, respec-
tively, with constraint sa = ta = 0.

x

y

z

m m

m m

The Lagrangian for this system is

L =
∑
a

1
2
mu̇2

a −
k

2

∑
springs

a→b

(ub − ua)2.

When we translate to field theory, the indices a become vectors x ∈ R2, and the
coordinates ua become outputs ϕ(x) of a function ϕ : R2 → R. In the Lagrangian,
we rewrite the potential term as

k`2

2

∑
springs

a→b

(ub − ua
`

)2

so that in the limit as `→ 0, the Lagrangian becomes

L
(
ϕ, ϕ̇

)
=
∫

R2

1
2

σ(
�

�
�m

dxdy

) (∂ϕ
∂t

)
dx dy −

∫ ρ

��k`2

2

[ (
∂ϕ

∂x

)2

︸ ︷︷ ︸
horiz. springs

+
(
∂ϕ

∂y

)2

︸ ︷︷ ︸
vert. springs

]

Remark 2.2.15. To add a ”source” term we earlier added Fi(t)si or Fi(t)ti to
the Lagrangian. In the field theory this corresponds to adding a term F (x, t)ϕ(x, t),
or just F (x)ϕ(x) if we suppress the t dependence as usual.

2.3. Variational approach to the Euler-Lagrange equations

In this section we describe a different perspective on classical mechanics, via the
so-called “principle of least action”. The idea is that one considers all possible paths
that a mechanical system might take as it develops, and to each path one associates
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a numeric quantity called the action. The action does not exactly have a physical
interpretation, as it is a quantity one associates to paths that do not actually occur
in the real world. I think of the action as something like the “cost to the universe” of
going down that path. The principle of least action says that the path the universe
actually takes—the one that satisfies the Euler-Lagrange equations—is an extreme
point for the action, in the sense of the calculus of variations. This means that for
all small deviations of our path, the first-order correction to the action is equal to
zero.

2.3.1. The basic argument.
M is a smooth manifold and L : TM → R is a smooth map. Let a, b ∈M and

let γ : I → M be a smooth path from a to b. To such a path we associate a real
number S(γ) called the “action”, defined as

S(γ) =
∫ 1

0

L
(
γ(t), γ̇(t)

)
dt.

If we have local coordinates q1, . . . , qn on M , and we write γ(t) = (q1(t), . . . , qn(t)),
then we will write

S(γ) =
∫ 1

0

L(qi, q̇i)dt.

Now suppose that γ̃ is a small variation of γ that has the same endpoints a
and b. The path γ̃ is given in local coordinates by γ̃(t) = (q̃1(t), . . . , q̃n(t)), and we
can write

q̃i(t) = qi(t) + δqi(t).
We then compute that

S(γ̃) =
∫ 1

0

L(qi + δqi, q̇i + δ̇qi)dt

≈
∫ 1

0

(
L(qi, q̇i) +

∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt

= S(γ) +
∫ 1

0

(
∂L

∂qi
δqi

)
dt+

∂L

∂q̇i
δqi

]1
0

−
∫ 1

0

d

dt

(
∂L

∂q̇i

)
δqidt

= S(γ) +
∫ 1

0

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqidt.

In the third line we have used integration by parts, and in the fourth line we have
used that δqi(1) = δqi(0) = 0 for all i.

We define

δS =
∫ 1

0

(
∂L

∂qi
− d

dt

(
∂L

∂q̇i

))
δqidt

and we think of this as the “first-order variation” in the action. Imagine that γ
is a path with the property that this term is zero for all choices of δqi’s. This is

equivalent to saying that
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0 for all choices of i. To see this, just

note that if one of these differences were nonzero then choosing δqi as an appropriate
bump function and all other δqj ’s to be zero, would give a nonzero δS.

So the moral of our story is as follows:

γ satisfies the Euler-Lagrange equations iff γ is an extreme point for S.
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Now, on the face of it this is not a very deep observation. In any practical
problem the important point is the Euler-Lagrange equations, and this variational
approach amounts only to a clever way of encoding them. But in the long run
this turns out to be a very good idea. The variational approach makes certain
theoretical ideas clearer (we will see an example below in the case of conserved
quantities), and more importantly it seems to adapt to a wide variety of different
situations. Time and time again in physics one ends up analyzing a situation by
writing down some kind of “action” and looking for the critical points.

There is one final remark that is important to make at this stage. In a classi-
cal mechanical system, the idea is that only one path is possible given the initial
conditions—and the Euler-Lagrange equations are a way of specifying which path
that is. In quantum mechanics the situation is very different: in some sense all
paths are possible, and one can really only ever talk about probabilities of a cer-
tain path occurring. It will turn out that the action S becomes more fundamental
here, as it is directly related to these probabilities. The is the basis of Feynman
path integrals, which we will study further in Sections ???? below. But the short
summary is that in classical mechanics it is only the extreme points of the action
that are important, while in quantum mechanics it is really the action itself that is
fundamental.

2.3.2. Examples from the calculus of variations. The variational argu-
ments we saw above are part of a vast subject called the “calculus of variations”,
which eventually evolved into modern day functional analysis. Let us look at a few
basic examples from the beginnings of the subject.

Example 2.3.3. Let a,b ∈ R3. Find the path of shortest length from a to b.

a

b

γ(t)

If γ(t) =
(
q1(t), q2(t), q3(t)

)
, then the length of γ is

S(γ) =
∫ 1

0

√
q̇1(t)2 + q̇2(t)2 + q̇3(t)2︸ ︷︷ ︸
the Lagrangian L(q,q̇)

dt

It is reasonable to expect that a path of shortest length will be an extreme point
for S. But an extreme point for S satisfies the Euler-Lagrange equations ∂L/∂qi =
d
dt (∂L/∂q̇i). Since L doesn’t depend on qi the left side is zero, giving

0 =
d

dt

(
�
��1
2
· 1
|q̇|
· �2q̇i(t)

)
This says that for each value of i, the quantity qi(t)/| ˙q(t)| is independent of t. Call
this constant Ci, and let C be the vector with components Ci. Then

q̇(t) = |q̇(t)| ·C,
which implies that the velocity of the path γ is always parallel to C, so γ travels
along a straight line, as expected. Note that this does not distinguish among the



2.3. VARIATIONAL APPROACH TO THE EULER-LAGRANGE EQUATIONS 31

different paths along this line (due to changes in speed), except that the speed can
never be 0 and so there can be no change of direction.

Example 2.3.4 (Brachistochrone Problem). This problem was first posed by
Johann Bernoulli. Let A,B ∈ R2, as shown below. Given a curve γ from A to B,
suppose that an object at A, starting at rest, is constrained to move along γ under
a constant gravity force with no friction. Find the curve that minimizes the time
elapsed until the object reaches B.

A

B

a1 b1

h

y = f(x)

ẏ = f ′(x)

g

The law of conservation of energy gives us a nice formula for the velocity at any
point on the curve. The initial energy is purely potential, mgh. At other values of
x, the energy is 1

2m · v(x)
2 +mg · f(x). Thus

��mgh =
1
2��m · v(x)2 +��mg · f(x) so v(x) =

√
2g
(
h− f(x)

)
.

We need an expression for the time it takes the object to traverse the path. An
infinitesimal piece of arclength near (x, y) is√

(dx)2 + (dy)2 =
√

1 + f ′(x)2 · dx,
and the time it takes the object to traverse this length is therefore√

1 + f ′(x)2 · dx
v(x)

.

So the total time for the object to move along the path is given by

S(f) =
∫ b1

a1

√
1 + f ′(x)2√

2g
(
h− f(x)

) dx.
We can think of this as the action for the path y = y(x) corresponding to the
Lagrangian

L(y, ẏ) =

√
1 + ẏ2√

2g(h− y)
.

This is the setup. The Euler-Lagrange equation is a bit unpleasant to solve, but
of course people know how to do it. For the interested reader we give some hints
about this in Exercise 2.3.5 below.

Exercise 2.3.5. First notice that the analysis simplifies somewhat by taking
y = h to be the origin of the y-axis with positive direction pointing downward
(parallel to g), everywhere replacing h with 0, −f(x) with f(x), and −y with y.
This gives the Lagrangian

L(y, ẏ) =

√
1 + ẏ2

√
2gy

.
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In general, the Euler-Lagrange equations imply that L − ẏ ∂L∂ẏ is a constant of
motion. This is called the Beltrami Identity, and it is easy to prove by just taking
the time derivative and using the chain rule for ∂L

∂t .
Setting L − ẏ ∂L∂ẏ = C and computing the partial derivative, one quickly gets

(after rearranging) that

ẏ2 =
1

2C2gy
− 1 =

( 1
2C2g )− y

y
.

It turns out this is known to be the equation for a cycloid, with a rolling circle of
radius R = 1

4C2g . It has parametric solution given by

x = R(θ − sin θ), y = R(1− cos θ),

as one may readily check.

2.3.6. Connections between group actions and constants of motion.
Noether’s Theorem says that for every symmetry of the action there is a corre-
sponding constant of motion. One could even say that any infinitesimal symmetry
yields a constant of motion. We have seen examples of this already: the Euler-
Lagrange equations show that if L is independent of one of the variables qi, then
∂L
∂q̇i

is a constant of motion. But being independent of qi means L is invariant under
changes qi 7→ qi + δqi, and this is our “infinitesimal symmetry”.

We will state the version of Noether’s Theorem for global symmetries, or group
actions. Suppose we have a configuration space M (a smooth manifold) and the
Lagrangian L : TM → R. Suppose we have a group action of a 1-dimensional Lie
group G (which will be either R or S1) on M , and suppose further that the group
action preserves the physical action, i.e.

S(g · γ) = S(γ) for all g ∈ G and all paths γ.

Example 2.3.7. Consider a free particle in R3 (so there is no potential).

m

The Lagrangian is L = 1
2m(ẋ2 + ẏ2 + ż2), and this is independent of x, y, and

z. So if we fix any vector v ∈ R3 and define an R-action on R3 by translation in
the v-direction, we have S(g · γ) = S(γ) for any g ∈ R.

Example 2.3.8. Consider the familiar cone example.

m
α

The Lagrangian is L = 1
2m
(
(1 + cot2 α)ṙ2 + r2θ̇2

)
−mgr cotα, which is inde-

pendent of θ. In this example the physical action is preserved by rotation about
the vertical axis, which is an S1-action.
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Theorem 2.3.9 (Noether’s Theorem). If G is a one-dimensional Lie group
acting on M in a way that preserves S, then there is an associated constant of
motion for the mechanical system. (See the proof for a prescription for obtaining
this constant of motion).

Remark 2.3.10. The reader might be wondering why we are only looking at
actions of R and S1, rather than arbitrary Lie groups. This is only a matter of
pedagogical convenience. If we have an action by an arbitrary Lie group G, then the
infinitesimal symmetries are determined by a small neighborhood of the identity.
Every element of such a neighborhood lies in a 1-parameter subgroup (obtained by
exponentiating an appropriate line inside the Lie algebra), and this brings us back
down to the 1-dimensional situation. So perhaps the best statement is that every
line inside the Lie algebra of G gives rise to an associated constant of motion.

Proof. Let γ be a path in M satisfying the Euler-Lagrange equations. Con-
sider the action of G on γ, depicted in the following diagram:

a

b
γ

g1γ

g2γ

M

Set γ̃ = gγ for some “small” g, and write γ̃ = γ + δγ in M . (Note that δγ
will typically be nonzero at the endpoints, in contrast to a similar-looking previous
example). Then

S(γ̃) = S(γ + δγ)

=
∫ 1

0

L
(
qi(t) + δqi(t), q̇i(t) + δq̇i(t)

)
dt

≈
∫ 1

0

(
L(qi, q̇i) +

∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt (linear approximation)

= S(γ) + 0 +

[
(((((((((((((∫ 1

0

[( ∂L
∂qi

)
− d

dt

( ∂L
∂q̇i

)]
δqidt︸ ︷︷ ︸

0 by E-L equation for γ

+
∂L

∂q̇i
δqi

]1
0

]

The sum over i is implied, and the last step is integration by parts. On the other
hand, since γ̃ is obtained from γ by the Lie group action, S(γ̃) = S(gγ) = S(γ).
Therefore the last term above is zero, so Σi(∂L/∂q̇i)δqi is a constant of motion. �

Remark 2.3.11. Note that the above proof shows clearly that we did not really
need a global action of G on M , only an “infinitesimal” action.

Example 2.3.12. In the example of the free particle, we may consider the
R-action which is translation of the path γ in the x-direction.
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x

y

z

γ γ̃

In this case, δy = δz = 0 and we can take δx = ε to be anything we like. So the
constant of motion predicted by Noether’s Theorem is the single term (∂L/∂ẋ)ε.
Since the ε was arbitrary, we find that ∂L

∂ẋ is a constant of motion. Recalling that
L = 1

2m(ẋ2 + ẏ2 + ż2), we have ∂L/∂ẋ = mẋ. The symmetry has shown us that
the momentum mẋ in the x-direction is conserved.

Example 2.3.13. Similarly, in the cone problem the S1-action shows that an-
gular momentum about the z-axis is a constant of motion.

Based on the above two examples, Noether’s Theorem does not seem very
impressive—we already understood the constants of motion in terms of the La-
grangian being independent of one coordinate. This was because in these examples
we had carefully chosen the “right” coordinates to begin with. The importance
of Noether’s Theorem is really in its coordinate-independence—it tells us where
to look for constants of motion just based on the geometry of the mechanical sys-
tem. And perhaps this demonstrates the importance of the variational approach
overall: it gives an approach to mechanics which completely avoids any mention of
coordinates.

2.4. Hamiltonian mechanics

The two basic paradigms in classical mechanics are the Lagrangian formal-
ism and the Hamiltonian formalism. The essential difference between the two
is something you have probably already seen in an undergraduate differential
equations course. Given a second-order differential equation in one varable like
y′′ + p(t)y′ + q(t) = 0, there is a silly trick for replacing it by two first-order equa-
tions in two variables: one sets z = y′ and then has the pair of equations

z = y′, z′ + p(z)z + q(t) = 0.

Hamiltonian mechanics is really just a variation on this basic trick. It replaces the
second-order differential equations one gets from the Euler-Lagrange equations with
pairs of first-order equations, at the expense of introducing a second set of variables.
The payoff turns out to be a closer connection with geometry: the solutions to first-
order equations are flows of vector fields. The geometry of this situation—called
symplectic geometry in modern times—is a quite extensive field.

In this section we give a very brief introduction to Hamiltonian mechanics,
really just outlining the basic setup. It would be possible to spend quite a bit more
time on this subject, but it is not really needed for our present purposes. We will
get by with just the basics.

2.4.1. Generalized momenta. Consider a smooth manifold M with a La-
grangian L : TM → R. Let q1, . . . , qn be local coordinates on M , so that we can
regard L as a function L(qi, q̇i).

Definition 2.4.2. Let pi = ∂L
∂q̇i

, and call this the “(generalized) momentum
conjugate to qi.”
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Example 2.4.3. For a free particle in R3 recall that we have L = 1
2m
(
ẋ2 +

ẏ2 + ż2
)
. Then px = ∂L

∂ẋ = mẋ, and similarly for py, pz. So in this simple case the
generalized momenta coincide with the notions of momenta one learns about in a
freshman physics class.

Example 2.4.4. Consider once again our problem of the particle moving on
the cone, where the coordinates are r and θ. Recall that the Lagrangian is

L =
1
2
m
(
(1 + cot2 α)ṙ2 + r2θ̇2

)
−mgr cotα.

Then one finds
pr = m(1 + cot2 α)ṙ and pθ = mr2θ̇.

You might recognize the formula for pθ as just the angular momentum of the object
about the z-axis. For pr, by using that z = (cotα)r one finds that pr is a constant
multiple of the linear momentum in the z-direction. (Precisely, pr = 2

sin(2α)mż, but
we will have no need of this equation.)

Remark 2.4.5 (Conservation of Momentum). Recall the Euler-Lagrange equa-

tions
d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
. From these we immediately see that if L is independent of

qi then pi is a conserved quantity for the motion. One sees instances of this in the
two examples above: all three linear momenta in the case of a free particle, and the
angular momentum about the z-axis in the cone problem.

2.4.6. The Hamiltonian. Now we introduce the expression

H =
∑
i

[
piq̇i − L(qi, q̇i)

]
called the Hamiltonian of our system. For the moment this is really coming out
of nowhere, although we will try to give a little more motivation in Remark 2.4.11
below. For now let us just remark that if q1, . . . , qn are Cartesian coordinates on
Rn and we are dealing with a free particle of mass m, then pi = mq̇i and

∑
i piq̇i

is therefore twice the kinetic energy. Since the Lagrangian is K.E. − P.E., the
Hamiltonian is therefore K.E. + P.E.. That is, in this case the Hamiltonian is just
the total energy of the system. It turns out the Hamiltonian is almost always the
total energy.

Coming back to our definition of H, notice that this expression is a function of
qi, q̇i, and pi. The momemtum pi is itself a function of the q’s and q̇’s, and in almost
all examples this function can be inverted to solve for q̇i in terms of the p’s and q’s.
We will assume that this can be done, in which case we regard H = H(qi, pi).

Let us now compute the infinitesimal variation of H:

dH = (dpi)q̇i +����pi(dq̇i)−
( ∂L
∂qi

dqi +
�

�
��∂L

∂q̇i
dq̇i

)
.

This gives us ∂H
∂pi

= q̇i and ∂H
∂qi

= − ∂L
∂qi

. If we use the Euler-Lagrange equations to
rewrite the latter, we get Hamilton’s Equations of Motion

∂H

∂pi
= q̇i and

∂H

∂qi
= − ∂L

∂qi

E-L= − d

dt

( ∂L
∂q̇i

)
= −ṗi.

Note that for each i these are two first-order differential equations, rather than the
single second-order equation given by Euler-Lagrange.
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Example 2.4.7. Consider the basic spring problem where x = x(t) is the
position at time t.

m

0

k

The Lagrangian is L(x, ẋ) = 1
2mẋ

2 − k
2x

2, so

px =
∂L

∂ẋ
= mẋ

and we may rewrite the total energy H = 1
2mẋ

2 + k
2x

2 as H(x, p) = p2x
2m + k

2x
2,

which eliminates the ẋ. Then Hamilton’s equations of motion ∂H/∂p = ẋ and
∂H/∂x = −ṗ in this example become p/m = ẋ and kx = −(mẋ)′ = −mẍ .

From a pragmatic point of view, it may seem to the reader that nothing really
useful is going on here. In any specific example, Hamilton’s equations of motion
are not going to be any easier to solve than the Euler-Lagrange equations—after
all, they are equivalent. While this is true, it nevertheless turns out that something
has been gained here. By analyzing mechanical systems in turns of the qi’s and
pj ’s, rather than the qi’s and q̇i’s, one ends with a theory where there are more
tools. And having more tools means you can solve more problems.

2.4.8. The general theory of Hamiltonian mechanics. From a math-
ematical point of view, q1, . . . , qn and q̇1, . . . , q̇n are coordinates on the tangent
bundle TM . But q1, . . . , qn and p1, . . . , pn are mostly naturally thought of as co-
ordinates on the cotangent bundle T ∗M . We will explain this more in Section
???? below, but it comes down to noticing how these quantities behave under a
change of coordinates. If u1, . . . , un is another set of coordinates on M , we can
write qi = qi(u1, . . . , un). Then

q̇i =
∂qi
∂uj

u̇j .(2.4.9)

Now write p(q)
i and p

(u)
i for the generalized momenta conjugate to qi and ui. One

has

p
(u)
i =

∂L

∂u̇i
=
∂L

∂qj�
��
∂qj
∂u̇i

+
∂L

∂q̇j

∂q̇j
∂u̇i

=
∂L

∂q̇j

∂q̇j
∂u̇i

= p
(q)
j

∂qj
∂ui

.(2.4.10)

where in the last equality we have used ∂q̇j

∂u̇i
= ∂qj

∂ui
from (2.1.6). The difference

between the transformation laws (2.4.9) and (2.4.10) is the difference between the
coordinate transformations for a tangent vector and a cotangent vector. Again, we
will have more to say about this when we talk about tensors in Section ????.

In changing our focus from the Lagrangian to the Hamiltonian, we are replac-
ing L : TM → R with H : T ∗M → R. What’s better about T ∗M , in modern
terminology, is that T ∗M carries a natural symplectic structure. That is to say,
the cotangent bundle T ∗M is a symplectic manifold . The study of such manifolds
goes under the name “symplectic geometry”, and this in some sense this is just the
modern name for Hamiltonian mechanics.

This would be a natural place for us to say exactly what a symplectic manifold
is, but we don’t want to get too far afield. We will leave it to the reader to go
look that up. But we do want to point out that for a symplectic manifold W ,
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the collection of smooth functions C∞(W ) has a Lie bracket called the Poisson
bracket, denoted with curly braces. For the case W = T ∗M , with coordinates p
and q, the definition is

{f, g} =
∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
.

Bilinearity and antisymmetry are clear, and as always, the Jacobi identity—while
not clear—ends up being just a computation. One may check that

{qi, qj} = 0, {pi, pj} = 0, {qi, pj} = δij , and {f,H} =
df

dt
.

The Poisson bracket is one of the “extra tools” that makes Hamiltonian mechanics
a more robust theory than Lagrangian mechanics.

We will not say more about the Poisson bracket, but let us point out that
in quantum mechanics there is also an important Lie bracket—the commutator
bracket for linear operators on a Hilbert space. Dirac realized that making analogies
between the Poisson bracket and the commutator bracket was an important tool in
passing from classical to quantum mechanics. To some extent people are still trying
to fully understand this, nowadays under the banner of “deformation quantization”.
Before Feynman, this was essentially the only way to do quantum mechanics—the
“Hamiltonian” way. Feynman’s viewpoint re-emphasized the importance of the
Lagrangian. We will start to understand this better in the next part of these notes.

Remark 2.4.11 (Significance of the Hamiltonian). ????





CHAPTER 3

Quantum mechanics

3.1. Preamble to quantum mechanics

In the introduction we gave a commutative diagram of modern physics:

Classical mechanics //

��

Classical field theory

��
Quantum mechanics // Quantum field theory.

Having tackled classical mechanics, we could at this point proceed in the direc-
tion of either of the two arrows. I’ve decided to talk about quantum mechanics
next. For the sensibilities of mathematicians, [G1] is an excellent reference on this
subject. And by the way, the heading “Quantum mechanics” here really means
non-relativistic quantum mechanics; relativistic quantum mechanics is quantum
field theory.

3.1.1. A motivating example. Quantum mechanics seems to be inherently
confusing, so I want to say a few things upfront to get us oriented. Most of us
have it drilled into our heads that science is about making predictions about what
will happen in an experiment. Based on this, it might be surprising to find that
quantum mechanics will not predict the result of any single experiment you ever do!
Quantum mechanics is only a theory of probabilities. So if you do an experiment
a thousand times and make a histogram of the results, quantum mechanics will
have something to say about what that histogram looks like. But if you do an
experiment once, quantum mechanics tells you basically nothing.

One could argue about whether this is an inherent limitation of quantum me-
chanics, or an inherent limitation of the universe. Physicists are mostly of the
opinion that it is the latter. Maybe one day a new theory will come along to prove
otherwise, but until then quantum mechanics is what we’re stuck with: we can only
predict probabilities, not specific outcomes.

So probability theory and quantum mechanics are inextricably woven together.
And although I’m not an expert, at this point it mostly seems to me that the
confusing things about quantum mechanics are actually confusing things about
probability theory.

Let us now consider a silly example, really just a basic probability question.
Consider a coin toss, where coming up heads (H) has probability p and coming up
tails (T) has probability 1− p. [Total aside: When I was an undergraduate I took
a course on biophysics, and at some point I was having a disagreement with the
professor about his use of probability theory. To illustrate my point I began by
saying, “Imagine a coin where the probability of coming up heads is 1

3 .” He looked

39
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at me like I was a crazy person, explaining—as if talking to a five-year-old—that
for a coin the probability of course always had to be 1

2 . I couldn’t exactly disagree
with that! So I ended up up in the awkward position of having to explain that I
wasn’t a crazy person, just a mathematician.]

Anyway, let’s come back to our coin. If we flip the coin 10 times, what is the
probability that it comes up heads exactly n times? We all know how to solve this
problem: if an “outcome” is an ordered sequence of H’s and T’s, there are

(
10
n

)
outcomes with exactly n H’s. Each such outcome has probability pn(1− p)10−n of
occurring, so we have

P (n heads) =
(

10
n

)
pn(1− p)10−n.

Now I am going to give you a completely different method for solving the same
problem, one using a somewhat unusual formalism. Define V , the “vector space
of states,” to be V = C〈H,T 〉. That is, V is the two-dimensional complex vector
space with basis elements H and T . We represent our single coin toss by the vector
c = pH + (1− p)T .

For 10 distinguishable coin tosses, we would consider the space of states to be
V ⊗10. For indistinguishable tosses (where the order doesn’t affect the outcome),
we instead use V ⊗10/Σ10. We compute the vector c⊗10 in this state space:

c⊗10 = (pH + (1− p)T )⊗10

=
∑

ordered outcomes

p#H(1− p)10−#H(H ⊗ T ⊗ T ⊗H . . . )

=
10∑
n=0

pn(1− p)10−n
(

10
n

)
(H ⊗H ⊗ . . . )︸ ︷︷ ︸

n

⊗ (T ⊗ T ⊗ . . . )︸ ︷︷ ︸
10−n

The first two equalities are effectively happening in the space V ⊗10, whereas for
the last equality we really use V ⊗10/Σ10.

We can now make an interesting observation: the probability of getting n heads
can be simply read off as the coefficient of the appropriate term in c⊗10.

The techniques of the above example are very typical of quantum mechanics.
One has a vector space of “states”, and probabilites are encoded as the coefficients
of vectors with respect to a certain basis. ??????

3.1.2. Dirac notation for linear algebra. Let V be a finite-dimensional
complex vector space, equipped with a Hermitian inner product 〈−,−〉. Recall
that this pairing is additive in both variables, and the following hold:
(1) 〈λv,w〉 = λ〈v,w〉
(2) 〈v, λw〉 = λ〈v,w〉
(3) 〈v,w〉 = 〈w,v〉
(4) 〈v,v〉 ≥ 0, with equality if and only if v = 0;
(5) If 〈v,w〉 = 0 for all w ∈ V , then v = 0.
This inner product gives us an abelian group isomorphism between V and V ∗, given
by v −→ 〈v,−〉. So every vector in V also determines a dual vector in V ∗.
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In Dirac’s notation, elements in V are denoted |v〉 and the dual vector in V ∗

is denoted 〈v|. The elements 〈w| are called “bras” and the elements |v〉 are called
“kets” (from “bra-c-ket” of course).

We can pair a bra and a ket together via the combined notation 〈w | v〉. This
can only mean one thing, which is to feed the vector |v〉 into the functional 〈w|.
So we have

〈w | v〉 = 〈w|
(
|v〉
)

= 〈w,v〉.

In other words, 〈w | v〉 is just another notation for the inner product. In the above
equation we are mixing physicists’s notation with mathematicians’ notation, which
we won’t often do—but occasionally it is useful to accentuate a point.

Physicists also like to pair a ket with a bra in the opposite order, writing things
like |v〉〈w|. What could this mean? For physicists the more relevant question is
more like, “What can we do with this?” For instance, we can put a ket |u〉 on the
right and get

|v〉〈w | u〉 = 〈w | u〉 · |v〉.
So |v〉〈w| is a device which takes a ket |u〉 and outputs a multiple of |v〉. We can
regard it as a linear transformation V → V , given by

|u〉 −→ |v〉〈w | u〉 = 〈w | u〉 · |v〉.
Notice that this linear transformation has rank 1; its image is the line containing
|v〉.

Now suppose that we are given a linear map A : V → V , and an orthonormal
basis {ei} for V . Then we have A(ei) =

∑
aijej for some aij ∈ C. We claim that

we may then write
A =

∑
aij |ej〉〈ei|.

Indeed, if we pair the right-hand-side with |er〉 then we get∑
aij |ej〉〈ei | er〉 =

∑
aij |ej〉δir =

∑
arj |ej〉 = A(er).

Note in particular that in the case A = id we have aij = δij , and so we may
write

id =
∑
|ei〉〈ei|.

This is a useful relation that is often used by physicists.
Continuing to introduce notation, physicists will write A|v〉 for the mathemati-

cians’ A(|v〉) or Av. But they also write 〈w|A, so what can this mean? Clearly
this must be the composite of our linear transformation with the functional 〈w|:

V
A−→ V

〈w|−→ C.
That is to say, if we pair 〈w|A with a ket |v〉 then we get

〈w|A|v〉 = 〈w | Av〉.
Finally, let us briefly review the theory of adjoints in this context. Fix w ∈ V

and consider the functional V → C given by v→ 〈w, Av〉. Using the isomorphism
V → V ∗ given by the inner product, this functional equals 〈φ(w),−〉 for a unique
φ(w) ∈ V . In this way we obtain a map φ : V → V that is readily checked to be
linear. This map is called the adjoint of A, and we will denote it by A†. We have
the key formula 〈A†w,v〉 = 〈w, Av〉 for all w,v ∈ V .
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Mixing the above with the physicists’ notation, we get

〈w|A|v〉 = 〈w|Av〉 = 〈A†w|v〉.
Since this holds for all v, we can in fact write the identity of bras

〈w|A = 〈A†w|.
Example 3.1.3. Putting our notation together, note that we can write

〈v | w〉 = 〈v | id | w〉 =
∑
i

〈v | ei〉〈ei | w〉 =
∑
i

〈ei | v〉〈ei | w〉.

The transistion from the first to the third term is called “inserting a complete set
of orthonormal states”.

Remark 3.1.4. When I first encountered the Dirac notation for linear algebra,
I was somewhat appalled. It seemed less careful than mathematicians’ notation (al-
though maybe this was more a function of how physicists used it than the notation
scheme itself). I also couldn’t see the point of introducing all this new notation
in the first place, when the mathematical notation seemed perfectly good. Just as
with any new language, though, over time I have become more accustomed to it. I
find myself liking the Dirac notation more and more. My point is to say, “Don’t be
scared of it!” Once you start forcing yourself to use the notation, you will quickly
become comfortable with it. It’s just linear algebra, after all, no matter how one
chooses to write it.

3.1.5. Delta functions. The idea for delta functions is, remarkably, also due
to Dirac. Technically speaking they are not really “functions”, but physicists regard
them as functions and use them to great effect. We will follow their example, but
see Remark 3.1.7 below for something about the real mathematics underlying these
ideas.

Consider V = L2(R) with the usual inner product 〈f, g〉 =
∫

R f(x)g(x)dx. We
again have the map V → V ∗, f 7→ 〈f,−〉, but because V is infinite-dimensional
this is not an isomorphism: it is injective but not surjective. As a specific example,
the element of V ∗ sending f 7→ f(0) is not in the image. We know this because if
δ(x) were a preimage then by integrating it against bump functions concentrated
away from zero we would find that δ(x) = 0 for all x 6= 0; and yet this would imply
that 〈δ, g〉 = 0 for all g, in which case we would have δ = 0.

Despite the fact that there is no function giving a preimage for f 7→ f(0),
physicists like to pretend that there is. And this is what they mean by the “delta
function” δ(x). At first this might seem very crazy—pretending that something
exists when one has proven that it doesn’t. But it’s worth remembering that lots
of important mathematics has developed in this way. There is no real number
such that x2 = −1, but once upon a time someone decided to pretend there was.
You have to give up something (in this case, you need to give up having a partial
order ≤) but in return you get a new idea about what ‘numbers’ are. The story
of the delta function is the same way. On the one hand, you have to give up some
properties that you are used to for ordinary functions; on the other hand, when
all is said and done you have broadened the objects of study from functions into
something greater.

The delta function and its “derivatives” satisfy a number of useful formulae,
which are easily derived using integration by parts and basic substitutions (we do
not justify that these tricks are valid):
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Proposition 3.1.6. For any f ∈ L2(R) one has
(i)

∫
f(x)δ(a− x) dx = f(a)

(ii)
∫
f(x)δ(n)(x) dx = (−1)nf (n)(0)

(iii)
∫
f(x)δ(n)(a− x) dx = f (n)(a)

(iv) xδ(n)(x) = −nδ(n−1)(x)
(v) δ(n)(λx) = 1

λn+1 δ
(n)(x), for λ > 0.

Proof. Most of these we leave to the reader, but we will do two of them to
make the idea clear. For any f ∈ L2(R),∫
f(x)·δ′(x) dx = f(x)δ(x)

]x=∞
x=−∞

−
∫
f ′(x)·δ(x) dx = −

∫
f ′(x)δ(x) dx = −f ′(0).

The first step is integration by parts, the second using that both f(x) and δ(x)
vanish at x =∞ and −∞. This proves (ii) in the case n = 1, and the general case
follows from the same argument by induction.

Likewise we compute that∫
f(x) · xδ′(x) dx = −(xf(x))′

∣∣
x=0

= −(xf ′(x) + f(x))
∣∣
x=0

= −f(0)

= −
∫
f(x) · δ(x) dx.

Since this holds for every f ∈ L2(R) we conclude that xδ′(x) = δ(x), and this
proves (iv) in the case n = 1. �

Remark 3.1.7. Although we will follow the physicists in treating delta func-
tions as if they were actually functions, it is worthwhile to say a little about how
mathematicians make sense of all this.

Consider a vector space T ⊆ L2(R), which we will call the space of “test-
functions.” For example, T could be chosen to be the space of smooth functions
with compact support. This space can be topologized based on notions of functional
convergence. We next define the space of distributions D(R) ⊆ T ∗ by

D(R) =
{
φ : T → R

∣∣∣φ is linear and lim
n→∞

φ(fn) = φ( lim
n→∞

fn)

for any convergent sequence {fn} in T
}
.

Note that L2(R) includes into D(R) by the map f 7→ 〈f,−〉, and so one may regard
distributions as being “generalized functions.” In this context the delta function is
the linear functions f 7→ f(0), just thought of as an element in D(R).

The theory of distributions is due to Schwartz. One may read about it in many
basic modern textbooks on analysis, for instance ?????

3.1.8. Delta Functions and Fourier Transforms. It will be convenient in
this section to imagine that we have two copies of the real numbers, denoted Rx
and Rk. Functions f : Rx → S (for any set S) will be denoted f(x), and functions
f : Rk → S will be denoted f(k).
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Consider a map f : Rx → C. The Fourier transform of f (if it exists) is defined
to be the function f̂ : Rk → C given by

f̂(k) =
1√
2π

∫ ∞

−∞
e−ikxf(x) dx.

Similarly, for a function g : Rk → C its inverse Fourier transform (if it exists) is
defined to be the function ǧ : Rx → C given by

ǧ(x) =
1√
2π

∫ ∞

−∞
eixkg(k) dk.

For nice enough functions these operations are indeed inverses.
Now we are going to be physicists and not worry about when things are “nice

enough” to make sense, but just follow the manipulations formally. Here we go:

ˇ̂
f(x) =

1√
2π

∫ ∞

−∞
eixkf̂(x) dk

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
eikxe−ikx

′
f(x′) dx′ dk

=
1
2π

∫ ∞

−∞

∫ ∞

−∞
eik(x−x

′)f(x′) dx′ dk.

Now plug in x = 0 to get

f(0) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
e−ikxf(x′) dx dk

=
∫ ∞

−∞
f(x)

[ 1
2π

∫ ∞

−∞
e−ikx dk

]
dx.

This seems to give us a formula for δ(x), namely

δ(x) =
1
2π

∫ ∞

−∞
e−ikx dk.(3.1.9)

Up to scalar multiple this is the Fourier transform of the constant function 1—
except for the fact that this function doesn’t have a Fourier transform, because the
above integral doesn’t converge. But okay, let’s not ask too many questions!

The integral in (3.1.9) is a so-called “oscillatory integral.” The values of e−ikx

rotate around the unit circle, so that adding them up through one complete revo-
lution gives zero. On this intuitive level it makes sense that

∫∞
−∞ e−ikx dk is zero

when x 6= 0, whereas when x = 0 this is the integral of the constant function 1
and therefore infinite. Quantum field theory is filled with these kinds of oscillatory
integrals.

Before leaving this topic we prove one result that will be needed later, and also
nicely demonstrates some of the above techniques for manipulating delta functions.

Lemma 3.1.10. For λ > 0 and k, l ∈ Z≥0,
x

pkuleipu/λdp du = δk,l · 2πλk+1 ·
k! · ik.
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Proof. We just compute∫∫
pkuleipu/λdp du =

∫ ∞

−∞
ul
[∫ ∞

−∞
pkeipu/λ dp

]
du

=
∫ ∞

−∞
ul · 2π

ik
· δ(k)

(u
λ

)
du

=
2π
ik
· λk+1 ·

∫ ∞

−∞
ulδ(k)(u) du

=
2π
ik
λk+1 · (−1)k · d

k

duk

(
ul
)∣∣∣∣

u=0

=
2π
ik
λk+1 · (−1)k · δk,lk!

= 2πλk+1 · ik · k! · δk,l.
�

3.1.11. Gaussian integrals. Because quantum mechanics is intimately tied
to probability theory, Gaussian functions end up playing a crucial role. The follow-
ing proposition lists a number of important integrals that will be needed later.

Proposition 3.1.12.

(a)
∫ ∞

−∞
e−ax

2
dx =

√
π

a

(b)
∫ ∞

−∞
e−ax

2+bxdx = e
b2
4a

√
π

a

(c) If Q is a symmetric, positive definite n×n matrix, then
∫

Rn

e−xTQx =
√

πn

detQ
.

(d) With Q as above and J any 1× n matrix,
∫

Rn

e−xTQx+Jx = e
JQ−1JT

4

√
πn

detQ
.

(e)
∫ ∞

−∞
e−ax

2
xndx =

0 if n is odd√
π

an+1
· 1 · 3 · 5 · · · · · (n− 1)

2n/2
if n is even

Proof. Part (a) is usually proven by a clever trick using double integrals and
polar coordinates:(∫

R
e−ax

2
dx

)2

=
∫

R
e−ax

2
dx ·

∫
R
e−ay

2
dy =

∫
R2
e−a(x

2+y2) dx dy

=
∫ ∞

0

∫ 2π

0

e−ar
2
r dr dθ

= 2π · 1
2a

=
π

a
.

Part (b) follows from (a) by completing the square.
Part (c) follows from (a) by diagonalization. Precisely, we know that Q =

PTDP for a diagonal matrix D = diag{d1, d2, . . . , dn}. Then using the change of
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variables y = Px we get∫
Rn

e−xTQx =
∫

Rn

e−yTDy dy
|det(P )|

=
1

|det(P )|

√
π

d1
. . .

√
π

dn

=
√

πn

(detP )2 detD
=
√

πn

detQ
.

Part (d) again follows from part (c) by completing the square. Specifically, let
y = x− (2Q)−1JTx.

Part (e) is clear when n is odd because we are integrating an odd function, and
when n is even it follows by differentiating the equation in (a) with respect to a
(and moving the differential operator under the integral sign). �

3.2. Quantum mechanics

In classical mechanics, a mechanical system gives us a manifold M called “con-
figuration space”. Observables of the system—like position, or momentum, or
energy—are smooth functions T ∗M → R. In quantum mechanics, we have instead
a complex Hilbert space H and observables correspond to certain linear operators
K : H → H. The eigenvalues of K correspond to what we would classically think
of as the possible values for the observable quantity corresponding to K.

Write 〈−,−〉 for the Hermitian inner product on H, and write |ψ| =
√
〈ψ,ψ〉.

Elements of H are thought of as “states” of our quantum-mechanical system.
In many cases H is simply the Hilbert space L2(M) of complex-valued functions

on M , with inner product given by 〈f, g〉 =
∫
M
f(x)g(x)dx.

Our goal in this section is to list some of the basic principles underlying quan-
tum mechanics, and then to explore a few examples. Below we call these principles
“axioms”, although that suggests a greater level of rigor than we actually intend.

Remark 3.2.1. Before proceeding further we need an explanation and an as-
sumption. Given an observable operator K : H → H, the eigenvalues of K will
sometimes be discreet and sometimes form a continuum. In both these cases, we
will make the general assumption that every eigenspace of K is one-dimensional.
This is not entirely a reasonable assumption, but it will cover most of our examples
for a while.

If λ is an eigenvalue of K, we will write |K = λ〉 for some chosen unit vector in
the corresponding eigenspace. This notation is hard to parse at first: we are using
the Dirac ket notation |v〉, but with the symbols “K = λ” replacing v. In the case
that the spectrum of K is continuous, we assume things set up so that λ 7→ |K = λ〉
is a continuous map. As is common in quantum mechanics texts, if the operator K
is understood then we will abbreviate |K = λ〉 to just |λ〉.

We come now to our first axiom, stating how our mathematical setup encodes
something measurable about the universe.

Axiom 3.2.2. Let K : H → H be an observable of the system, and let v ∈ H

be an eigenvector of K with eigenvalue λ. Then for any state ψ ∈ H − {0}, the
probability of a system in state ψ being measured to have K-observable equal to λ
is

|〈v|ψ〉|2

|v|2 · |ψ|2
.
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Note that this number can also be written as
|〈λ|ψ〉|2

|ψ|2
.

Several remarks are in order about the above axiom:
(1) Note that if u ∈ C−{0} then the states ψ and uψ lead to the same probabilities

for all observables. Based on this, sometimes one says that the physical states
of a system correspond to complex lines in the Hilbert space H. One can get
in trouble taking this too far, however.

(2) In a sneaky way, the above axiom conceals the most important thing about
quantum mechanics. All the probabilities that quantum mechanics predicts
come about as norm-squares of complex numbers; these complex numbers are
usually called probability amplitudes. For instance, if ψ is a unit vector in
H then the probability amplitude for a system in state ψ being measured to
have K-observable equal to λ is just 〈λ|ψ〉.
The previous axiom, when taken far enough, leads to an important conclusion.

Suppose that µ and λ are distinct eigenvalues of an operator K : H → H that
represents a certain observable. Then clearly we should expect

〈µ|λ〉 = 0;

for a state in which one knows that K = λ should have zero probability of being
measured to have K = µ.

This in turn leads to another observation. An observable linear operator
K : H → H must have orthogonal eigenvectors, and it must have real eigenval-
ues (because the eigenvalues correspond to the classical values of the observable).
This is equivalent to saying that K is Hermitian (also known as self-adjoint). We
thus have

Axiom 3.2.3. Observable quantities of the mechanical system correspond to
Hermitian operators K : H→ H.

Remark 3.2.4. Given a collection of vectors |λ〉 ∈ H, for λ in some indexing
set S, we wish to say what it means for this collection to be orthonormal. In the
case that S is discreet this means the usual thing, namely

〈λ|λ′〉 = δλ,λ′ .

In the case where S is a continuum, such as R, a different statement is needed. One
usually writes

〈λ|λ′〉 = δ(λ− λ′)
and interprets this as an identity of functions R → R for any fixed value of λ (or
λ′). Here the right-hand-side is a suitable Dirac delta function, and in fact these
kinds of statements were Dirac’s motivation for introducing delta functions in the
first place.

Now, the statment is confusing at first because 〈λ|λ〉 seems to be undefined
(because δ(0) is undefined). To make sense of this we need to consider a brief
example.

Let H = L2(R) with its usual Hermitian inner product. The operator K : H→
H given by K(f) = −if ′ is Hermitian, and its eigenvectors are clearly the functions
f(x) = eikx for k ∈ R. But note that these functions are not in the original Hilbert
space H; in fact K has no eigenvectors in H, although this is somehow not what
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one wants to happen. It turns out to be a good idea to expand H somewhat,
via an inclusion H ⊆ H′ where H′ is another Hilbert space that contains H as a
dense subspace. In our case one might imagine throwing in the functions eikx and
whatever else one might need along with them. But if we do this, the inner product
gets screwed up, as

∫
x
f(x)f(x)dx doesn’t make sense when f(x) = eikx. In fact

we have
〈eikx|eik

′x〉 = 2π · δ(k − k′).
The mathematical setting for all of this is something called a rigged Hilbert

space, which is a pair H ⊆ H′ of Hilbert spaces having certain properties. We will
not go into this definition in any detail, but it is something introduced by analysts
to help with the spectral theory of operators. For us what will be important is that
anytime we have a continuous family of eigenvalues for an operator, our eigenvectors
are really living in the H′ rather than the H and so their inner products don’t always
make sense under the usual rules.

3.2.5. Expectation values and uncertainties. Because quantum mechan-
ics only allows us to predict probabilities of certain measurements, we need to talk
about expectation values and deviations (or “uncertainties”). If K : H → H is an
observable and ψ ∈ H, then the expectation value for the observable K in state ψ
is

〈K〉ψ =
∫
λ

λ · |〈λ|ψ〉|
2

|ψ|2
dλ.

This is the usual formula one is used to for an expectation value: the sum over all
possible outcomes of the outcome times the probability of its occurrence. When
the state ψ is understood, it is common to just write 〈K〉.

Here is another formula for the expectation value:

Proposition 3.2.6. We have 〈K〉ψ =
〈ψ|K|ψ〉
〈ψ|ψ〉

.

Proof. Let |λ〉 be the eigenvectors of K, and write

ψ =
∫
ψ(λ)|λ〉 dλ.

Then Kψ =
∫
λψ(λ) · |λ〉, and thus

〈ψ|Kψ〉 =
∫∫

λ,λ′
ψ(λ′)λψ(λ)〈λ′|λ〉 =

∫∫
λ,λ′

ψ(λ′)λψ(λ)δ(λ− λ′)

=
∫
λ

ψ(λ)λψ(λ)

=
∫
λ

λ|ψ(λ)|2.

But ψ(λ) is just 〈λ|ψ〉 (using that 〈λ|λ′〉 = δ(λ − λ′) again). The desired identity
follows immediately. �

A second quantity that statistics tells us to consider is the deviation of an
observable, usually called the uncertainty in the context of quantum mechanics.
Gven a state ψ ∈ H, this is defined by

(∆K)ψ =
√
〈K2 − 〈K〉2ψ〉ψ.
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Again, we will usually drop the subscripts when the state is understood.
In the examples of the next section we will look carefully at the expectation

values and uncertainties of various observables in different states. For now, these
are just two definitions to get used to.

3.2.7. The time evolution of a quantum mechanical system. Finally,
we come to the last of our general axioms. This one concerns how a quantum-
mechanical system develops over time. For this we need the constant ~, which
is called the reduced Planck constant or the Dirac constant in the physics
literation. All we need to know about it is that it is a physical constant, like the
speed of light, which is built into the universe somehow. Perhaps it is also worth
saying that the SI units are Joules× seconds, and that in these units ~ is extremely
small (on the order of 10−34).

Axiom 3.2.8 (Time evolution axiom). Let H : H→ H be the observable opera-
tor corresponding to energy (usually called the Hamiltonian operator). Then if
the quantum-mechanical system is in state ψ at time t′, it will be in state

e−i(t−t
′)H/~ψ

at time t. Here

esH = Id+sH +
s2

2
H2 + · · ·

is the usual exponential of a linear operator. If U is a unitary operator such that
H = UDU−1 where D is diagonal and real, then

esH = U(esD)U−1,

whcih makes it clear that the above series converges. The operator e−isH/~ is called
the time evolution operator (for time intervals of length s).

An eigenvector of the Hamiltonian operator H is called a stationary state of
the system. The reason can be explained as follows. Suppose that ψ is a stationary
state with H-eigenvalue equal to λ (where λ ∈ R, of course). Then

e−iHt~ψ = e−iλt~ψ.

For any observable operator K : H→ H and possible eigenvalue µ, we now compute
that

|〈µ|e−iHt/~ψ〉| = |〈µ|e−iλt/~ψ〉| = |e−iλt/~ · 〈µ, ψ〉| = |〈µ, ψ〉|.
It follows that at all times t, the probability of our system having K-observable
equal to µ remains constant—that is, the probability is independent of t. This is
the sense in which the state is “stationary”. Notice that the state vector itself is
not staying constant: as time progresses the vector changes its “phase”. It is only
the probabilities for measurements about the system that remain constant.

3.2.9. Generalities about one-dimensional systems. For the remainder
of this section we will study one-dimensional quantum mechanical systems (that
is, systems where the underlying classical manifold M would be one-dimensional).
The classical concept of “position” is replaced by a certain operator X : H → H,
and the classical concept of “momentum” is replaced by an operator P : H→ H.

The eigenvectors of X are denoted |x〉 (for x ∈ R), and the eigenvectors of P
are denoted |p〉. This notation is confusing to mathematicians, as it is unclear what
|5〉 should mean—is it an eigenvalue of X with eigenvalue 5, or an eigenvector of P
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with eigenvalue 5? This is why |X = 5〉 and |P = 5〉 are a bit better notation, but
we will continue to follow the physicists’ notation as much as we can.

We postulate that the vectors |x〉, for x ∈ R, together form an orthonormal
basis for H. Recall that this means

〈x|x′〉 = δ(x− x′)
as functions R → R, where either x or x′ is considered fixed. This is called the
“X-basis” for H. Since we have a basis, any state ψ ∈ H may be written in this
basis, which would give us an expression like

ψ =
∫
x

ψ(x) · |x〉.

Notice that this allows us to identify any vector ψ ∈ H with a function ψ : R→ C.
This function is called the wave function for the state, in the X-basis.

The vectors |p〉 likewise form the “P -basis”, and we can write any vector ψ as

ψ =
∫
p

ψ(p) · |p〉.

This gives us another kind of “wave function” associated to ψ. Of course there are
lots of other bases for H as well, but these are the most common ones (particularly
the X-basis).

Now we come to a crucial axiom of our theory.

Axiom 3.2.10 (Schrödinger axiom). 〈x|p〉 = 1√
2π~e

ixp/~.

Strangely, you will not find this axiom in any book on quantum mechanics (that
I know of, anyway). It is equivalent to something you do find in the textbooks,
however:

Proposition 3.2.11. In the X-basis we have Pψ = −i~dψdx (or we can just
write P = −i~ d

dx as an identity of operators).

What the proposition says is that if ψ =
∫
x
ψ(x)|x〉, then Pψ =

∫
x
(−i~ψ′(x))|x〉.

In other words, when modelling vectors of H by wave functions using the X-basis,
the operator P becomes −i~ d

dx .
Before proving the above proposition, let us be clear that we understand the

notation. Certainly X(|x〉) = x · |x〉 and P (|p〉) = p · |p〉, just by virtue of |x〉 and
|p〉 being eigenvectors with the indicated eigenvalue.

Proof. This is just a computation:

Pψ = P

(∫
ψ(x)|x〉

)
= P

(∫∫
ψ(x) · |p〉〈p|x〉

)
(using Id =

∫
p

|p〉〈p|)

=
∫∫

ψ(x) · 〈p|x〉 · P (|p〉
)

=
∫∫

ψ(x) · 〈p|x〉 · p · |p〉

=
∫∫

x,p

∫
x′
ψ(x) · 〈p|x〉 · p · |x′〉〈x′|p〉

=
∫
x

(∫∫
x′,p

ψ(x′)〈p|x′〉p〈x|p〉
)
· |x〉
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(changing the role of x and x′ in the final line). Using the Schrödinger axiom now,
the term inside the parentheses in the final line is

1
2π~

∫∫
x′,p

ψ(x′)eixp/~ · p · e−ix
′p/~ =

1
2π~

∫∫
x′,p

ψ(x′)pei(x−x
′)p/~

=
1

2π~

∫∫
u,p

ψ(x− u)peiup/~ (setting u = x− x′)

=
1

2π~

∫∫
u,p

[
ψ(x)− uψ′(x) +

u2

2
ψ′′(x)− · · ·

]
peiup/~.

Using Lemma 3.1.10, the only term in the Taylor expansion which will result in
a nonzero integral is the term uψ′(x). So by that lemma the above expression is
equal to

1
2π~
· −ψ′(x) · 2π~2 · i = −i~ψ′(x).

We have thus shown that

P (ψ) =
∫
x

−i~ψ′(x)|x〉.

That is, P (ψ) = −i~ψ′. �

Here is one more example of the above kinds of manipulations:

Proposition 3.2.12. XP − PX = i~ · Id.

Proof. The fastest way to prove this, given what we have done above, is just
to work in the X-basis. In this basis the operators X and P have the form

X : ψ(x) 7→ xψ(x) P : ψ(x) 7→ −i~ψ′(x).
It takes one line to deduce that [X,P ] = i~.

But just for practice, let’s work in the P -basis and do the computation from
scratch, only using the Schrödinger Axiom. We have XP (|p〉) = X(p|p〉) = pX(|p〉)
and so

(XP − PX)(|p〉) = (p Id−P )(X(|p〉)).
But since |p〉 =

∫
x
〈x|p〉|x〉, we get X(|p〉) =

∫
x
〈x|p〉X(|x〉) =

∫
x
〈x|p〉x · |x〉. We can

change this back into the P -basis by

X(|p〉) =
∫
x

〈x|p〉x · |x〉 =
∫∫

x,p′
〈x|p〉x · 〈p′|x〉|p′〉.



52 3. QUANTUM MECHANICS

Therefore

(XP − PX)(|p〉) =
∫∫

x,p′
〈x|p〉x〈p′|x〉 · (p Id−P )(|p′〉)

=
∫∫

x,p′
〈x|p〉x〈p′|x〉 · (p− p′)|p′〉

=
∫
p′

(
1

2π~i

∫
x

ixeix(p−p
′)/~(p− p′)

)
|p′〉

=
∫
p′

(
1
i~
δ′
(p− p′

~

)
(p− p′)

)
|p′〉

= −
∫
p′

(
1
i~
· ~2δ(p− p′)

)
|p′〉

= i~|p〉.

In the second-to-last equality we have used δ′(x/a) = a2δ′(x) and xδ′(x) = −δ(x).
�

Proposition 3.2.13 (Heisenberg uncertainty principle). For any state ψ ∈ H

one has (∆X)(∆P ) ≥ ~
2 .

We will not give the proof of the above result right now, although one can find
it in [G1]. It is a purely mathematical consequence of the commutation relation
[X,P ] = i~.

3.3. Examples of one-dimensional quantum systems

We consider a particle moving (or maybe just “existing”) along the real line,
with a potential energy V (x) depending only on its location. In Hamiltonian me-
chanics we would write down the Hamiltonian function

H(x, p) =
p2

2m
+ V (x)

representing the total energy of the system. Below we will consider the quantum
mechanical systems corresponding to three potentials V (x):
(1) The free particle, where V (x) = 0 for all x.
(2) The infinite square well, with V (x) = 0 for −L < x < L and V (x) = ∞ for

x < −L or x > L (here L is some fixed positive real number).
(3) The simple harmonic oscillator, where V (x) = k

2x
2.

These are the standard first examples one sees in any quantum mechanics course.

3.3.1. The free particle. This example is in some ways the simplest, and in
others ways the most confusing. We will work in the X-basis, so that any state ψ
gets identified with a wave function ψ : R → C via the equation ψ =

∫
x
ψ(x)|x〉.

Under this correspondence the state |x′〉 (a state where we know with absolute
certainty that a particle is at location x′) has wave function δ(x′ − x).

Now suppose we have a particle whose location is unknown to us, but where
we know with certainty that the momentum is equal to p. The state is then the
eigenvector |p〉 of the momentum operator, and the corresponding wave function is

ψp(x) = 〈x|p〉 =
eixp/~
√

2π~
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by the Schrödinger Axiom. Notice that ψp is not normalizable:
∫
x
ψp(x)ψp(x)dx is

not finite. This is because ψp is not in our original Hilbert space L2(R), rather it is
in the “larger” rigged Hilbert space. This is spectral theory again: the momentum
operator P didn’t have enough eigenvectors in L2(R).

The fact that neither of the wave functions for |x〉 or |p〉 are in L2(R) has an
interesting physical interpretation. Really, it is not possible to have a physical par-
ticle in which we exactly know the position or momentum—for then the uncertainty
principle would imply that we have infinite uncertainty in the other observable, and
this is unrealistic. One does have states where the level of uncertainty (of either
position or momentum) is incredibly small, and in these cases the wave functions
approximate the ones given above, but one never has exact equality.

So one sees that the expansion of L2(R) to include functions such as δ(x) and
eipx/~ (for fixed p) corresponds to introducing certain “idealized physical states”
which are limits of actual physical states. Hopefully this seems reasonably intuitive.

One should think of our quantum-mechanical free particle as having an exis-
tence which stretches out over the entire real line, where at each position there
is a complex number specifying the probability amplitude for the particle to be
detected at that spot. It is reasonable to expect these complex numbers to vary
continuously, so as we look up and down the real line (at any given moment) we see
these complex numbers rotating and growing/shrinking. These complex numbers
are just the values ψ(x) of our wave function.

Keeping this in mind, let us look again at the wave function ψp(x) = 1√
2π~ ·

eixp/~. Here all of the values have norm 1, and so our particle is equally likely to be
detected at all positions (the uncertainity in position is infinite, as we will see in a
moment). Our probability amplitudes rotate as we look up and down the real axis,
and the “speed” at which they are rotating is determined by p (note that “speed”
is a bad word here, since we are looking at a single moment in time). The larger the
momentum, the faster our unit complex numbers are rotating as we look up and
down the line. This is a good thing to keep in mind in all examples: in quantum
mechanics having “momentum” has to do with spatial phase changes of probability
amplitudes, with large momentum meaning that the phase changes very rapidly
throughout space. Note that this connects directly with the interpretation of the
momentum operator as −i~ d

dx .
Up until now in this example we have only talked about the state of our particle

at one moment in time. Now let us role the film and let time fly. According to our
time evolution axiom, this amounts to applying the operator e−itH/~ to the original
state of the system. The Hamiltonian for a free particle is H = p2

2m , where m is the
mass. Applying the operator e−itH/~ is easiest if we apply it to an eigenvector of
H, and so in general we can best understand e−itH/~ψ if we express ψ as a sum of
eigenvectors for H. This will be our approach to understanding time evolution in
almost all examples.

In the present example the eigenvalues of H will be nonnegative, since up to the
factor 1

2m they are the squares of the eigenvalues for p. For a certain energy value
E, the eigenstates of H will be ψp(x) and ψ−p(x) where p =

√
2mE. Physically,

these eigenvectors correspond to a particle moving in either direction along the
x-axis, but with a given speed that is determined by E.

If one regards ψp(x) as a collection of probability amplitudes at each point x on
the real line, then e−itH/~ψp(x) amounts to rotating all of these amplitudes by the
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same amount—that is, to multiplying them by e−itp
2/(2m~). So as time marches on

our probability amplitudes spin around the complex plane, and the rate at which
they are spinning around is controlled by the energy of the system (the eigenvalue
of H).

This is so important it is worth saying again. A particle in quantum mechanics
should be thought of as having an existence that stretches out over the whole real
line (or R2, or R3, or wherever the particle is living). This “existence” is governed
by a probability amplitude at each point in space, and having momentum has to
do with the rotation of these probability amplitudes as one looks from one point
in space to another. If the particle is in an eigenstate of the Hamiltonian H, with
corresponding eigenvalue E (the energy of the system), then as time goes by the
probability amplitudes all rotate uniformly, at a speed directly proportional to E.
Particles of high energy have probability amplitudes that rotate very fast, particles
of low energy have amplitudes that rotate very slowly.

For quantum states that do not have a well-defined energy—states that are lin-
ear combinations of eigenvectors of H—the situation is of course more complicated.
One can only break the state up into a sum of pure energy states, and then think of
the amplitudes in each of the pure states as rotating—but at different frequencies
for the different eigenvalues. Picturing the time evolution when we combine these
states is not so easy.

3.3.2. Statistics of a free particle. For a particle that is known absolutely
to be located at x′, its wave function is ψ(x) = δ(x − x′). Likewise, for a particle
whose momentum is known absolutely to equal p, the wave function is ψ(x) =

1√
2π~e

ixp/~. In the first case there is infinite uncertainty in momentum, and in
the second case there is infinite uncertainty in position. Both of these are ideal
examples, not exactly representative of a real situation.

So let us next consider a more realistic wave function, where there is some finite
uncertainty in both position and momentum. There are all kinds of scenarios one
could look at, but let us focus on

ψ(x) = Ne−ax
2/2+ipx/~.

where a > 0 and p are fixed real numbers. Here N is to be taken so that |ψ|2 = 1,
which gives N = (a/π)1/4. Now we compute that

〈X〉ψ = 〈ψ|X|ψ〉 =
∫
x∈R

ψ(x)xψ(x)dx = N2

∫
x∈R

xe−ax
2
dx = 0

and

〈X2〉 =
∫
x∈R

ψ(x)x2ψ(x)dx = N2

∫
x∈R

x2e−ax
2
dx =

√
a

π

√
π

2
a−3/2 =

1
2a
.

Therefore we find that

∆X =
√
〈X2〉 − 〈X〉2 =

√
〈X2〉 =

√
1
2a
.
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When we do the corresponding calculations for momentum we find that

〈P 〉 =
∫
x∈R

ψ(x)

(
−i~ ∂

∂x

)
ψ(x)dx = −i~N2

∫
x∈R

(−ax+ ip/~)e−ax
2
dx

= −i~
√
a

π

ip

~

√
π

a

= p.

Likewise

〈P 2〉 =
∫
ψ(x)

[
−~2 ∂

2

∂x2
ψ(x)

]
dx = −N2~2

∫
[(−ax+ ip/~)2 − a]e−ax

2
dx

= −N2~2

∫
[a2x2 − p2/~2 − a]e−ax

2
dx

= p2 +
a~2

2
.

So

∆P =
√
〈P 2〉 − 〈P 〉2 =

√
p2 +

a~2

2
− p2 =

√
a

2
· ~.

Note in this case that we have

∆X ·∆P =
1√
2a
·
√
a

2
~ =

~
2

which agrees with the Heisenberg Uncertaintly Principle.
These calculations become more intuitive if we look a little deeper. The prob-

ability of detecting our particle at position x′ is∣∣∣〈δ(x− x′)|ψ(x)
〉∣∣∣2 =

∣∣∣∣∣
∫
ψ(x)δ(x− x′) dx

∣∣∣∣∣
2

= |ψ(x′)|2 = Ne−a(x
′)2 .

This is precisely a Gaussian distribution centered at 0 whose uncertainty is
√

1
2a .

Likewise, the probability of detecting our particle to have momentum p′ is∣∣∣∣∣
〈

1√
2π~

eixp
′/~
∣∣∣∣ψ(x)

〉∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
2π~

N ·
∫
e−ax

2/2+ipx/~e−ixp
′/~ dx

∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
2π~

N ·
∫
e−ax

2/2+i(p−p′)x/~ dx

∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
2π~

N ·
√

2π
a
e−(p−p′)2/2a~2

∣∣∣∣∣
2

=
1

~ · (πa)1/2
· e−(p−p′)2/a~2

.

As a function of p′, this is a Gaussian distribution centered at p whose uncertainly
is
√

1
2(1/a~2) =

√
a
2~.
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Next let us consider the time evolution of this particle. Recall H = P 2

2m for a
free particle. Noting that P |p〉 = p|p〉 and 〈x|p〉 = eixp/~

√
2π~ , we have the following:

ψt = e
−iH

~ tψ = e
−iH

~ t

∫
x

ψ(x)|x〉 dx(3.3.3)

= e
−iH

~ t

∫
x

ψ(x)
(∫

p

|p〉〈p| dp
)
|x〉 dx

= e
−i
~

P2
2m t

∫
x,p

ψ(x)〈p|x〉 |p〉

=
∫
x,p

ψ(x)〈p|x〉e
−i
~

p2

2m t|p〉

=
∫
x,p,x′

ψ(x)〈p|x〉 e
−i
~

p2

2m t|x′〉〈x′|p〉

=
∫
x,p,x′

ψ(x)e
−i
~

p2

2m t · e
i(x′−x)p

~
1

2π~
|x′〉

=
∫
x′

[
1

2π~

∫
x,p

ψ(x)e
i
~

(
− p2

2m t+(x′−x)p
)]
|x′〉.

The expression in square brackets must be ψt(x′). The integral with respect to p
is just a Gaussian, so we can evaluate it using Proposition 3.1.12. We get

ψt(x′) =
√

m

2π~it

∫
e

im(x′−x)2

2th ψ(x) dx.

At this point we recall that ψ(x) =
(
a
π

) 1
4
e−

a
2 x

2+ ipx
~ . Plugging this in, we find that

the integral with respect to x is another Gaussian:
Things become slightly horrible at this point. We get

ψt(x′) =
√

m

2π~it

( a
π

) 1
4
∫
e−( a

2−
im
2t~ )x2+x( ip

~ −
imx′

t~ )+
im(x′)2

2t~ dx(3.3.4)

=
√

m

2π~it

( a
π

) 1
4 ·
√

π(
a
2 −

im
2t~

) · e im(x′)2
2t~ · e

−
( p

~−
mx′
t~ )2

2(a− im
t~ )

=

[√
π

a

(
1 +

iat~
m

)]− 1
2

· e−
a( pt

m
−x′)2

2∆ · e i
∆ (− p2t

2m~ + px′
~ +

(x′)2a2t~
2m )

where ∆ = 1 + a2t2~2

m2 . As a reality check, one can plug in t = 0 and verify that the
expression coincides with ψ(x).

At this point we can dispense with x′ and just write x. Also, we will just write
N for the normalization constant in front.

Note that
|ψt(x)|2 = ψt(x)ψt(x) = NN · e− a

∆ (x− pt
m )2 .

This is a Gaussian centered at pt
m with deviation

√
1

2( a
∆ ) . So we have

〈X〉t =
∫
ψ̄t(x) · x · ψt(x) dx =

( p
m

)
t
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and

(∆X)t =
1√

2
(

a
1+a2t2~2/m2

) =
1√
2a
·
√

1 +
a2t2~2

m2
= (∆X)0 ·

√
1 +

a2t2~2

m2
.

The first equation says that the average position of the particle is moving with
velocity p

m . The second equation shows that for t near 0 we have (∆X)t ≈ (∆X)0
to first order in t, while for very large t we have

(∆X)t ≈
1√
2a
· at~
m

=
(

~
m

√
a

2

)
t =

(∆P )0
m

t

That is, for small times the uncertainty in the particle’s position is entirely due to
the uncertainty (∆X)0 in initial position, while for large times it is entirely due to
the uncertainty (∆P )0/m in initial velocity.

We will also find 〈P 〉t and (∆P )t. A hard way to go about this is to write
down the necessary integrals and compute them directly. This is possible, but it is
quite a bit of work. Instead we simply observe that H = P 2/2m and therefore P
commutes with H; hence by ???? both 〈P 〉t and (∆P )t are independent of t. So
we have 〈P 〉t = p and (∆P )t = (∆P )0 = ~

√
a/2.

Before leaving this example let us make one final point that will pave the way
for our treatment of Fenyman path integrals in Section 3.4. In (3.3.3) we derived a
quite general formula for the time evolution of a free particle:

ψt(x′) =
∫
x

(√
m

2πit~
· ei(x

′−x)2m/(2t~)

)
· ψ(x).(3.3.5)

Recall that we did this starting with ψt = e−
iHt

~ ψ, expanding ψ in terms of eigen-
vectors for H (which were also eigenvectors for P ), and then changing back into the
X-basis to get the new wave function. The process was mostly formal, except for
the fact that the simple form of H gave us a particularly easy integral to compute
(this was the Gaussian integral in p that appears at the end of (3.3.3)).

The expression in parentheses in (3.3.5) is called the propagator, in this case
from x at time 0 to x′ at time t. We will write this as U(x′, t;x, 0). It should
be regarded as the probability amplitude for a particle at position x when t = 0
to be detected as position x′ at time t. This interpretation makes the equation
ψt(x′) =

∫
x
U(x′, t;x, 0)ψ(x) seem obvious: ψt(x′) is the probability amplitude for

the particle to be detected at position x′ at time t, ψ(x) is the probability amplitude
for the particle to be detected at position x at time 0, and this integral equation
is just adding up all possibilities for how a particle somewhere at time 0 could end
up being detected at x′ at time t.

This perspective works for any time evolution problem in quantum mechanics.
One can always obtain ψt by integrating ψ against a propagator. The challenge,
which can be quite difficult, is understanding what the propagator looks like and
computing these integrals. For a free particle we computed that

U(x′, t;x, 0) =
√

m

2πit~
· ei(x

′−x)2m/(2t~).(3.3.6)

Now here’s an interesting observation about the above formula. Recall the least
action principle in Lagrangian mechanics, where we consider all paths γ from (x, 0)
to (x′, t) and choose the one which minimizes the action S(γ):
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x

x′

0 t

In the absence of forces, we found that this gave us a straight line. Here we used

L =
1
2
mẋ2 and S(γ) =

∫ t

0

1
2
mẋ(t)2

and found that the path of least action was the constant velocity path

γleast(T ) =
(
x′ − x
t

)
· T + x

The action of this path is

S(γleast) =
1
2
m

(
x′ − x
t

)2

· t =
m(x′ − x)2

2t
.

Notice that this exact expression appears inside the exponent in our propagator;
precisely, we have

U(x′, t;x, 0) = Ce
iS(γleast)

~

where C is some constant. This observation is important! We will see it again when
we come to Feynman path integrals.

3.3.7. The infinite well. (This example is sometimes referred to as the par-
ticle in a one-dimensional box.) We imagine a particle existing on the real line, but
this time with a nonzero potential function V given by

0 L
2−L2

∞

V (x) =

{
0 if −L2 < x < L

2

∞ otherwise.

Classically, there are two possible behaviors. If the particle’s energy is zero,
then the particle just sits in the well, not moving. If the energy E = 1

2mv
2 is

positive, then the particle bounces between the walls, reversing direction instantly
upon contact with either wall to maintain constant velocity magnitude. In the latter
case, the particle is equally likely to be detected anywhere in the well (−L2 ,

L
2 ).

We now consider the quantum mechanical version. We recognize that ψ(x) = 0
if x < −L/2 or x > L/2, and that inside the well, the particle is free as in the
previous example, with H = P 2/2m. We must analyze the eigenvectors of this
operator.

Let ψ be an eigenvector of H with eigenvalue E ≥ 0 (positive because it is
the square of an eigenvalue of P ). Then p =

√
2mE and thus ψ is some linear

combination of wave functions having eigenvalues p and −p, i.e.

ψ(x) = Aeipx/~ +Be−ipx/~



3.3. EXAMPLES OF ONE-DIMENSIONAL QUANTUM SYSTEMS 59

for some A and B, when −L/2 < x < L/2. We force continuity at the endpoints
−L/2 and L/2:

ψ
(
L
2

)
= Ae+ipL/2~ +Be−ipL/2~ = 0

ψ
(
−L2
)

= Ae−ipL/2~ +Be+ipL/2~ = 0.

This system corresponds to a 2×2 matrix equation in indeterminates A and B,
which has nontrivial solution if and only if the determinant is nonzero, i.e.

eipL/~ − e−ipL/~ = 2i sin
(
pL
~
)

= 0

which implies that pL/~ = nπ for some integer n. Squaring this gives p2L2/~2 =
n2π2, and from p2 = 2mE we have

E =
p2

2m
=
n2π2~2

2mL2
.

So the set of possible eigenvalues of the Hamiltonian operator—the possible
energies—is discrete. This is the first difference between the classical and quantum
models of this example.

We have arranged it so that we have nontrivial solutions for A and B, and the
space of such solutions is a one-dimensional. So we may as well assume A = 1,
which gives B = −eipL/~. Therefore

ψ(x) = N(eipx/~ − eipL/~e−ipx/~)

for some normalization constantN . We make this expression look more symmetrical
by adjusting the constant to get

ψ(x) = Ñ
(
e

ip
~ (x−L

2 ) − e−
ip
~ (x−L

2 )
)

= ˜̃N sin
(
p
~
(
x− L

2

))
.

Since pL/~ = nπ we can write this as

ψ(x) = N sin
(
p
~x−

nπ
2

)
=

{
N sin

(
p
~x
)

if n is even
N cos

(
p
~x
)

if n is odd

where in each case N now just represents some appropriate normalization constant
(not always the same one!).

Let’s look at the above wave functions for a few different values of n (recalling
that E = (nπ~/L)2/2m and p = nπ~/L). If n = 0, then ψ(x) = 0, so the particle is
non-existent since there is no probability of detecting it anywhere. We will disallow
this solution.

If n = 1 (or −1) then ψ(x) = N cos( πLx). Because the probability of detecting
the particle at x is |ψ(x)|2, we see that the particle is usually in the middle of the
well, and only sometimes near the edges:

0−L2
L
2

ψ(x)

If n = 2 (or −2) then ψ(x) = N sin( 2π
L x):
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0

ψ(x)

Note in particular that the particle will never be detected at the origin; or more
precisely, the probability of being detected there is zero. The particle spends most
of its time at the 1/4 and 3/4 mark inside the well, with little time spent at the
edges or in the middle.

It should be clear enough what happens for increasing n. When n = 3, for
instance, one gets a wave function with three “humps” (two above the x-axis and
one below). The particle spends most of its time near x = −L/3, x = 0, and
x = L/3.

Let us now proceed from these examples to a more general analysis of expec-
tation values and uncertainties. Write ψn(x) for the state corresponding to the

integer n. One readily checks that the normalization constant N is
√

2
L for all n.

Because ψn(x) · ψn(x) is always even (as is evident in the pictures),

〈X〉n =
∫
ψn(x) · x · ψn(x) dx = 0

and

(∆X)n = 〈X2〉1/2n =
(∫

x2 · ψn(x)2
)1/2

=
L

2

√
1
3
± 2
n2π2

where the ± is plus when n is even and minus when n is odd (in the third equality
we simply looked up the integral).

Recalling that the wave functions ψn are real-valued, we find that

〈P 〉n =
∫
ψn(x) · −i~ψ′n(x) dx = −i~ · ψn(x)

2

2

]∞
−∞

= 0.

Noting that ψ′′n = −(nπL )2ψn and
∫
ψn(x)2 dx = 1, we have that

∫
ψn(x) · ψ′′n(x) =

−(nπL )2. So

(∆P )n =
(∫

ψn(x) · −~2ψ′′n(x) dx
)1/2

=
nπ~
L

.

Note that

∆X ·∆P =
nπ~
L
· L

2
·
√

1
3
± 2
n2π2

=
~
2
·
√
n2π2

3
± 2.

The minimum value for the square root occurs when n = 1, and is about 1.13. In
particular it is greater than 1, so we once again verify the Heisenberg Uncertainty
Principle (∆X)(∆P ) ≥ ~/2.

Let us do one more calculation relevant to this example. For any given mo-
mentum p′, let us compute the probability amplitude for a particle in state ψn to
be detected to have momentum p′. Before embarking on the calculation, let us
also take a moment and see if we can guess the answer. A particle in state ψn has
energy E = n2π2~2

2mL2 . Since the particle is free inside the box H = P 2/(2m), which
suggests that the momentum of the particle is p = ±

√
2mE = ±nπ~

L . This suggests
that 〈p′|ψn〉 will be zero unless p′ is one of these two values.
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For convenience we will only do the calculation when n is odd, so that ψn(x) =√
2
L cos(nπL x). Then

〈p′|ψn〉 =
∫ L

2

−L
2

e−ip
′x/~

√
2π~

·
√

2
L

cos
(nπ
L
x
)

=
1√
π~L

· 1
(nπL )2 − (p

′

~ )2
e−ip

′x/~

[
nπ

L
sin
(nπ
L
x
)
− ip′

~ �
�

�
��

cos
(nπ
L
x
)]L/2

−L/2

=
1√
π~L

· 1
(nπL )2 − (p

′

~ )2
· nπ
L
·

[
e−

ip′L
2~ sin

(nπ
2

)
− e

ip′L
2~ sin

(
−nπ

2

)]

=
1√
π~L

· 1
(nπL )2 − (p

′

~ )2
· nπ
L
· ±1 · 2 cos

(p′L
2~

)
= ±n

2

√
πL

~
·

[
1

(nπ2 )2 − (p
′L
2~ )2

· cos
(p′L

2~

)]
.

For our purposes we can ignore the constant out front and just look inside the
brackets. Let us consider the function

fn(u) =
1

(nπ2 )2 − u2
· cos(u)

(where n is odd). If one thinks of the product development for cosine from complex
analysis, cos(u) =

∏
k odd(1 − 4u2

k2π2 ), then up to constants fn(u) is the result of
removing one of the factors. Here is a graph of fn(u) for n = 9:

-40 -20 20 40

-0.04

-0.02

0.02

0.04

Note that the function is sharply peaked in two places, and aside from this there are
some minor peaks—which rapidly move to zero as u tends to infinity. This is the
behavior for every n, although as n grows the difference between the sharp peaks
and the minor peaks becomes much more dramatic. For instance, here is n = 33
on a similar scale:
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-50 50

-0.010

-0.005

0.005

0.010

The sharp peaks are located approximately—but not exactly—at ±nπ2 . As n grows,
the location of the peaks converges to these values.

Returning to our study of |〈p′|ψn〉|2, up to constants this is fn(p
′L
2~ ). So there

are two values of p′ which are by far the most likely to occur, and these are very
near (but not quite equal to) ±nπ~

L . Other values of p′ have some small likelihood
of being detected, with the probability rapidly falling off (but still nonzero) for p′

outside of the interval [−nπ~
L , nπ~

L ].
Notice that the result of this analysis is quite different from our initial guess.

In particular, though only one energy can be detected for particles in the ψn state,
nothing similar to this can be said for momentum. A whole continuous range of
momenta can be detected, although two particular values are the most likely.

3.3.8. The quantum harmonic oscillator. This will be the last one-
dimensional system we examine in detail. Recall that for a spring-mass system
the Hamiltonian is

H =
p2

2m
+ V (x) =

p2

2m
+ kx2.

We introduce the constant ω =
√

k
m , which is the frequency of the classical system.

Using ω instead of k we can write

H =
p2

2m
+

1
2
mω2x2.

For the quantum harmonic oscillator we simply replace this with the operator H =
P 2

2m + 1
2mω

2X2. Our goal in this section will be to analyze the eigenvectors and
eigenvalues of this operator.

Remark 3.3.9. When I first learned this subject in an undergraduate quantum
mechanics course, I found the whole point of this endeavor somewhat mystifying.
Since I couldn’t imagine what a “quantum spring” was, I didn’t see the benefit in
pursuing this example at all. But perhaps this is clearer to the reader, based on our
work in Part 1. The real goal is to understand small perturbations from a stable
equilibrium—a very common situation—and to second order approximation such
things always result in positive-definite quadratic potentials. The simple harmonic
oscillator is important because it is the one-dimensional case of this.

One way of proceeding at this point is to write down the eigenvector equation
Hψ = Eψ, for E ∈ R, and try to solve this. In terms of our wave functions, this is
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the Schrödinger differential equation

− ~2

2m
ψ′′(x) +

1
2
mω2x2ψ(x) = Eψ(x).

This is not a terribly hard differential equation to solve, although doing so is a
bit of work—it’s certainly not a trivial problem. Dirac found a clever method for
doing most of the hard work algebraically, and we will take this route. It essentially
amounts to finding a Lie algebra action on the solution space of the above differential
equation.

Before doing anything else, let us note that E must be nonnegative for the
eigenvector equation to have a solution. For if ψ is such an eigenvector, then

E〈ψ|ψ〉 = 〈ψ|H|ψ〉 =
1

2m
〈ψ|P 2|ψ〉+ 1

2
mω2〈ψ|X2|ψ〉.

The expectation values for both P 2 and X2 must be nonnegative, so it follows at
once that E is also nonnegative.

We now embark on Dirac’s method. Write the operator H as

H =
P 2

2m
+

1
2
mω2X2 =

~ω
2

(
P 2

~mω
+
mω

~
X2

)
.(3.3.10)

Dirac’s observation is that we can almost factor the operator in parentheses: if
P and X commuted we could exactly factor it, but this doesn’t quite work here.
Introduce the operators

a = αX + iβP, a† = αX − iβP.
where α and β are certain real numbers we will specify later. We now compute

aa† = α2X2 + β2P 2 − αβi[X,P ] = α2X2 + β2P 2 + αβ~
using that [X,P ] = i~. We likewise compute that

a†a = α2X2 + β2P 2 − αβ~.
So aa† + a†a = 2α2X + 2β2P . Comparing this with the operator in parentheses in
(3.3.10), it will convenient 2α2 = mω

~ and 2β2 = 1
mω~ . So define

α =
√
mω

2~
and β =

√
1

2mω~
.

We then have
H =

~ω
2

(aa† + a†a).

We can also compute that
[a, a†] = 2αβ~ = 1.

It will be convenient to make one more defintion. Define

N = a†a =
mω

2~
X2 +

1
2mω~

P 2 − 1
2
.

Then H = ~ω(N + 1
2 ) and one checks that

[N, a] = a†a2 = aa†a = [a†, a]a = −a

[N, a†] = a†aa† − a†a†a = a†[a, a†] = a†.

Let h = C〈1, N, a, a†〉. This is a 4-dimensional Lie algebra under the commutator
bracket, called the Heisenberg algebra.
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Suppose ψ is an eigenvector for N , say Nψ = eψ. Then

N(aψ) = (aN − a)ψ = a(N − 1)ψ = (e− 1)aψ

and likewise

N(a†ψ) = (a†N + a†)ψ = a†(N + 1)ψ = (e+ 1)a†ψ.

Based on this, we get the following infinite ladder:

(e-eigenspace of N)

a

��
((e− 1)-eigenspace of N)

a

��

a†

OO

((e− 2)-eigenspace of N)

a†

OO

In Lie theory a and a† are usually called lowering and raising operators; in physics
they are usually called annihilation and creation operators.

Since the eigenvalues of H are all nonnegative, the eigenvalues of N must all
be at least − 1

2 (since H = ~ω(N + 1
2 )). So no matter what e is, if one goes low

enough in the ladder then the eigenspaces must be zero. It’s useful to consider the
lowest nonzero eigenspace, which will necessarily be killed by a. But note that if
aψ = 0 then Nψ = 0 since N = a†a, and conversely if Nψ = 0 then aψ lies in the
−1-eigenspace for N and is therefore zero. So aψ = 0 ⇐⇒ Nψ = 0, which tells
us that the lowest nonzero eigenspace in the ladder (if such a thing exists) must be
the 0-eigenspace. And from this it follows that the only nonzero eigenspaces satisfy
e ∈ Z≥0.

At any spot of the ladder other than the 0-eigenspace, the operator N is an
isomorphism. But N = a†a, and so the a leaving this spot is injective and the a†

coming into this spot is surjective. Likewise aa† = 1 + a†a = 1 + N , and this is
an isomorphism at every spot; so the a leaving each spot is surjective, and the a†

coming into each spot is injective. This verifies that from the 0-eigenspace up the
ladder, all the maps a and a† are isomorphisms.

The above arguments show that everything reduces to understanding the 0-
eigenspace of N , which is the same as the 0-eigenspace of a. The operator a is
a first-order differential operator, and so it is easy to find this eigenspace. The
differential equation is

0 = aψ = αxψ(x) + iβ(−i~)ψ′(x), or ψ′(x) = − α

β~
xψ(x).

This is a separable equation that is readily solved to give ψ(x) = Ce−
α

2β~x
2

=
Ce−

mω
2~ x

2
.

We conclude that for n ∈ Z≥0 the n-eigenspace of N is 1-dimensional and
spanned by (a†)n(e−

mω
2~ x

2
). To better understand this wave function it will be

convenient to introduce a change of coordinates:

u =
√

α

β~
x =

√
mω

~
x,

dx

du
=

√
β~
α
,

d

du
=

√
β~
α

d

dx
.
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Then we are looking at

(a†)n
(
e−

α
2β~x

2)
=
(
α

√
β~
α
u− βi(−i~)

√
α

β~
d

du

)n
e−

u2
2

=
(√

αβ~
)n(

u− d

du

)n
e−

u2
2 =

(1
2

)n
2
(
u− d

du

)n
e−

u2
2 .

Write (u− d
du )ne−

u2
2 = Hn(u)e−

u2
2 where Hn(u) denotes a polynomial in u. This

polynomial is called the nth Hermite polynomial. Clearly H0(u) = 1. Also

Hn+1(u)e−
u2
2 =

(
u− d

du

)(
Hn(u)e−

u2
2

)
=
[
2uHn(u)−H ′

n(u)
]
e−

u2
2 .

So we get the recursive formulaHn+1(u) = 2uHn(u)−H ′
n(u), and a simple induction

gives another recursive formula

Hn+1(u) = 2uHn(u)− 2nHn−1(u).

One then quickly computes

H0(u) = 1, H1(u) = 2u, H2(u) = 4u2 − 2,

H3(u) = 8u3 − 12u, H4(u) = 16u4 − 48u2 + 12.

Let ψn be the wave function

ψn(x) = Cn(a†)n(e−
mω
2~ x

2
) = Cn · 2−

n
2Hn(u)e−

u2
2 = 2−

n
2 CnHn

(√
mω
~ x
)
e−(

mω
2~ )x2

where Cn is a normalization constant that we will determine below. This is our
basis for the n-eigenspace of N . Since H = ~ω(N + 1

2 ) this is also the eigenspace
of H for the eigenvalue ~ω(n+ 1

2 ). Here are graphs of ψn for 0 ≤ n ≤ 4:

ψ0 ψ1 ψ2

ψ3 ψ4

It is easy to compute the expectation values 〈X〉 and 〈P 〉 in each state ψn.
Indeed,

〈X〉n =
∫
ψn(x)xψn(x)dx =

∫
xψn(x)2dx = 0.

The last equality holds because the Hermite polynomials are either even or odd,
therefore their squares are even, therefore xψn(x)2 is an odd function. Likewise,
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using integration by parts we get

〈P 〉n =
∫
ψn(x)(−i~)

∂

∂x
ψn(x)dx = −i~ (ψn(x))2

2

∣∣∣∣∞
−∞

= 0

since ψn(x) tends to zero as x→ ±∞.
Below we will find (∆X)n and (∆P )n, but before doing so it is useful to make

some observations. We start with a simple calculation:

〈a†ψn(x), a†ψn(x)〉 = 〈ψn(x), aa†ψn(x)〉

= 〈ψn(x), a†aψn(x) + [a, a†]ψn(x)〉
= 〈ψn(x), (N + 1)ψn(x)〉
= 〈ψn(x), (n+ 1)ψn(x)〉
= (n+ 1)〈ψn(x), ψn(x)〉.

So if ψn(x) is normalized then we normalize a†ψn by dividing by
√
n+ 1. That is

to say, ψn+1 = 1√
n+1

a†ψn. Applying a to both sides and using aa† = N + 1, we
get aψn+1 =

√
n+ 1ψn. Summarizing these (and reindexing), we have

aψn =
√
nψn−1

a†ψn =
√
n+ 1ψn+1

We can use these formulas to determine the normalization constant Cn. The
relation ψn+1 = 1√

n+1
a†ψn shows that Cn+1 = 1√

n+1
Cn. The constant C0 normal-

izes the Gaussian wave function e−
mω
2~ x

2
, and is therefore equal to

(
mω
π~
) 1

4 . Thus,
we arrive at

ψn(x) =
1√
n!

2−n/2
(mω

~π

)1/4

·Hn

(√
mω

~
x

)
e−

mω
2~ x

2
.

(This identification of Cn will not be needed below, however).
Now we are ready to compute the uncertainties:

Proposition 3.3.11. (∆X)n =
√(

n+ 1
2

) ~
mω , (∆P )n =

√(
n+ 1

2

)
mω~.

Note, as a consequence, that (∆X)n · (∆P )n = (n + 1
2 )~ ≥ ~

2 , once again
confirming the Uncertainty Principle.

Proof. The hard way to go about this is by a direct computation of the
integral

∫
ψn(x)x2ψn(x)dx. An easier method comes from playing around with the

operators a and a†.
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Observe that X = (a+ a†)
√

~
2mω and P = −i(a− a†)

√
mω~

2 . We have

〈X2〉n = 〈ψn|X2|ψn〉 =
~

2mω
〈ψn|(a+ a†)2|ψn〉

=
~

2mω
〈
(a+ a†)ψn

∣∣(a+ a†)ψn
〉

=
~

2mω

〈√
nψn−1 +

√
n+ 1ψn+1

∣∣∣√nψn−1 +
√
n+ 1ψn+1

〉
=

~
2mω

(
n+ (n+ 1)

)
=
(
n+

1
2

) ~
mω

.

We have used that a+ a† is self-adjoint, and that the ψn’s are orthonormal.
The computation for (∆P )n is entirely similar. �

Exercise 3.3.12. Compute the probability amplitudes 〈p|ψn〉, as a function of
p. Again, the hard way to do this is by a direct computation of

∫
e−ixp/~
√

2π~ ψn(x)dx.
An easier way is to try to use the operators a and a†. Begin by verifying that

a|p〉 = i
√

2
mω~ |p〉+ a†|p〉. Set Fn(p) = 〈p|ψn〉, and prove the recursion relation

Fn+1(p) = −ip

√
2

mω~(n+ 1)
Fn(p) +

√
n

n+ 1
Fn−1(p).

Do a Gaussian integral to determine F0(p) = De−Gp
2

for certain constants D and
G, then use this to obtain the first few Fn(p)’s.

3.4. Introduction to path integrals

Suppose we are considering a quantum mechanical system with Hamiltonian
H. In a typical problem we will have an initial state ψ and we want to understand
the time evolution ψt = e−

iHt
~ ψ. In our treatment of the free particle we saw that

we could write

ψt(x′) =
∫
x

U(x′, t;x, 0)ψ(x)(3.4.1)

where U(x′, t;x, 0) (the “propagator”) is the probability amplitude for a particle
at (x, 0) to be detected at (x′, t). One could also write U(x′, t;x, 0) = 〈x′|e− iHt

~ |x〉
which helps make (3.4.1) clearer:

ψt(x′) = 〈x′|ψt〉 = 〈x′|e− iHt
~ ψ〉 = 〈x′|e− iHt

~ |ψ〉 =
∫
x

〈x′|e− iHt
~ |x〉〈x|ψ〉

=
∫
x

〈x′|e− iHt
~ |x〉ψ(x).

Our goal will be to better understand the propagator 〈x′|e−iHt/~|x〉. We do
this by breaking it up into n “smaller” probability computations, which we can
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estimate to first order in t. Write ∆t = t
n . Then e−

iHt
~ =

(
e−

iH∆t
~

)n
. So we have

〈x′|e−iHt/~|x〉 = 〈x′|e−iH∆t/~ · · · e−iH∆t/~|x〉

=
∫
x

〈x′|e−iH∆t/~|xn−1〉〈xn−1|e−iH∆t/~|xn−2〉 · · · 〈x1|e−iH∆t/~|x〉

where the integral is over x = (x1, . . . , xn−1) ∈ Rn−1. Here we have inserted a
complete set of states |xi〉〈xi| in n− 1 different places. The above integral adds up
the probability amplitudes over all ways to take n steps from x to x′. It will be
convenient to write x = x0 and x′ = xn.

Now let us assume that our Hamiltonian has the form H = P 2

2m +V (x). Since P

and V (x) will not commute we do not have e−
iH∆t

~ = e−
iP2∆t
2m~ · e−

iV (x)∆t
~ , but these

two expressions do coincide to first order in ∆t (just write out the power series and
check it). We will therefore write

〈xj+1|e−iH∆t/~|xj〉 = 〈xj+1|e
−iP2
2~m ∆te

−i
~ V (x)∆t|xj〉+ O(∆t2)

= 〈xj+1|e
−iP2
2~m ∆t|xj〉e

−i
~ V (xj)∆t + O(∆t2)

since |xj〉 is an eigenvector for V (x). Now inserting
∫
p
|p〉〈p| = 1 we get that

〈xj+1|e
−iP2
2~m ∆t|xj〉 =

∫
p

〈xj+1|e
−iP2
2~m ∆t|p〉〈p|xj〉(3.4.2)

=
∫
p

〈xj+1|p〉〈p|xj〉e
−ip2

2~m ∆t

=
∫
p

e
ip
~ (xj+1−xj)

2π~
e
−ip2

2~m ∆t

=
1

2π~

√
2πm~
i∆t

e
−

»
(xj+1−xj)2

4~2
2~m
i∆t

–
(3.4.3)

where the third equality uses our Schrödinger Axiom and for the last equality we
just computed the Gaussian integral. Putting everything together, we have

〈xj+1|e−iH∆t/~|xj〉 ≈
√

m

2π~i∆t
· e

i
~

»
m
2

“
xj+1−xj

∆t

”2
∆t−V (xj)∆t

–
.

We observe that the term in brackets approximates the action for constant-velocity
path of time interval ∆t from xj to xj+1, provided that ∆t is small. So we can
write

〈x′|e−iH∆t/~|xn−1〉〈xn−1|e−iH∆t/~|xn−2〉 · · · 〈x1|e−iH∆t/~|x〉

≈
( m

2πhi∆t

)n
2
e

i
~

»
m
2

P“
xj+1−xj

∆t

”2
∆t−

P
V (xj)∆t

–

≈
( m

2πhi∆t

)n
2
e

i
~S(γx)

where γx is the piecewise-linear path depicted below.
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x

t

x0

x2

x3

x1

x5

x4

(each marked time interval has length ∆t).
Finally, taking all possibilities for x = (x1, . . . , xn−1) into account, we get

〈x′|e− iH
~ t|x〉 ≈

( m

2πhi∆t

)n
2
∫
x∈Rn−1

e
i
~S(γx).(3.4.4)

Up to this point everything we have said is basically sensible from a mathe-
matical viewpoint, but now we are going to say something that doesn’t make much
sense. Feynman tells us to consider the limit as n→∞ and ∆t→ 0. This doesn’t
quite make sense, in part because the constant in front of the integral blows up.
Disregarding this, Feynman’s intuition is that as n→∞ the piecewise-linear paths
approximate all paths; therefore we should regard the left-hand-side of (3.4.4) as an
integral over the space of all paths (where “path” probably means “smooth path”
here). Feynman would have us write things like

〈x′|e− iH
~ t|x〉 = N

∫
γ : x x′

e
i
~S(γ)Dγ(3.4.5)

where we imagine Dγ to be some appropriate measure on the space of all paths,
and N is some appropriate normalization constant. This is called a “path integral.”
Despite the lack of rigorous mathematical foundation here, physicists have learned
to use these path integrals to provide quite a bit of important intuition. They also
have accumulated a large bag of magic tricks for calculating such integrals.

Remark 3.4.6. There are two important remarks that should be made right
away:

(1) In working up to (3.4.4) we had to calculate a Gaussian integral with re-
spect to p (this was back in (3.4.2)). The convergence of that integral is
based on the quadratic part in p, namely e−

i
2m~ ∆tp2 , and this integral con-

verges only when Re
(

i
2m~∆t

)
> 0. If we formally write ∆t = a+ bi then

we need b < 0. So the integral is only well-defined when ∆t is assumed
to have a small, negative imaginary component. Or said differently, for
real ∆t we are taking the Gaussian integral as being defined by analytic
continuation from the lower half of the complex plane.

(2) The oscillatory integrand in the path integral gives an appealing way for
understanding the relationship between classical and quantum mechanics.
The integrand is a unit complex number, and as it winds once around
the circle one gets complete cancellation and a total contribution of zero.
For small ~ the integrand will wind around the circle extremely quickly,
leading to lots of cancellation. So if γ is an arbitrary path, moving γ
slightly leads to lots of cancellations in the integral and therefore no overall
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contribution. This happens except when γ is a critical point of S. So as
~→ 0 we have that the path integral is concentrated at the critical paths,
and the other paths do not contribute to the physics. This is precisely
what classical mechanics says happens.

3.4.7. Path Integrals for a Free Particle. In the last section we did some
manipulations with probability amplitudes to “derive” the path integral expression.
This was useful from a pedagogical perspective, but what is more typical in physics
is to start with the path integral heuristic, decide on an ad hoc basis how to assign it
some mathematical meaning, and then use this to make computations of probability
amplitudes. We will give an example of this in the case of the free particle.

We will need some simple generalizations of Gaussian integrals:

Proposition 3.4.8.

(a)
∫
e−a[x2−x1]

2
e−b[x1−x0]

2
dx1 = e

−ab
a+b [x2−x0]

2
√

π

a+ b

(b)
∫
e−an[xn−xn−1]

2
e−an−1[xn−1−xn−2]

2
· · · e−a1[x1−x0]

2
dx1dx2 · · · dxn−1

= e
−σn(an,...,a1)

σn−1(an,...,a1) [xn−x0]
2√

πn−1

σn−1(an,...,a1)
where σi denotes the ith elementary

symmetric function.

(c)
∫∫

e−a[(xn−xn−1)
2+···+(x1−x0)

2] dx1dx2 · · · dxn−1 = e
−a
n (xn−x0)

2

√
πn−1

nan−1
.

Proof. For (a), just combine the exponentials and use Proposition 3.1.12.
Part (b) follows from (a) by an induction, and (c) is a particular case of (b). �

Consider a free particle moving along R, say starting at x at time t and ending
at x′ at time t′. The Lagrangian is given by L = 1

2mẋ
2. Then the path minimizing

the action is γmin(s) =
(
x′−x
t′−t

)
(s − t) + x. The action evaluated on this path is

given by

S(γmin) =
∫ t′

t

L(γmin(s), γ̇min(s))ds =
∫ t′

t

1
2
mγ̇min(s)2ds

=
1
2
m

(
x′ − x
t′ − t

)2

(t′ − t)

=
1
2
m

[
(x′ − x)2

t′ − t

]
.

In the quantum nechanical world we would like to compute the probability
amplitude that a particle at x will be detected at x′ after t′ − t seconds. In other
words we want to compute

〈x′, t′|x, t〉 = 〈x′|e− iH
~ (t′−t)|x〉 = N

∫
all γ

e
i
~S(γ)D(γ).

We make sense of the path integral by breaking the paths into small enough
pieces so that they look approximately linear—and above we saw how to understand
the action on straight-line paths. If we break our paths γ into n pieces (where n is
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very large), we get the following approximation to 〈x′, t′|x, t〉:

N

∫
all γ

e
i
~S(γ)D(γ) ≈ N

∫
e

im
2~

[
(x′−xn−1)2

∆t +···+ (x1−x)2

∆t

]
dx1 · · · dxn−1

= e
im

2~n∆t (x′−x)2N

√
1
n
·
(2π~∆t

im

)n−1

(using part (c) of (3.4.8)).

Again we run into problems with this expression not converging for n large, but let’s
ignore this by pulling all the constants together; then also using that t′ − t = n∆t
we write

〈x′, t′|x, t〉 = Ce
im(x′−x)2

2~(t′−t)

where C is a mysterious constant which we will assume does not depend on x and
x′. Amazingly, this is a correct result—as we know because we already derived it,
using different methods, back in (3.3.6). Recall that there we found

〈x′, t′|x, t〉 =
√

m

2πi~(t′ − t)
e

im(x′−x)2

2~(t′−t) .

It is somewhat typical of path integral methods to have this kind of undetermined
constant left in the end. Sometimes one can determine he constant by other tech-
niques, and sometimes one can get by without knowing it. We will talk about these
issues much more when we get to quantum field theory.





CHAPTER 4

Maxwell’s equations

The mathematical theory of electromagnetic phenomena is one of the great
achievements of 19th century physics. It makes for a wonderful story, too: the
experiment-based laws obtained by Faraday and Ampère are unified by Maxwell
into four fundamental equations, and from these equations one predicts the exis-
tence of electromagnetic waves. Given the importance that such waves assumed in
so much of twentieth century life, this was really a watershed event.

In the next section we describe Maxwell’s equations. It will turn out, though,
that these equations are a little unsatisfactory: they do not take on the same form
in all coordinate systems. To remedy this one uses differential forms, which we
review below. This leads to a “coordinate free” version of Maxwell’s equations
which is quite general: it can be studied on any manifold with a non-degenerate
metric.

This is still not the end of the story, however. Quantum-mechanical consid-
erations lead to another way that Maxwell’s equations are unsatisfactory. The
magnetic potential, which is a convenient but non-essential tool from the point of
view of Maxwell’s equations, assumes a much greater significance in the quantum
theory. Gauge theory incorporates the magnetic potential at a more fundamental
level, building it into the geometry via bundles and connections.

In the next several sections we develop this story. There is quite a bit of math-
ematical machinery one has to digest here: differential forms, affine connections,
principal bundles, curvature, and so on. We attempt to explain some motivation
for each new tool before we introduce it, and then after introducing it we try to
explain how it helps us out.

4.1. Maxwell’s equations

The basic objects we wish to study are electric and magnetic fields. The former
concept is easier to explain, because it can be directly measured. If we are in a
room where there are various electric charges, currents, and magnets lying around,
a charge q placed at point (x, y, z) will have a certain force F exerted on it. Exper-
iment shows that if one places a charge of 2q at the same point, the exerted force
is twice as much, and so on. The electric field E at this point is defined to be F

q .
At any moment in time the electric field is therefore a function R3 → R3. To take
into account changes of the field with time, we regard E as a function E(x, y, z, t),
i.e., as a function R4 → R3.

The magnetic field is more difficult to describe, because we do not have mag-
netic charges that we can use to measure it. We know such fields must exist, because
we can move a compass around the room and find that it is deflected through differ-
ent angles at different places and different moments. We also could observe that if

73
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an electric charge q is at point (x, y, z) and is moving with velocity v, then the force
exerted on it will not be the same as if the particle were sitting still. It took quite
a bit of experimentation to begin to guess a mathematical form for these forces.
For our present purposes we just jump to the punchline: the magnetic field B is a
function R4 → R3, and it is connected to measurable phenomena by the Lorentz
force law:

F = qE + q(v ×B)
for a particle with charge q at a point (x, y, z) moving with velocity v.

We now give Maxwell’s equations for the electric and magnetic fields. For these
we need a function ρ(x, y, z, t) giving the charge density at each point in space (and
each moment in time), and a function J(x, y, z, t) giving the current density vector.
The meaning of charge density is clear enough, but what is the current density
vector? It is characterized by the property that if u is unit vector and one imagines
a small screen of area dA placed at (x, y, z, t) and perpendicular to u, then J ·u dA
is the total amount of charge moving across the screen per unit time. One can
also write J(x, y, z, t) = ρ(x, y, z, t)vavg(x, y, z, t), where vavg is the average charge
velocity.

Given a region V in R3, the integral
s

∂V

(J · n̂)dS is therefore the total charge

leaving the region per unit time. But this quantity can also be computed as

− d
dt

(
t

V

ρ dV

)
. Using the Divergence Theorem, we therefore have

y

V

(∇ · J)dV =
x

∂V

(J · n̂)dS = − d

dt

(
y

V

ρ dV

)
=

y

V

(∂ρ
∂t

)
dV.

Since this holds for any region V , it must be that ∇ · J = −∂ρ∂t .
Here are Maxwell’s equations in their so-called differential form (or local form):

(1) ∇ ·E = 1
ε0
ρ

(2) ∇ ·B = 0 (no magnetic monopoles)

(3) ∇×E = −∂B
∂t

(Faraday’s law)

(4) ∇×B = µ0ε0
∂E
∂t

+ µ0J (Ampère-Maxwell law).

The ε0 and µ0 appearing here are certain constants of nature, called the electric
constant and magnetic constant, respectively. The former is also called the
permittivity of free space, and the latter is the permeability of free space. More
generally, any material has a permittivity and permeability—these measure how
easy or hard it is for electric/magnetic fields to form within that material.

We wish to discuss the physical meaning of each of Maxwell’s equations, but
this is easier to do if we give the equations in a more global form. Essentially
one just uses Stokes’s Theorem and the Divergence Theorem to recast (1)–(4) as
equations about integrals. For this, let V be any solid, compact region in R3 (the
closure of a bounded open set), and let S be any compact surface in R3. The
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integral form (or global form) of Maxwell’s equations becomes:

(1)
{

∂V

E · n dS = 1
ε0

y

V

ρ dV = 1
ε0

(total charge inside of V ).

(2)
{

∂V

B · n dV = 0.

(3)
∮
∂S

E · ds =
∫∫

S

−
(∂B
∂t

)
· n dS.

(4)
∮
∂S

B · ds =
∫∫

S

(
µ0ε0

∂E
∂t

+ µ0J
)
· n dS.

For each equation let us explain why it is equivalent to the corresponding
differential form, and also explain its physical significance.
Equation (1): The Divergence Theorem gives

v
∂V

E · n dS =
∫∫∫

V
(∇ · E) dV , and

this gives the equivalence between the differential and integral forms of (1).
In words, equation (1) says that the total electric flux through any closed

surface is proportional to the total amount of charge inside the surface. This is
called Gauss’s Law.

Equation (2): The two forms are again equivalent by the Divergence Theorem. The
equation says that there are no magnetic charges.

Equation (3): Stokes’s Theorem says that
∮
∂S

E · ds =
v
S
(∇ × E) · n dS. This

immediately gives the equivalence of the two forms.
Equation (3) is Faraday’s Law, which says that a changing magnetic field in-

duces an electric current. The reader might have seen a demonstration of this where
one moves a bar magnet back and forth through a hoop of wire connected to an
ammeter (a device that measures current). While the magnet is moving perpendic-
ularly to the hoop, there is a current. If the magnet stops, the current dissipates. If
the magnet moves parallel to the plane of the hoop, there may still be a current but
it will be much smaller (because the magnetic flux across the hoop is not changing
very much).

Equation (4): The two forms are again equivalent by Stokes’s Theorem. This equa-
tion is called the Ampère-Maxwell law, and it has an interesting story. Ampère’s
Law states that an electric current through a wire creates a magnetic field circu-
lating around the wire. On its own this would suggest the (equivalent) equations

∇×B = µ0J or
∮
∂S

B · ds = µ0

x

S

J · n dS.

However, the divergence of a curl is always zero; so the above equations would lead
to

0 = ∇ · (∇×B) = ∇ · (µ0J) = −µ0
∂ρ

∂t
.

That is, Ampère’s Law can only be valid when the total charge at each point is
constant. Maxwell realized that by adding a new term into Ampère’s Law he could
remove this obstruction. Indeed, if we have ∇×B = µ0J + A then we will get

0 = ∇ · (∇×B) = −µ0
∂ρ

∂t
+ (∇ ·A).
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If we take A = µ0ε0
∂E
∂t then the above identity holds by the first of Maxwell’s

equations.
It is this new term that Maxwell added to Ampère’s Law which gives the

existence of electromagnetic waves. For simplicity assume we are in free space, so
that that ρ = 0 and J = 0. Then equation (4) becomes ∇×B = µ0ε0

∂E
∂t . We then

get

µ0ε0
∂2E
∂t2

=
∂

∂t

(
∇×B

)
= ∇×

(∂B
∂t

)
= −∇× (∇×E)

= −(∇(∇ ·E)−4E)
= 4E.

Here 4 is the Laplacian operator 4 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 , and the fourth equality is
a generic identity that is readily checked. The fifth equality comes from ∇ ·E = 0,
using the first Maxwell equation and ρ = 0.

The point is that 4E = (µ0ε0)∂
2E
∂t2 is the wave equation—for a wave travel-

ling with velocity equal to 1√
µ0ε0

. A similar analysis gives the same equation but
with E replaced by B. The constants µ0 and ε0 can be measured experimentally
by studying charges, currents, and magnets, so the speed of these waves can be
computed—and it turns out to agree with the speed of light! Maxwell was thereby
led to the hypothesis that light is an electromagnetic wave.

Remark 4.1.1 (Electromagnetic duality). One of the things that is most ap-
parent from Maxwell’s equations is that they are almost symmetric in E and B.
The difference is that while there are electric charges in the universe, as far as we
know there are no magnetic charges. If there were magnetic charges then one would
expect a magnetic charge density appearing in equation (2) and a magnetic current
density term in equation (4)—this would make things completely symmetric in E
and B. We will return from time to time to this idea of electromagnetic duality.

4.1.2. Invariance under coordinate changes. It is basically self-evident
that Maxwell’s equations are invariant under translations and rotations of 3-space—
that is, they take on exactly the same form if one performs such a coordinate
change. Essentially this is just because the divergence and curl have this property.
Said differently, the circulation and flux integrals appearing in the integral form of
Maxwell’s equations are purely geometric invariants of the vector fields E and B;
they are not going to be changed by translating or rotating the vector fields.

Let Aff denote the group of rigid motions of R3. The group of translations
(isomorphic to R3) is a normal subgroup, and one has the exact sequence

1→ R3 → Aff → SO(3)→ 1.

Said differently, Aff is a semi-direct product Aff = R3 o SO(3). Note that Aff is a
6-dimensional, non-compact Lie group. What we have said so far is that Maxwell’s
equations are invariant under coordinate changes in Aff.

Maxwell’s equations are, however, not invariant under the so-called “Gallilean
coordinate changes.” Imagine we have two observers—let us call them Calvin and
Hobbes—and that Hobbes is moving with a constant velocity v with respect to
Calvin. Without loss of generality let us assume that the observers have chosen
coordinate systems which line up in the y and z directions, and where the velocity
v is occurring only in the x-direction. Let us also assume that the observers cross
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paths when t = 0 according to both of their clocks. Let (x, y, z, t) denote Calvin’s
coordinate system, and (x′, y′, z′, t′) denote Hobbes’s. The Gallilean coordinate
change is

x = x′ + vt′, y = y′, z = z′, t = t′.

The easiest way to see that Maxwell’s equations are not invariant under such
coordinate changes is to think about electromagnetic waves. According to Maxwell,
electromagnetic waves in free space propogate with a speed c that is determined
by the constants of nature µ0 and ε0. Assuming these constants will be measured
to be the same in all experiments done by either Calvin or Hobbes, it follows that
both observers will experience electromagnetic waves as travelling with the same
velocity c. But if Calvin sends an electromagnetic wave travelling in the positive
x-direction, a Gallilean coordinate change clearly shows that Hobbes will observe
the wave approaching him with speed c− v. This is an apparent contradiction.

At this point we jump ahead many years in our story, past Maxwell to Einstein,
Poincaré, Lorentz, and Minkowski. Their solution to this puzzle is to say that
Gallilean transformations just do not preserve the laws of physics—so we can’t use
them. A different kind of transformation must be used in changing from Calvin’s
coordinate system to Hobbes’s, the so-called Lorentz transformations. We will give
a very brief tour through this, from a modern perspective.

We start by defining a new inner product on R4, called the Minkowski inner
product. This is given by

〈(x, y, z, t), (x′, y′, z′, t′)〉 = xx′ + yy′ + zz′ − c2tt′.
Here c is the speed of light. Mathematically, it will be convenient for us to choose
units so that c = 1; for instance, choose the unit of distance to be the light-year and
the unit of time to be the year. While this makes the mathematics less cumbersome
in places, it also has the negative effect of removing some physical intuition from
certain formulas. From time to time we will “put the c’s back in” to help illustrate
a point.

So now our Minkowski inner product has

〈(x, y, z, t), (x′, y′, x′, t′)〉 = xx′ + yy′ + zz′ − tt′.
Define O(3, 1) to be the symmetry group of this form. That is,

O(3, 1) = {P ∈ GL4(R) | 〈Pv, Pw〉 = 〈v, w〉 ∀v, w ∈ R4}.
This is called the Lorentz group. Note that we could also write that O(3, 1) =
{P ∈ GL4(R)|PT ·D ·P = D}, where D is the diagonal matrix with diagonal entries
1, 1, 1,−1. Thus, the elements of O(3, 1) are exactly those elements of GL4(R) of
the form

[
v1 v2 v3 v4

]
with v1, v2, v3, v4 ∈ R4 and

〈vi, vj〉 =


0 if i 6= j

1 if i = j and 1 ≤ i ≤ 3
−1 if i = j = 4.

Here are some important kinds of elements of O(3, 1):

(1) Any matrix
[
A 0
0 1

]
where A ∈ O(3). In fact, via this identification

O(3) is a subgroup of O(3, 1).
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(2) The element T =


1

1
1

-1

, called the “time reversal” operator.

(3) Any matrix of the form


α 0 0 β
0 1 0 0
0 0 1 0
β 0 0 α

, where α2 − β2 = 1 . Such an

element is called an “x-boost.” Similarly, there are y-boosts and z-boosts,
represented by the evident matrices.

Fact: All elements of O(3, 1) are products (not necessarily of length two!) of ele-
ments of O(3), T , and boosts.

This fact yields, in particular, that O(3, 1) is 6-dimensional: three dimensions
for the O(3) part, and three dimensions worth of boosts.

We also would like to understand the number of components of O(3, 1). The
determinant gives a map det : O(3, 1) −→ {−1, 1}, since if P ∈ O(3, 1) then PT ·
D · P = D and so detP 2 = 1. This map is clearly surjective, and so O(3, 1) has at
least two components.

If P ∈ O(3, 1) then

−1 = 〈(P14, P24, P34, P44), (P14, P24, P34, P44)〉 = P 2
14 + P 2

24 + P 2
34 − P 2

44.

Therefore P 2
44 ≥ 1. So the map P 7→ P44 is a map O(3, 1) → R − {(−1, 1)}.

One readily sees that this map is also surjective (all we really care about here is
surjectivity on π0, though).

Exercise 4.1.3. Show that the map O(3, 1) −→ {−1, 1}×
(
R− (−1, 1)

)
given

by P 7→ (detP, P44) is surjective on π0. Consequently, O(3, 1) has at least four
components.

We won’t prove this, but it turns out that O(3, 1) has exactly four components.
Define SO+(3, 1) to be the connected component of the identity in O(3, 1). This
is called the restricted Lorentz group. Elements of SO+(3, 1) are products of
boosts and elements of SO(3).

The Lorentz group consists of all linear maps of R4 that preserve the Minkowski
form. Just as we did for R3, it is also convenient to consider the affine maps that
preserve the form—that is, compositions of Lorentz transformations with transla-
tions. This is called the Poincaré group P . There is an exact sequence

1→ R4 → P → O(3, 1)→ 1,

or we could write P = R4 oO(3, 1). Note that P is ten-dimensional. The preimage
of SO+(3, 1) under P → O(3, 1) is called the restricted Poincaré group, and we
will denote this as P+.

After getting through all of these definitions we can finally get to the point.
Special relativity says that the laws of physics should be invariant under the action
of the group P+. One sometimes sees the full Poincaré group here instead, but let us
stick with the more conservative statement for now. Special relativity also tells us
the specific transformation to use when comparing coordinate systems moving with
constant velocity with respect to each other. Returning to Calvin and Hobbes,
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where Hobbes moves with constant velocity v in the x-direction with respect to
Calvin, the coordinate change is

x′ = γ(x− vt)
y′ = y

z′ = z

t′ = γ(t− vx)

where γ = (1−v2)−
1
2 (recall that the primed coordinate system belongs to Hobbes).

That is, 
x′

y′

z′

t′

 =


γ 0 0 −γv
0 1 0 0
0 0 1 0
−γv 0 0 γ

 ·

x
y
z
t

 .
Note that the matrix appearing in this formula is an x-boost, as we have the formula
γ2 − (γv)2 = 1 by the definition of γ.

Remark 4.1.4. There is an easy way to remember the matrix in the above for-
mula. First, one remembers that motion in the x-direction doesn’t affect the y- and
z-coordinates. Next one thinks about the corresponding Gallilean transformation,
which would have x′ = x−vt or a

[
1 0 0 −v

]
across the top row of the matrix.

Completing this to a Lorentz transformation suggests having
[
−v 0 0 1

]
along

the bottom row, but this isn’t quite right because then the columns do not have
the appropriate Minkowski norms. So this is all fixed by multiplying the top and
bottom rows by a constant γ, and then the norm condition forces what γ has to
be.

Returning now to Maxwell’s equations, the question we should have asked at the
beginning was whether these equations are invariant under the action of P+. The
invariance under translations is clear, so the question is really about SO+(3, 1).
The SO(3) part is clear, so we further reduce to asking about invariance under
boosts.

Now, it turns out that Maxwell’s equations are invariant under boosts. But
something a little surprising happens. In Maxwell’s equations, the roles of space
and time are very different—or separate. But the Lorentz boosts mix up space
and time. At first this seems like a bad sign: how could Maxwell’s equations be
invariant if this is happening? The answer is that there is only one way: the Lorentz
transformations have to also mix up E and B. This is a strange idea. It means that
the thing Calvin measures as the electric field E is not going to be what Hobbes
measures as the electric field E. In other words, the electric field (and likewise the
magnetic field) are not really physically invariant concepts!

This is perhaps a sign that we are missing the appropriate language for talking
about these concepts. Rather than E and B being separate entities, we need to find
a language where they appear together as parts of a common object. The language
of differential forms solves this problem. This is getting a little ahead of ourselves,
but in that language the “common object” is something called the electromagnetic
2-tensor F. Maxwell’s equations become simply

dF = 0, ∗d ∗ F = J.
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We will explain what all this means in the next couple of sections. See Section 4.3.1
for a more detailed discussion of how E and B get intermixed under Lorentz trans-
formations.

4.2. Differential forms

For some reason it is hard to teach differential forms without them seeming
hopelessly complicated and intimidating. In this section we give the basic defi-
nitions, together with what motivation we can provide, but this material doesn’t
really congeal into you start to use it for something. That will take place beginning
in Section 4.3.

4.2.1. Motivation. In basic multivariable calculus you are taught about di-
vergence, gradient, and curl. It’s usually not presented this way, but this is the first
time most people are exposed to a chain complex:

0→ C∞(R3)
grad−−−→ (Vec. fields on R3) curl−−−→ (Vec. fields on R3) div−−→ C∞(R3)→ 0.

In the first and second spots we mean smooth vector fields (by convention we start
our numbering at the left, with C∞(R3) in the 0th spot—so really we are thinking
of this as a cochain complex).

Not only is this a chain complex, but one learns in calculus that it is exact
everywhere except at the 0th spot. For example, if the curl of a field on R3 is zero
then it is a gradient field—this shows that H1 is zero. (In fact, the only way I can
remember the basic relations between div, grad, and curl is by remembering the
above cochain complex!) At the 0th spot the homology is not zero: the kernel of
grad consists of just the constant functions, and so the 0th homology is isomorphic
to R.

Now, we can look at the same complex with an open subset U ⊆ R3 substituted
for R3 everywhere:

0→ C∞(U)
grad−−−→ (Vec. fields on U) curl−−−→ (Vec. fields on U) div−−→ C∞(U)→ 0.

Call this complex C•(U). Examples show that it might not be exact at places
where the original was. For instance, if U = R3 − 0 then consider the radial
vector field F(x, y, z) = 1

(x2+y2+z2)3/2 (x̂i + ŷj + zk̂). The divergence of this field is
everywhere zero. But

s
S
F · n̂ dS = 4π where S is the unit sphere in R3, and so

Stokes’s Theorem shows that F cannot be the curl of anything. Therefore C•(U)
has some homology in the second spot. With a little legwork one sees that this is
the only homology—with the exception of the constant functions in the 0th spot,
of course—and so H0(C•) = H2(C•) = R and H1(C•) = H3(C•) = 0.

It doesn’t take long to notice that in the two examples we have done, U = R3

and U = R3− 0, we recovered the singular cohomology of U . It turns out that this
is always the case: for any open subset U ⊆ R3,

Hi(C•(U)) ∼= Hi
sing(U ; R) (de Rham Theorem).

Your experience with homology has perhaps left you jaded about this kind of thing,
but it is good to take a moment and marvel at how amazing it must seem to someone
first coming to this subject. Start from whatever definition of singular cohomology
you like best—cellular, simplicial, or singular—and realize that you are now being
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told you can calculate it a completely different way, not using any kind of simplices
or cells but rather by using calculus!

Of course there is an immediate question that springs to mind: we did this for
U ⊆ R3, but what about U ⊆ Rn? Unfortunately it is not so clear how to write down
the cochain complex in this case: the first two terms are straightforward enough,
but then what happens? I claim that if your goal is to make this generalization,
and you sit down and try to do it, you will ultimately be led to differential forms.

4.2.2. The first example of a differential form. We will need a few things
from the language of vector bundles. A vector bundle is (basically) a fiber bundle
where the fibers are vector spaces. For example, given a smooth manifold M of
dimension n, the tangent bundle TM is a vector bundle over M . All of the natural
constructions you know for vector spaces carry over to vector bundles: given two
vector bundles E and F over M , one can form vector bundles E ⊕ F,E ⊗ F , the
dual vector bundle E∗, etc.

Given a vector bundle p : E −→ M , define the space of (smooth) sections
of E to be

Γ(E) = {s : M −→ E | p ◦ s = id and s is smooth}.
Note that this is a real vector space: using the addition and scalar multiplication
in the fibers of E, we can add and scale sections. (In fact not only is Γ(E) a real
vector space, it is a module over the ring C∞(M)).

We define the cotangent bundle of M to be the dual of the tangent bundle, and
we use the notation T ∗M = (TM)∗.

Definition 4.2.3. The vector space of differential 1-forms on M is
Ω1(M) = Γ(T ∗M).

This definition is short and sweet, easy to remember, but I think this is a place
where things get fuzzy for someone learning this for the first time. Because how
does one “picture” a section of the cotangent bundle, and why was this the “right”
definition to choose in the first place?

We answer these questions by a basic observation: Given a smooth manifold
M, if we have v ∈ TxM and f ∈ C∞(M), then we should be able to come up with
a directional derivative ∂vf ∈ R. As soon as one has the idea of doing this, it is
clear how to define it: pick any smooth curve γ : (−1, 1) −→M such that γ(0) = x
and γ′(0) = v, then define

(∂vf)x =
d

dt

(
f(γ(t))

)∣∣∣∣∣
t=0

.

One needs to prove that this is well-defined, but this is an easy check. One also
checks that this construction is linear in v, as one would expect: so we actually
have a linear map ∂(−)f : TxM −→ R. Since we’ve done this for every x ∈ M , we
have produced exactly a section of the cotangent bundle T ∗M !

The point I want to make is that it’s useful to think of 1-forms not just as
what they are, but as what they do for you: 1-forms are processes that take any
point x ∈ M and any tangent vector v ∈ TxM and produce a real number. The
canonical example is the “directional derivative” process described above. Any
smooth function f : M → R has an associated 1-form called df , defined by

dfx(v) = (∂vf)x.
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As to the question of why Definition 4.2.3 was the “right” definition, the answer
is that it is simply the natural home of the directional derivative process.

Remark 4.2.4. Let f : R3 −→ R and x, v ∈ R3. In multivariable calculus
one learns that (∂vf)(x) = (~∇f)(x) · v, and afterwards one thinks more about the
gradient than directional derivatives. Why didn’t we follow this procedure for more
general manifolds above? The reason is that the gradient vectors exist in R3 only
because of the dot product, which induces an isomorphism R3 −→ (R3)∗ given by
v 7→ (x 7→ x · v). Our directional derivative (∂vf)x lives in (R3)∗, but using this
isomorphism there is a corresponding vector in R3—and this is the gradient.

On a general smooth manifoldM one lacks the dot product, and so one can only
look at directional derivatives themselves. On a Riemannian manifold, however,
the story is different; because there one does have a metric, and this can be used
to define gradient fields. We will have more to say about this a little later.

To summarize what has happened in this section, there is really only one im-
portant point: we defined the space of 1-forms Ω1(M) and we produced a map

d : C∞(M)→ Ω1(M), f 7→ df.

Here df is to be thought of as something like “all of the directional derivatives of
f , bundled together”.

4.2.5. Exterior products and Hodge duals. The way I’ve decided to pro-
ceed is to do all of the algebra together, in one swoop, before progressing from
1-forms to n-forms. That is our goal in the present section. I suppose this is
because for me algebra always seems “easy”, whereas geometry is “hard”. So tem-
porarily wipe anything about the geometry of manifolds from your brain, and let
V be a real vector space of dimension n.

Let V ⊗k denote the k-th tensor power of V , which has dimension nk. There is
a Σk action on V ⊗k defined by

σ(v1 ⊗ v2 ⊗ · · · ⊗ vk) = (−1)σvσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k),

where (−1)σ denotes the sign of σ. Define the space of invariants by[
V ⊗k

]Σk ={ω ∈ V ⊗k |σ(ω) = ω, ∀σ ∈ Σk}.

Let j :
[
V ⊗k

]Σk ↪→ V ⊗k denote the inclusion. There is a natural retraction

ρ : V ⊗k →
[
V ⊗k

]Σk given by

ρ(ω) =
1
k!

(∑
σ∈Σk

σ(ω)

)
.

It is easy to see that ρ ◦ j = id.
We set V ⊗k/Σk = V ⊗k/〈σω − ω |ω ∈ V ⊗k, σ ∈ Σk}. This is called the orbit

space or coinvariants of Σk acting on V ⊗k. We have the following diagram:
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[
V ⊗k

]Σk //
j

//

j̃

))
V ⊗k // //

ρ

��

V ⊗k/Σk

ρ̃yy[
V ⊗k

]Σk

Here j̃ is the composite across the top row, and ρ̃ is induced from ρ using that
ρ(σω) = ρ(ω). One can easily check that ρ̃ ◦ j̃ = id and j̃ ◦ ρ̃ = id. So the spaces of
invariants and coinvariants are isomorphic.

Analysts tend to define
∧k(V ) as [V ⊗k]Σk , whereas algebraists tend to define

it as [V ⊗k]Σk
. Over characteristic zero fields like R it makes no difference, because

the spaces are isomorphic (we needed characteristic zero when we divided by k! in
our definition of ρ). [As an aside, over characteristic p fields the invariants [V ⊗k]Σk

are denoted Γk(V ) and called the divided powers of V . When one attempts to
do calculus in charcteristic p, as in algebraic de Rham or crystalline cohomology,
these divided powers play a big role.]

For our present purposes we will stick with the analysts’ convention of defining∧k(V ) = [V ⊗k]Σk . Given v1, v2 . . . , vk ∈ V , we define

v1 ∧ v2 ∧ · · · ∧ vk = ρ(v1 ⊗ v2 ⊗ · · · ⊗ vk).

Exercise 4.2.6. Show that if e1, e2, . . . , en is a basis for V , then

{ei1 ∧ ei2 ∧ . . . ∧ eik | 1 ≤ i1 < i2 < · · · < ik ≤ n}

is a basis for
∧k(V ), and thus dim

∧k(V ) =
(
n
k

)
.

Remark 4.2.7. Note that
∧n(V ) ∼= R, but not canonically. That is, there is

no natural choice of basis for
∧n(V ).

Induced bilinear forms. Now suppose V has a symmetric bilinear form 〈−,−〉.
There is an induced form on V ⊗k defined by taking

〈v1 ⊗ v2 ⊗ · · · ⊗ vk, w1 ⊗ w2 ⊗ · · · ⊗ wk〉 =
k∏
i=1

〈vi, wi〉

and extending linearly. Since
∧k(V ) ↪→ V ⊗k, the exterior product inherits a form

by restriction. From the definition of ρ we have

〈v1∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 =∑
σ,θ∈Σk

(−1)σ(−1)θ

(k!)2
〈vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k), wθ(1) ⊗ wθ(2) ⊗ · · · ⊗ wθ(k)〉

=
∑
θ∈Σk

(−1)θ

k!
〈v1 ⊗ v2 ⊗ · · · ⊗ vk, wθ(1) ⊗ wθ(2) ⊗ · · · ⊗ wθ(k)〉

=
1
k!

det(〈vi, wj〉)i,j .
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The second equality comes from the fact that all the terms where σ = θ are the
same, or more generally if g ∈ Σk then the terms of the sum where θ = gσ are all
the same.

Analysts find it convenient to throw away the 1
k! appearing in the inner product

of k-forms. This bothers me a little, as one then has to remember that the inner
products on

∧k(V ) and V ⊗k are inconsistent. But we will again follow the analysts
here: so we redefine the bilinear form on

∧k
V to be

〈v1 ∧ v2 ∧ · · · ∧ vk, w1 ∧ w2 ∧ · · · ∧ wk〉 = det(〈vi, wj〉)i,j
Example 4.2.8. Let e1, e2, e3 be an orthonormal basis for V . Then

〈e1 ∧ e2, e2 ∧ e3〉 = det
(

0 0
1 0

)
= 0, 〈e1 ∧ e2, e1 ∧ e2〉 = det

(
1 0
0 1

)
= 1.

In general, if e1, e2, . . . , en is an orthonormal basis for V then the associated basis
{ei1 ∧ ei2 ∧ . . . ∧ eik} for

∧k(V ) is also orthonormal.

If the original form on V is nondegenerate, then we get an induced isomorphism

V
∼=−→ V ∗, v 7→ 〈v,−〉.

Let α denote the inverse isomorphism. Using this, we can transplant the form on
V to a form on V ∗: for f, g ∈ V ∗ define

〈f, g〉 = 〈α(f), α(g)〉.

This form on V ∗ then yields induced forms on
∧k(V ∗) as discussed above. In short,

if V has a nondegenerate symmetric bilinear form then there is an induced form on
all of the usual “natural” constructions one can think to apply to V .

Hodge ∗-operator. Note that
∧k(V ) and

∧n−k(V ) have the same dimension,
since

(
n
k

)
=
(
n

n−k
)
. So

∧k(V ) ∼=
∧n−k(V ), but not canonically. Fix a nondegenerate

symmetric bilinear form on V and a nonzero element vol ∈
∧n(V ). It turns out

that there is a unique isomorphism
∧k(V ) →

∧n−k(V ), denoted ω 7→ ∗ω, which
satisfies the property

µ ∧ (∗ω) = 〈µ, ω〉 vol

for all µ, ω ∈
∧k(V ). The proof of this can be safely left as an exercise, but it will

also become clear after the examples we do below. This isomorphism is called the
Hodge ∗-operator.

Example 4.2.9. Consider V = R3 with the dot product, and vol = ex∧ey∧ez.
If we want to compute ∗ex we note that ∗ex ∈

∧2(V ) and

ex ∧ (∗ex) = 1 · vol

ey ∧ (∗ex) = 0

ez ∧ (∗ex) = 0.

So ∗ex = ey ∧ ez.

Exercise 4.2.10. Consider the setting from the above example. If u, v ∈ R3

check that ∗(u ∧ v) = u× v where × denotes the cross product.

In general, suppose e1, e2, . . . , en is an orthogonal basis for V (not necessarily
othonormal!) and take vol = e1 ∧ · · · ∧ en. Write

{e1, e2, . . . , en} = {ei1 , ei2 , . . . , eik} q {ej1 , ej2 , . . . , ejn−k
}.
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It is clear from our examples that ∗(ei1∧· · ·∧eik) is a scalar multiple of ej1∧· · ·∧ejk ,
and it is just a matter of determining the scalar. In fact it is not hard to prove that

(4.2.11)

∗(ei1∧· · ·∧eik) =
(

vol
ei1 ∧ · · · ∧ eik ∧ ej1 ∧ · · · ∧ ejn−k

)( k∏
r=1

〈eir , eir 〉

)
ej1∧· · ·∧ejn−k

.

The first fraction to the right of the equals sign requires some explanation.
Here both the numerator and the denominator are nonzero elements of the one-
dimensional vector space

∧n(V ), therefore they are scalar multiples of each other:
our fraction notation is just meant to indicate the appropriate scalar. Incidentally,
the above formula verifies the uniqueness of the ∗-operator, and as a definition it
also serves to prove the existence.

Example 4.2.12. Consider R4 with the Minkowski product and vol = ex∧ey∧
ez ∧ et. Using the above formula one finds that

∗et = (−1)(−1)(ex ∧ ey ∧ ez) = ex ∧ ey ∧ ez
∗(ey ∧ ez) = 1 · 1 ex ∧ et = ex ∧ et
∗(ex ∧ et) = 1 · −1 ey ∧ ez = −ey ∧ ez.

Corollary 4.2.13. If ω ∈
∧k(V ), then ∗(∗ω) = (−1)k(n−k)(−1)xω where x is

the number of −1’s in signature of the original bilinear form on V .

Proof. There exists an orthogonal basis for V where each 〈ej , ej〉 is 1 or −1.
It suffices to check the identity for ω = ei1 ∧ · · · ∧ eik , and this is done by applying
(4.2.11) twice. �

We have now completed our detour through pure algebra, and we can go back
to thinking about geometry.

4.2.14. Differential k-forms. Recall that any natural construction we can
make for vector spaces extends to something we can also do for vector bundles.
In particular, if E → X is a vector bundle then we can form its exterior powers∧k(E)→ X.

Definition 4.2.15. Let M be a smooth manifold. The space of differential

k-forms on M is Ωk(M) = Γ(
∧k(T ∗M)).

Once again, based merely on this definition the precise nature of what a k-form
really is can seem a bit obtuse. There are a few things to keep in mind to help with
this:
(1) A k-form is a process ω which to every x ∈ M and vectors v1, . . . , vk ∈ TxM

assigns a real number ωx(v1, . . . , vk), and this real number must be alternating
and linear in the vi’s.

(2) Suppose x1, . . . , xn are local coordinates on M . Then dx1, . . . , dxn give a local
trivialization of T ∗M , and hence the forms dxi1 ∧ · · · ∧ dxik for i1 < · · · < ik
give a local trivialization of

∧k(T ∗M). This means that any k-form on M can
be written locally as

ω =
∑

i1,...,ik

fi1,...,ikdx
i1 ∧ dxi2 ∧ · · · ∧ dxik(4.2.16)
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where each fi1,...,ik is a smooth real-valued function defined in the coordinate
neighborhood.

(3) Note that if V is a vector space then
∧0(V ) is canonically isomorphic to R.

So if E → M is a vector bundle then
∧0(E) → M is isomorphic to the trivial

bundle M ×R→M . Therefore Ω0(M) consists of the sections of the rank one
trivial bundle, or in other words Ω0(M) = C∞(M).
We next define the de Rham complex. We have already defined d : Ω0(M) →

Ω1(M), and there is a unique way to extend this to maps d : Ωk(M) → Ωk+1(M)
which is natural and satisfies the Leibniz rule d(a ∧ b) = (da ∧ b) + (−1)|a|(a ∧ db).
If ω ∈ Ωk(M) is as in (4.2.16) then one is forced to define

dω =
∑

i1,...,ik

dfi1,...,ik ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

One readily checks that d2 = 0 (this boils down to the fact that partial derivatives
commute), and thus we have a chain complex. This is called the de Rham complex,
and its cohomology will be denoted Hi

dR(M) = Hi(Ω•(M)).
Note that these constructions are contravariantly functorial. If f : M → N is

a smooth map then there are induced maps f∗ : Ωk(N) → Ωk(M): if ω ∈ Ωk(N)
then f∗(ω) is the k-form on M defined by f∗(ω)x(v) = ωf(x)

(
(Dfx)(v)

)
for x ∈M

and v ∈ TxM . Symbolically this is a mouthful, but it is just the evident thing. It
is not hard to check that f∗ induces a map of cochain complexes Ω•(N)→ Ω•(M)
and therefore yields induced maps on cohomology groups.

The de Rham theorem states that there are natural isomorphisms Hi
dR(M) ∼=

Hi
Sing(M ; R). It is easy enough to see how one might prove this: basically one just

needs to check that H∗
dR(−) satisfies the Mayer-Vietoris and homotopy invariance

axioms. Mayer-Vietoris is easy, for if {U, V } is an open cover of M then there is
an evident short exact sequence of complexes 0→ Ω•(U ∩V )→ Ω•(U)⊕Ω•(V )→
Ω•(M)→ 0. This just comes from the fact that differential forms are sections of a
bundle, and hence forms defined on open sets can be patched together if they agree
on the intersection. The homotopy invariance property H∗

dr(M) ∼= H∗
dR(M × R) is

not as obvious, but it is not difficult—it’s essentially an exercise in calculus. See
any basic text on differential forms, for instance [BT].

Finally, we wrap up this section by returning to the beginning of this whole
discussion. Let U ⊆ R3 be open and consider the de Rham complex

0 // Ω0(U) // Ω1(U) // Ω2(U) // Ω3(U) // 0.

We claim that up to isomorphism this is precisely the grad-curl-div complex with
which we began the section. To see this, note for instance that

Ω2(U) = Γ(
∧2

T ∗U) ∼= Γ(
∧2

TU) ∼= Γ(
∧1

TU) = Γ(TU).

Here the first isomorphism uses the metric on TU (i.e., the dot product in R3)
to give an isomorphism TU ∼= T ∗U . The second isomorphism is via the Hodge
∗-operator. Finally, note that Γ(TU) is simply the space of smooth vector fields on
U . Applying these ideas to each spot of the de Rham complex, we get the following
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picture:

0 // Ω0(U) // Ω1(U) // Ω2(U) // Ω3(U) // 0

C∞(U)

e0 %%

Γ(T ∗U)

metric

Γ(∧2(T ∗U))

metric

Γ(∧3(T ∗U))

metric

Γ(TU)

e1 &&

Γ(∧2(TU))]

Hodge

Γ(∧3(TU))

Hodge

Γ(TU)

e2 ''

Γ(∧0(TU))

C∞(U)

The maps ei are obtained just by chasing around the diagram (that is, they are
just the obvious composites).

Exercise 4.2.17. Check that the maps e0, e1, and e2 are in fact grad, curl,
and div.

4.3. A second look at Maxwell’s equations

Let M = R4 with the Minkowski inner product, and let E and B denote the
electric and magnetic fields as usual. Recall from the end of Section 4.1 that we
wanted to find an object that unified these fields somehow. Since E has three com-
ponents, and B has three components, this suggests that the object we’re looking
for should have six degrees of freedom—which makes a form in

∧2(R4) a natural
choice.

With this in mind, write E = Ex̂i + Ey ĵ + Ezk̂ and similarly for B. Define a
2-form f ∈ Ω2(M) by

f = Bx(dy∧dz)−By(dx∧dz)+Bz(dx∧dy)+Ex(dx∧dt)+Ey(dy∧dt)+Ez(dz∧dt).
This is called the electromagnetic 2-form. For the moment put aside the objec-
tion that this definition came out of thin air, and that there were some mysterious
choices here—for instance, the sign change on the By term. Instead of trying to
explain these things let’s simply do a revealing computation:
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df =
∂Bx
∂x

dx ∧ dy ∧ dz − ∂By
∂y

dy ∧ dx ∧ dz +
∂Bz
∂z

dz ∧ dx ∧ dy

+
∂Bx
∂t

dt ∧ dy ∧ dz − ∂By
∂t

dt ∧ dx ∧ dz +
∂Bz
∂t

dt ∧ dx ∧ dy

+
(
∂Ey
∂x
− ∂Ex

∂y

)
dx ∧ dy ∧ dt+

(
∂Ez
∂x
− ∂Ex

∂z

)
dx ∧ dz ∧ dt

+
(
∂Ez
∂y
− ∂Ey

∂z

)
dy ∧ dz ∧ dt

= (∇ ·B) dx dy dz +
(
∂Ey
∂x
− ∂Ex

∂y
+
∂Bz
∂t

)
dx dy dt

+
(
∂Ez
∂x
− ∂Ex

∂z
− ∂By

∂t

)
dx dz dt+

(
∂Ez
∂y
− ∂Ey

∂z
+
∂Bx
∂t

)
dy dz dt.

We can now observe that df = 0 if and only if ∇ · B = 0 and ∇ × E = −∂B∂t .
So df = 0 is a simple, compact, and coordinate-free way of encapsulating two of
Maxwell’s equations! We will see in just a moment that one can obtain the other
two Maxwell equations by considering ∗f and d(∗f).

Note quite generally that if M is a n-manifold with a smooth metric, then the
metric gives us an isomorphism TM

∼=−→ T ∗M and hence induced isomorphisms∧k(TM)
∼=−→
∧k(T ∗M). We will call this “metric duality”. Furthermore, if M is

oriented then we have the Hodge ∗-operator giving us an isomorphism of bundles∧k(TM)
∼=−→
∗

∧n−k(TM) and
∧k(T ∗M)

∼=−→
∗

∧n−k(T ∗M).

We’ll call these isomorphisms “Hodge duality”.
Returning to M = R4 with the Minkowski metric, the metric duals of E and

B are the 1-forms

B = Bx dx+By dy +Bz dz and E = Ex dx+ Ey dy + Ez dz.

Using (4.2.11), compute that

∗(dx ∧ dt) = 1 · (−1)dy ∧ dz = −dy ∧ dz
∗(dx ∧ dt) = (−1) · (−1)dx ∧ dz = dx ∧ dz
∗(dx ∧ dt) = 1 · (−1)dx ∧ dy = −dx ∧ dy

It follows at once that our electromagnetic 2-form f is

f = E ∧ dt− ∗(B ∧ dt).
Applying ∗ to both sides of the above equation, we get that

∗f = B ∧ dt+ ∗(E ∧ dt).
Note that the difference between f and ∗f involves the change (E ,B) 7→ (B,−E).
This is electromagnetic duality.

Writing things out in complete detail, we have

∗f = Bx dx ∧ dt+By dy ∧ dt+Bz dz ∧ dt− Ex dy ∧ dz + Ey dx ∧ dz − Ez dx ∧ dy.
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Either by doing the computation by hand, or else applying electromagnetic duality
to our computation of df, one finds that

d(∗f) = −(∇ ·E) dx ∧ dy ∧ dz +
(
∂By
∂x
− ∂Bx

∂y
− ∂Ez

∂t

)
dx ∧ dy ∧ dt

+
(
∂Bz
∂x
− ∂Bx

∂z
+
∂Ey
∂t

)
dx ∧ dz ∧ dt+

(
∂Bz
∂y
− ∂By

∂z
− ∂Ex

∂t

)
dy ∧ dz ∧ dt.

Therefore

∗(d(∗f)) = −(∇ ·E) dt+
(
∂By
∂x
− ∂Bx

∂y
− ∂Ez

∂t

)
dz

−
(
∂Bz
∂x
− ∂Bx

∂z
+
∂Ey
∂t

)
dy +

(
∂Bz
∂y
− ∂By

∂z
− ∂Ex

∂t

)
dx.

Define the current density 1-form by J = −ρ dt+ Jx dx+ Jy dy + Jz dz. Note
that Jx dx + Jy dy + Jz dz is the metric dual of the current density vector field J.
Then the second two Maxwell’s equations are equivalent to ∗(d(∗f)) = J .

Putting everything together, we have found that Maxwell’s equations are equiv-
alent to the two equations

df = 0 and ∗ d∗ f = J .
One thing that is very nice is that this version of the equations is totally coordinate-
free. Note also that we don’t have to restrict ourselves to M = R4; we could
define an electromagnetic field on any oriented manifold M , equipped with a non-
degenerate metric, to be a 2-form f ∈ Ω2(M) satisyfing the above equations with
respect to some fixed current density J ∈ Ω1(M).

4.3.1. Invariance of Maxwell’s equations under coordinate change.
Our motiviation for introducing the language of differential forms was that it was
supposed to make the invariance of Maxwell’s equations under Lorentz tranforma-
tions easier and more natural. Let us now see if this really happened.

Let P : R4 → R4 be any smooth map, and assume f ∈ Ω2(R4) satisfies Maxwell’s
equations. We see immediately that d(P ∗f) = P ∗(df) = 0. So P ∗f automatically
satisfies the first two Maxwell’s equations. For the second two equations we need for
P to be compatible with the ∗-operator. This will happen if P preserves the metric
and the volume form. So assume P ∈ O(3, 1) and detP = 1. Then ∗d∗ (P ∗f) =
P ∗(∗d∗ f) = P ∗J .

We have verified that if f satisfies the Maxwell’s equations with current den-
sity 1-form J then P ∗f satisfies the same equations with current density 1-form
P ∗J . This is all there is to invariance. Hopefully this seems very easy! Having a
coordinate free version of Maxwell’s equations really pays off.

In some sense this is the complete story as far as coordinate-invariance goes,
but it is worthwhile to consider a specific example. Let’s return to our two observers
Calvin and Hobbes, where Hobbes is moving with respect to Calvin with constant
velocity v in the x-direction. To transform from Calvin’s coordinate system to
Hobbes’s we are supposed to use an x-boost, namely the matrix

P =


γ 0 0 −γv
0 1 0 0
0 0 1 0
−γv 0 0 γ


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where γ2−γ2v2 = 1, or γ2 =
1

1− v2
. So our coordinate change is given for 1-forms

by 
dx′

dy′

dz′

dt′

 =


γ 0 0 −γv
0 1 0 0
0 0 1 0
−γv 0 0 γ

 ·

dx
dy
dz
dt


(recall that the primed coordinate system belongs to Hobbes). The inverse of this
matrix is a similar matrix in which v has been replaced with −v, and so

dx
dy
dz
dt

 =


γ 0 0 γv
0 1 0 0
0 0 1 0
γv 0 0 γ

 ·

dx′

dy′

dz′

dt′

 .

We calculate P ∗f by taking the definition of f and substituting dx = γdx′ +
(γv)dt′, and similarly for dx, dy, and dz. We get

P ∗f = Bx dy
′ dz′ −By (γ dx′ + γv dt′) dz′ +Bz (γ dx′ + γv dt′) dy′

+ Ex (γ dx′ + γv dt′) (γv dx′ + γdt′) + Ey dy
′ (γv dx′ + γdt′)

+ Ez dz
′ (γv dx′ + γdt′)

= Bx dy
′ dz′ − (Byγ + γvEz)dx′ dz′ + (γBz − γvEy) dx′ dy′

+ Ex dx
′ dt′ + (γEy − γvBz) dy′ dt′ + (γEz + γvBy) dz′ dt′.

Examining this final formula, we have that

E′x = Ex B′x = Bx

E′y = γEy − γvBz B′y = γBy + γvEz

E′z = γEz + γvBy B′z = γBz − γvEy
So one sees very clearly how the electric and magnetic fields get intermixed under
a Lorentz transformation.

4.3.2. The electromagentic potential. Let us first return to the original
form of Maxwell’s equations, with vector fields E and B. Two of the equations say
that

∇ ·B = 0 and ∇×E = −∂B
∂t
.

Since B has zero divergence, one has B = ∇×A for some vector field A. Such an
A is called a magnetic potential, or a vector potential.

But now we can write

∇×E = −∂B
∂t

= − ∂

∂t
(∇×A) = −∇× ∂A

∂t
,

or ∇×
(
E + ∂A

∂t

)
= 0. Therefore E + ∂A

∂t = −∇φ for some φ : R3 → R. This φ is
called an electric potential, or a scalar potential.

Note that neither A nor φ are unique. The magnetic potential A is well-defined
only up to the addition of a gradient field, and the electric potential φ is well-defined
only up to addition of constants.

These potentials can also be discussed from the differential forms perspective.
Since df = 0 and we are working on R4, we have f = dA for some 1-form A (using



4.3. A SECOND LOOK AT MAXWELL’S EQUATIONS 91

that H1(R4) = 0). This A is called the electromagnetic potential 1-form, and
is well-defined up to addition of terms dg where g ∈ C∞(R4).

The 1-form A may be written in coordinates as A = At dt + Ax dx + Ay dy +
Az dz for At, Ax, Ay, Az ∈ C∞(R4). Compared to the discussion in the vector field
terminology, At is essentially the φ and Ax dx+Ay dy +Az dz is essentially the A
(or really, its metric dual).

The point of the electromagnetic potential is that half of Maxwell’s equations
are easy to solve, and choosing a potential does this. Because the potential is
not unique, there is a tendency to regard the potential itself as not physically
significant—it is just a convenient tool, not important at the same level as the
electromagnetic fields themselves. However, over the course of the next few sections
we will see that the potential has a much deeper significance than this would suggest.
Once quantum mechanics enters the picture the role of the potential is somehow
much more fundamental, and we will find ways of building it deeper into the theory.
A small sign of this heightened significance shows up in the next subject, where we
construct a Lagrangian for the theory.

4.3.3. A Lagrangian approach to electromagnetism. Given a charged
particle with charge q and mass m moving in an electromagnetic field, recall that
the Lorentz force law says that FEM = qE + q(v ×B). Thinking back to classical
mechanics, one might have the idea of finding a Lagrangian which gives rise to
the equations of motion corresponding to this force. In the case where the force
could be written as the negative gradient of a potential, the Lagrangian was just
L = T − V where T was the kinetic energy and V was the potential. The Lorentz
force law, however, is not of this form: note, for instance, that the force depends
on the velocity of the particle and not just its position.

So motion in an electromagnetic field doesn’t immediately fit with the simple
things we know about Lagrangians and classical mechanics. Still, with a little
legwork and ingenuity one can write down a Lagrangian which gives rise to the
appropriate equations of motion. Here it is:

L(x1, x2, x3, ẋ1, ẋ2, ẋ3) =
( 3∑
i=1

1
2
mẋ2

i

)
− q · φ(x1, x2, x3) + q

ẋ1

ẋ2

ẋ3

 ·A(x1, x2, x3).

This formula is suggestive of the “kinetic minus potential” paradigm for La-
grangians, but the thing being subtracted is not a true potential (note the de-
pendence on velocity, for instance). It’s still useful to think of this term as some
kind of “generalized potential,” however.

Let us check that the Euler-Lagrange equations for L really do recover the
Lorentz force law. The Euler-Lagrange equations are

d

dt

(
∂L

∂ẋi

)
=
∂L

∂xi
,

which gives
d

dt
(mẋi + qAi) = −q ∂φ

∂xi
+ q

3∑
j=1

ẋj
∂Aj
∂xi

,
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or equivalently

mẍi + q
∂Ai
∂t

+ q

3∑
j=1

∂Ai
∂xj

ẋj = −q ∂φ
∂xi

+ q

3∑
j=1

ẋj
∂Aj
∂xi

.

So we get

mẍi = −q
(
∂φ

∂xi
+
∂Ai
∂t

)
+ q

3∑
j=1

(
ẋj
∂Aj
∂xi
− ẋj

∂Ai
∂xj

)

= −q
(
∂φ

∂xi
− ∂Ai

∂t

)
+ q

[ẋ1

ẋ2

ẋ3

× (∇×A)

]
i

= qEi + q

[ẋ1

ẋ2

ẋ3

×B

]
i

= ith component of FEM ,

where we have written [v]i for the ith component of a vector v.
In the next section we will use the Lagrangian for electromagnetism to explain

an intriguing quantum-mechanical effect.

4.4. The Aharanov-Bohm effect

In our approach to electromagnetism we started with the idea that the primary
objects of study are the electric and magnetic fields E and B. We later saw that
in R3 Maxwell’s equations imply the existence of an electromagnetic potential: in
particular, of a magnetic potential A such that curlA = B. This potential function
is only defined up to addition of a gradient field, and because of this it seems of
less primary importance in physical law. The Aharanov-Bohm effect, however,
demonstrates the flaw in this point of view. It gives an example where the presence
of a magnetic field affects objects even in regions of space where the magnetic field is
zero! Quantum mechanics explains these effects in terms of the magnetic potential
A, which can be nonzero even when B vanishes. Our goal in this section is to
explain this example.

4.4.1. The basic effect. A solenoid is a hollow tube with a wire that is tightly
coiled around it. As current flows through the wire it generates a magnetic field,
somewhat reminiscent of that of a bar magnet (but one in the shape of a cylinder).
Here is a picture:
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If the solenoid is lengthened, the magnetic field lines outside the cylinder become
more spread apart. In the limiting case of an infinite solenoid it turns out that there
is no magnetic field outside of the tube, whereas inside the tube the magnetic field
is constant (pointing in a direction parallel to the tube). This can all be proven
mathematically, and we will do some of the analysis below.

Even though the magnetic field is zero outside of the tube, the magnetic poten-
tial is nevertheless nonzero there—we will see this as part of our analysis. It turns
out that one can choose a potential whose field lines circulate around the axis of
the solenoid; the length of the potential vectors steadily grows inside of the tube,
and then once it reaches the tube itself it stops growing and is just constant outside
of the tube. Again, we will do the analysis below—for the moment just accept that
this is the result.

Now consider a standard quantum-mechanical double slit experiment, as shown
in the following diagram. Electrons are fired at a screen with two slits, and the
electrons that make it through the slits land on a second screen:

s

1

2

x

One finds that the number of electons arriving at points x on the second screen
forms an interference pattern as follows:
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x

Let us be clear what we mean by this. After firing millions of electrons at the screen
and marking where they land, one would get a sequence of bands which are dense
at the center and sparse near the edges. The density of the bands, as a function of
x, is given by the norm square of the above graph.

Next imagine placing a solenoid in the experiment, as shown below (the tube
of the solenoid is coming out of the paper):

s

1

2

It is important that electrons leaving a slit cannot move around the solenoid on
their way to the screen, and likewise that electrons from the source cannot move
around the solenoid on their way to the slits (we will see the reason for this below).
That is why we have placed it as indicated. The presence of the solenoid creates a
magnetic field inside of the circular region, but the magnetic field remains zero in
the regions where the electrons are travelling.

If one now performs the experiment again, with current flowing through the
solenoid, one finds that the interference pattern on the screen is shifted . What
could explain this? At first it seems that electrons that are not passing through
the solenoid must be unaffected, since there is no magnetic field in this region.
If this is so then the shifting must be caused by electrons passing through the
solenoid. But there are experimental ways of ruling this out. For instance, if the
radius of the solenoid is made very small (but keeping the same magnetic flux)
presumably fewer electrons are able to pass through it; and yet the shifting in the
interference pattern remains the same. One could take this further and imagine a
thought experiment in which the solenoid is made so small that basically there is
zero probability of electrons passing through it—and yet if the interference pattern
remains the same no matter how small the solenoid is, that seems to rule out
any explanation having to do with happenings inside the solenoid. Alternatively,
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perhaps one could construct the solenoid out of a material where the electrons can
definitely not pass through it; so if having the current on or off still results in
interference patterns that are shifted from each other, one again knows that this is
not caused by anything happening inside the solenoid.

So experiment tells us that we must look outside the solenoid for an explanation
of the shifting interference pattern. And the only thing that is different outside the
solenoid is the magnetic potential, not the magnetic field. This shows that in the
world of quantum mechanics the magnetic potential has more of a physical reality
than one might first believe.

Let us now make this analysis a bit more quantitative, and show exactly how
the magnetic potential explains the observations of this experiment.

Recall that 〈1|s〉 denotes the probability amplitude of an electron leaving s to
reach position 1. We will also be concerned with the amplitudes 〈2|s〉, 〈x|1〉, and
〈x|2〉 where x denotes a point on the screen. The Feynman approach to quantum
mechanics allows us to think of 〈1|s〉 as a path integral over all possible paths from
s to 1:

〈1|s〉 =
∫
γ

e
i
~S(γ)Dγ.

Similar descriptions are valid for the other amplitudes. Here S is the action. For
the experiment without the solenoid it is the action for a free particle.

Note that the probability amplitude of an electron passing through slit 1 and
reaching the screen at x is 〈x|1〉〈1|s〉. Therefore the probability of an electron
leaving source s and arriving at x is

P (x) =
∣∣〈x|1〉〈1|s〉+ 〈x|2〉〈2|s〉∣∣2.

Now add the solenoid to the situation. As we saw in Section 4.3.3, the presence
of electromagnetism leads to a new action given by

Snew(γ) = S(γ) + q ·
∫
γ

A · ds.

Let Sem(γ) denote the term q
∫
γ
A · ds.

Every path from s to 1 has the same value under Sem, because the curl of A
is zero in this region. This is why it was important that the electrons not be able
to move around the solenoid in their journey from the source to a slit! We can
therefore write

〈1|s〉new =
∫
γ

e
i
~ (S(γ)+Sem(γ))Dγ = e

i
~Sem(γ1s)

∫
γ

e
i
~S(γ)Dγ = e

i
~Sem(γ1s)〈1|s〉

where γ1s is any fixed path from s to 1. A similar analysis applies to paths from 1
to x, giving us

〈x|1〉new〈1|s〉new = e
i
~Sem(γ1) · 〈x|1〉〈1|s〉

where now γ1 denotes any path from s to x passing through 1. Of course we likewise
have

〈x|2〉new〈2|s〉new = e
i
~Sem(γ2) · 〈x|1〉〈1|s〉

where γ2 is any path from s to x passing through 2. Putting all of this together,
we get that

Pnew(x) =
∣∣e i

~Sem(γ1) · 〈x|1〉〈1|s〉+ e
i
~Sem(γ2) · 〈x|2〉〈2|s〉

∣∣2
=
∣∣〈x|1〉〈1|s〉+ e

i
~Sem(γ2−γ1) · 〈x|2〉〈2|s〉

∣∣2
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where γ2− γ1 denotes the loop that follows γ2 and then follows γ1 backwards. But
by Stokes’s Theorem

∫
γ2−γ1 A · ds =

∫∫
interior

B · n̂ dA = Φ, where Φ is the total
magnetic flux through the solenoid. So we have

Pold(x) =
∣∣〈x|1〉〈1|s〉+ 〈x|2〉〈2|s〉∣∣2,

Pnew(x) =
∣∣〈x|1〉〈1|s〉+ e

i
~ qΦ · 〈x|2〉〈2|s〉

∣∣2.
One can see from these formulas that the interference pattern will be different in
the presence of the solenoid.

4.4.2. Mathematical analysis of the solenoid. Consider an infinitely-long
solenoid centered around the z-axis. The symmetry of the situation makes it clear
that the magnetic field B at each point will either be directed radially towards/from
the center of the solenoid, or else will point entirely in the z-direction. Consideration
of the picture at the beginning of this section shows that it is definitely the latter:
at all points B is parallel to the z-axis. Symmetry then also tells us the magnitude
of B will only depend on the distance to the z-axis.

Based on the above, one can deduce from Ampère’s Law that B will vanish
outside the solenoid and be constant inside the solenoid. Indeed, imagine a very
narrow rectangular loop of wire of width dx placed inside the solenoid:

��
��
��
��

��
��
��
��

b

a

z

If we write B(x) = B(x)k̂ then
∫
loop

B·ds is approximately [B(b)−B(a)]dx, whereas
Ampère’s Law says this integral must be zero (because no current flows across the
cross-sectional area of the loop, and the electric field is static). One deduces that
B(a) = B(b), and this will hold for all points a and b having the same z-value inside
the solenoid. We can also make this argument for two points outside the solenoid:
but here it is evident that as one gets infinitely far away the magnetic field must
be zero, therefore the magnetic field must be zero everywhere.

Let R denote the radius of the solenoid. We have argued that

B(x, y, z) =

{
0 if x2 + y2 > R2

Ck̂ if x2 + y2 ≤ R2

where C is some constant. We next look for a magnetic potential A, so we want to
solve curlA = B. There are many solutions and we just need to find one, and we
would expect it to be radially symmetric. With a little more experience in basic
electromagnetism we could motivate the following guess more, but for the present
purposes let us just treat it as a guess:we will look for a potential of the form

A(x, y, z) = g(r) ·
[
−ŷi + x̂j
x2 + y2

]
where r =

√
x2 + y2. Note that this is a vector field circulating around the z-axis,

whose magnitude varies with r.
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A routine computation shows that

curlA =
g′(r)
r

k̂

and we want this to equal B. It follows that g′(r) = rC for r < R, and so we can
take g(r) = r2C

2 . It also follows that g′(r) = 0 for r > R, and so for r > R we
will have g(r) = g(R) = R2C

2 . Note that πR2C is just the magnetic flux through a
cross-section of the solenoid. If we denote this flux as Φ, we can write

A(x, y, z) =


r2Φ
2πR2

[
−ŷi + x̂j
x2 + y2

]
if r ≤ R,

Φ
2π

[
−ŷi + x̂j
x2 + y2

]
if r ≥ R.

This completes our derivation of a magnetic potential for the solenoid. Note that
we didn’t actually need the specific form of this potential for our analysis of the
Aharanov-Bohm effect; however, it is still nice to be able to look at a concrete
formula.

4.5. Magnetic monopoles and topology

The Maxwell equation ∇ ·B = 0 comes from the fact that, as far as we know,
there are no magnetic charges (also called “monopoles”) in the universe. But the
observation that electric and magnetic fields are nearly dual to each other might
make one wonder if maybe there are magnetic charges, and possibly we just haven’t
found them yet. In the process of thinking about this, Dirac found a quantum-
mechanical argument showing that if magnetic charges exist then electric charges
(and magnetic charges too) must be quantized. Of course we know from experiment
that electric charges are quantized, and we have no good explanation for this, so
Dirac’s argument is very intriguing. Even more intriguing is that his argument is
essentially topological! In the end it boils down to the fact that H2(S2) ∼= Z.

Imagine that we had a magnetic monopole of strength µ, sitting at the origin
of R3. The magnetic field generated by such a monopole would point radially away
from the origin (or towards it, depending on the sign of µ), be spherically symmetric,
and it would have to be divergence-free away from the origin. As always, this forces

B(x, y, z) =
µ

ρ2
·
[
x̂i + ŷj + zk̂

ρ

]
where ρ =

√
x2 + y2 + z2. In particular, for a sphere of radius R about the origin

we would have ∫
SR

(B · n̂) dA =
µ

R2
· 4πR2 = 4πµ.

The field B is defined and divergence-free on R3 − 0, but unlike situations we
have considered before there is no magnetic potential for B. This is because the
deRham complex for R3 − 0 is not exact in degree 2, due to H2(R3 − 0) 6= 0.

We can obtain a magnetic potential by picking any ray W from the origin to
infinity, and looking only on the space R3 −W . For this space is contractible, and
therefore has vanishing H2. The subspace W doesn’t even have to be a ray, it can
be any reasonable curve going out to infinity—in the present context W is called a
“Dirac string.”
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Let z+ be the non-negative z-axis, and let z− denote the non-positive z-axis.
Let U+ = R3− z− and U− = R3− z+. These cover R3− 0, and on each piece of the
cover there exists a magnetic potential for B. Let A+ denote a potential defined
on U+, and let A− denote a potential defined on U−. Of course A+ and A− will
not agree on U+ ∩U−, or else they would patch together to give a potential defined
on all of R3 − 0.

Now let us run a double slit experiment, with and without a magnetic monopole
in the middle. Note that this experiment is taking place in R3, although we can
imagine a scenario where our particles are constrained to move in a plane. Let us
assume the motion is taking place in the xy-plane, and that our picture shows a
“top view” of the experiment:

s

1

2
γ2

γ1

As we saw in our discussion of the Aharanov-Bohm effect (see the previous sec-
tion), in the double slit experiment without the magnetic monopole the probability
of an electron from the source reaching spot x on the screen is

P (x) =
∣∣〈x|1〉〈1|s〉+ 〈x|2〉〈2|s〉∣∣2.

We also saw that in the presence of a magnetic field the probability is

Pmag(x) =
∣∣〈x|1〉〈1|s〉+ e

i
~ ·qΦ+〈x|2〉〈2|s〉

∣∣2
where Φ+ =

∫
γ2−γ1 A+ ·ds. Here we are thinking of our plane (minus the origin) as

lying inside of U+ and using the magnetic potential A+. Also, recall that our nota-
tion has all probability amplitudes like 〈x|1〉 referring to the double-slit experiment
without the magnetic monopole.

But now notice that we could just as well have regarded our plane (minus
origin) as lying inside of U−, and used the magnetic potential A−. This gives the
formula

Pmag(x) =
∣∣〈x|1〉〈1|s〉+ e

i
~ ·qΦ−〈x|2〉〈2|s〉

∣∣2
where Φ− =

∫
γ2−γ1 A− · ds. Since both formulas for Pmag(x) are valid, we must

have e
i
~ qΦ+ = e

i
~ qΦ− . This holds if and only if

qΦ+

~
− qΦ−

~
∈ 2πZ.(4.5.1)
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Since we know B precisely, we can actually compute Φ+ and Φ− in terms of
the monopole strength µ. By Stokes’s Theorem we can write

Φ+ =
∫
γ2−γ1

A+ · ds =
∫∫

D+

B · n̂ dA = µ · 4π
2

= 2πµ

where D+ is a disk in U+ bounding γ2 − γ1, and where the third equality comes
from the fact that we may as well assume D+ is the top half of the unit sphere (by
assuming γ2 − γ1 is the equator). Likewise

Φ− =
∫
γ2−γ1

A− · ds =
∫∫

−D−
B · n̂ dA = −µ · 4π

2
= −2πµ.

The unfortunate notation −D− denotes the bottom half of the unit sphere but
with the opposite of the usual orientation, which is required by Stokes’s Theorem
for compatibility with the orientation of γ2 − γ1.

Equation (4.5.1) gives Φ+ −Φ− ∈ 2π~
q Z. Using Φ+ = 2πµ = −Φ− we immedi-

ately get the Dirac quantization condition

µq ∈ ~
2

Z.

So given the existence of a magnetic monopole of strength µ, the only possible
electric charges are n~

2µ for n ∈ Z. The argument does not show that electric
charges occur corresponding to all possible values of n, but in any case we can
agree that the set of possible electric charges will be a Z-submodule of ~

2µZ (since
two electric charges of strengths q1 and q2 could presumably be bound together in
some way to create an effective charge of.strength q1 + q2). Any such Z-submodule
looks like (n~

2µ )Z for some n, showing that the possible electric charges are precisely
the integral multiples of some basic charge n~

2µ .
The same argument of course applies to magnetic charge strengths. If q is

an electric charge that occurs in nature, then the set of possible magnetic charges
will be (k~

2q )Z for some integral k. So both electric and magnetic charges will be
quantized.

We close this section by remarking that the above arguments are essentially
topological: we are using that R3 − 0 can be covered by two contractible pieces
whose intersection is R2 − 0 ' S1. The Z appearing in the Dirac quantization
condition is essentially H1(S1), or alternatively H2(S2). We will return to this
topic after we have introduced principal bundles and gauge theory.





Part 2

Delving deeper into quantum
physics





CHAPTER 5

Spin and Dirac’s theory of the electron

A rotation of R3 is determined by an axis, an angle, and a direction (clockwise
or counterclockwise, relative to some orientation of the axis). The set of all rotations
forms a group under composition, denoted SO(3). It should be no surprise that this
group plays a large role in physical theories—it is important to be able to transform
results from one coordinate system to a rotated one, and also many basic physical
problems have spherical symmetry.

Now, of course it is true that rotating by 360 degrees is the same as the identity;
this hardly needs to be said out loud. It turns out, however, that there exist
mathematical constructs where you rotate them by 360 degrees and it’s not the
identity. This is somewhat of a shock. (If you rotate them by 720 degrees they are
back the way they started, though—and unlike the 360 degree version this rule is
absolute). Even more shockingly, these strange constructs turn out to be crucial
to giving quantum-mechanical descriptions of electrons and other particles. This is
the theory of spin.

It will take several pages to give a complete explanation of this theory, but I
want to try to give the general picture in just a few paragraphs. At first the whole
situation seems preposterous: rotation by 360 degrees is the identity in SO(3), that
is unquestionable; and if two things are the same, what could it possibly mean to
have a world where they are not the same? The key is to understand that there is a
conceptual difference between “large rotations” and “small rotations”. One makes
a large rotation about some axis by taking a “small rotation” and doing enough of
it. Keep this in mind while I describe the situation more rigorously.

The first thing that is important is that π1(SO(3)) = Z/2. You don’t need to
remember why this is true, just accept it; but I will explain it carefully in Section 5.1
below. The Z/2 tells us that if X → SO(3) is the universal cover then every point
of SO(3) has two points in the fiber. One can show that the space X has a group
structure that is inherited from SO(3) (again, don’t worry about picturing this for
the moment, just accept it). In a small neighborhood of the identity these groups
look pretty much the same! One can think of an infinitesimal neighborhood of
the identity in SO(3) as consisting of “small rotations”, and so the infinitesimal
elements of X have the same description—to be rigorous here we would say that
X and SO(3) have the same Lie algebra. This is important: we now see that there
are these “two worlds”—X and SO(3)—both of whose elements can be obtained
by taking “small rotations” and then doing more and more of them. We will think
of an element of X as a kind of “generalized rotation”. By the way, the fact that
π1(SO(3)) = Z/2 shows that X is the only connected covering space of SO(3)—so
these are really the only two “worlds” made from small rotations in this way.

Since X → SO(3) is a 2-fold covering, there are exactly two elements of X that
map to the identity. One is the identity of X, the other is something else—call
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it E, just to have a name for it. Choose an axis in R3 and consider the gradual
rotatation that starts at the identity and slowly rotates about the axis until the
rotation degree is 360. This is a path in SO(3) (a loop, in fact). Lift it to a path
in X that also starts at the identity, and you will find that the ending point is the
element E. So working in X, gradually rotating more and more—until we get to
360 degrees—doesn’t give us the identity anymore! If you take a loop in SO(3)
that gradually rotates through 720 degrees about an axis, then lifting that into X
yields a path that does still end at the identity. Generalized rotations through 720
degrees are still the identity, even in X.

How does all of this appear in quantum mechanics? Recall that a state of a
quantum mechanical system is described by a vector ψ in some complex vector space
H. Rotating the physical system should put it in a different state, so we expect
SO(3) to act on the vector space H. If we rotate the system through 360 degrees
about an axis, we can certainly agree that physically nothing should be different—
all measurements should give the same answers. But here is the problem! Because
it is built into the framework of quantum mechanics that all multiples of ψ describe
the same physics—they all give rise to the same probabilities. So knowing that
our state gives all the same measurements as the initial state ψ doesn’t necessarily
imply that it is equal to ψ, only that they are multiples of each other. This opens
the door: as we rotate through greater and greater angles approaching 360 degrees,
the state ψ only needs to gradually move to a multiple of itself. Mathematical
arguments show that this multiple can only be 1 or −1 (essentially hinging on the
fact that π1SO(3) = Z/2); so doing the 360 rotation twice will always bring us back
to the original state ψ. If the multiple is 1 we have an honest-to-god representation
of SO(3), whereas if the multiple is −1 what we have is a representation of the
mysterious group X (what mathematicians now call a spin representation).

So far this is all well and fine, but why would the universe prefer representa-
tions of X to representations of SO(3)? Is there a reason to expect, naively, that X
should appear in physics? The best answer I can give is the following. The simplest
nontrivial quantum systems are ones where there are two basic states—where the
associated complex vector space has dimension 2. It turns out that it is mathe-
matically impossible to give an honest representation of SO(3) on a 2-dimensional
vector space, except for the trivial representation. However it is possible to give
interesting representations of X in this setting. I like to think of things this way:
once the basic machinery of quantum mechanics was in place, it was inevitable that
people would run into quantum systems where there were only two basic states; and
as soon as that happened, the appearance of X was basically guaranteed.

I will spend the next several sections trying to say everything in the above
paragraphs in a more rigorous manner. Incidentally, the group X is officially known
as Spin(3). There is a version of the above story for SO(n) as well, leading to a
group called Spin(n). These spin groups are of tremendous importance in modern
mathematics. We will begin by learning more about them.

5.1. The Spin groups

Let G be any topological group, and let p : X → G be a covering space. Choose
a point x inX in the fiber over the identity element e. I claim thatX has a structure
of topological group where x is the identity and where p is a group homomorphism;
moreover, the structure having these two properties is unique. Indeed, consider the



5.1. THE SPIN GROUPS 105

lifting problem
X

p

��
X ×X

p×p //

λ

44

G×G
µ // G.

The image of π1(X ×X, (x, x)) under the horizontal map is precisely p∗(π1(X,x)),
and so elementary covering-space theory says that there is a unique lifting λ sending
(x, x) to x. This gives a multiplication X for which p is a homomorphism. It
is not transparent that the multiplication is associative, but one observes that
λ(x, λ(y, z)) and λ(λ(x, y), z) both give liftings for the map X × X × X → G
sending (x, y, z) 7→ p(x)p(y)p(z). Uniqueness of liftings in covering spaces yields
the required associativity in X, and similar arguments work for the unital condition
and the existence of inverses.

In particular, observe that the universal covering space of G has a group struc-
ture (once one chooses a basepoint in the fiber over the identity).

We next recall that π1(SO(n)) = Z/2 for n ≥ 3. The explanation for this comes
in two parts. First one argues that SO(3) is homeomorphic to RP 3. Construct a
map D3 → SO(3) by sending a vector u ∈ D3 to the rotation about the axis 〈u〉
through an angle of 180|u| degrees, counterclockwise from the viewpoint of a person
standing on the tip of u with his body directed radially outward from the origin.
Notice that this description doesn’t quite make sense when u is the origin, since 〈u〉
is not a line—but for vectors close to the origin the rotation is through very small
angles, and so it makes sense to send 0 to the identity rotation. Finally, observe that
if |u| = 1 then both u and −u get sent to the same rotation. So one obtains a map
RP 3 → SO(3), and one readily checks that this is a bijection. The spaces involved
are compact and Hausdorff, so any continuous bijection is a homeomorphism.

At this point we know that π1(SO(3)) = Z/2. To extend to higher n, consider
the standard action of SO(n) on Sn−1 ⊆ Rn. The action is transitive, so Sn−1

is a homogeneous space for SO(n). The stabilizer of the basis vector e1 is just
SO(n− 1), and hence there is a fiber bundle

SO(n− 1)→ SO(n)� Sn−1.

The long exact sequence for homotopy groups immediately yields isomorphisms
π1(SO(n − 1)) ∼= π1(SO(n)) for n ≥ 4. This completes the argument that
π1(SO(n)) = Z/2 for n ≥ 3.

The universal cover of SO(n), with its induced group structure, is denoted
Spin(n) and called the nth spin group. The kernel of Spin(n) → SO(n) is a
2-element subgroup, so let’s denote it {I, E} where I is the identity and E is the
nontrivial element. So Spin(n)/{I, E} ∼= SO(n).

Note that in a neighborhood of the identity the spaces Spin(n) and SO(n) are
homeomorphic (because Spin(n)→ SO(n) is a covering space). So the infinitesimal
structure of these two groups is the same. More rigorously, we say that they have
the same Lie algebra.

Let L be any line in R3, and let σ : [0, 1] → SO(3) be the path such that σ(t)
is clockwise rotation about the z-axis through 360t degrees (clockwise relative to
some fixed frame of reference). This is a loop in SO(3), and using the homeomor-
phism SO(3) ∼= RP 3 from above one readily sees that it represents the nontrivial
generator of π1(SO(3)). By covering space theory there is a unique lift of σ to a
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path σ̃ : [0, 1] → Spin(n) such that σ̃(0) = I. This cannot be a loop in Spin(n),
because Spin(n) was the universal cover of SO(n) [if it were a loop it would be
null-homotopic, which would imply that σ is also null-homotopic—and this is not
true]. So it must be that σ̃(1) = E.

We can describe the mathematics of the above paragraph more informally as
follows. The idea of “small rotation about an axis L” has essentially equal mean-
ings in the groups SO(n) and Spin(n)—because they have the same infinitesimal
structure near the identity. In SO(n) if one keeps rotating more and more, then
after 360 degrees one gets back to the identity. If one tries to match these rotations
in Spin(n), then after 360 degrees one is not at the identity, but rather at the exotic
element E.

It is often useful to have an explicit model for the groups Spin(n), with elements
that one can manipulate by hand. This is relatively easy to provide when n = 3.
Since SO(3) is homeomorphic to RP 3, it must be that Spin(3) is homeomorphic to
the sphere S3. One has a convenient group structure on S3 coming from multipli-
cation of unit quaternions, and we claim that this is the group Spin(3). To see this
it will suffice to exhibit SO(3) as a quotient of S3 by a group of order 2.

Recall that the division algebra H of quaternions has a norm given by |x| = xx,
and that |xy| = |x| · |y| for any two quaternions. So if q is a unit quaternion then
both left- and right-multiplication by q preserves the norm. Moreover, the norm
coincides with the standard Euclidean norm on the underlying real vector space,
with 1, i, j, k being an orthonormal basis.

For q ∈ H let Υq : H → H be given by x 7→ qxq. The map Υq preserves the
norm and sends 1 to 1, hence it also preserves the orthogonal complement to 1.
This complement is the subspace 〈i, j, k〉 of purely imaginary elements. Identifying
this subspace with R3 in the evident way, the map Υq restricts to an orthogonal
transformation of R3. In this way we obtain a group homomorphism S3 → O(3),
and the fact that S3 is connected implies that the image must land in SO(3). It
takes a little work, but one can indeed show that the image equals SO(3) and that
the kernel is {1,−1} (see Example 5.1.1 below for a complete analysis). This proves
that Spin(3) ∼= S3.

To get an explicit model for Spin(n) for n > 3 one has to work a little harder.
The standard approach is to use Clifford algebras, which essentially play the role
that H did when n = 3. The reader can safely ignore the following paragraph for
the moment, as we will not need it anytime soon, but it seems reasonable to quickly
give this description here.

Let Cln be the quotient of the tensor algebra R〈e1, . . . , en〉 by the relations
ei ⊗ ej + ej ⊗ ei = −2δij . This relation identifies a 2-tensor with a 0-tensor, and
so it preserves the parity of tensors. So it makes sense to talk about even and odd
tensors inside of Cln. If a2

1 + · · ·+ a2
n = 1, check that u = a1e1 + · · · anen satisfies

u2 = −1; in particular, u is a unit. Let Cl∗n denote the multiplicative group of
units, which we have just seen contains the sphere Sn−1. Let Pin(n) ⊆ Cl∗n be the
subgroup generated by the elements of Sn−1. Finally, let Spin(n) be the set of even
tensors inside of Pin(n). It takes a little work to produce a map Spin(n)→ SO(n)
and prove it has the desired properties, but it is not terribly difficult. See [LM,
Chapter 1] for more details.



5.1. THE SPIN GROUPS 107

The following material will be useful when we discuss the Pauli spin matrices:

Example 5.1.1 (Quaternions and rotations). Let q ∈ 〈i, j, k〉 be a unit quater-
nion. The real subspace 〈1, q〉 ⊆ H is a subalgebra of H that is isomorphic to the
complex numbers, with q corresponding to i. The unit circle in this copy of the
complex numbers is the set of elements

qθ = cos(θ) + sin(θ)q.

In essence, the lesson here is that any purely imaginary unit quaternion is “as good
as i, j, or k”. Every unit quaternion lies on exactly one of these circles, with
q corresponding to the (normalized) imaginary part of the given quaternion. Of
course we are seeing the Hopf bundle S1 → S3 → S2 here.

Another useful fact that goes with the above is that for any x ∈ 〈i, j, k〉 that
is orthogonal to q, the vectors 1, q, x, and qx constitute an oriented, orthonormal
frame for H.

For any v ∈ R3 and any angle θ, let Rv,θ denote the rotation of R3 about the
axis 〈v〉, through an angle θ, that is oriented counterclockwise with respect to a
peron who stands at the origin and has his or her head pointing in the direction of v.
It is not immediately clear how to write down the matrix in SO(3) corresponding to
Rv,θ, or how to express a composition Rw,αRv,β in the same form. It turns out that
quaternions give a good way to do these things, based on the group homomorphism
S3 → SO(3) described above.

We claim that for any unit quaternion q in 〈i, j, k〉 and any angle θ, the conju-
gation map Υqθ

(given by x 7→ qθxqθ) coincides with the rotation Rq,2θ on 〈i, j, k〉.
To see this, first note that Υqθ

clearly fixes q. If x ∈ 〈i, j, k〉 is orthogonal to q then
xq = −qx and so

Υqθ
(x) = qθxqθ =

(
cos θ + (sin θ)q

)
x
(
cos θ − (sin θ)q

)
= (cos2 θ − sin2 θ)x+ (2 sin θ cos θ)qx

= (cos 2θ)x+ (sin 2θ)qx.

Given that q, x, qx is an orthonormal frame for 〈i, j, k〉, the above formulas describe
the desired rotation. Incidentally, this analysis proves that S3 → SO(3) is surjec-
tive: the rotations Rv,θ are in the image, and they generate SO(3). It also shows
that a given rotation will have exactly two preimages, of the form q and −q.

So given a unit vector v = (v1, v2, v3) in R3 and an angle θ, the rotation Rv,θ
is the image under S3 → SO(3) of the quaternion

vθ/2 = cos( θ2 ) + sin( θ2 )(v1i+ v2j + v3k).

The composition Rv,αRw,β is the image of the quaternion vα/2 · wβ/2; so if we
compute this product and separate it into its real and imaginary parts, the normal-
ization of the imaginary part gives us the axis of rotation. The angle of rotation is
obtained by dividing the norms of the imaginary and real parts and applying arct-
angent. These formulas are not ‘easy’ to execute by hand, but they are conceptually
very straightforward (and easy for computers). Likewise, if we want the matrix in
SO(3) corresponding to Rv,θ then the columns are obtained by conjugating each of
i, j, and k by vθ/2 and taking the i, j, k-coordinates of the result. One gets formulas
that are quadratic in the vi’s. By comparison, if one tries to write down the matrix
for Rv,θ using Euler angles or some similar mechanism, it is quite cumbersome to
get simple formulas involving the vi’s.



108 5. SPIN AND DIRAC’S THEORY OF THE ELECTRON

5.2. Projective representations and other fundamentals

Let G be any group and let V be a complex vector space. A representation of
G on V is simply a group homomorphism G→ GL(V ). That is, for any g ∈ G one
has a linear automorphism ρg : V → V , and ρgh = ρgρh. If G is a topological group
one usually requires that the map G→ GL(V ) be continuous.

A projective representation of G on V is a map of sets ρ : G → GL(V )
together with a function c : G×G→ C∗ such that

ρgh = c(g, h)ρgρh
for every g, h ∈ G. In other words, we almost have a representation except that
the group relation only holds up to multiplication by diagonal matrices. Again,
this doesn’t quite capture everything we want when G is a topological group, as an
extra continuity condition seems appropriate. The condition that G → GL(V ) be
continuous is too strong, though. We will say more about this in a moment.

Let D ⊆ GL(V ) be the set of scalar transformations (constant diagonal matri-
ces). Then D is in the center of GL(V ) and is therefore normal, so we may form
the group PGL(V ) = GL(V )/D. A projective representation of G therefore yields
a group homomorphism G → PGL(V ). When G is a topological group we will
demand that this map be continuous.

Remark 5.2.1. The notion of projective representation might seem artificial
and unappealing at first. Why assume that ρ only preserves products up to scalar
factors? Without a motivating example this seems unnatural. For our purposes
the motivation is from quantum mechanics, where a vector and its multiples all
represent the same “underlying physics”. If one doesn’t allow projective represen-
tations then the theory ends up being too limited, and doesn’t model what actually
happens in the real world.

In case it is not clear, the name ‘projective representation’ comes from the fact
that there is an induced action on projective space. The standard action of GL(V )
on the projective space P(V ) induces an action of PGL(V ) on P(V ), and therefore
an action of G by restriction.

If the map G → PGL(V ) lifts to G → GL(V ) then we say that the projective
representation lifts to an honest representation. Note that we may always form the
pullback

G̃

����

// GL(V )

����
G // PGL(V ),

and that the projective representation of G therefore gives rise to an honest repre-
sentation of G̃.

Write PGLn(C) for PGL(Cn). We can also form groups PSLn(C) and PUn

by quotienting the groups SLn(C) and SUn by their subgroups of scalar matrices.
There are inclusions PSUn ↪→ PSLn(C) ↪→ PGLn(C), and one readily checks that
the second of these is an isomorphism. We could have also formed the group PUn,
but it is isomorphic to PSUn for the same reason.

Note that the subgroups of scalar matrices in both Un and SLn(C) are isomor-
phic to the group µn of nth roots of unity, which is isomorphic to Z/n. We have
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two fiber bundles (in fact, covering spaces):

µn
= //

��

µn

��
SUn // //

����

SLn(C)

����
PSUn

// // PSLn(C).

Say that an element α ∈ PGLn(C) is unitary if its action on CPn−1 preserves
orthogonality: if L1 and L2 are orthogonal lines in Cn then α(L1) and α(L2) are still
orthogonal. Here orthogonality is determined relative to the standard Hermitian
product. It is an easy exercise to check that an element of GLn(C) preserves
orthogonality if and only it if is the product of a scalar matrix and a unitary matrix.
This shows that the subgroup of PGLn(C) consisting of the unitary elements is
precisely PSUn, as one might expect. A unitary projective representation of a
group G therefore gives a map G→ PSUn.

Let G be a topological group with projective unitary representation G→ PSUn.
If G is simply-connected then covering space theory shows that this map lifts to
a map of spaces ρ : G → SUn that preserves the identity. Covering space theory
also guarantees that this will be a group homomorphism (because (g, h) 7→ ρ(gh)
and (f, h) 7→ ρ(g)ρ(h) lift the same map G × G → PSUn). So for a simply-
connected topological group every projective representation comes from an honest
representation.

After all of these generalities, let us consider some specific examples.

5.2.2. Projective representations of S1. A 1-dimensional projective rep-
resentation is a map into PSL1(C) = {I}, and so this is not very interesting. Let
us instead consider 2-dimensional projective representations, and for simplicity let
us also assume they are unitary. Consider the following diagram:

SU2

��
S1

66

2
// S1 // PSU2

where S1 → PSU2 is our given representation and S1 → S1 is the degree 2 map.
The fiber sequence µ2 → SU2 → PSU2 shows that π1(PSU2) = Z/2, and therefore
the composite across the horizontal row induces the trivial map on π1. Covering
space theory then shows that there is a lifting S1 → SU2 that preserves the identity,
as indicated. One readily checks that this is a group map, and so we have a unitary
representation of S1 on C2. Now, we know that up to isomorphism all such repre-
sentations decompose into sums of irreducibles; and the irreducible representations
of S1 are 1-dimensional, with one for every integer m ∈ Z, given by z.v = zmv for
z ∈ S1. So up to a change of basis in C2, our map S1 → SU2 has the form

z 7→
[
zm 0
0 z−m

]
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for some m ∈ Z. Equivalently, we have that our original map S1 → PSU2 has
(after a change of basis in C2) the form

eiθ 7→
[
eimθ/2 0

0 e−imθ/2

]
= cos(mθ2 )I + i sin(mθ2 )

[
1 0
0 −1

]
.

for some m ∈ Z. It might look like the values for θ = 0 and θ = 2π are different,
but remember that the matrix denotes an element of PSU2—which is really a coset
in SU2 for the subgroup {I,−I}. As a coset, the values for θ = 0 and θ = 2π are
the same.

Changing basis amounts to congugating by an invertible matrix P , which we
might as well assume lies in SU2. So the unitary representation we started with
was S1 → PSU2 given by

eiθ 7→ P
(
cos(mθ2 )I + i sin(mθ2 )

[
1 0
0 −1

])
P−1 = cos(mθ2 )I + i sin(mθ2 )

[
P
[

1 0
0 −1

]
P−1

]
.

We have therefore seen that all projective unitary representations of S1 on C2 are
of this form.

At this point we need to ask ourselves what is special about the matrices
P
[

1 0
0 −1

]
P−1, as P ranges through the elements of SU2. Is there a way of describing

such matrices intrinsically? One thing that is easy to see is that they are all
Hermitian matrices of trace zero. To say more than this, recall that M2×2(C) has a
Hermitian inner product given by 〈X,Y 〉 =

∑
i,j xijyij . Notice that the condition

that a matrix have trace zero is equivalent to it being orthogonal to the identity
matrix. If P ∈ U2 then an easy calculation shows that

〈PX,PY 〉 = 〈X,Y 〉 = 〈XP, Y P 〉
for all matrices X and Y . In particular, since

[
1 0
0 −1

]
has norm

√
2 so do all the

conjugates P
[

1 0
0 −1

]
P−1.

Consider the space of all Hermitian, trace zero matrices in M2×2(C). This has
dimension 3 over R. The set of all matrices P

[
1 0
0 −1

]
P−1 lies inside this space, and

a little work shows that it is precisely the sphere of radius
√

2 (the last paragraph
showed the subset in one direction).

Our discussion has proven the following result:

Proposition 5.2.3. Every group homomorphism S1 → PSU2 has the form

eiθ 7→ cos(mθ2 )I + i sin(mθ2 )J

where m ∈ Z and J is Hermitian, trace zero, and has norm
√

2. Every such matrix
J squares to the identity.

The space consisting of the above matrices J is a sphere inside of a 3-
dimensional Euclidean vector space (the Hermitian, trace zero matrices). It makes
sense to choose an orthogonal basis σ1, σ2, σ3 for this vector space, all of norm

√
2,

and then to represent elements J as a1σ1 + a2σ2 + a3σ3 where
∑
a2
i = 1. The

standard choice is

σ1 = σx =
[
0 1
1 0

]
, σ2 = σy =

[
0 −i
i 0

]
, σ3 = σz =

[
1 0
0 −1

]
.

(The three elements chosen here are very natural, at least up to sign, but their
exact ordering is not: the choice of ordering was largely determined by historical
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accident. See ?????) For later use it is convenient for us to record the following
relations:

σ2
x = σ2

y = σ2
z = I, σxσy = −σyσx = iσz, [σx, σy] = 2iσz.

All relations obtained from these by cyclically permuting the symbols x, y, and z
are also satisfied.

Remark 5.2.4. As J runs over all Hermitian, trace zero matrices of norm√
2, the matrix iJ runs over all anti-Hermitian, trace zero matrices of norm

√
2.

Whereas J2 = I one has (iJ)2 = −I. This is a trivial observation, but one should
keep it in mind when reading different treatments of this basic theory.

5.2.5. Projective representations of SO(3). Our goal is to analyze pro-
jective, unitary representations of SO(3) on C2. That is, we will analyze group
homomorphisms SO(3)→ PSU2.

First recall the fiber sequence µ2 → SU2 → PSU2. We claim that this is
isomorphic to the fiber sequence Z/2 → S3 → SO(3). A unit quaternion acts on
H by left multiplication, and this is a unitary map of complex vector spaces if H is
given the complex structure of right multiplication. If we write q = z1 + jz2 with
z1, z2 ∈ C, then qj = z1j + jz2j = jz1 − z2. So with respect to the complex basis
1, j for H, the matrix for left-multiplication-by-q is

φ(q) =
[
z1 −z2
z2 z1

]
.

This describes a group homomorphism φ : S3 → SU2 that is readily checked to be
an isomorphism. Since it maps −1 to −I, it descends to an isomorphism on the
quotients φ̃ : SO(3)→ PSU2.

Remark 5.2.6. The map φ is not only a group homomorphism, but it is the
restriction of an R-linear map H→M2×2(C). In particular, if q = q0+q1i+q2j+q3k
then

φ(q) = q0I + q1φ(i) + q2φ(j) + q3φ(k)

= q0I + q1

[
i 0
0 −i

]
+ q2

[
0 −1
1 0

]
+ q3

[
0 −i
−i 0

]
.

The matrices φ(i), φ(j), and φ(k) probably remind you of the Pauli spin matrices;
in fact, we have

φ(i) = iσz, φ(j) = −iσy, φ(k) = −iσx.
The awkwardness to the ordering here is due to the unfortunate historical conven-
tions for the Pauli spin matrices; we will have more to say about this below.

Remark 5.2.7. Another nice property of the map φ is that it essentially pre-
serves the metrics. To be precise, recall that H has an inner product given by
〈q1, q2〉 = Re(q1q2), where Re(−) is the real part of a quaternion. The group
SU2 has the metric induced by the Hermitian inner product on M2×2(C), which is
actually real-valued when one restricts to SU2. It is easy to check that

〈φ(q1), φ(q2)〉 = 2〈q1, q2〉.
In particular, φ preserves the orthogonality relation.
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If G is a topological group and our goal is to understand group homomorphisms
G→ PSU2, then since PSU2

∼= SO(3) it follows that such group homomorphisms
correspond (up to conjugacy) to real representations of G on R3. In particular, we
can apply this to G = SO(3) itself. As it happens, one knows all the real represen-
tations of SO(3), and the only representations on R3 are the trivial representation
and the standard representation (see Appendix B). So up to isomorphism we know
all the projective representations of SO(3) on C2. They are given by the trivial
map SO(3)→ PSU2 and the isomorphism φ̃ : SO(3)→ PSU2 given above.

As we have remarked before, any group homomorphism SO(3) → PSU2 lifts
to a group map S3 → SU2 by covering space theory (in this case using that S3 is
simply-connected). The lift of φ̃ is just the map φ that has already been described.

The following result summarizes our discussion so far:

Proposition 5.2.8. Up to isomorphism there is only one nontrivial, projec-
tive, unitary representation of SO(3) on C2. It corresponds to the honest (non-
projective) representation of S3 on C2 given by the map φ : S3 → SU2.

The nontrivial projective representation of SO(3) on C2 may also be described
in the following useful way. Recall that every element of SO(3) is a rotation Rv,θ
where v is a nonzero vector in R3 and θ is an angle; we are using the notation
from Example 5.1.1. Fixing v, the set of all Rv,θ form a subgroup of SO(3) that
is isomorphic to S1. We therefore obtain a projective representation of S1 on C2,
which by the previous section we know has the form

eiθ 7→ cos(mθ2 )I + i sin(mθ2 )Jv
for some m ∈ Z and some Hermitian, trace zero matrix Jv. We claim that m = 1
and that things can be arranged so that if v = (vx, vy, vz) is a unit vector then

Jv = −(vxσx + vyσy + vzσz)

where σx, σy, and σz are the Pauli spin matrices. To see this we work our way
around the square

S3

����

φ // SU2

����
SO(3) // PSU2.

We saw in Example 5.1.1 that a preimage of Rv,θ is the quaternion v(θ) = cos(θ/2)+
sin(θ/2)[iv1 + jv2 + kv3]. To apply φ we use Remark 5.2.6 to get

φ(v(θ)) = cos( θ2 )I + sin( θ2 ) ·
[
v1φ(i) + v2φ(j) + v3φ(k)

]
= cos( θ2 )I − i sin( θ2 )

[
−v1σz + v2σy + v3σx

]
.

This isn’t quite what we wanted, although it is very close. It certainly allows us
to identify m = 1. To get things in the form of our claim, we need to apply the
automorphism c of S3 that sends i 7→ −k, j 7→ j, and k 7→ k (this is conjugation
by the quaternion 1√

2
(1 + j)).

Remark 5.2.9. We can see at this point that the “best” choice for the Pauli
matrices...
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We will need to know about the automorphisms of S3. Note first that there
is a group map S3 → Aut(S3) sending q to the map Cq given by Cq(x) = qxq̄
(conjugation by q). The kernel clearly contains ±1, and we claim this is equality.
For one has Cq = Cr if and only if q−1r commutes with all of H, which happens
only if q−1r ∈ R. Since q and r have norm 1, this is equivalent to q = ±r.

It follows that there is an induced map SO(3) → Aut(S3), and this is an
injection.

Suppose f : S3 → S3 is an automorphism. The element −1 is the only non-
identity element of S3 that squares to 1, and so f(−1) = −1. The purely imaginary
elements of S3 are the set of all elements that square to −1, so f sends purely
imaginary elements to purely imaginary elements. It follows that f(i) and f(j) are
purely imaginary elements that anticommute.

Let P = {(q1, q2) ∈ S3 × S3 | q21 = −1 = q22 , q1q2 = −q2q1}. Then there is a
map of spaces Aut(S3)→ P that sends f to (f(i), f(j)). We claim the composite

SO(3) −→ Aut(S3) −→ P.

is a homeomorphism. To see this, identify 〈i, j, k〉 with R3 in our usual way. Then
P is the set of orthonormal 2-frames in R3, and the above composite sends a matrix
R to the pair consisting of its first two columns. This is a homeomorphism because
for a matrix in SO(3) the third column is determined by the first two using the
cross product.

Proposition 5.2.10. The maps SO(3) → Aut(S3) and Aut(S3) → P are
both homeomorphisms. As a consequence, every automorphism of S3 extends to an
R-algebra automorphism of H.

Proof. There are many different ways to prove this, depending on how much
technology one is willing to assume. It is somewhat longwinded, but not difficult,
to give a completely naive proof that automorphisms of S3 are determined by
where they map i and j; hence Aut(S3)→ P is injective. The reader may wish to
work this out as an exercise. [Hint: Use that every purely imaginary quaternion q
belongs to a unique 1-dimensional subgroup.] Rather than take this approach, we
prove instead that SO(3)→ Aut(S3) is surjective using a little Lie theory.

Let α ∈ Aut(S3), and let π : S3 → SO(3) denote our standard projection.
Then πα and π give two orthogonal representations of S3 on R3. Lie theory tells
us that there is only one such representation, so these two are isomorphic. Hence
there is an A ∈ SO(3) such that (πα)(x) = Aπ(x)A−1 for all x ∈ S3. But A = π(q)
for some q ∈ S3, so we have (πα)(x) = π(qxq̄) for all x. This says that Cq and α
are both liftings in the diagram

S3

π

��
S3 πα //

;;

SO(3).

Since both liftings map 1 to 1, covering space theory says they are the same. �

Since we have already seen that S3 and SU2 are isomorphic Lie groups, the
following is an immediate corollary:
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Corollary 5.2.11. There is a bijection between Lie group isomorphisms S3 →
SU2 and the set

{(M1,M2) |M1,M2 ∈ SU2, M
2
1 = M2

2 = −I, M1M2 = −M2M1}.
The bijection sends f : S3 → SU2 to (f(i), f(j)). Every Lie group isomorphism
S3 → SU2 extends to a map of R-algebras H→M2×2(C).

For R ∈ S3 write R̄ for the image of R under our map S3 → SO(3). The
following result looks odd, and I don’t quite know what to say about it. But we
will need it in the next section.

Corollary 5.2.12. Let f : S3 → SU2 be a group homomorphism, and write
e1 = i, e2 = j, e3 = k, and Mi = f(ei). Then for every s ∈ {1, 2, 3} and every
R ∈ S3 one has

f(R)Msf(R)−1 =
∑
t

R̄tsMt.

Proof. This follows from the fact that f extends to a map of R-algebras
H→M2×2(C). One simply computes that

f(R)Msf(R)−1 = f(R)f(es)f(R)−1 = f(ResR−1).

But recall that R̄ is precisely the map that sends es to ResR−1, so that

ResR
−1 =

∑
R̄tset.

Applying f to this, and using that f preserves sums, the desired result follows at
once. �

Remark 5.2.13. We have stated the above result in the form it will be used
later, but it is perhaps best understood as a result about the Lie group S3 on its
own. The adjoint action of S3 on TIS

3 is a 3-dimensional real, irreducible repre-
sentation. The action of S3 on R3 via the projection S3 → SO(3) is another such
representation. As there is only one 3-dimensional, irreducible, real representation
of S3, these must be isomorphic. The formula in the corollary essentially gives the
isomorphism. We will let the reader ponder this, without explaining more.

5.3. The story of electron spin

Imagine that you have a box in which there is a certain magnetic field. You
pick a fixed type of neutrally charged particle to study (e.g., a fixed type of atom)
and you send a beam of these particles into the box. At the far end of the box is a
detecting screen, which allows you to see where the particles hit:

beam

detecting screen

Suppose that when you run the experiment you find that there are exactly two
locations where the particles hit the screen: let us call them position 1 and position
2. No matter what you do to the particles before they enter the box, you find that
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when they leave the box they always pass through one of those two positions—
although you do find that the percentage of particles passing through each position
can be made to vary. What conclusions can we make from this? The inevitable
conclusion is that our particles come in two types—I suppose we could call them
“type 1” and “type 2”— perhaps depending on some kind of internal structure to
the particle that we don’t understand. But whatever this internal structure may
be, we can infer that it interacts with a magnetic field.

Next you try the experiment with other types of particles. You find that some
types leave the box in three locations, some in four, some in five, and so on. The set
of possibilities is always discrete. You begin to wonder more about what “internal
structures” could produce these results.

The experiment can also be carried out for charged particles, although here
there is an extra factor one must consider. A charged particle moving through a
magentic field will feel a Lorentz force, proportional to its charge and velocity—
and this force will add to whatever deflection is being caused by the particles’
internal structure. If we are careful, however, we can compensate for this by adding
an electric field into the box that will exactly cancel out the Lorentz force. Our
experiment is then equivalent to what we did for neutrally charged particles, and
we again observe the same type of behavior.

The “internal structure” that is relevant to these experiments is now called
spin. In analogy with classical physics, physicists think about this structure in
terms of the particles having an internal magnetic moment—like a tiny bar magnet.
These analogies are not perfect, though: in a beam of tiny bar magnets one would
expect the orientation of the magnets to be continuously distributed amongst all
possible orientations, and when these internal magnetic moments interact with the
magnetic field one would expect a continuous pattern of deflecting particles showing
up on the detection screen. This is not what happens. The fact that there are only
two orientations possible—and that these orientations are seemingly unaffected by
anything we do to the particles before they enter the box—is completely outside
the experience of any classical phenomena. It is best not to take these classical
analogies too seriously.

For the moment we would like to completely ignore the physicists’ view of spin
as an internal magnetic moment, and instead just treat it as a mysterious internal
structure that we don’t understand. The surprising thing is that even treating
it in these terms—as a “black box”, so to speak—we can still figure out most of
its important properties, almost purely by mathematical reasoning. The following
discussion is largely based on Volume III, Chapter 6 of the Feynman lectures [FLS].

Let us start by being more specific about the kind of experiment we want to
consider. We assume the particles enter the box in a beam directed along the
positive y-axis, and that the magnetic field is chosen to be constant in both the
x- and y-directions and to have a large gradient in the z-direction. What we find
when we do this experiment is that the beam of particles is separated into two
beams, deflected in the positive and negative z-directions by the same amount.
The particles hit the screen a little bit above and below the y-axis, where “above”
and “below” refer to the z-direction.



116 5. SPIN AND DIRAC’S THEORY OF THE ELECTRON

z

x

y

side view

By coupling one of these boxes with someting like a “mirror-image” box, we
could obtain a machine that briefly separates the two beams and then recombines
them as follows:

z

x

y

side view

The net effect of this machine is to do nothing: the beam that leaves the box
is essentially the same as the beam that enters the box. However, by placing an
impenetrable screen in the middle of the machine to block one of the beams, we can
obtain a filter: a machine that only lets through one of the two types of particles.
Let us call this particular machine an “S-machine”. Let us call the particles that
get deflected into the positive z-direction the “+S” particles, with the opposite
type being the “−S” particles.

Now we consider a quantum-mechanical model of this situation. We have an
observable quantity, namely whether a particle is in a +S state or a −S state.
We expect to have a Hermitian operator corresponding to this observable, and we
might as well denote this operator as S. There will be exactly two eigenspaces of S,
which we for simplicity assume are 1-dimensional (this assumption could easily be
wrong, but let us stick with it for the moment and see what it leads to). Choose a
unit vector from each eigenspace and call them |+S〉 and |−S〉. Our Hilbert space H

of possible states is then the 2-dimensional complex vector space spanned by these
two orthonormal basis vectors (we are for the moment ignoring other observables
such as position and momentum, instead imagining a toy model in which only the
S-state matters).

Note that a typical state of our quantum system has the form a|+S〉+ b|−S〉
where a, b ∈ C and we may assume |a|2 + |b|2 = 1 by normalization. This represents
a state of the incoming beam in which the percentages of particles in the +S and
−S states are |a|2 and |b|2, respectively.

Next consider stringing together two S-machines, as shown below. If we block
off the −S beam in the left machine, then the particles coming out of that machine
are all guaranteed to be in the |+S〉 state; they will then all be deflected upward
by the second machine. This seems clear enough. But now suppose that we rotate
the second S-machine through some angle about the y-axis? What happens then?
We will find that some percentage of the particles are forced “upward” with respect
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to the second machine (i.e., in the positive direction of the new z-axis), and the
remaining particles are force “downward”—but what exactly are these percentages,
and how do we compute them?

To answer these questions let us work in a little more generality. For any
oriented, orthonormal frame F = (v1, v2, v3), let SF be a machine of type S that
has been rotated so that its original positive x-axis is aligned along v1, its positive
y-axis is aligned along v2, etc. We can just as well denote this machine as SR,
where R ∈ SO(3) is the rotation matrix whose column vectors are those in F.
The eigenspaces for SR will be two orthogonal complex lines in H; let us denote
them L+

R and L−R. Physicists tend to go ahead and choose unit vectors |+SR〉 and
|−SR〉 in these eigenspaces, but we need to be careful about this because there
is no canonical choice—in each case there is an S1’s worth of unit vectors. When
we were just making one choice, in the case of the original machine S all by itself,
there was no big deal. But if we want to make a choice for every R ∈ SO(3), we
need to worry about whether this can be done continuously. Let us avoid the issue
for the moment by simply not making these choices.

Let P1,1(H) denote the space of pairs (K1,K2) of orthogonal lines in H. For
notational simplicity write L+ = L+

I and L− = L−I ; so L+ and L− are the spans
of |+S〉 and |−S〉. We have a map F : SO(3)→ P1,1(H) that sends R ∈ SO(3) to
the pair (L+

R, L
−
R). A first goal is to understand what this map looks like. Here are

the few things that seem transparent:
• The identity I is sent to the pair (L+, L−).
• Every rotation Rz,θ about the z-axis is also sent to the above pair.
• The rotation Ry,180 is sent to the pair (L−, L+).
• For any line l in the xy-plane, the rotation Rl,180 is also sent to (L−, L+).

It turns out that there are many continuous maps SO(3) → P1,1(H) having these
properties. However, there is an extra condition we might expect our map F to
satisfy: since there is no preferred frame of reference in space, we should be able to
replace S with a rotated version SR and get the same results. What F does in a
neighborhood of R should look the same as what F does is a neighborhood of the
identity. In trying to make this mathematically precise, one is quickly led to the
assumption that there is an action by SO(3) on P1,1(H), and that our map F is
simply applying the action to the fixed element (L+, L−).

Note that if (K1,K2) is a pair of orthogonal lines in H, then K2 is completely
determined byK1; therefore P1,1(H) is homeomorphic to P(H). It seems reasonable
to assume that the action of SO(3) on P1,1(H) comes from a unitary action on P(H),
and moreover that this action is linear—in other words, we assume that we have
a projective representation of SO(3) on H. From now on we will use our chosen
basis |+S〉, |−S〉 to identify H with C2.

At this point we are looking for group homomorphisms SO(3) → PSU2 such
that

(i) Each rotation Rz,θ is sent to a matrix of the form
[
α 0
0 ᾱ

]
(really a coset of this

matrix in PSU2 = SU2/D).
(ii) For any line l in the xy-plane, the rotation Rl,180 is sent to a matrix of the

form
[

0 α
−α 0

]
.

These are equivalent to the conditions F (Rz,θ) = (L+, L−) and F (Rl,180) =
(L−, L+). We saw in Section 5.2 that any group homomorphism SO(3) → PSU2
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lifts to a map Γ: S3 → SU2:

S3 //

����

SU2

����
SO(3) // PSU2.

We therefore look for homomorphisms S3 → SU2 satisfying the properties below:
(i) For any angle θ, the quaternion (cos θ) + (sin θ)k is sent to a matrix of the

form
[
γ1 0
0 γ1

]
.

(ii) i is sent to a matrix
[

0 α
−α 0

]
, and j is sent to a matrix

[
0 β

−β 0

]
.

As discussed in ????, a homomorphism S3 → SU2 is specified by giving two
matrices M1,M2 ∈ SU2 with the properties that

M2
1 = M2

2 = −I, M1M2 = −M2M1.

One sets M3 = M1M2, and the map S3 → SU2 is then given by

v0 + v1i+ v2j + v3k 7→ v0I + v1M1 + v2M2 + v3M3.

Comparing this to property (ii) above, we see that

M1 =
[

0 α
−α 0

]
, M2 =

[
0 β

−β 0

]
,

and for M1M2 = −M2M1 we must have that ᾱ
α = − β̄β , or equivalently α2 = −β2.

The image of k is the matrix

M3 =
[
−αβ̄ 0

0 −ᾱβ

]
,

and property (i) follows for free.
Note that there is not a unique homomorphism S3 → SU2 of this form: we are

free to choose any α ∈ S1 and then choose β to be either iα or −iα. The convention
amongst physicists is to take α = −i and β = −1, really just for historical reasons.
The map S3 → SU2 is then

v0 + v1i+ v2j + v3k 7→ v0I + v1
[

0 −i
−i 0

]
+ v2

[
0 −1
1 0

]
+ v3

[−i 0
0 i

]
(5.3.1)

= v0I − iv1σx − iv2σy − iv3σz.
Returning to our SO(3) action on P(H), we have found in particular that the
rotations Rx,θ, Ry,θ, and Rz,θ act as the matrices

(5.3.2)

cos( θ2 )I − i sin( θ2 )σx, cos( θ2 )I − i sin( θ2 )σy, and cos( θ2 )I − i sin( θ2 )σz,

respectively.

Remark 5.3.3. Let us now return to the question of whether it is possible
to continuously select a basis of eigenvectors |+SR〉, |−SR〉, for each rotation



5.3. THE STORY OF ELECTRON SPIN 119

R ∈ SO(3). Recalling that PSU2 = PU2, this amounts to finding a lifting in the
diagram

U2

����
SO(3)

::

// PU2.

But SO(3) → PU2 is an isomorphism on π1 (recall again that PU2 = PSU2),
π1(SO(3)) = Z/2, and π1U2

∼= Z: these three facts show that there cannot be such
a lifting. It is not possible to continuously select our eigenvectors, for all R at the
same time.

If we precompose with S3 → SO(3) then of course there is such a lifting, in
fact we can lift into SU2:

SU2

����
S3 //

55

SO(3) // PSU2.

This lifting is just the map Γ constructed earlier. So we can continuously select our
eigenvectors at the expense of replacing SO(3) by its double cover. For any q ∈ S3,
write |+Sq〉 and |−Sq〉 for this chosen basis (these are just the columns of Γ(q)).

Remark 5.3.4. You might have been annoyed by the minus signs that appear
in equations (5.3.1) and (5.3.2). These arise because physicists prefer to work with
coordinate-change matrices rather than the usual matrix of a linear transformation.
Suppose T : C2 → C2 is given by T (x) = Ax, where A is invertible. Let f1 = T (e1)
and f2 = T (e2), which is a new basis for C2. For any v ∈ C2 write v = v1e1 + v2e2
and also v = c1f1 + c2f2. Then the coordinates (v1, v2) and (c1, c2) are related by
the formula [

c1
c2

]
= A−1 ·

[
v1
v2

]
.

We leave this as an easy exercise for the reader. If A is unitary then we can replace
A−1 with A†.

For v ∈ H, write C+,q and C−,q for the coordinates of v with respect to the basis
|+Sq〉, |−Sq〉. When q = 1 we omit it from the subscript. Using the observations
from the preceding paragraph, we have that[

C+,q

C−,q

]
= Γ(q)−1 ·

[
C+

C−

]
= (v0I − iv1σx − iv2σy − v3σz)†

[
C+

C−

]
= (v0I + iv1σx + iv2σy + iv3σz)

[
C+

C−

]
.

A physicist would say that rotating through θ degrees about the x-axis amounts to
multiplying the coordinates in H by the matrix cos( θ2 )I + i sin( θ2 )σx, and similarly
for the other coordinate axes. Compare this to [FLS, Volume III, Table 6.2].

Remark 5.3.5 (Commentary on the Feynman lectures). We recommend that
the reader take a look at Feynman’s introduction to spin from [FLS, Volume III,
Chapters 5–6]. It is well done, and it gives a sense of how physicsts think about
these things. Here we make a couple of remarks on how parts of [FLS, Chapter 6]
correspond to the treatment we have given above.
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At the end of [FLS, Section III.6.2] Feynman gives an argument for why the
transformation matrices can all be assumed to have determinant 1. The mathe-
matician reading this will immediately note that while the argument is fine for one
matrix at a time, it cannot be made to work for all matrices at once—because a
square root cannot be chosen continuously on the complex numbers. In our treat-
ment, this part of the argument corresponds instead to the identification of PU2

with PSU2.
Feynman investigates the SO(3)-action on H by first restricting to the three

S1’s corresponding to rotations about the coordinate axes. In terms of the under-
lying physics, rotations about the z-axis do nothing to the physical states, whereas
180 degree rotations about the x- and y-axes will reverse the notion of up and down.
He then looks at various composites of rotations and makes arguments about what
the action must be. Essentially this amounts to a bare hands proof that there is
only one nontrivial, 2-dimensional, projective representation of SO(3). We might
phrase things this way: looking at the nontrivial projective action of SO(3) on C2,
we see that the action of each S1 inside SO(3) is nontrivial. So given a specific
action to study, as soon as one knows the nontriviality of the y-rotations this forces
the nontriviality of the z-rotations. This is the crux of Feynman’s argument. Even
though the action of z-rotations on the physical states is trivial, the action on the
quantum states cannot be.

Physical terminology

So far in this chapter we have given a detailed examination of the eigenspaces
of SR as R ranges through all rotations in SO(3). We have not said anything about
the eigenvalues. This is because the exact values here are largely a question of
convention: if the Hermitian operator S has eigenvalues λ±, then for any a, b ∈ R
the Hermitian operator aI+ bS has the same eigenspaces but has eigenvalues equal
to a + bλ±. Thus, by choosing our operator appropriately we can arrange for its
eigenvalues to take on any two distinct real values. The convention in physics is to
have them be the numbers 1

2 and − 1
2 . From now on we assume that S has been

arranged to have this property. Particles of the type we have studied in this section
are called “spin- 1

2 particles”.
Particles in the eigenspace of S for eigenvalue 1

2 are said to be spin up particles,
whereas those in the state for eigenvalue − 1

2 are called spin down. More precisely,
we should say that these are spin up or spin down with respect to the frame S. But
recall that if R is a rotation about the z-axis then the eigenspaces of SR are the
same as those of S; so we can actually say spin up or spin down with respect to the
z-axis without the meaning becoming obscured. The same goes for any oriented
line in R3; we can talk about spin up or spin down particles with respect to this
line.

Note that a spin up particle with respect to the z-axis will be neither spin
up nor spin down with respect to the x-axis (for example). Rather, the particle
corresponds to a state a|+x〉+b|−x〉 where |+x〉 and |−x〉 are two chosen eigenstates
representing spin up and spin down for the x-axis.

The machine S with which we started the discussion is called a Stern-Gerlach
experiment. The original Stern-Gerlach experiment was done with silver atoms
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as the particles. The reason for silver is the following: the atom has 47 protons, 61
neutrons, and 47 electrons. It is neutrally charged. The electrons appear in pairs,
a spin-up and spin-down electron in each pair, but with one electron left over. The
net spin of the atom is dominated by this one unmatched electron (the protons and
neutrons also have spin structures, but because of their much heavier masses the
effects of these structures on the experiment turn out to be significantly less than
the effects of the electron). So essentially the experiment measures the spin of an
electron, but in a very clever way. Similar experiments have been done for other
atoms with an unmatched electron in the outer shell.

5.4. Spin one and higher

When a beam of electrons is sent into a Stern-Gerlach experiment, it is split
into two beams—one is deflected in the up direction and the other in the down
direction. We say that electrons come in two types, spin up and spin down with
respect to the z-axis of the experiment. There also exist classes of particles that a
Stern-Gerlach experiment separates into three types—or even more. Our object in
this section is to discuss the general theory of such particles.

The following picture shows a Stern-Gerlach experiment separating a beam into
three pieces:

z

x

y

side view

Proceeding as in our discussion of spin 1
2 particles, we postulate that the particles

we are dealing with have an internal structure and that the states of such a structure
are described by a finite-dimensional Hilbert space H. For the particles from the
experiment depicted above this would seem to be a 3-dimensional space, but let us
deal with the most general situation we can imagine.

The Stern-Gerlach experiment shows there is some quantity we can measure
about the internal state of our particles, and this will correspond to an observable—
Hermitian operator S on H. Because the universe allows us to use machines cor-
resonding to different rotations, we must have a projective action of SO(3) on H.
The action must be unitary because it must preserve orthogonality between states.
Irreducibility?

We have arrived at the mathematical problem of understanding all projective,
unitary representations of SO(3) on Cn, for various values of n. In the last section
we discussed n = 2. Consider what is by now the familiar lifting problem:

SUn

����
SO(3)

::

// PSUn.
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Recall that π1SUn = 0: to see this, start with SU2
∼= S3 and then inductively use

the fiber sequences SUn−1 → SUn → S2n−1. So the above lifting exists if and only
if the map π1SO(3) → π1PSUn is trivial. The map SUn → PSUn has fiber µn,
so it follows that π1PSUn ∼= Z/n. Our induced map on π1 therefore has the form
Z/2→ Z/n, which is automatically trivial when n is odd. So when n is odd, every
projective representation comes from an honest representation. When n is even
such a lifting may or may not exist, but we are guaranteed a lifting

S3

����

// SUn

����
SO(3) // PSUn.

At this point we need to recall more from the basic theory of Lie groups. One
knows all the irreducible complex representations of S3, and they are described as
follows. We use the fact that S3 ∼= SU2. Let Hn be the vector space of complex,
homogeneous, degree n polynomials in the formal variables z1 and z2. Let SU2 act
on this space by linear combinations of z1 and z2 (????). It turns out these are
irreducible representations, and they are the only ones. Note that dimHn = n+ 1.

Complex representations of SO(3) are precisely complex representations of S3

on which −1 acts as the identity. The irreducible representations of SO(3) are
therefore H0,H2,H4, . . .. Note that Hk has dimension k + 1.

5.5. Lie algebra methods

We saw in the last section that a particle’s internal spin structure is determined
by an irreducible representation of S3. Representations of a simply-connected Lie
group are in bijective correspondence with representations of their Lie algebra; the
latter should be thought of as the infinitesimal representations of the group. Physi-
cists like to use the Lie algebra point-of-view because it gives rise to observables.
In this section we briefly review this theory.

Start with a group map ρ : S3 → SUn, a unitary representation of S3 on Cn
via matrices of determinant one. Differentiating ρ at the identity gives

Dρ : TIS3 → TISUn,

which is a map of Lie algebras. The tangent space TISUn is the space of trace zero,
skew-Hermitian, n× n matrices, and the Lie algebra structure is the commutator.

We could analyze the Lie algebra TIS
3 directly, but let us instead use the

projection S3 → SO(3) which is a local diffeomorphism near the identity. So
TIS

3 → TISO(3) is an isomorphism. The Lie algebra for SO(3) is usually de-
noted so(3), and consists of the real, skew-symmetric matrices where the bracket
is the commutator. The standard generators are obtained by taking infinitesimal
rotations about the three coordinate axes. A counterclockwise rotation through θ
degrees about the x-axis has matrix

Rθ,x =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .
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Applying d
dθ

∣∣
θ=0

gives

Rx =

0 0 0
0 0 −1
0 1 0

 .
One can remember this without the computation by remembering that a small
counterclockwise rotation about the x-axis moves the postive y-axis a little bit into
the positive z-direction, whereas it moves the positive z-axis a little bit into the
negative y-direction. Using similar mnemonics, or else doing the actual calculation,
one finds that

Ry =

 0 0 1
0 0 0
−1 0 0

 and Rz =

0 −1 0
1 0 0
0 0 0

 .
From these matrices one readily checks that [Rx, Ry] = Rz, [Ry, Rz] = Rx, and
[Rz, Rx] = Ry. Note that the latter two identities are obtained from the first by
cyclic permutation of the symbols x, y, z.

We have at this point determined the Lie algebra so(3): as a vector space it is
R〈Rx, Ry, Rz〉, and the bracket is given by the above formulas.

Our map Dρ gives a map of Lie algebras so(3)→ su(n). The target consists of
trace zero, skew-Hermitian matrices, but we would prefer to deal with Hermitian
matrices because these correspond to physical observables. So set Jx = −iRx,
Jy = −iRy, and Jz = −iRz. We then have

[Jx, Jy] = iJz

and the cyclic permutations of this identity. The complex Lie algebra generated by
Jx, Jy, and Jz (which is isomorphic to the complexification of so(3)) is a copy of
sl(2,C). To see this explicitly, pick one of the J ’s to be our torus—physicists like
to pick Jz. Then set

J+ = Jx + iJy, J− = Jx − iJy.
Check that

[J+, J−] = 2Jz, [Jz, J+] = J+, [Jz, J−] = −J−.
The usual description for sl(2,C) is in terms of generators e, f , and h subject to
the relations [e, f ] = h, [h, e] = 2e, [h, f ] = 2f . So our isomorphism should have

J+ ←→ e, J− ←→ f, Jz ←→ 1
2h.

At this point we understand that we have an irreducible representation of
sl(2,C) on Cn. The standard theory of such representations says that the eigen-
values of h will be integers and will take the form −r,−r + 2,−r + 4, . . . , r − 2, r
where r+1 = n. The e operator raises the eigenvalue by 2, whereas the f operator
lowers it by 2. Physicists like to work with Jz instead of h, and the eigenvalues of
Jz will be

− r2 , − r2 + 1, − r2 + 2, . . . , r
2 − 1, r

2 .

The operator J+ raises these eigenvalues by 1 (that is, it sends the λ-eigenspace into
the (λ+1)-eigenspace), whereas J− lowers them by 1. Physicists write j instead of
r
2 , so we will do this as well.
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Pick a unit vector e1 lying in the eigenspace for λ = j. Let ek be the nor-
malization of (L−)k−1(e1), which will be a basis for the eigenspace with eigenvalue
j − k + 1. An easy computation shows that

J−ek =
√

(2j − k + 1)k · ek+1 and J+ek+1 =
√

(2j − k + 1)k · ek.
For example, write J−e1 = λe2 and note that we know λ ∈ R>0. Compute

λ2 = 〈λe2|λe2〉 = 〈J−e1|J−e1〉 = 〈e1|J+J−e1〉 = 〈e1|(2Jz + J−J+)e1〉
= 〈e1|2je1〉
= 2j.

This determines λ, and at the same time shows that J+e2 = 1
λJ+J−e2 = 2j

λ e2. Now
repeat these same steps to analyze J−e3, and inductively to analyze each J−ek.

At this point it is routine to determine the action of all of our operators on the
basis elements ek: the only ones we have not done explicitly are Jx and Jy, but
here one uses Jx = 1

2 (J+ + J−) and Jy = 1
2i (J+ − J−). In other words, we can

write down the matrices representing each of these operators with respect to the
{ei} basis.

Physicists denote the elements of our basis {ek} by |j,m〉 where −j ≤ m ≤ j
and j −m ∈ Z. So |j,m〉 is an eigenvector for Jz with eigenvalue m, and in terms
of our notation |j,m〉 = ej−m+1. The basis {|j,m〉}m is orthonormal, and we have
that

J+|j,m〉 =
√

(j +m− 1)(j −m)
∣∣j,m+ 1〉

J−|j,m〉 =
√

(j +m)(j + 1−m)
∣∣j,m− 1〉.

Note that J+J−|j,m〉 = (j +m)(j + 1−m) |j,m〉.
Physicists also like to use the operator J2 = J2

x +J2
y +J2

z . Notice that J+J− =
J2
x + J2

y + Jz and so
J2 = J+J− + J2

z − Jz.
Applying J2 to |j,m〉 therefore gives

J2 =
(
(j +m)(j + 1−m) +m2 −m

)
|j,m〉 = j(j + 1)|j,m〉.

Since the eigenvalue is independent of m, we see that J2 acts diagonally on Cn as
scalar multiplication by j(j + 1).

The operator J2 is called the total angular momentum operator, whereas
Jx, Jy, and Jz are the operators for angular momentum about the x-, y-, and
z-axes.

. This gives an orthonormal basis for Cn, and with respect to this basis the
matrix for Jz is

Jz =


j 0 · · · 0
0 j − 1 · · · 0
...

...
...

...
0 0 0 −j


For j = 1

2 the matrices look as follows:

Jz =
[

1
2 0
0 − 1

2

]
, J+ =

[
0 1
0 0

]
, J− =

[
0 0
1 0

]
, Jx =

[
0 0
1 0

]
, Jy =

[
0 0
1 0

]
.
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For j = 1 they look like

Jz =

1 0 0
0 0 0
0 0 −1

 , J+ =

0 1 0
0 0 1
0 0 0

 , J− =

0 0 0
1 0 0
0 1 0


Jx =

0 1 0
0 0 1
0 0 0

 , Jy =

0 0 0
1 0 0
0 1 0

 .
Based on these examples the reader will find it a simple matter to write down the
J-matrices corresponding to any value of j.

5.6. The Schrödinger-Pauli equation

Up until now we have discussed the quantum spin states of a particle that
sits in one physical position and is frozen in time. Such spin states are given by
an irreducible, unitary representation of the group S3. In this section our goal is
to develop the theory for a more typical quantum particle—one that spreads its
existence throughout space as a probability wave—and then to let time flow. For
spin- 1

2 particles this leads to the differential equation of the section’s title.

Let H denote the space of quantum states for a spin- 1
2 particle: it is a two-

dimensional complex vector space. For the purposes of our discussion fix an or-
thonormal basis for H and call the vectors U and D; these might be the states
corresponding to spin up and spin down with respect to the z-axis, for example.

A particle without an internal spin state is described by a wave function
ψ : R3 → C. Each complex number ψ(x) is the probability amplitude for the par-
ticle to be measured at location x, and ψ is assumed to belong to L2(R3,C). But
for a spin- 1

2 particle we need more information: at each location x there should be
given probability amplitudes for detecting the particle in either the U or D states.
In other words, the quantum state of our spin- 1

2 particle should be described by a
wave function ψ : R3 → H. Note that such a wave function is equivalent to hav-
ing two functions ψ1, ψ2 : R3 → R, where ψ(x) = ψ1(x)U + ψ2(x)D. So the wave
function for a spin- 1

2 particle may be regarded as a pair of ordinary wave func-
tions, assembled into a vector

[ ψ1(x)
ψ2(x)

]
; this is the way things are often portrayed in

introductory physics texts.
The Hilbert space of quantum states for a spin- 1

2 particle will be taken to be
Hspin = L2(R3,H). Note that there is an isomorphism

L2(R3,H) ∼= L2(R3,R)⊗H,

and this allows us to regard elements of Hspin in two different ways. We will go
back and forth between these, usually without comment.

Remark 5.6.1. We have elected to use the wave function model of quantum
states in our present discussion, but recall from Chapter ???? that this can be
avoided. For a particle in R3 without spin, we must have a Hilbert space with
orthonormal basis given by |x〉 for x ∈ R3. A state ψ will then yield amplitudes
〈ψ|x〉, and the wave function is simply the collection of all these amplitudes. For
a spin- 1

2 particle our orthonormal basis must instead consist of vectors |x, U〉 and
|x, D〉 for x ∈ R3. A state ψ will then give rise to amplitudes 〈ψ|x, U〉 and 〈ψ|x, D〉.
So it is possible to have our entire discussion abstractly, without ever mentioning
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wave functions at all. Note that whatever Hilbert space V we are using to model
the states of a spinless particle, it is clearly V ⊗H that models the states of our
particle with spin.

We next discuss observables, which will be Hermitian operators on Hspin. It
seems reasonable enough that the momentum of a particle should not involve its
spin amplitudes at all, and so we postulate that the operator for momentum in
the x-direction (say) is simply i~ ∂

∂x ⊗ id. Note that in writing this we use the
tensor product description of Hspin. If we choose a basis for H and use it to denote
elements of H as column vectors, then we are simply saying that Px is the operator[

i~ ∂
∂x 0
0 i~ ∂

∂x

]
.

At this point we have described the quantum states for spin- 1
2 particles in R3.

The next goal is to let time flow. Recall that this is accomplished by writing down
an appropriate Hamiltonian H (a Hermitian operator on Hspin) and then wave
functions change in time via the formula

ψt = e−
i
~Htψ.

If we write ψ(x, t) = ψt(x), then this is equivalent to the corresponding Schrödinger
equation

i~∂ψ∂t = Hψ.

The challenge is to write down the correct Hamiltonian for modelling the physics.
For a particle of mass m in free space physicists use the Hamiltonian H =

1
2m (P 2

x + P 2
y + P 2

z ), which in our case is the 2× 2 matrix

H = − ~2

2m

[
∇2 0
0 ∇2

]
.

This says that as time flows the spin states of the particle evolve independently, just
as if there were no spin at all. This agrees with what one observes in experiments.

Things become trickier when there is an electromagnetic field in the picture.
Now the particle’s spin structure interacts with the field, and that must be built
into our Hamiltonian. Classically, physicists learned to do this in the following way.
Pick a vector potential A for the magnetic field (so that curlA = B) and a scalar
potential φ for the electric field (so that −∇φ = E + ∂A

∂t ). See the discussion in
Section 4.3.2 if you don’t recall this. The classical Hamiltonian for a particle of
charge q moving in our electromagnetic field is

H =
1

2m

∑
j

(pj − q
cAj)

2 + qφ.

Note that this reduces to our usual P 2/2m when A and φ are both zero.
Based on the above, one’s first guess for the quantum operator on Hspin is

H =
[

1
2m

∑
j

(
i~ ∂
∂xj
− q

cAj
)2 + qφ

]
⊗ I.(5.6.2)

Here the operator in brackets is really acting on L2(R3,R) and the I is the identity
operator on H. If we identify Hspin with length 2 column vectors of ordinary wave
functions, then the above operator is a scalar matrix whose diagonal entries are
the bracketed operator. The problem with this choice for H is that it does not
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differentiate among particles with different spin states: a spin-up particle and a
spin-down particle will have the same behavior. Our Stern-Gerlach experiments
show this to be false, this was the whole point from the beginning.

Pauli introduced a correction to the above Hamiltonian that incorporates the
spin structure. The Pauli Hamiltonian is

H =
1

2m

∑
j

(
(−i~ ∂

∂xj
− q

cAj)σj
)2

+ (qφ)I(5.6.3)

where the σi’s are the Pauli spin matrices and I is the 2×2 identity matrix (here we
are, as usual, identifying Hspin with column vectors of two ordinary wave functions).
It will take us a while to answer the obvious question:“Why choose this particular
form?” For the moment let us just accept the form and play with it a bit.

Quite generally, note that(∑
j

ajσj

)2

=
(∑

j

a2
j

)
I +

∑
i[aj , ak]σl

where in the second sum the triple (j, k, l) runs over cyclic permutations of 1, 2, 3.
Noting that [

i~ ∂
∂xj

+ q
cAj , i~

∂
∂xk

+ q
cAk

]
= i~q

c

(
∂Ak

∂xj
− ∂Aj

∂xk

)
,

we find that

H =
[ 1
2m

∑
j

(−i~ ∂
∂xj
− q

cAj)
2 + qφ

]
I − ~q

2mc

∑
j

(curlA)jσj

=
[ 1
2m

∑
j

(−i~ ∂
∂xj
− q

cAj)
2 + qφ

]
I − ~q

2mc

∑
j

Bjσj .

The term
∑
j Bjσj is usually written B ·σ in the physics literature, where σ stands

for the formal expression σx̂i + σy ĵ + σzk̂. This term accounts for the interaction
of the particle’s spin structure with the magnetic field. My understanding of this
term was that it was introduced on a somewhat ad hoc basis by Pauli, but was
shown by him to lead to conclusions that agreed with experiment. Later Feynman
observed that Pauli’s term could be produced by writing the Hamiltonian in the
form of (5.6.3), and this was recorded in Sakurai’s textbook [S1]. Of course the
form in (5.6.3) is still ad hoc in its own way; we will explore some motivation behind
it in the next section.

Although we won’t need it, the reader might be wondering about what the
Pauli Hamiltonian looks like if you expand the squared terms. For the record, here
it is:

H =
1

2m

(
−~2∇2 + q2

c2 (A ·A) + i~q
c (∇ ·A) + 2i~q

c A · grad+qφ
)
I

− ~q
2mc

∑
j

(curlA)jσj .

5.6.4. Rotational invariance and the Pauli Hamiltonian. The Pauli
Hamiltonian came out of nowhere: one takes the naive Hamiltonian and then inserts
the σi’s into it, with little motivation for doing this. We can find some motivation,
though, by thinking about rotational invariance. This is somewhat of a long topic,
so bear with me as I back up for a moment.
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Let us first ignore spin, so that our particles have wave functions ψ : R3 → R.
We have an SO(3)-action on L2(R3,R) defined by

R.ψ = ψ ◦R−1, or [R.ψ](x) = ψ(R−1x)

for R ∈ SO(3). Note that the R−1 is necessary to get a left action. The symmetry
of physics tells us that if H is our Hamiltonian then we would expect

e−
i
~Ht[R.ψ] = R.[e−

i
~Htψ].(5.6.5)

In other words, the time development of a rotated wave function should be the same
as the time development of the original function, but rotated. Equation (5.6.5) is
equivalent to

H[R.ψ] = R.[Hψ](5.6.6)

(for one direction, take the derivative with respect to t at t = 0).
Equation (5.6.6) is a guiding principle in determining the Hamiltonian H. Does

H = 1
2m (P 2

x + P 2
y + P 2

z ) have this property? Up to constants this is just the
operator ∇2. One could verify the property by direct computation, but it is a little
less painful (and ultimately more useful) to break the computation up into pieces.
Recall the chain complex

0→ C∞(R3)
grad−−−→ (Vec. fields on R3) curl−−−→ (Vec. fields on R3) div−−→ C∞(R3)→ 0.

We have talked about the SO(3)-action on C∞(R3), defined by R.f = f ◦R−1. In
the case of functions F : R3 → R3 there is an SO(3)-action on both the domain and
target, and these should both be taken into account when defining an SO(3)-action
on functions. One defines

[R.F ](x) = R[F (R−1x)].

In general, if S and T are sets with a left G-action then one defines a left G-action
on Hom(S, T ) by (g.f)(s) = g[f(g−1x)]. This is all we are doing.

Now that we have SO(3)-actions on C∞(R3) and on the space of vector fields
R3 → R3, it is natural to ask if the above operators preserve this action. Indeed,
they do:

Proposition 5.6.7. Let f : R3 → R and F : R3 → R3 be smooth. For any
R ∈ SO(3) one has

grad(R.f) = R.[grad f ], curl(R.F ) = R. curl(F ), div(R.F ) = R.div(F ).

That is, the operators grad, curl, and div all preserve the natural SO(3)-action. As
a consequence, the composite operator ∇2 = div ◦ grad also preserves the SO(3)-
action.

Proof. This is completely clear if you think about the geometric properties
of grad, curl, and div. For example, grad(f) is characterized by the property that
for x, u ∈ R3 one has

f(x+ u) ≈ f(x) + (grad f) · u
as the first-order approximation. We then can write

[R.f ](x+ u) = f(R−1(x+ u)) = f(R−1x+R−1u)

≈ f(R−1x) + [(grad f)(R−1x)] · (R−1u)

= f(R−1x) + [R(grad f)(R−1x)] · u
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This shows that grad[R.f ](x) = R·[(grad f)(R−1x)], or more succinctly grad[R.f ] =
R.[grad f ].

The divergence is characterized by (divF )(x) = 1
V

t
V

(F · n̂) dV for “infinites-
imal” volumes V about x. Therefore

(divR.F )(x) =
1

vol

y

V

(RFR−1 · n̂V ) dV =
1

vol

y

R−1V

(RF ·Rn̂R−1V ) dV

=
1

vol

y

R−1V

(F · n̂R−1V ) dV

= (divF )(R−1x).

A similar analysis works for curl, using that (curlF )(x) · u is the infinitesimal
circulation of F , at x, counterclockwise about an axis directed along u. We leave
the reader to work out the argument. �

Remark 5.6.8. ????

At this point we have shown that the Hamiltonian 1
2m (P 2

x + P 2
y + P 2

z ) has the
SO(3)-invariance property from (5.6.6). Even if we hadn’t had an idea of what
the Hamiltonian should be, if we went looking for differential operators with the
invariance property it wouldn’t be long before we found it.

Remark 5.6.9. IMPORTANT WARNING! In the rest of this section we will
simplify formulas by ignoring most physical constants: not only things like ~ and
c, but also mass and charge. This will let us better concentrate on the underlying
mathematics, which is the main point for the moment. Occasionally we may re-
insert some constants in order to make a pedagogical point.

Now let us add an electromagnetic field to the picture, but continue to neglect
spin. Recall that the field is specified by the magnetic and electric potentials A
and φ. Let us denote the Hamiltonian for this field by H(A,φ), or just HA for short.
Note that we would not expect eiHAt(R.ψ) = R.[eiHAtψ], because a rotated wave
function is going to look very different from the perspective of the fixed em-field.
But if we rotate both the wave function and the field, the physics should be the
same. This is expressed via the equations

eiHRAt[R.ψ] = R.[eiHAtψ], or HRA[R.ψ] = R.[HAψ]

(recall our present policy of ignoring all physical constants).
We know from our experience in E-M theory that the Hamiltonian HA is sup-

posed to be obtained from the free-particle Hamiltonian by changing pi to pi−qAi,
and also adding a term qφ. To deal with the first of these changes, let us introduce
the formal symbol

∇A =
(
∂
∂x −A1

)̂
i +
(
∂
∂y −A2

)̂
j +
(
∂
∂z −A3

)
k̂

and define the operators

gradA f = ∇Af, curlA F = ∇A × F, divA F = ∇A · F.
These are operators

0→ C∞(R3)
gradA−−−−→ (Vec. flds on R3) curlA−−−→ (Vec. flds on R3) divA−−−→ C∞(R3)→ 0.
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Note that

gradA f = (grad f)− fA, curlAF = (curlF)−A× F, divA F = (div F)−A · F.

Remark 5.6.10. Warning: The above operators do NOT form a chain complex.
Indeed, one can compute

curlA gradA f = curl(grad f − fA)−A× (grad f − fA)

= − curl(fA)−A× (grad f)

= −[(grad f)×A + f(curlA)]−A× (grad f)

= −f(curlA).

A similar computation shows that

divA curlA F = −(curlA) · F.
The appearance of curlA in the expressions for both composites is not an accident.
In fact, in the operators gradA, curlA, and divA we are seeing the edge of a much
bigger picture involving connections and curvature on vector bundles. This story
will be developed in Chapter 6.

Although they do not form a chain complex, the new operators we have intro-
duced do have the desired invariance properties:

Proposition 5.6.11. For R ∈ SO(3) one has

gradRA(R.f) = R.(gradA f), curlRA(R.F ) = R.[curlA F ],

and divRA(R.F ) = R.[divA F ].

Proof. These are all easy computations. For example,

gradRA(R.f) = grad(R.f)− (R.f)A = R.[grad f ]− (f ◦R−1)A

= R.[grad f ]− (fA) ◦R−1

= R.[grad f ]−R.(fA)

= R.[gradA f ].

�

If we take our Hamiltonian to be HA = divA ◦ gradA, then it has the invariance
property that we desire. This is appropriate if the electric potential φ is equal to
zero. For a nonzero electric potential we define

HA = (divA ◦ gradA) + qφ.(5.6.12)

Note that the term qφ clearly has the correct invariance property, as

q[R.φ] · [R.ψ] = q(φ ◦R−1)(ψ ◦R−1) = (qφψ) ◦R−1 = R.[qφψ].

So H(RA,Rφ)[R.ψ] = R.[H(A,φ)ψ], which is what we wanted.

We are now ready for the final step of this long exploration of rotational in-
variance. The Hamiltonian we wrote down in (5.6.12) is perfectly fine for a particle
with no internal spin structure: one whose wave function has the form ψ : R3 → R
and the SO(3)-action is therefore only acting on the domain. For a particle with
spin the wave function instead has the form ψ : R3 → H. We have SO(3)-acting on
the domain as usual, but now we have SO(3) almost acting on the target—it acts
on the associated projective space, and we know to study this by instead looking
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at a related S3-action on H. We then have S3 acting on everything in sight (on H

in the usual way, and on R3 via the projection S3 → SO(3)). So we should look
for a Hamiltonian that has an S3-invariance.

As we have discussed, the S3-action on L2(R3,H) is given by

[R.ψ](x) = R[ψ(R−1X)]

where R ∈ S3. Such formulas will get slightly unwieldy, and to help with this we
introduce the following notation: for v ∈ H we will write R · v and Rv interchange-
ably, but we will never write R ·ψ for R.ψ. Note that under this scheme the string
of symbols “R · ψ(x)” only has one interpretation, namely R[ψ(x)].

We look for a Hamiltonian HA—a Hermitian operator on L2(R3,H)—with the
property that HRA(Rψ) = R[HA(ψ)] for all ψ ∈ L2(R3,H) and all R ∈ S3. Recall
that L2(R3,H) ∼= L2(R3,R)⊗H, and this is an isomorphism of S3-representations
if the tensor product is given the diagonal action of S3. It is clear, then, that
if we take H = (divA ◦ gradA +qφ) ⊗ id then this has the required S3-invariance
property—simply because the term in parentheses did. This is the Hamiltonian of
equation (5.6.2). It is a perfectly good, rotationally invariant Hamiltonian—but it
describes particles whose “spin” structure does not interact with magnetic fields (if
such things existed).

It seems reasonable to modify the Hamiltonian in the above paragraph by
adding on one or more terms that capture the spin/field interaction. For the new
Hamiltonian to have the S3-invariance property, the stuff to be added on must itself
have the invariance property. So our task is to search for more invariants; luckily
they are not hard to find.

5.7. Spin and relativity: mathematical foundations

Dirac created a relativistic, quantum theory of the electron. To his surprise,
electron spin came about as a consequence of imposing relativistic invariance. The
other amazing consequence of Dirac’s theory was the existence of antimatter. In
this section we develop some of the mathematical foundations needed to understand
Dirac’s equation.

Recall that in special relativity the main group of symmetries is the Lorentz
group O(3, 1). This is the group of linear automorphisms R4 → R4 that preserve the
Minkowski metric. We saw in Section 4.1 that O(3, 1) has four path components.
The connected component of the identity is called the restricted Lorentz group, and
denoted SO+(3, 1).

Some of the biggest physical discoveries of the mid-twentieth century were that
the laws of physics are not invariant under the full Lorentz group. In physics,
the sign of the determinant is called the parity ; in 1957 Wu and her collaborators
discovered parity violation in radiocative beta decay. This showed that there was a
fundamental difference between left and right in the universe. In 1964 the violation
of time-reversal symmetry was found by Christensen, Cronin, Fitch, and Turlay
in the decay of the neutral K-meson. To be precise, what they actually found
was violation of “CP-symmetry”, meaning the symmetry where one changes both
charge and parity. But CPT-symmetry—where one changes charge, and parity,
and the direction of time—is believed to be full symmetry of physical laws, and so
violation of CP-symmetry implies violation of T-symmetry. We do not intend to
give much discussion of these topics, only to whet the reader’s appetite.
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As far as anyone currently knows, the laws of physics are invariant under the
group SO+(3, 1). When physicists talk about “Lorentz invariance” this is what
they mean. We will therefore mostly deal with this group, which we will call L for
short.

Note that there is an evident inclusion SO(3) ↪→ L. We will show below that
this inclusion is a homotopy equivalence; therefore π1(L) = Z/2, and the universal
cover L̃ → L has degree 2. We will identify L̃ with the group SL(2,C). The
story from here closely parallels what we have already seen for S3 → SO(3). The
projective representations of L are intimately related to the honest representations
of SL(2,C), and the latter are understood completely. This summarizes the main
points of what will be covered in the present section.

We begin by constructing a group homomorphism SL(2,C) → L. Recall the
Pauli spin matrices σ1, σ2, σ3. To these we add σ0 = I. Then these matrices
form a basis for the vector space Mh

2×2(C) of 2× 2 Hermitian matrices. Define an
isomorphism α : R4 →Mh

2×2(C) by

α(x0, . . . , x3) = x0σ0 + x1σ1 + x2σ2 + x3σ3.

Notice that the Lorentz norm of x coincides with the determinant of α(x).
If A ∈ SL(2,C) then X 7→ AXA† is a map Mh

2×2(C)→Mh
2×2(C) that preserves

the determinant. Under α this therefore corresponds to a Lorentz transformation.
That is to say, define φ : SL(2,C)→ O(3, 1) by

φ(A) =
[
x 7→ α−1(A · α(x) ·A†)

]
.

Since SL(2,C) is connected, the image must land inside of L; so we have actually
defined φ : SL(2,C) → L. It is easy to see that φ is a group homomorphism. A
matrix A is in the kernel if and only if AσiA† = σi for all i. When i = 0 this says
AA† = I, and then the other conditions are equivalent to Aσi = σiA for i > 0. It
is easy to see that this happens only when A = ±I.

We claim that SL(2,C) → L is surjective. To see this, let α, β ∈ R be such
that α2 − β2 = 1 and let A =

[ α β
β α

]
. The X 7→ AXA† fixes σ2 and σ3, and it

sends σ0 to (α2 + β2)σ0 + 2αβσ1. The corresponding Lorentz transformation is an
x-boost, and one readily checks that any x-boost in L (meaning one that preserves
the direction of time) can be obtained in this way. The preservation of the time
direction is reflected in the fact that α2 + β2 is always positive.

Next consider the two covering spaces

Z/2 // // SL(2,C) // // L

Z/2 // // SU2

OO

OO

// // SU2/± I.
OO

OO(5.7.1)

Recall that SU2/± I ∼= SO(3). The image of the composite SU2 ↪→ SL(2,C)→ L
is easily checked to land in the subgroup of Lorentz transformations that fix the
time coordinate, this subgroup being precisely SO(3). With only a little trouble
one checks that SU2/±I → L maps the domain isomorphically onto this subgroup.

The Lorentz group L is generated by the x-boosts together with SO(3), both
of which have been shown to be in the image of φ. So φ is surjective.

At this point we have shown that SL(2,C) → L is surjective with kernel
{I,−I}. Recall that the inclusion SU2 ↪→ SL(2,C) is a deformation retraction (use
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Gram-Schmidt), and that SU2
∼= S3. In particular, SL(2,C) is simply-connected;

therefore SL(2,C) is the universal cover of L. Consider the two covering spaces
in (5.7.1), recalling that SU2/ ± I ∼= SO(3). Since SU2 ↪→ SL(2,C) is a homo-
topy equivalence, it follows from the two long exact sequences of homotopy groups
(and the 5-Lemma) that SO(3) ↪→ L is a weak equivalence. (Of course it is there-
fore a homotopy equivalence as well, since both spaces may certainly be given the
structure of CW-complexes).

At this point we have verified that SL(2,C) � L is the universal cover, and
that this map is weakly equivalent to S3 → SO(3). Just as for the latter map, it
follows that every projective representation of L lifts to an honest representation of
SL(2,C). Let us next consider what the representations of SL(2,C) actually are.

Let V = C2 with the evident action of SL(2,C). We have the symmetric powers
Symk(V ), with their induced action; these representations are irreducible because
we already know they are irreducible when restricted to SU2.

We also have the conjugate representation V̄ . This is C2 but whereX ∈ SL2(C)
acts by left multiplication by X̄ (there are other descriptions of V̄ , but they are
isomorphic to this one). Over SU2 one has V ∼= V̄ , but this is not true over SL(2,C).
To see this, note that a vector space isomorphism is simply a map v 7→ Qv where
Q is an invertible 2 × 2 matrix. The condition that this be compatible with the
SL(2,C)-actions is that QXv = X̄Qv for every X in SL(2,C) and every v ∈ C2,
or equivalently just that QX = X̄Q for every X ∈ SL(2,C). Taking X to be
a diagonal matrix

[
z 0
0 z−1

]
, one finds readily that the only possible Q is the zero

matrix which is of course not invertible. (Over SU2 one only has diagonal matrices
as above where zz̄ = 1, and in this case one finds that Q =

[
0 1
1 0

]
is allowed.)

Clearly V̄ must be irreducible over SL(2,C), since a decomposition would yield
a corresponding decomposition for V by conjugating everything. Likewise, the
symmetric products Symk(V̄ ) are also irreducible.

Generalizing this line of thought somewhat, we have the following:

Theorem 5.7.2. For k, l ≥ 0 the representations Hk,l = Symk(V ) ⊗ Syml(V̄ )
are all irreducible, and they are a complete list of irreducible representations for
SL(2,C).

Note that the dimension of Hk,l is (k + 1)(l + 1). If v1 and v2 are formal
variables, the representation Hk,l may be regarded as having a basis consisting of
monomials va1v

b
2v̄
c
1v̄
d
2 where a + b = k and c + d = l. A matrix X ∈ SL(2,C) acts

on such a monomial by the substitution v1 7→ x11v1 + x21v2, v2 7→ x12v1 + x22v2.
The smallest nontrivial, irreducible representations of SL(2, C) are H1,0 and

H0,1. They are both 2-dimensional. These are usually called the representations of
left- and right-handed spinors. The representation H1,1 = H1,0⊗H0,1 is called
the Dirac representation, or the representation of Dirac spinors. Note that it
is 4-dimensional.

The representations of L are precisely the representations of SL(2,C) for which
−I acts as the identity. Among the irreducible representations these are the Hk,l

for which either k and l are both even, or k and l are both odd. Notice that H1,1

is the smallest nontrivial irreducible representation of L.

5.8. The Dirac equation





CHAPTER 6

Gauge theory

6.1. Principal bundles

The examples in the previous two sections suggest that once quantum mechan-
ics enters the picture the magnetic potential plays a more fundamental role than
was evident from Maxwell’s equations. In the next few sections our goal will be
to develop a geometric setting where we can recast Maxwell’s equations, having
precisely the effect that the magnetic potential assumes a greater importance. This
is the language of principal bundles and connections. It will turn out that the
magnetic potential may be thought of as a connection on a principal U(1)-bundle,
and the electromagnetic field may be obtained as the associated curvature.

We should admit that if our only goal was understanding electromagnetism,
then pursuing these generalizations would probably not be worth the effort. The
real payoff comes where the group U(1) is replaced by some other Lie group G; in
this case the analogs of Maxwell’s equations are called the Yang-Mills equations,
and the subject as a whole goes under the name gauge theory .

6.1.1. Principal bundles. Let G be a topological group. A principal G-
bundle is a fiber bundle π : P → B together with a G-action G × P → P such
that
(1) π(gx) = π(x) for all g ∈ G and x ∈ P ;
(2) For all x ∈ P , the map G→ Px given by g 7→ gx is a homeomorphism;
(3) For each b ∈ B there exists an open set b ∈ U ⊆ B and a G-equivariant

homeomorphism

π−1(U)

##GGGGGGGG

∼= // G× U

||xxxxxxxx

U.

The way we have written this definition involves some redundancy: condition (3)
implies both condition (2) and the fact that P → B is a fiber bundle. We have
written it this way because the heirarchy of ideas seems more natural: a principal
G-bundle is a fiber bundle carrying a G-action, where the fibers are homeomorphic
to G, and which has an evident locally-trivial property.

Example 6.1.2. The usual projection Sn → RPn is a principal Z/2-bundle,
where Sn has the antipodal action. Likewise, if we write S(Cn+1) for the unit
sphere in Cn+1 then the projection S(Cn+1)→ CPn is a prinicpal U(1)-bundle.

Suppose T is a right G-space and π : P → B is a principal G-bundle. Define

T ×G P = (T × P )/ ∼

135
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where the equivalence relation is generated by (ug, x) ∼ (u, gx) for u ∈ T , g ∈ G,
and x ∈ P . We have a map T → B given by [(u, x)] 7→ π(x), and one can check
that this is a fiber bundle with fiber T . This construction should be thought of as
taking the bundle P and gluing T in as the fiber.

Example 6.1.3. Let Z/2 act on R − 0 by the sign action. Then there is an
isomorphism of bundles over RPn

(R− 0)×Z/2 S
n

%%LLLLLLLLL

∼= // Rn+1 − 0

||xxxxxxxx

RPn

given by [(λ, x) 7→ λx.
Likewise, if E = {(L, x) |L ∈ RPn, x ∈ L} then E → RPn is a rank 1 vector

bundle. There is an isomorphims of bundles over RPn

R×Z/2 S
n ∼=−→ E

given by [(λ, x)] 7→ (〈x〉, λx).

Let V be a real vector space of dimension n. Define Fr(V ) to be the subset
of V n consisting of tuples (e1, . . . , en) which are bases of V . We call Fr(V ) the
space of frames of V . Note that Fr(V ) carries a natural left GL(V )-action given
by f.(e1, . . . , en) = (f(e1), . . . , f(en)). However, Fr(V ) also carries a natural right
GLn(R)-action:

If E → B is a rank n vector bundle then we can look at the collection of frames
in each fiber, and this gives a new bundle over B. Define

Fr(E) = {(b, e1, . . . , en) | b ∈ B, (e1, . . . , en) ∈ Fr(Eb)}.
One readily checks that the projection Fr(E)→ B is a principal GLn(R)-bundle.

At this point we have maps back and forth

(rank n vector bundles over X)
Fr ..

(pr. GLn(R)-bundles over X)
Rn×GLn(R)(−)

nn

and one can check that these maps induce inverse bijections on the sets of isomor-
phism classes.

6.1.4. Reduction of the structure group. Let E → B be a rank n vector
bundle and let H → GLn(R) be a continuous homomorphism of topological groups
(in practice this will usually be an inclusion). We say that “the structure group
of E can be reduced to H” if there exists a principal H-bundle P → B and an
isomorphism of bundles E ∼= Rn ×H P .

Example 6.1.5. Let H = SLn(R). A vector bundle’s structure group can be
reduced to H if and only if the bundle is orientable in the usual sense.

6.1.6. Homotopy classification of principal bundles. Fix a topological
group G. It is a theorem that one can produce a pointed space BG, called the
classifying space for G, such that there are natural bijections

(iso. classes of principal G-bundles over X) ∼= [X,BG]∗
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for any pointed space X. We won’t need the full strength of this result, so for the
moment we will be content with explaining a weaker version.

Let us explore principal G-bundles over S1. In general, if g, h ∈ G then we can
construct a bundle P (g, h) by gluing two copies of G× I together in the following
way:

·g ·h

Here the two ends are glued together via right multiplication by g and h, respec-
tively. It is important to use right multiplication so that there is still a left G-action
on the identification space.

Since any principal G-bundle on S1 must be trivializable on the top and bottom
hemispheres of S1 we can conclude that every principal G-bundle on S1 is of the
form P (g, h) for some g, h ∈ G. This classification is somewhat overdetermined,
however. For instance, it is easy to see that P (g, h) ∼= P (gh−1, 1), via the following
picture:

·g ·h ·gh−1 ·1

·1

·h

The picture is supposed to indicate an isomorphism that is the identity on the lower
G× I and right multiplication by h on every fiber of the upper G× I. One readily
checks that this is indeed well-defined and compatible with the left G-action, and
it is clearly an isomorphism.

A very similar picture shows that if g and h lie in the same path component of
G then P (g, 1) ∼= P (h, 1). The assumption implies that h−1g is in the same path
component as 1, so let γ : I → G be a path such that γ(0) = h−1g and γ(1) = 1.
Consider the isomorphism
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·g ·1 ·h ·1

·1

·γ(t)

Here again, the isomorphism is just the identity on the lower G × I. On the fiber
over t in the upper G× I, it is right multiplication by γ(t). One readily checks that
this works.

We conclude that we have a surjection

π0(G)� (iso. classes of pr. G-bundles on S1)

sending the component of g to P (g, 1). The reader can readily convince himself
that this is a bijection.

The above analysis (even the pictures) readily generalizes to apply to principal
G-bundles on a suspension ΣX. Let C+X and C−X denote the top and bottom
cones forming ΣX.
(1) If f : X → G is any continuous map, define a bundle P (f) by cluing C+X ×G

to C−X × G along their bases by (x, g) 7→ (x, gf(x)). Check that P (g) is
a principal G-bundle over ΣX, and that every principal G-bundle on ΣX is
isomorphic to one of this form.

(2) Let x ∈ X be a chosen basepoint. Prove that P (f) ∼= P (f · f(x)−1). Therefore
every principal G-bundle on ΣX is isomorphic to one of the form P (g) where
g : X → G is a pointed map (g(x) = 1).

(3) Prove and if f, g : X → G are pointed maps which are homotopic relative to
the basepoint, then P (f) ∼= P (g).
The above steps produce a surjection

[X,G]∗ � (iso. classes of principal G-bundles over ΣX).

With a little more work one can prove that this is a bijection.

6.1.7. An extended example. Consider vector bundles over S2, keeping in
mind that S2 is a suspension. The above techniques give us a sequence of bijections

(rank 2 v.b. over S2) ∼= (principal GL2(R)-bundles over S2) ∼= [S1, GL2(R)]∗.

The inclusion O(2) ↪→ GL2(R) is a homotopy equivalence (by Gram-Schmidt), and
as a topological space O(2) ∼= S1 q S1. It follows that π1(GL2(R), I) ∼= Z. So the
different isomorphism classes of rank 2 vector bundles over S2 can be classified by
the elements of the set Z.

This is all very nice, but can we use it in practice? Given a specific rank 2
bundle like the tangent bundle TS2 → S2, can we determine the corresponding
integer?



6.1. PRINCIPAL BUNDLES 139

We claim that the integer corresponding to TS2 is ±2 (we are not going to
worry about signs), and that this is demonstrated by the following procedure: take
two quarters and place one directly above the other as shown in the figure below.
Keep the bottom quarter fixed and roll the top quarter along its edge.

[Note: Rather than massacre George Washington I have replaced him with the the
number 4].

As you watch the top quarter rotate, you will find that by the time it arrives
at the point directly below its original position, it has rotated a complete 360
degrees. Keep rolling, and by the time it returns to its original position it will now
have rotated through 360 degrees exactly twice. We claim that this is why TS2

corresponds to ±2 under the above bijections. [This demonstration is an old trick:
I learned it from Haynes Miller when I was a graduate student.]

At this point you are probably wondering, “What the heck just happened?”
Because it is not at all clear why the quarter demonstration has anything to do
with what we’ve been talking about. So we now explain.

Start by choosing trivializations of TS2 over the top and bottom hemispheres.
This amounts to specifying a frame at each point, and one nice way to do this is
to choose a frame at the south pole and then parallel transport it to each point by
following the geodesic. For example (see the picture below) choose the î, ĵ frame
at the south pole. Transporting this to the east pole gives the î, k̂ frame, while
transporting it to the west pole gives the î,−k̂ frame. Transporting it to the
“front” pole gives k̂, ĵ. This process trivializes TS2 over the bottom hemisphere.
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x

y

z

Before doing the same thing over the top hemisphere, let’s take advantage of
the fact that we’re doing topology: so we can be very flexible about what we mean
by “hemisphere”. Let us take the “bottom hemisphere” to be everything except a
very small disk around the north pole. And let us have the “top hemisphere” just
be that small disk.

Choose a frame at the north pole—we will choose the î,−ĵ frame because it
nearly coincides with the frame already chosen at our new “east pole” (which is
very near the north pole). We again transport this frame to other points on the
small disk by moving along geodesics, but the disk is so small that one really doesn’t
have to think about this.

Now we need to look along the “equator” (really the boundary of our small
disk) and see how the northern framing patches with the southern framing. This
will give us the map f : S1 → SO(2) for which Fr(TS2) ∼= P (f). Focusing on our
small disk and looking down on it from above, we get a picture like the following:

Here the frame inside the disk represents the trivialization over the northern
hemisphere (which we may as well assume is constant, with respect to our picture),
and the framing outside the disk represents the southern trivialization. How do
they relate? On the east pole they are identical, but as we move around the circle
they start to differ by rotations. The map f : S1 → SO(2) gives at each point the
rotation that is necessary to make the inner and outer frames coincide, and clearly
the S1 will be wrapped around SO(2) exactly twice.

Hopefully the connection with the quarter demonstration is clear: the portrait
of Washington represents a framing, and one watches how it rotates as the outer
quarter rotates. [What is not so clear, at least to me, is whether the demonstration
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is really anything more than a mnemonic for remembering the above argument.
The connection between the two is a little tenuous—after all, it was important that
it was two quarters rather than a quarter and a penny, and yet how did we know
that we should use two quarters?]

6.2. Connections and curvature

In this section we get into the language of differential geometry. For me per-
sonally, this has not been an easy language to learn. ?????

6.2.1. Systems of parallel transport. Let E → B be a vector bundle of
rank n. The following “definition” is not exactly rigorous, but it nevertheless cap-
tures some important intuition. By a system of parallel transport on the bun-
dle E we mean an assignment which to every interal [a, b] and every smooth path
γ : [a, b] → B associates a linear map Φγ : Eγ(0) → Eγ(1), such that the following
properties hold:
(1) Φαβ = Φα ◦Φβ where αβ is the usual juxtaposition of α and β (first do β then

follow with α).
(2) Φcx = Id where cx is the constant path at a point x ∈ B.
(3) Φγ = Φ−1

γ̄ where γ̄ : [a, b]→ B is defined by γ̄(t) = γ(b− t+ a).
(4) Φγ varies smoothly with γ.

It is the last condition which is difficult to make rigorous. People know how to
do it, but it would take us far afield to try to write it down. Nevertheless, the idea
of a system of parallel transport is clear enough.

If the bundle E is equipped with extra structure, we might ask that the parallel
transport maps respect that structure. For instance, if E has a metric then we will
ask that the maps Φγ be isometries.

Example 6.2.2. Consider the tangent bundle TS2 → S2, with the usual metric.
Given a tangent vector at x and a geodesic passing through x, one had an intuitive
notion of what it means to transport the tangent vector along the geodesic in a way
that keeps it parallel. If one wants to parallel transport the tangent vector along an
arbitrary smooth path, one imagines approximating the path by a concantenation
of small geodesics and transporting the vector along each piece.

Notice that systems of parallel transport are not homotopical notions. That is,
if paths α and β are homotopic relative to the endpoints there is no reason for Φα
and Φβ to be equal. This can be seen explicitly in the example of parallel transport
on S2: different geodesics between the north and south poles clearly give rise to
different parallel transports of tangent vectors.

Suppose that γ : I → B and v ∈ Eγ(0). One gets a path γ̃ : I → E that lifts γ
by having

γ̃(t) = Φγ≤t
(v)

where γ≤t is the restriction of γ to [0, t] (recoordinatized to [0, 1] if necessary). We
call such a γ̃ a parallel lifting of γ. More generally, if X is any smooth manifold
and X → B a smooth map, a lifting X → E will be called parallel if it is parallel
when restricted to any smooth path in X.
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6.2.3. Affine connections. The idea now is that, rather than talk about
systems of parallel transport, we will talk about something that is easier to define
rigorously but that captures equivalent concepts. This is the notion of affine con-
nection. To get the general idea, suppose that s is a section of a vector bundle
E → B, x ∈ B, and v ∈ TxB. Choose a smooth path γ : [−1, 1] → B such that
γ(0) = x and γ′(0) = v. If we had a system of parallel transport on E, we could
attempt to define the derivative of s in the direction of v by a formula such as

Dv(s)x = lim
t→0

[
Φ−1
γ|[0,t]

(s(t))− s(0)

t

]
.

Of course one would need to prove that the limit exists and that it is independent
of the choice of γ, but if we have the “right” definitions these arguments should be
the familiar ones from calculus. The only real point here is that the Φγ maps are
allowing one to move between different fibers of E: the vectors s(t) and s(0) live
in different fibers, but using Φ we can push them into the same fiber.

The notion of affine connection is simply an axiomization of what one needs to
be able to differentiate sections along tangent vectors. There are different ways one
could encode this information, but the following is the most common:

Definition 6.2.4. Let E → B be a smooth vector bundle with B a smooth
manifold. An affine connection on E is an assignment

Γ(TB)× Γ(E)→ Γ(E), (X, s) 7→ DXs

having the following properties:
(1) Da1X1+a2X2(s) = a1DX1(s) + a2DX2(s), for any a1, a2 ∈ C∞(B), X1,X2 ∈

Γ(TB).

(2) DX(s+ t) = DX(s) +DX(t) for any s, t ∈ Γ(E).

(3) DX(f · s) = (∂Xf) · s+ f ·DX(s) for any smooth map f : B → R.

Basic facts about connections

(1) For b ∈ B, the value [DXs](b) only depends on the restriction of X and s to a
neighborhood of b. In other words, given X′ and s′ such that X′|U = X|U and
s|U = s′|U for some neighborhood U of b, then [DXs](b) = [DX′s

′](b).
(2) Even more, if X(b) = X′(b) then [DXs](b) = [DX′s](b). If v is any tangent

vector to B at b, we will write (Dvs)(b) to denote [DXs](b) for any vector field
X satisfying X(b) = v.

(3) If γ : [−1, 1] → B is a smooth curve such that γ(0) = b and γ′(0) = v, then
[Dvs](b) only depends on the values of s along γ. In other words, if s and s′

are two sections such that s ◦ γ = s′ ◦ γ, then [Dvs](b) = [Dvs
′](b).

(4) Suppose that E′ ↪→ E is a subbundle which admits a bundle retraction r : E →
E′. Then the connection D on E induces a connection D′ on E′ by the formula

D′
v(s) = r[Dv(s)].

(5) If D and D′ are two connections on E and t ∈ [0, 1], then tD + (1 − t)D′ is
again a connection on E.



6.2. CONNECTIONS AND CURVATURE 143

(6) Every bundle admits a connection.

Less basic facts about connections

(1) If D and D′ are any two connections on E, then D−D′ lies in Ω1(B; End(E)).
If A ∈ Ω1(B; End(E)) then D + A is a new connection. In short, if D is a
fixed connection on E then the space of all connections may be identified with
D + Ω1(B; End(E)).

The space Ω1(B; End(E)) may be regarded as a parameter space for all con-
nections on E. Note that this space is contractible (it is an infinite-dimensional
vector space). Elements of Ω1(B; End(E)) will be called connection poten-
tials.

(2) If E is trivial and s1, . . . , sn is a basis of sections, then one may define a con-
nection of E by the formula

Dv

(∑
aisi

)
=
∑
i

∂v(ai)si.

In other words, one simply differentiates the s-coordinates of a given section.
This is the unique connection satisfying Dv(si) = 0 for all v and i. We call it
the standard flat connection on E. However, note that it depends on the
choice of basis s1, . . . , sn; the use of the adjective “standard” can therefore be
a little disorienting.

(3) If E and F are bundles with connections DE and DF , then a map of bundles
h : E → F is compatible with the connections if h(DE

v s) = DF
v (hs) for all

tangent vectors TB and sections s.
(4) Given connections DE on E and DF on F , there is a standard induced con-

nection on E ⊗ F given by the formula

DE⊗F
v (s⊗ t) = DE

v (s)⊗ t+ s⊗DF
v (t).

There is also a standard induced connection on Hom(E,F ), defines as follows.
If α is a section of Hom(E,F ) and s is a section of E, then define Dv(α) to be
the section given by

(DHom(E,F )
v α)(s) = DF

v (α(s))− α(DE
v s).

Note that this is the unique connection such that the evaluation map of bundles
Hom(E,F )⊗ E → F becomes compatible with the induced connections.

(5) Given local sections s1, . . . , sn of E forming a basis, one can write

Dv(si) =
∑
j

ωij(v)sj

for uniquely-defined coefficients ωij(v). The ωij may be regarded as 1-forms,
and the matrix Ω = (ωij) is called the connection matrix for D with
respect to the local basis s1, . . . , sn. Note that the 1-forms are only defined
on the neighborhood where the si’s are defined.

If e1, . . . , en is another local basis of sections for E, defined on a neighbor-
hood overlapping that domain of the si’s, then we may write ei =

∑
j gijsj for

certain real-valued functions gij . One may check the identity

Ωe = (dg)g−1 + gΩsg−1
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where Ωe and Ωs are the connection matrices for D with respect to the two
local bases.

Facts about Curvature

(6) Given a connection D on a smooth bundle E → B, there is an associated 2-form
RD ∈ Ω2(B; End(E)).

(7) If E is trivial and D is a standard flat connection with respect to some choice
of basis for E, then RD = 0. If in addition A is a connection potential then

RD+A = dA+A ∧A.
(8) If Ω is the connection matrix for D with respect to some basis of sections

s1, . . . , sn, then
RD = dΩ− Ω ∧ Ω.

de Rham theory with coefficients in a bundle

(9) If V is any finite-dimensional real vector space, then there is a natural isomor-
phism Ωp(B;V ) ∼= Ωp(B) ⊗ V . In particular we have maps d : Ωp(B;V ) →
Ωp+1(B;V ) obtained by tensoring the usual deRham differential with the iden-
tity on V . Note that d2 = 0 as usual.

(10) Now suppose that E → B is a smooth bundle with connection D. We may
define a map dD : Ω0(B;E)→ Ω1(B;E) by the formula

dD(s) = [v 7→ Dv(s)].

Note that the information in dD is really the same information as in D, just
reorganized.

We extend dD to maps Ωp(B;E) → Ωp+1(B;E) by the Leibniz rule. Ele-
ments of Ωp(B;E) are linear combinations of elements of the form ω⊗ s where
ω ∈ Ωp(B) and s ∈ ΓE, and we define

dD(ω ⊗ s) = (dω)⊗ s+ (−1)pω ∧ dD(s).

(11) One computes that d2
D(ω) = RD ∧ ω, for any ω ∈ Ωp(B;E).

(12) dEnd(E)(RD) = 0. This is called the Bianchi identity.
(13) If D is the standard flat connection on a trivial bundle, then dD+A is ????
(14) tr(dD(σ)) = d(trσ) for σ ∈ Γ(End(E)).

6.2.5. A quick and dirty introduction to Lie theory.

Definition 6.2.6. A Lie group is a topological group G which is also a smooth
manifold, where the multiplication and inverse maps are smooth.

The theory of Lie groups is of course very well-developed and beautiful, but
here we will only cover the basics for what we will need. In particular, it will suffice
for us to restrict our attention entirely to matrix groups: that is, we will assume G
is a subgroup of GLn(R).

One sets g = T1(G), the tangent space at the identity. Since G ↪→ Mn(R) ∼=
Rn2

, we have g = T1G ↪→ T1(Mn(R)) = Mn(R). Here is a useful fact that works
for matrix groups:
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Given A ∈ g, the path t 7→ etA is a path in G whose derivative at t = 0 is A.

This fact allows us to give a precise description for g in any specific example.

Example 6.2.7. Let G = SO(n). If A ∈ g then etA ∈ SO(n), which is
true if and only if etA(etA)T = I. Expanding these exponentials as powers gives
I + t(A + AT ) + t2(???) + · · · = I, and since this holds for all t we must have
A + AT = 0 (differentiate both sides at t = 0). It’s not hard to convince oneself
that this is actually an equivalent condition to A ∈ g. That is,

son = T1(SO(n)) = {A ∈Mn(R)|A+AT = 0}.

Example 6.2.8. As an even simpler (but still important) example, consider
G = U(1) = S1 ⊆ C. One has x ∈ T1U(1) ⇐⇒ ex ∈ S1, or T1(U(1)) = iR.

The adjoint representation. If g ∈ G then consider the conjugation map
Cg : G→ G given by h 7→ ghg−1. Its derivative at the identity is denoted Ad(g):

Ad(g) = (DCg) : T1G→ T1G.

As an exercise, one should check that if v ∈ g then Adg1(Adg2 v) = Adg1g2(v).
So we have a representation of G on g, called the adjoint representation. For
matrix groups Ad(g) is simply conjugation by g, because if A ∈ g, then

Ad(g)(A) =
d

dt

∣∣∣∣
t=0

[
Cg(etA)

]
=

d

dt

∣∣∣∣
t=0

[
g(etA)g−1

]
=

d

dt

∣∣∣∣
t=0

[I + g(tA)g−1 + · · · ]

= gAg−1.

In particular, all matrix conjugates of an element of g are again in g. This useful
fact will be used many times in the context of bundles and connections.

The Lie bracket. Since Ad : G → End(g) is smooth, we can take its derivative
at the identity and get D(Ad) : g → TI End(g) = End(g). We usually write [A,B]
for D(Ad)(A)(B). This can be shown to define a Lie bracket on g. In the case of
matrix groups [−,−] is just the commutator:

[A,B] =
d

dt

∣∣∣∣
t=0

[
Ad(etA)(B)

]
=

d

dt

∣∣∣∣
t=0

[
etABe−tA

]
=

d

dt

∣∣∣∣
t=0

[
B + t(AB −BA) + · · ·

]
= AB −BA.

6.2.9. Endomorphisms of G-bundles. Suppose E → B is a vector bundle
where E ∼= V ×G P for a (left) principal G-bundle π : P → B and a (right)
G-representation ρ : G→ GL(V ). We will call such E → B a G-bundle.

For any such G-bundle, there exist open sets Uα ⊆ B and “G-trivializations”
φα : E|Uα

'→ V × Uα satisfying the following compatibility condition on Uαβ =
Uα ∩ Uβ :

V × Uαβ
φ−1

α−→ E|Uαβ

φβ−→ V × Uαβ is of the form (v, x) 7→ (v · gαβ(x), x)
where gαβ : Uαβ → G is some smooth function.

Alternatively, we can choose trivializations for P → B and then take the prod-
uct with the fiber V to get G-trivializations for E → B.



146 6. GAUGE THEORY

Definition 6.2.10. The G-endomorphisms of E is the image of the canonical
map End(P )→ End(E).

That is, a G-endomorphism of E is an endomorphism that acts on each fiberNot sure whether
this is a good defn,
or even exactly what
End(P) is

as multiplication by some group element. More precisely, we want a collection of
maps Φα : Uα → End(V ) with the property that for each x ∈ Uαβ , there is a
commutative diagram on fibers over x

V
Φα(x) //

·gαβ(x)

��

V

·gαβ(x)

��
V

Φβ(x) // V

Note that Φα(x) ∈ Im(ρ) iff Φβ(x) ∈ Im(ρ), that is, Φα(x) corresponds to multi-
plication by an element of G iff Φβ(x) does.

Moreover, End(P ) is in one-to-one correspondence with Map(B,G) since f :
P → P is an endomorphism (over B) iff f(p) = p · h(π(p)) for a continuous map
h : B → G.

Example 6.2.11. Consider the trivial rank two vector bundle I ×R2 = E over
the unit interval I = B. If we equip this bundle with a metric, it has the structure
of an SO(2)-bundle. The set of all endomorphisms End(E) is C∞(B,M2(R)), but
the set of SO(2)-endomorphisms EndSO(2)(E) is the proper subset C∞(B,SO(2)).

We can also define g-endomorphisms for the Lie algebra g associated to a Lie
group G. These are endomorphisms of E such that, relative to a system of G-
trivializations {Uα}, the maps on each fiber act as elements of g. More explic-

itly, given a representation G
ρ→ GL(V ) ↪→ End(V ) inducing g

Dρ→ TIGL(V ) ↪→
TI End(V ) = End(V ), a g-endomorphism is a collection of maps Φα : Uα → End(V )
such that for each x ∈ Uαβ the following square of fibers commutes:

V
Φα(x) //

·gαβ(x)

��

V

·gαβ(x)

��
V

Φβ(x) // V

As before, Φα(x) ∈ Im(Dρ) iff Φβ(x) ∈ Im(Dρ), since all G-conjugates of an
element of g are again in g.

6.2.12. Relation to connections. Let E → B be a smooth G-bundle and
let D(−)(−) be a covariant derivative.

Definition 6.2.13. Given a G-trivialization of E determined by linearly in-
dependent sections e1, . . . , en, D is a G-covariant derivative provided that for each
vector field X and each section s =

∑
j s
jej,

DX(s) =
∑
j

(∂Xs
j)ej +AX(s)

where A is a 1-form with values in End(E) such that each AX is a g-endomorphism.
(This happens to be independent of the choice of trivializing sections.)
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Example 6.2.14. Consider C × B → B as a U(1)-bundle. (Recall that
TIU(1) = iR.) Any u(1)-connection will be of the formDX(s) = [(∂Xs1)+i(∂Xs2)]+
iTX(s1 + is2) where s = s1 + is2 is a section with real-valued si and TX is a 1-form
on B.

Example 6.2.15. Let B = R4 in the previous example. Since the magnetic
potential f is also a 1-form (because df = 0), we can use it to define a u(1)-connection
on this trivial bundle.

Example 6.2.16. Less trivially, a magnetic monopole generates a field with
noncontractible base space R3 − 0. Although we don’t have a global magnetic
potential in this case, we do get a u(1)-connection.

6.2.17. Principal connections. Let G be a Lie group with associated Lie
algebra g. Right translation by any g ∈ G induces a map on tangent spaces DRg :
TIG→ TgG. For each A ∈ g, letting g vary over all elements in G defines a vector
field Vg(A) = DRg(A) on G.

Similarly, for any principal G-bundle P → B, the fiber is by definition homeo-
morphic to G, so for any x ∈ P , the right multiplication map jx : G→ P, g 7→ g · x
induces a vector field A 7→ Djx(A) = Vx(A) on the fiber over x. Taken together
over all fibers, we get a “vertical” vector field A 7→ V (A) on all of P .

Definition 6.2.18. A principal connection on a principal G-bundle P → B
assigns to each x ∈ P and each v ∈ TxP an ωx(v) ∈ g such that

(1) ωx(Vx(A)) = A
(2) ωgx(DLg(v)) = Ad(g)(ωx(v)), where Lg denotes left translation by g ∈ G.

We can think of this ω as an element of Ω1(P ; g) = Γ(T ∗P ⊗ g).

6.3. Yang-Mills theory

Recall that we have now seen three equivalent versions of electromagnetism. In
the first one studies two functions E,B : R4 → R which satisfies the four Maxwell
equations (for a fixed choice of ρ and J). Sometimes one uses a vector potential A
with the property that ∇×A = B, and an electric potential φ such that...

In the second version we start with a manifold M with a nondegenerate metric
and a fixed 1-form J. One then studies 2-forms F with the property that dF = 0
and ∗d ∗ F = J. The former equation allows one to write F = dA for some 1-form
A that is not uniquely specified.

Finally, in the third version of the theory one starts with a manifold M having a
nondegenerate metric, together with a complex line bundle E →M equipped with
a u(1)-connection D. Then the electromagnetic 2-form is the curvature associated
to D,

F = RD ∈ Ω2(M ; iR) ⊆ Ω2(M ; End(E)).
What are the analogs of Maxwell’s equations here? They are

dDF = 0 (called the Bianchi identity) and ∗ dD ∗ F = J.

Here J is regarded as an End(E)-valued 1-form, but taking its values in the sub-
bundle iR ⊆ End(E).

...

Lemma 6.3.1. Let E → B be a smooth vector bundle with connection D. As-
sume µ ∈ Ωp(B; End(E)).
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(a) tr(dDµ) = d(trµ) as elements of Ωp+1(B).

(b)
∫
B

tr(µ ∧ ∗ω) =
∫
B

tr(ω ∧ ∗µ) for ω ∈ ΩB−p(B; End(E)).

(c)
∫
B

tr(dDµ ∧ ω) = (−1)p+1

∫
B

tr(µ ∧ dDω) for any ω ∈ ΩB−p−1(B; End(E)).

(d) If D = D0+A for a vector potential A, then dD(ω) = (dD0ω)+A∧ω−(−1)pω∧
A.

(e) tr(µ ∧ ω) = (−1)pq tr(ω ∧ µ) for any ω ∈ Ωq(B; End(E)).

For convenience we will assume that D0 is flat, so that FA = dA+A∧A. Then
we observe that

FA+δA = d(A+ δA) + (A+ δA) ∧ (A+ δA)

= (dA+A ∧A) + d(δA) + (δA) ∧A+A ∧ (δA) + (δA ∧ δA)

= FA +
[
(δA) ∧A+A ∧ (δA)

]
+ (δA ∧ δA)

and therefore

δAF = d(δA) + (δA) ∧A+A ∧ (δA) = dD(δA)

where we have used Lemma 6.3.1(d) for the last equality. Now we compute

δAS =
1
2
δA

∫
B

tr(F ∧ ∗F) =
1
2

∫
B

tr(δAF ∧ ∗FA + FA ∧ ∗δAF)

=
∫
B

tr(δAF ∧ ∗FA) (using Lemma 6.3.1(b))

=
∫
B

tr(dD(δA) ∧ ∗FA)

=
∫
B

tr(δA ∧ dD(∗FA)) (using Lemma 6.3.1(c)).

The only way this last expression will vanish for every choice of δA is if dD(∗F) = 0.
So we have that A is an extreme point of S if and only if dD(∗FA) = 0.

An important property of the Yang-Mills Lagrangian is that it is gauge in-
variant. Suppose that E → B is a G-bundle, and let G be the group of G-
automorphisms. If D is an affine connection of E and g ∈ G , then we get a
new affine connection Dg via the formula

Dg
v(s) = g ·Dv(g−1s).

This is the evident thing to do: apply g−1, differentiate using D, then apply g to
put us back to where we were.

If D = D0 +A, let us write Dg = D0 +Ag. Then A 7→ Ag gives a G -action on
the space Ω1(B; End(E)) of connection potentials. One readily verifies that

[FDg ]X,Y,s = Dg
XD

g
Y s−D

g
YD

g
Xs−D

g
[X,Y ](s)

= (gDXg
−1)(gDY g

−1)s− (gDY g
−1)(gDXg

−1)s− gD[X,Y ]g
−1(s)

= [g(FD)g−1]X,Y,s.
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In other words, FAg = gFAg
−1. Therefore

L(Ag) =
1
2

tr(gFAg−1 ∧ ∗gFAg−1) =
1
2

tr(g(FA ∧ ∗FA)g−1)

=
1
2

tr(FA ∧ ∗FA) = L(A).

6.4. Digression on characteristic classes and Chern-Simons forms

In the previous section we set up an action functional on the space of con-
nections on a given bundle E → B. More precisely, we chose a fixed connetion
D0 and then identified the space of all connections with the contractible space
D0 + Ω1(B; End(E)). In this way we could define the action on the space of con-
nection potentials Ω1(B; End(E)) rather than on the space of connections. But it
amounts to the same thing.

As soon as one has the idea to do all this, it becomes apparent that there
are other actions one might consider. Given a connection potential A, we get a
curvature 2-form FA. How can we get a real number out of this? If we had a form
whose dimension is dimB then we could integrate it, and we could make such a
form by taking powers of FA—at least if dimB is even. So let’s do this. Assume
dimB = 2n and consider the action defined by

S(A) =
∫
B

tr(FA ∧ FA ∧ · · · ∧ FA) (n wedge products).

Following the same steps as in the last section we compute that

δAS =
∫
B

tr(δA(F ∧ F ∧ · · · ∧ F))

=
∫
B

tr
(
δAF ∧ F∧(n−1) + F ∧ δAF ∧ F∧(n−2) + · · ·+ F∧(n−1) ∧ δAF

)
= n

∫
B

tr(δAF ∧ F∧(n−1)) (using the cyclic property of the trace)

= n

∫
B

tr(dD(δA) ∧ F∧(n−1)) (since δAF = dD(δA))

= n

∫
B

tr(δA ∧ dD(F∧(n−1))) (by Lemma 6.3.1(d))

= 0.

The last equality follows because dD(F∧(n−1)) = 0, a consequence of the Leibniz
rule and the Bianchi identity: for instance, when n = 2 one has

dD(F ∧ F) = dD(F) ∧ F + F ∧ dD(F) = 0 + 0 = 0

and the analagous argument works for higher n.
Since we have proven that δAS = 0 no matter what A is, it follows that S is

constant on the space of connection potentials. In other words, S is an invariant of
just the original bundle E → B (not depending on the connection). Of course for all
we know right now it might be the trivial invariant, the same for all bundles—but
we will soon see that this is not the case.

Looking carefully at the above argument, one sees right away that the integra-
tion over B was really not used at all. Or rather, it was only used so that S(A) was
an actual real number—but other than that it played no part in the argument. ???
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To make the next part cleaner we will revert back to writing things in terms
of the connection D rather than the connection potential A. Define θk(D) =
tr(FD ∧ FD ∧ · · · ∧ FD) (k factors in the wedge). Then θk(D) ∈ Ω2k(B) and

dD(θk(D)) = d
(
tr(F∧(k)

D )
)

= tr
(
dD
(
F
∧(k)
D

))
= tr(0) = 0.

So θk(D) is a deRham cocycle and therefore represents an element of H2k(B; R).
Note that in the case 2k = dimB then we could use integration over B to translate
the top-dimensional form into a real number (assuming B is connected).

We claim that the cohomology class of θk(D) does not depend on the choice
of D. This is an easy consequence of the naturality of our construction, together
with the fact that the space of connections is affine. To see this, let D′ be another
connection and consider the bundle E × I → B × I. We can concoct a connection
on this new bundle by the formula

∇ = tD + (1− t)D′.

That is to say, on the fiber over (b, t) we use the connection tD + (1− t)D′. (???)
We therefore get a deRham cocycle θk(∇) ∈ C2k(B × I; R). If i0, i1 : B ↪→ B × I
denote the evident two inclusions, one readily checks that i∗0(θk(∇)) = θk(D) and
i∗1(θk(∇)) = θk(D′). Indeed,

i∗0(θk(∇)) = i∗0

(
tr(F∇)∧(k)

)
= tr

((
i∗0(F∇)

)∧(k)
)

and so it is only a matter of checking that i∗0(F∇) = FD. But this is clear enough
from the definition of the curvature form.

Since i∗0 and i∗1 induce the same map on cohomology, we conclude that θk(D)
and θk(D′) represent the same cohomology class. This proves independence on the
choice of connection.

Because θk(D), thought of as a cohomology class, does not depend on the
choice of connection, it is therefore a topological invariant of the bundle E → B.
We will write θk(E) from now on. Of course it is still possible that this is the trivial
invariant, but this is not the case:

Proposition 6.4.1. Expanding coefficients from H2k(B; R) to H2k(B; C), we
have

θk(E) = k! · (−2πi)k · chk(E)
where chk(E) is the kth term of the Chern character of E (lying in H2k(B; Q)).

Remark 6.4.2. There are different choices for what one might mean by the
“Chern character”, differing from each other by a sign in odd dimensions. The key
decision is whether the first Chern class of the tautological line bundle L→ CP∞
is the standard generator of H2(CP∞) or its negative. Topologists usually choose
the former, whereas geometers choose the latter (becaue geometers prefer to have
the first Chern class of the dual bundle L∗—called O(1) in their language—be the
generator). Since our purpose in these notes is to understand work of the geometers,
it seems sensible for us to adopt their conventions. If one were to use the topological
conventions instead, the formula in Proposition 6.4.1 should have the minus sign
removed from the 2πi.

Proof of Proposition 6.4.1. The class chk(E) is completely characterized
by naturality together with the following two properties:
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(1) chk(E ⊕ F ) = chk(E) + chk(F ), and
(2) chk(L) = 1

k!c1(L)k if L is a line bundle.
It will therefore suffice to prove that θk(E ⊕ F ) = θk(E) + θk(F ) and θk(L) =
(−2πi)kc1(L)k for line bundles L. The additivity statement is fairly easy, the key
being that if A and B are square matrices and M is the block matrix

M =
[
A 0
0 B

]
,

then tr(Mk) = tr(Ak)+tr(Bk). Note that if E and F are bundles with connections
DE and DF , then DE⊕DF gives a connection on E⊕F . The curvature form RE⊕F
is readily checked to be RE ⊕ RF , by which we mean the 2-form whose values are
the block sums of endomorphisms [

RE 0
0 RF

]
.

At this point it is just a matter of chasing through the definitions to see that
θk(E ⊕ F ) = θk(E) + θk(F ).

For the calculation of θ1(L) when L is a line bundle, it suffices by naturality
to check this when L is the universal line bundle over CP∞. But then applying
naturality one more time, it suffices to check it when L is the tautological bundle
over CP 1. We use the connection on L induced by the standard embedding of L into
the trivial rank 2 bundle (see Example A.1.12). Recall that the local connection
matrices for this connection are

ΩU =
z̄ dz

zz̄ + 1
and ΩV =

w̄ dw

ww̄ + 1
.

See Example A.1.12 for notation; since these are 1× 1 matrices we omit the matrix
notation. The curvature form is given by

RU = dΩU − ΩU ∧ ΩU = dΩU
and similarly for RV = dΩV . Let us now compute:

RU = dΩU = d
( z̄

zz̄ + 1

)
∧ dz =

[
dz̄

zz̄ + 1
− z̄

(zz̄ + 1)2
(z̄dz + zdz̄)

]
∧ dz

=
−1

(zz̄ + 1)2
dz dz̄.

The same computation shows that RV = −1
(ww̄+1)2 dw dw̄, and if one wants one can

readily check that these two forms agree on U ∩V and hence patch together to give
a global 2-form R ∈ Ω2(CP 1; C) (this is a nice exercise!)

The class θ1(L) is the cohomology class in H2(CP 1; C) represented by R (which
is clearly a deRham cocycle). Therefore θ1(L) is a complex multiple of c1(L),
and we need to determine what the multiple is. To do this, recall that in the
conventions of geometers c1(L) is the generator of H2(CP 1; Z) satisfying c1(L) ∩
[CP 1] = −1 (where the fundamental class of CP 1 is the one determined by the
complex orientation). See Remark 6.4.2 for more information about this. So let us
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compute:

R ∩ [CP 1] =
∫

CP 1
R =

∫
U

RU =
∫

C

−1
(zz̄ + 1)2

dz dz̄

=
∫

R2

−1
(x2 + y2 + 1)2

(dx+ idy) ∧ (dx− idy)

=
∫

R2

2i
(x2 + y2 + 1)2

dxdy

= 2i
∫ 2π

0

∫ ∞

0

1
(r2 + 1)2

r dr dθ

= 4πi
∫ ∞

0

1
(r2 + 1)2

r dr

= 4πi · −1
2
· 1
r2 + 1

∣∣∣∣∣
∞

0

= 2πi.

We conclude that θ1(L) = R = −2πi · c1(L) as elements of H2(CP 1; Z).
We have now proven that θ1(L) = −2πic1(L) for any line bundle L → B.

To complete the proof let us consider θk(L). Note that if V is a one-dimensional
vector space then Hom(V, V ) is canonically isomorphic to C. It follows that for
any line bundle L, the bundle End(L) is trivial. The curvature form of L lies
in Ω2(B; End(L)), but we may identify this with Ω2(B; C). The wedge product
R ∧ · · · ∧ R of End(L)-valued forms becomes just the ordinary wedge product of
C-valued forms, and taking “trace” does nothing at all (i.e., the trace of a 1 × 1
matrix is just the matrix entry). We conclude that

θk(L) = tr(RL ∧ · · · ∧RL) = (RL)k = θ1(L)k = (−2πi)k · c1(L)k.

This completes the proof. �

Corollary 6.4.3. For any k, the class 1
(−2πi)k · θk(E) lies in the image of

H2k(B; Z) in H2k(B; C).

Proof. This follows from the basic topological fact that for any bundle E the
class k! · chk(E) lies in H2k(B; Z). The proof of this is as follows. Formally factor
the total Chern class c(E) as c(E) = (1+x1)(1+x2) · · · (1+xn) where n is the rank
of E. Then the kth Chern class of E is the kth elementary symmetric function in
the xi’s. The Chern character of E is

ch(E) =
∑
i

exi =
∑
i

(
1 + xi +

x2
i

2
+
x3
i

3!
+ · · ·

)
.

Therefore chk(E) = 1
k! · (x

k
1 + · · ·+xkn). The power sum xk1 + · · ·+xkn is a symmetric

polynomial in the xi’s, and it therefore can be written as an integral-coefficient
polynomial in the elementary symmetric functions. In other words, k! ·chk(E) is an
integral-coefficient polynomial in the Chern classes of E. Since the Chern classes
lie in H∗(B; Z), so does k! · chk(E). �

6.4.4. The Chern-Weil approach to characteristic classes. The follow-
ing is somewhat of an aside, but it seems worthwhile to explain how the above
results on characteristic classes fit in with the classical Chern-Weil approach.
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LetX = (xij) be an n×nmatrix of indeterminates over a field k of characteristic
zero. A polynomial P ∈ k[xij ] is called invariant if P (QXQ−1) = P (X) for every
invertible matrix Q with entries in k. Two evident examples are P (X) = tr(X)
and P (X) = det(X). Some less obvious examples are the sequences

tr(X), tr(X2), tr(X3), . . . and tr(X), tr(∧2X), tr(∧3X), . . .

Let InvP[n] denote the subring of k[xij ] consisting of the invariant polynomials.
Let P ∈ InvPC[n], and for convenience assume that P is homogeneous of degree

k. The polynomial P gives a characteristic class for rank n complex bundles in the
following way. For a bundle E → B, choose a connection D and let ΩU be the local
connection matrices over various open sets U covering B. One has the resulting
curvature matrices RU = (dΩU −ΩU ∧ΩU )T , and these are compatible in the sense
that RV = αRUα

−1 on U ∩V , where α is the transition function for E. If we apply
P to the previous formula then we get P (RV ) = P (RU ), and hence these forms
patch together to give a global form P (R) ∈ Ω2k(B; C). With a little work one can
see that these are deRham cocycles, and that the cohomology class [P (R)] does not
depend on the choice of connection or local trivialization. In this way we obtain
characteristic classes. (Note that it is important that the matrix entries of RU are
2-forms, and hence commute with each other; this guarantees that P (RU ) has an
unambiguous interpretation).

Once one stumbles on this idea, the obvious next step is to determine the
complete ring of invariant polynomials. It turns out this is not hard. If λ1, . . . , λn
denote the eigenvalues of X in some algebraically closed field extension of k(xij),
every symmetric function in the λi’s is an invariant polynomial (because conjugating
X will not change the eigenvalues). That is, we have a map

φ : k[λ1, . . . , λn]Σn → InvP[n].

Note that this map sends the power sum λr1 + · · ·+ λrn to tr(Xr), whereas it sends
the rth elementary symmetric function σr(λ1, . . . , λn) to tr(∧rX).

Proposition 6.4.5. The map φ is an isomorphism, and so InvP[n] is a poly-
nomial ring over k in n variables. One has

InvP[n] = k[tr(X), tr(X2), . . . , tr(Xn)] = k[tr(X), tr(∧2X), . . . , tr(∧nX)].

Note that the generators tr(∧rX) are in some sense more fundamental then
the generators tr(Xr), because of the connection with the ring of invariants
k[λ1, . . . , λn]Σn . When one works over Z rather than a field, this ring of invari-
ants is generated by the elementary symmetric functions but is not generated by
the power sums: that is, the power sums are integral polynomial expressions in the
elementary symmetric functions, but the elementary symmetric functions are only
rational polynomial expressions in the power sums.

The rth Chern class cr(E) of a bundle E → B is defined to be the characteristic
class associated to the invariant polynomial

Pr(X) =
1

(−2πi)r
tr(∧rX) =

1
(−2πi)r

· σr(λ1, . . . , λn).

The normalization constant is there to make this definition coincide with the topo-
logical Chern classes which lie in integral cohomology. Let us write sr(E) for the
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characteristic class associated to the invariant polynomial

Sr(X) =
1

(−2πi)r
tr(Xr) =

1
(−2πi)r

· (λr1 + · · ·+ λrn).

It is easy to determine the relationship between the sr classes and the Chern classes,
by writing the power sums as polynomial expressions in the elementary symmetric
functions. For instance,

λ2
1 + · · ·+ λ2

n = σ2
1 − 2σ2

and therefore
s2(E) = c1(E)2 − 2c2(E).

Note that we have s1(E) = c1(E). As an exercise, the reader may work out that
s3(E) = c1(E)3 − 3c2(E)c1(E) + 3c3(E).

The class θr(E) defined in the last section is the characteristic class associated
to the invariant polynomial tr(Xr). That is to say, sr(E) = 1

(−2πi)r θr(E). This
follows directly from Proposition 6.4.1.

6.4.6. Bundles with flat connection and Chern-Simons forms. Now
suppose that our bundle E → B admits a flat connection D. The curvature form
of such a connection is identically zero (by definition), and therefore θk(D) = 0. It
then follows that θk(D+A) represents the zero cohomology class, for any connection
potential A. So θk(D +A) is the coboundary of some (2k − 1)-form on B. With a
little work it turns out that one can write down an explicit (2k− 1)-form that does
the job. These are the so-called Chern-Simons forms, which can be thought of
as secondary characteristic classes for flat bundles. We will derive these next.

Consider the 1-parameter family of connection potentials As = sA for s ∈ [0, 1].
The FAs = dAs +As ∧As = s(dA) + s2(A ∧A). We observe that

θk(A) = θk(A)− θk(0) =
∫ 1

0

d

ds
tr(Fs ∧ · · ·Fs) ds

= k

∫ 1

0

tr
(dFs
ds
∧ F∧(k−1)

s

)
ds (cyclic property)

= k

∫ 1

0

tr
(
(dA+ 2s(A ∧A)) ∧ (sdA+ s2A ∧A)∧(k−1)

)
ds

= k

∫ 1

0

sk−1 tr
(
(dA+ 2sA ∧A) ∧ (dA+ sA ∧A)∧(k−1)

)
ds.

Before attempting the general case let us look carefully at k = 2. Inside the
integral we are looking at the trace of

(dA ∧ dA) + 2s(A ∧A ∧ dA) + s(dA ∧A ∧A) + 2s3(A ∧A ∧A ∧A).

The last of these terms has zero trace, because A is a 1-form and therefore tr((A∧
A ∧ A) ∧ A) = − tr(A ∧ (A ∧ A ∧ A)). In general, any even wedge power of A will
be traceless. The middle two terms can be combined using the cyclic property of
the trace, and so we are looking at the trace of

(dA ∧ dA) + 3s(dA ∧A ∧A).

The cyclic property also implies that when k is even one has

tr(d(A∧(k))) = k · tr(dA ∧A∧(k−1)).
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We leave this as an exercise. Using this, we see that the trace inside our integral
coincides with

tr(d((A ∧ dA) + s(A ∧A ∧A))) = d(tr(A ∧ dA+ sA ∧A ∧A)).

So finally we have that

θ2(A) = 2 ·
∫ 1

0

s · d(tr(A ∧ dA+ sA ∧A ∧A))

= d

(
tr
(∫ 1

0

2s(A ∧ dA) + 2s2(A ∧A ∧A) ds
))

= d

(
tr
(
s2(A ∧ dA) +

2
3
s3(A ∧A ∧A)

]s=1

s=0

))

= d

(
tr
(
A ∧ dA+

2
3
A ∧A ∧A

))
.

We will write

CS3(A) = A ∧ dA+ 2
3A ∧A ∧A ∈ Ω3(B; End(E))

and likewise
cs3(A) = tr(CS3(A)) ∈ Ω3(B).

These are called Chern-Simons 3-forms. Note that cs3(A) is almost certainly not a
deRham cocycle; its coboundary is θ2(A), which need not be zero.

The above procedure can be carried out for any k, although the bookkeeping
becomes qute messy. The end result is the following. Define

csk(A) = tr
(∫ 1

0

A ∧ (Fs)∧(k−1) ds
)
∈ Ω2k−1(B).

Proposition 6.4.7. θk(A) = d(csk(A)) for any connection potential A.

Proof. This is an unpleasant computation that we leave to the reader. (In
these notes we will only ever use the case k = 2). �





Part 3

Quantum field theory and topology





CHAPTER 7

Quantum field theory and the Jones polynomial

7.1. A first look at Chern-Simons theory

Let G be a compact Lie group, let B be a 3-manifold, and let E → B be a
trivial G-bundle. Let D be the standard flat connection on the bundle. Let G be
the group of gauge transformations, which for a trivial bundle is just Map(B,G).
Let G0 ⊆ G be the connected component of the identity.

For a vector potential A we can consider the Chern-Simons 3-form CS3(A) =
A∧dA+ 2

3A∧A∧A. The trace of this 3-form lies in Ω3(B), and so we can integrate
it to get a real number. Define

L(A) = tr(A ∧ dA+ 2
3A ∧A ∧A) ∈ Ω3(B)

and
S(A) =

∫
B

L(A) ∈ R.

It turns out that this “action” functional is not invariant under gauge transforma-
tions. But it almost is; we will prove below that if g ∈ G then S(Ag) = S(A)+8π2n
for some n ∈ Z (the 8π2 comes from the integrality properties of the second Chern
class). Because of this, the expression eiS(A)/4π is invariant under gauge transfor-
mations.

Of course S(A) is not a topological invariant of the situation, it depends very
much on the choice of vector potential A. Witten had the idea of producing topolog-
ical invariants by taking all vector potentials at once and averaging them together
via a Feynman-type integral. This involves looking at integrals of the form∫

A

e
ikS(A)

4π DA and
∫

A

e
ikS(A)

4π ???? DA.

Here A = Ω1(B; g) is the space of all vector potentials, and k ∈ Z is a fixed integer
called the level. This integer k plays a role similar to 1

~ in the quantum theory.
In particular, as k gets large then the integral becomes wildly oscillatory and is
dominated by the critical points of S. The mystery box in the second integral
denotes some “observable” that we might be interested in.

At the moment, none of the above makes much sense. And even when we’re
done it still won’t make much sense, because the integrals will not be rigorously
defined. But eventually we will at least have an idea of what the basic issues are,
and what the above integrals are trying to capture.

7.1.1. Behavior under gauge transformations.

Proposition 7.1.2. If g ∈ G0 then S(Ag) = S(A).

159
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Proof. Let s 7→ gs denote a smooth path I → G such that g0 = 1 and g1 = g.

Define As = Ags = gsAg
−1
s + gsd(g−1

s ). We will prove that
d

ds

∣∣∣
s=0

S(As) = 0. ????

Set T =
d

ds

∣∣∣
s=0

gs. Differentiating the equation gs · g−1
s = 1 gives

T · 1 + 1 · d
ds

∣∣∣
s=0

g−1
s = 0,

so
d

ds

∣∣∣
s=0

g−1
s = −T . We conclude that

d

ds

∣∣∣
s=0

As = TA−AT +����T · d(id) + id ·d(−T )

�

Proposition 7.1.3. For any g ∈ G , S(Ag)− S(A) ∈ 8π2Z.

Proof. Set A0 = A, A1 = Ag, and As = sAg + (1 − s)A. Then As defines a
vector potential on the bundle E × I → B × I in the evident way; that is, we can
regard As as defining an element of Ω1(B × I; End(E × I)).

Now let us make a bundle Ẽ → S1 × B by gluing E × {0} to E × {1} via g.
Our vector potential As induces a corresponding potential Ã ∈ Ω1(B×S1; End(Ẽ).
Let F̃ be the curvature form corresponding to Ã. Then we have

tr(F̃ ∧ F̃ ) = θ2(Ã) = 2! · (2πi)2c2(Ẽ) = −8π2c2(Ẽ).

But c2(Ẽ) ∈ H4(B × S1; Z), and so
∫
B×S1 c2(Ẽ) ∈ Z. We conclude that∫

B×S1
tr(F̃ ∧ F̃ ) ∈ 8π2Z.

But ∫
B×S1

tr(F̃ ∧ F̃ ) =
∫
B×I

tr(F̃ ∧ F̃ ) =
∫
B×I

d(cs3(AI))

=
∫
B

cs3(A1)−
∫
B

cs3(A0)

= S(A1)− S(A0)

= S(Ag)− S(A).

�

7.1.4. Wilson loops and observables. Let γ : I → B be a closed path, and
let x = γ(0). The affine connection D + A gives a system of parallel transport
on our bundle, which gives us a linear map PAγ : Ex → Ex. Now let y be another
point on γ, and imagine going around the same loop but based at y. Let γ′ denote
this new path. So if α denotes the portion of the loop from x to y we can write
γα = αγ′. So

PAγ ◦ PAα = PAα ◦ PAγ′
or

PAγ′ = (PAα )−1 ◦ PAγ ◦ PAα .
In particular, we conclude from this that tr(PAγ ) = tr(PAγ′). So this trace only
depends on the loop, not on a starting point. We will write W (γ,A) for this trace.
Physicists call it a “Wilson loop”.
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If our bundle is a G-bundle and both D and A are G-connections, then PAγ will
be multiplication by an element g of G that is well-defined up to conjugacy. If R is
a finite-dimensional G-representation then we can look at

WR(γ,A) = trR(PAγ ),

by which we mean the trace of g acting on R. This does not depend on the choice
of g in its conjugacy class, or on a starting point for the loop γ.

Now fix a collection of loops γ1, . . . , γk inside of B, together with chosen G-
representations R1, . . . , Rk. One should imagine the γi’s as a collection of knots in
B, possibly linked together in complicated ways. From this data Witten proposed
to form a physicists’ expectation value:

〈WR1(γ1) · · ·WRk
(γk)〉 =

∫
A
WR1(γ1, A) · · ·WRk

(γk, A)e
ikS(A)

4π DA∫
A
e

ikS(A)
4π DA

.

Provided one can make sense of these Feynman integrals, one obtains invariants for
collections of knots inside of B.

There are two special cases that we will focus on in the upcoming sections. The
simplest case is when G = U(1) and all the Ri’s are the standard representation
of U(1) on C. When A is a U(1)-connection the Chern-Simons form simplifies,
because the A∧A∧A term vanishes (because U(1) is abelian, and therefore A∧A
vanishes). In this case the Feynman integrals, once suitably interpreted, recover
the classical linking numbers of the knots. We will review these invariants in the
next section.

The next interesting case is G = SU(2), where we take all the Ri’s to be
the standard representation of SU(2) on C2. In this case the knot invariants are
supposed to recover some form of the Jones polynomial.

7.2. Linking numbers and the writhe

Suppose we are given two oriented knots in R3. Pick a generic plane and project
the knots onto the plane to form a “knot diagram” such as the one shown below:

Let us divide the crossings in the knot diagram into two types, called positive and
negative, according to the scheme shown here:
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If we look at a knot crossing in such a way that the orientations of both strands
move from our chins to our foreheads, then a positive crossing is one in which the
top strand crosses from left to right; a negative crossing is one where the top strand
crosses from right to left. The knot diagram above has six crossings, three positive
and three negative.

Define the linking number of the two oriented knots by the formula

L(α, β) =
#(positive crossings) − #(negative crossings)

2
.

The number of positive crossings plus the number of negative crossings is the total
number of crossings, which must be even. From this it is clear that the linking
number is always an integer. It is not too hard to show that this is a topological
invariant of the linked knots.

Example 7.2.1. Given a pair of linked rings as shown below

the linking number is −1. For the knots depicted at the beginning of this section,
the linking number is zero (which demonstrates that the linking number is not an
absolute invariant for when two knots can be separated or not).

There are several alternative descriptions of the linking number which are also
useful. Pick an oriented surface D whose boundary is ∂D = α and which intersects
β transversely. Every point of intersection can be given a sign ±1 determined in
an evident way by how the orientations match up. The the linking number is the
total number of points in D ∩ β, where the points are counted with sign.

The linking number was first introduced by Gauss, who came to it through his
study of electromagnetism. Imagine that the knot β is a wire with a steady electric
current of unit strength flowing through it. This current generates a magnetic field,
and so one can consider the magnetic circulation around α: that is, consider the line
integral

∫
α
B · ds. We claim that (up to units) this is just the linking number. In

fact this is a direct consequence of Maxwell’s equations. We are in a static situation
where both E and B are not changing with time, so∫

α

B · ds =
x

D

J · n̂ dS

where we are leaving out physical constants and where D is any disk whose bound-
ary is α. Since the current has unit strength, it is clear that the double integral
on the right is just counting the number of times the wire crosses the surface of D,
with different crossing directions counted as ±1. This is the linking number.

Homological description of the linking number. From the standpoint of alge-
braic topology the easiest description is as follows. If K is any knot in S3, then the
homology gropu H1(S3 −K) is isomorphic to Z, with a generator given by a small
loop that circles around the “string” of the knot:

????
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This computation is usually done in basic algebraic topology texts as a simple
Mayer-Vietoris argument. Note that an orientation of the knot K can be used
to fix a generator of H1(S3 − K), e.g. by the right-hand-rule where the thumb
points along the oriented knot and the fingers curl around the knot specifying the
generator.

If L is another oriented knot in S3 that is disjoint from K, then L specifies a
1-cycle in H1(S3 −K). It is therefore an integral multiple of our chosen generator,
and this integer is clearly the linking number: essentially one is breaking L up into
“small loops around K” and “other stuff that doesn’t matter”, and adding up the
small loops with their correct signs.

Integral description of the linking number. One can also obtain the linking
number as the homological degree of a certain map. Define the so-called “Gauss
map” Φ(α, β) : S1 × S1 → S2 by the formula

(s, t) 7→ α(s)− β(t)
|α(s)− β(t)|

.

The degree can be computed by choosing a generic point p ∈ S2 and counting the
points in the preimage of p (where each point has a ±1 multiplicity). The point p
is a unit vector in R2, so consider the normal plane to p and project the knots onto
this plane. Points in the preimage of p correspond to crossings in the knot diagram
where the α strand is on top. One checks that the sign of the crossing coresponds to
whether Φ(α, β) is orientation-preserving or reversing near the corresponding point
of its preimage.

There are a number of ways of writing an integral formula for the linking
number. The easiest comes directly from the description as the degree of Φ(α, β).
If we temporarily let d denote this degree, then we can write

4π = Φ(α, β)∗(volS2 ∩[S2]) = Φ(α, β)∗
(
volS2 ∩ 1

dΦ(α, β)∗([S1 × S1])
)

= 1
d · Φ(α, β)∗(volS2) ∩ [S1 × S1]

= 1
d ·
∫
S1×S1

Φ(α, β)∗(volS2).

Since d is the linking number, we obtain the integral formula

L(α, β) =
1
4π

∫
S1×S1

Φ(α, β)∗(vol).

If r1 and r2 denote parameterizations of the two knots (we called these α and
β above), we claim the above integral can also be written as

L(K,L) =
1
4π

x 1
|r1 − r2|3

(r1 − r2) · (dr1 × dr2)(7.2.2)

=
1
4π

x

s,t

1
|r1(s)− r2(t)|3

[
r1(s)− r2(t)

]
·
(dr1
ds
× dr2

dt

)
(the first integral is really just shorthand for the second). To verify this claim we
have to compute Φ(α, β)∗(volS2). It’s easier if we factor Φ(α, β) into two maps

S1 × S1 g−→ R3 − 0 h−→ S2

where g(s, t) = r1(s)− r2(t) and h(v) = v
|v| . The messy part is computing h∗(vol).
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If A : I → R3 − 0 is a smooth path, an easy computation shows that

d

ds

(
A(s)
|A(s)|

)
=

1
|A(s)|3

[(
A(s) ·A(s)

)
A′(s)−

(
A(s) ·A′(s)

)
A(s)

]
.

If we write A(0) = p and A′(0) = u, then we have computed

(Dh)p(u) =
d

ds

∣∣∣∣∣
s=0

(
A(s)
|A(s)|

)
=

1
|p|3

[(
p · p

)
u−

(
p · u

)
p
]

=
1
|p|

[
u−

( p
|p|
· u
) p
|p|

]
.

Notice that up to scalar multiple this is the projection of u onto the plane perpen-
dicular to p.

Regarding S2 as embedded in R3 in the usual way, the volume form on S2 is
defined so that for two tangent vectors u and v at a point p, volp(u, v) is almost
just the norm of the cross product u × v. The “almost” comes from the fact that
one needs to add signs in places, since after all vol is supposed to be an alternating
tensor. The slick way to do this is via the formula

volp(u, v) = p · (u× v).
It follows that if p ∈ R3 − 0 and u, v ∈ R3 are tangent vectors at p, then

h∗(vol)p(u, v) =
p

|p|
·
[
(Dh)p(u)× (Dh)p(v)

]
=

p

|p|3
·

[[
u−

( p
|p|
· u
) p
|p|

]
×
[
v −

( p
|p|
· v
) p
|p|

]]

=
1
|p|3

[
p · (u× v)

]
.

The derivative of g is much easier to compute, and one has that at any point
the unit tangent vectors of the two S1’s map to dr1

ds and dr2
dt . We therefore have

computed that, at any point of S1×S1, Φ(α, β)∗(vol) evaluated on the two evident
unit tangent vectors gives the number

1
|r1(s)− r2(t)|3

[
r1(s)− r2(t)

]
·
(dr1
ds
× dr2

dt

)
.

This completes our derivation of the integral formula (7.2.2).
Physicists like to write the integral from (7.2.2) in coordinates, and it’s worth

doing this here so that it doesn’t seem as scary when coming across it in a physics
paper. For this we need the Levi-Civita ε symbol, which is used for writing out
the coordinates of a cross product. The Levi-Civita symbol consists of numbers
εijk ∈ {1,−1}, and is defined by ε123 = 1 and the criterion that ε be antisymmetric.
The reader may check that using this symbol one can write

(u× v)i =
∑

εijkujvk.

As another simple example, if A is a 3× 3 matrix then detA = εijka1ia2ja3k.
If we now write r1(s) = x(s) = (x1(s), x2(s), x3(s)) and r2(t) = y(t) =

(y1(t), y2(t), y3(t)), formula (7.2.2) becomes

L(K,L) =
1
4π

x 1
|x− y|3

(xi − yi)εijkdxjdyk.
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Linking numbers for links. Suppose now that K and L are oriented links in R3

that do not intersect (where a link is like a knot but can have many components).
We define the linking number of K and L by

L(K,L) =
∑
i,j

L(Ki, Lj)

where the Ki’s and Lj ’s are the different components of K and L.
Suppose that K and L are knots. Let K̃ be a link consisting of m copies of K

that are slightly perturbed to be disjoint from each other. Likewise, let L̃ be a link
consisting of r slightly perturbed copies of L. Note that L(K̃, L̃) = mr · L(K,L).

7.2.3. The writhe. For evident reasons the above definitions do not general-
ize to define a “self-linking number” for a single oriented knot α. Our experience
with intersection theory suggests that a self-linking number, if it exists, should be
the ordinary linking number of α and a knot obtained by α via a “small move-
ment”. The trouble is that there is no canonical choice of how to perform such a
movement, and different movements will lead to different linking numbers (this will
be explained further below).

The solution is to equip our knot with extra data, in this case a framing—a
nonzero section of the normal bundle of the knot. One can picture a framing as a
collection of arrows that point perpendicularly away from the knot at every point.
Framed knots are also called “ribbons”, for the evident reason. The idea is that
the framing specifies a “small movement” of α. If α is an oriented, framed knot
then we may define an invariant wr(α), called the writhe of α, to be the linking
number of α and a knot obtained by moving α a tiny bit in the direction specified
by the framing. A few remarks about this invariant:

• By changing the framing on a given knot, one can make the writhe equal
to any integer. To see this, imagine cutting out a small portion of the
framed knot and then “twisting” the framing through 360 degrees:

If one thinks of the framing as modelling a ribbon, this is literally putting
a full twist into the ribbon. It is not hard to see that the writhe of the
new framed knot differs by ±1 from the original writhe (depending on the
direction the framing was twisted), and so putting t twists in the framing
will produce a difference of ±t.

• Given a knot diagram, one can equip it with the so-called “blackboard
framing” that comes directly out of the paper (or the blackboard) at the
onlooker. For an oriented knot in the blackboard framing one can check
that

wr(α) = #(positive crossings)−#(negative crossings).

• The definition of the writhe can readily be applied to framed links as well
as framed knots. Let L be an oriented, framed link, and let K1, . . . ,Kn
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denote the components. Then one checks that

wr(L) =
∑
i 6=j

L(Ki,Kj) +
∑
i

wr(Ki).

The symbiosis of linking numbers and writhes in this formula makes it
clear that the writhe plays the role of a “self-linking number”.

7.2.4. Linking numbers and the Hopf invariant. Recall that π3(S2) ∼= Z.
The Hopf invariant is simply the name of a map π3(S2)→ Z giving the isomorphism.
For f : S3 → S2 we now give four different descriptions of the Hopf invariant H(f):

Version 1. Form the mapping cone of f , whereby a 4-cell is attached to S2 via
the map f . That is, Cf = S2 ∪f e4. Then H∗(Cf) is equal to Z in degrees 0, 2,
and 4, and chosen orientations of S2 and S4 yield generators x and y of H2(Cf)
and H4(Cf). Then x2 is an integral multiple of y, and the integer in question is
the Hopf invariant of the map f :

x2 = H(f) · y.
From this description it is not particularly clear that H is additive. But it is clear
that H(f) = 1 when f is the Hopf map, because the cone of the Hopf map is CP 2.
Verrsion 2. Let x ∈ C2(S2) be a singular cocycle representing a chosen generator
for H2(S2). The x∪ x is probably not zero, but it is certainly zero in cohomology:
so choose z ∈ C3(S2) such that x ∪ x = δz.

Consider f∗(x) ∈ C2(S3). This is also zero in cohomology, so f∗(x) = δa for
some a ∈ C1(S3). One computes that δ(a∪ δa) = δa∪ δa = f∗(x∪x) = f∗(z), and
so (a∪ δa)− f∗(z) is a cocycle. If [y] ∈ H3(S3) is a chosen generator, we therefore
have

[(a ∪ δa)− f∗(z)] = H(f) · [y]
for some integer H(f).

One readily checks that the integer H(f) does not depend on the choice of z
or the choice of a. For latter, if f∗(x) = δ(a′) then a − a′ is a 1-cocycle and so
a− a′ = δ(w) for some w ∈ C1(S3). We then have

(a ∪ δa− f∗(z))− (a′ ∪ δa′ − f∗(z)) = (a− a′) ∪ δa = δw ∪ δa = δ(w ∪ δa),
and thus [a ∪ δa− f∗(z)] = [a′ ∪ δa′ − f∗(z)].

The proof that this definition agrees with that of version 1 is purely homotopy
theoretic; it would be a bit of a diversion to give it here, but we include it as an
appendix.
Verrsion 3. Choose a point p in S2 such that the fiber f−1(p) is connected. Choose
a surface D in S3 with ∂D = f−1(p) (this is always possible). Orient D so that if
{u, v} is an oriented basis for a tangent plane then {u, v, u× v} is an oriented basis
on S3. The map f |D : D → S3 factors through D/∂D to give a map

D/∂D → S2.

Since D/∂D is an oriented 2-sphere, we can obtain an integer by taking the degree
of this map. This is the Hopf invariant H(f).
Verrsion 4. For each p in S2 consider the preimage f−1(p) in S3. For generically
chosen p this will give a link in S3. Note that f−1(p) cannot intersect f−1(q)
for p 6= q. From this it follows that the linking number L(f−1(p), f−1(q)) will not
depend on the choice of p and q—moving q around, the preimage twists and contorts
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itself but since it never crosses f−1(p) the linking number will never change. This
linking number is the Hopf invariant of f :

H(f) = L(f−1(p), f−1(q)) for generically chosen p and q in S2.

Version 5. Assume that f is smooth. Then f∗(volS2) is a closed 2-form on S3,
and since H2(S3) = 0 this means that f∗(volS2) = dA for some A ∈ Ω1(S3; R).
Then define

H(f) =
∫
S3
A ∧ dA ∈ R.

From this perspective it is not so clear that H(f) is an integer!
Note that this definition is a direct analog of the one from Version 2, except

applied to de Rham cohomology rather than singular cohomology. In the de Rham
theory one has volS2 ∪ volS2 = 0 on the nose, not just in cohomology, and so one
can avoid the choice of z that was needed for the singular theory. The fact that
the above integral is independent of the choice of A ∈ Ω1(S3; R) follows just as in
Version 2. We can also phrase the argument slightly differently: if dA = dA′ then∫

S3
A ∧ dA−

∫
S3
A′ ∧ dA′ =

∫
S3

(A−A′) ∧ dA =
∫
S3
d
(
(A−A′) ∧A

)
= 0

where the last equality is by Stokes’s Theorem.

7.3. Polyakov’s paper

Witten’s paper relies on a paper by Polyakov [P] on linking. John Baez has
posted some notes that explains some of the things going on in Polyakov’s paper.
The examples given involve the study of magnets. In any piece of iron each atom
has a specific spin, i.e. for each atom one can associate a specific unit vector in a
particular direction. If all of the spins of the atoms in a piece of iron line up then
you will have a magnet.

In two dimensions this can be modeled by a map

I2 −→ S2

where each point x ∈ I2 is mapped to its spin vector. It will be useful to assume
all of the spins on the boundary are lined up. So we can think of our map as

I2/∂I2 −→ S2

i.e. S2 → S2. These maps are classified up to homotopy by their degree. What
would maps of degree k look like for a given k? A degree 0 map would be the case
in which each of the spins of elements in I2 was lined up. A degree one map, in
this model, woud look something like
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This is somewhat hard to draw, but the idea is that as moving inward from the
boundary the arrows rotate downwards, toward the center, until at the center they
are pointing directly down. A map of degree −1 map would be the same kind of
thing, but the spins would rotate outward. For a degree k > 0 map we would have
the arrows rotating uniformly so that by the time they reached the center they had
completed k/2 complete rotations.

Now, as topologists we know that a degree 0 map is the same (up to homotopy)
as the sum of a degree 1 map and a degree −1 map. This sum can be depicted as
follows:

Physicists look at this picture and think that it reminds them of a particle and
an antiparticle, which can annihilate each other thereby leaving nothing. When
thought of this way, the maps S2 → S2 are called something like “topological
solitions”.

The states of our spin system are maps S2 → S2. So what are the paths
between states? We can draw such a path as something like this:

[Insert picture of a path between states]
Here we imagine the third (vertical) dimension as time with the states being equal
on the top and bottom and an electromagnetic disturbance happening sometime in
the middle. Thus, paths between states are given by maps

I3/∂I3 = S3 → S2

In terms of the physics, given f ∈Map(S3, S2) we associate an S(f)-action. Phys-
ically acceptable f are f such that δS(f) = 0. Polyakov defines a new action by
adding a new term

Snew(f,A) = Sold(f) +
θ

16π2

∫
S3
A ∧ dA

where Sold(f) is the action we have previously defined. This new term measures
the linking between the particle and antiparticle,

[Diagram of interlinking particles]
Here states are maps S2 −→ S3 along with a 1-form on S3 such that dA =
f∗(V olS2). Observe that the extreme points of Sold are equal to the extreme points
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of Snew, which means the new added term doesn’t effect the “basic physics.” Quan-
tum mechanics gives us ∫

e
i
~Snew(F,A)

We now have phase changes in the exponentials. In other words
[Insert Two diagrams of intertwined particles]

Polyakov’s point is to introduce these phase changes which give rise to proba-
bility computations which in turn should give rise to something good.

7.4. The Jones Polynomial

For every oriented link of a knot, L, we associate a rational function VL(q) such
that the following holds
1. V0 = 1
2. VK ‘

L = VK · VL
3.

[Insert Skein relation ]
The last relation is called the Skein relation. The rules above allows one to define
V for any knot.

Example 7.4.1. Consider the trefoil knot.
[Insert Skein relation for link of trefoil]

We can then repeat this process to compute VL completely.

The hard thing to see is that these processes always gives the same answer.
Witten wanted to give some explanation as to why this worked.

Let G = SU(n), Ri = Cn be the standard representation, and M be a closed
oriented framed 3 manifold

[Insert picture of manifold with loops]
We define

Zγ1,...,γr (M) =
∫
A

w(γ1, A) · · ·w(γr, A)eki/4πDA

If M has a boundary then we can associate to it a hilbert space H∂M and
Zγ1,...,γr (M) ∈ H∂M . We have the following fact

H∂M =

{
1 dimensional if ∂M = S2 with no points
2 dimensional if ∂M = S2 4 marked points

[Insert picture of M = S3 with loops]
If we focus in on a specific crossing and cut M across the crossing

[Insert picture of two manifolds with boundary; left, ML, and right, MR.]
Now Z(ML) ∈ H∂ML

and Z(MR) ∈ H∂MR
. The orientation on M gives us the

identification H∂MR
∼= H∗∂ML

and

Z(M) = 〈Z(ML), Z(MR)〉 = Z(MR)(Z(ML))

Consider the following
[Insert pictures of various intertwinings of loops on boundary, MR, MR′ , and MR′′ ]
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Now Z(MR), Z(MR′), Z(MR′′) ∈ H∗∂ML
and H∗∂ML

is a 2 dimensional space, which
implies Z(MR), Z(MR′), Z(MR′′) are linearly dependent. Thus we have a relation

αZ(MR) + βZ(MR′) + γZ(MR′′) = 0

for α, β, γ ∈ C, which gives rise to the skein relation

αZ(M) + βZ(M ′) + γZ(M ′′) = 0

Hence for any given link in M one can perform the skein relation over and over
again and see that Z(M) is a rational function in α, β and γ.



CHAPTER 8

Quantum field theory

8.1. Introduction to functional integrals

8.1.1. A differentiation problem. Let B be a symmetric n × n matrix,
and consider the function Q : Rn → R given by Q(x) = ex

TBx. Given a sequence
i1, . . . , ik of not-necessarily-distinct numbers from {1, . . . , n}, we wish to determine
a formula for

∂k

∂xi1 · · · ∂xik

(
ex

TBx
)
.

For convenience we will just write ∂j = ∂
∂xj

.
First note that

∂j(ex
TBx) = ex

TBx ·
[∑
k

xkBk,j +
∑
k

Bj,kxk

]
= ex

TBx ·
[
2
∑
k

Bj,kxk

]
= ex

TBx ·
[
2(Bx)j

]
.

Here we have used that B is symmetric, and we are writing (Bx)j for (Bx)j,1. For
two derivatives we have

∂k∂j(ex
TBx) = ex

TBx ·
[
4(Bx)k(Bx)j + 2Bj,k

]
and for three derivatives the formula becomes

∂l∂k∂j(ex
TBx) = ex

TBx·
[
8(Bx)k(Bx)j(Bx)l+4Bj,k(Bx)j+4Bk,l(Bx)j+4(Bx)kBj,l

]
.

It is not hard to see the pattern here. First note that the powers of 2 are easy
to predict: one should imagine that every time a “B” appears it comes with a “2”
attached. In general we will have

∂i1 · · · ∂im(ex
TBx) = ex

TBx ·
[
????

]
where inside the brackets is a sum in which each term has an appropriate power
of 2 and a product of things that look like either (Bx)i or Br,s. To keep track of
the terms one can imagine graphs whose vertices are i1, i2, . . . , im and where every
vertex is attached to at most one edge (and where there are no loops). These are
simply graphs where some vertices are paired together are some vertices are free.
[Note: If the set of numbers i1, . . . , im has repetitions it is important that the vertex
set also have repetitions]. One readily checks that the general formula is

∂i1 · · · ∂im(ex
TBx) = ex

TBx ·
∑
Λ

[
2#f(Λ)+#E(Λ) ·

∏
i∈f(Λ)

(Bx)i ·
∏

e∈E(Λ)

Be0,e1

]
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where the sum runs over all graphs Λ. Here E(Λ) denotes the edge set of Λ, e0
and e1 are the vertices of the edge e, and f(Λ) is the set of free vertices of Λ (the
vertices that are not attached to an edge).

Let’s try an example. To compute ∂2
1∂2∂3(ex

TBx) we first make a list of the
appropriate graphs. The vertex set will be {1a, 1b, 2, 3} (we write 1a and 1b to
distinguish the two different vertices corresponding to the index 1). There is exactly
one graph with no edges,

(
4
2

)
= 6 graphs with one edge, and for two edges we have

the following three graphs:
?????

We can immediately write down the following formula:

∂i1 · · · ∂im(ex
TBx) =ex

TBx ·
[
16(Bx)1(Bx)1(Bx)2(Bx)3 + 8B1,1(Bx)2(Bx)3

+ 8B1,2(Bx)1(Bx)3 + 8B1,3(Bx)1(Bx)2 + 8B2,3(Bx)1(Bx)1

+ 4B1,1B2,3 + 4B1,2B1,3 + 4B1,2B1,3

]
(note that the last two terms are identical: we have not combined them to accen-
tuate that they came from two different graphs).

From our general formula we immediately deduce the following consequence,
known as Wick’s Theorem in the physics literature:

Proposition 8.1.2 (Wick’s Theorem). If m is odd then ∂i1 · · · ∂im(ex
TBx)

∣∣∣
x=0

=
0. If m is even then

∂i1 · · · ∂im(ex
TBx)

∣∣∣
x=0

= 2
m
2

∑
Λ

[ ∏
e∈E(Λ)

Be0,e1

]
where the graphs in the sum run over all complete pairings of the vertex set
{i1, . . . , im} (that is, graphs where every vertex belongs to exactly one edge).

Believe it or not, the graphs that we are seeing in Wick’s Theorem are the
beginning of Feynman diagrams!

Exercise 8.1.3. When m = 2r, prove that the number of graphs Λ appearing
in the sum from Wick’s Theorem is equal to 1

2r · (2r)!
r! . Prove that this number

equals (m − 1)(m − 3)(m − 5) · · · 3 · 1. So when m = 8 there are 105 terms in the
sum.

8.1.4. Some elementary functional integrals. We want to eventually un-
derstand something about integrals of the form

Z =
∫

A

e
i
~S(γ)Dγ

where A is some infinite-dimensional space like a space of paths. Sometimes we will
have an “observable” T : A→ R and we would also like to calculate the expectation
value

〈T 〉 =
1
Z

∫
A

T (γ)e
i
~S(γ)Dγ.

Quantum field theory is largely about computing these kinds of integrals.
In this section we will explore analagous integrals where A = Rn. We will

assume that S, T : Rn → R are polynomial functions. It will suffice to assume that
T has the form T (x) = xi1xi2 · · ·xim for not-necessarily-distinct indices i1, . . . , im.
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To get started, let us recall how these computations are done for the basic
Gaussian case where S(x) = xTAx and A is positive-definite. There we know that

Z =
√

(2π~i)n

detA . The trick for finding 〈xi1 · · ·xim〉 is to realize that∫
Rn

xi1 · · ·xime
i
~S(x)dx =

∂m

∂ji1 · · · ∂jim

∫
Rn

e
i
~S(x)+j1x1+j2x2+···+jnxn dx.

We know by completing the square that∫
Rn

e
i
~S(x)+Jx dx = Z · e− h

2iJ
TA−1J

for any n× 1 matrix J . So

〈xi1 · · ·xim〉 =
∂m

∂ji1 · · · ∂jim
e−

h
2iJ

TA−1J

∣∣∣∣∣
J=0

.

Now consider a more general action functional, of the form

S(x) = S(0) + xTAx + higher order terms

where A is a symmetric, positive-definite n × n matrix. We might as well assume
S(0) = 0, since otherwise this just adds a scalar coefficient to the integral. Write
M(x) for the higher-order-terms, so that we have S(x) = xTAx +M(x). Then

e
i
~S(x) = e

i
~ xTAx · e i

~M(x) = e
i
~ xTAx ·

[
1+

i

~
M(x)− 1

2~2
M(x)2− i

6~3
M(x)3 + · · ·

]
The expression in brackets is just a power series in the xj ’s, therefore we know how
to integrate it term by term against the quadratic e

i
~ xTAx. Let us write ZA and

〈T 〉A for the partition function and expectation values computed with respect to
S(x) = xTAx. Then we observe that

Z = ZA ·
[
1 +

i

~
〈M(x)〉A −

1
2~2
〈M(x)2〉A −

i

6~3
〈M(x)3〉A + · · ·

]
.

As an example, let us assume that we only have cubic terms in M(x). We can
write

M(x) =
∑
i,j,k

Cijkxixjxk

where C is symmetric in the three indices: Cijk = Cσ(i)σ(j)σ(k) for any permutation
σ of three elements. Wick’s Theorem tells us that 〈M(x)〉A = 0 (because 3 is an
odd number), and likewise for all the odd powers of M(x).
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APPENDIX A

Background on differential geometry

A.1. Introduction to connections

Recall the definition of an affine connection:

Definition A.1.1. Let E → B be a smooth vector bundle with B a smooth
manifold. An affine connection on E is an assignment

Γ(TB)× Γ(E)→ Γ(E), (X, s) 7→ DXs

having the following properties:
(1) Da1X1+a2X2(s) = a1DX1(s) + a2DX2(s), for any a1, a2 ∈ C∞(B), X1,X2 ∈

Γ(TB).

(2) DX(s+ t) = DX(s) +DX(t) for any s, t ∈ Γ(E).

(3) DX(f · s) = (∂Xf) · s+ f ·DX(s) for any smooth map f : B → R.

A.1.2. Local properties of connections.

Proposition A.1.3. (DXs)(b) only depends on X(b) and the values of s along
a curve, defined in a neighborhood of b, with X(b) as tangent vector.

Proof. We first argue that if X vanishes in a neighborhood of b, then
[DXs](b) = 0. Let U ′ ⊂ U be a neighborhood of b such that U ′ ⊆ U . Choose
a function f : B → R such that f(U ′) = 0 and f(B − U) = 1. Then X = f · X,
and so DXs = DfXs = f · (DXs). Evaluating at b and using f(b) = 0, we get
[DXs](b) = 0.

If X and X′ are vector fields that agree within a neighborhood of b, then DXs−
DX′s = DX−X′s and by the previous pargraph this vanishes at b. We might say
that [DXs](b) only depends on the local properties of X near b.

The same argument shows that if s and s′ are sections that agree within a
neighborhood of b, then [DXs](b) = [DX′s](b).

Now assume that X is a vector field such that X(b) = 0. Let e1, . . . , en be
sections of TB that give a local basis at b, and write X =

∑
j fjej within a neigh-

borhood of b. Note that fj(b) = 0, for all j. But then

[DXs](b) = [DP
fjej

s](b) =
∑
j

fj(b) · [Dejs](b) = 0.

Again, linearity in the X variable now shows that if X(b) = X′(b) then
[DXs](b) = [DX′s](b). If v = X(b), we will for the rest of the proof write [Dvs](b)
instead of [DXs](b).

Finally, suppose that γ : [−1, 1]→ B is a smooth curve such that γ(0) = b and
γ′(0) = v. Suppose that s ◦ γ vanishes in a neighborhood of b. Let e1, . . . , ek be

177
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a basis of local sections for E near b, are write s(x) =
∑
j fj(x)ej(x) where the fj

are smooth, real-valued functions (defined in a neighborhood of b). Then

[Dvs](b) =
∑
j

[
(∂vfj)(b)ej(b) + fj(b)[Dvej ](b)

]
.

But each fj vanishes along γ is a neighborhood of b, so both fj(b) and ∂vfj(b) will
be zero. Hence [Dvs](b) = 0.

As usual, the above paragraph implies that if s and s′ are two sections that
agree along γ then [Dvs](b) = [Dvs

′](b). �

Remark A.1.4. Because of the above proposition, the affine connection D can
be thought of as giving much more than just the pairing Γ(TB) ⊗ ΓE → ΓE. In
fact it gives us a way of making sense of Dvs(b) whenever v is a tangent vector at
b and s is a section defined on some smooth curve through b with tangent vector
v: one chooses a vector field X with X(b) = v and a global section S : B → E that
extends s (it is always possible to do both) and defines Dvs(b) to be [DXS](b). The
above proposition shows that this construction is independent of the choices. Our
main use of this will be when s is a section defined on some neighborhood of b.

A.1.5. Connections on trivial bundles. Assume that s1, . . . , sn is a trivi-
alizing basis of sections for a bundle E → B. Given a connection D, then we can
write

[Dvsj ](b) = wj1(v)bs1(b) + wj2(v)bs2(b) + · · ·+ wjn(v)bsn(b)
for uniquely-defined real numbers wjk(v)b. We will usually write this more suc-
cinctly as

Dsj = wj1s1 + · · ·+ wjnsn.(A.1.6)

Note that each wjk is a 1-form on B: it takes a point b ∈ B and a tangent vector
v at that point, and outputs a real number.

Define Ω to be the matrix of 1-forms (ωjk). This is called the connection
matrix for D with respect to the basis s1, . . . , sn.

One can in fact check that any matrix of 1-forms defines an affine connection on
E, via the formulas above. More precisely, given Ω we define an affine connection
D as follows. Given a section χ =

∑
j χjsj , we define

Dvχ =
∑
j

(∂vχj)sj +
∑
j,k

χjwjk(v)sk.

Note that this is just a matter of starting with (A.1.6) and forcing the Leibniz Rule.
One readily checks that D is indeed an affine connection.

In the case when Ω is the zero matrix, the associated connection is called the
standard flat connection on E. To be completely clear, this is the connection
given by

DX(χ) =
∑
j

(∂Xχj)sj .

Note that this depends on the chosen trivialization, however—so the use of the
word “standard” can seem misleading. This is the unique connection satisfying
DX(sj) = 0 for all j and X.

The upshot of this discussion is that we know all possible connections on a
rank n trivial bundle. Once you pick a trivialization, they correspond to elements
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of Ω1(B; Rn2
) (note that this can be canonically identified with the space of n× n

matrices whose entries are in Ω1(B; R)). We can think of Ω1(B; Rn2
) as representing

the “space of all connections” on the bundle E.
As always in linear algebra, it is useful to know what happens when one changes

basis:

Proposition A.1.7. Let e1, . . . , en and s1, . . . , sn be two trivializing bases for
E. Given a connection D on E, let Ωe and Ωs be the connection matrices with
respect to the e-basis and s-basis, respectively. Write ej =

∑
αijsj, where the αij

are smooth functions B → R. Then

Ωe = (dα)α−1 + αΩsα−1.(A.1.8)

In differential geometry half the battle is figuring out what the statements
actually say. In the above proposition, α is an n×n matrix of C∞ functions. Then
α−1 is another n × n matrix of C∞ functions, which can for instance be obtained
from α by the usual formula using the classical adjoint. Note that (α−1)jk 6=
(αjk)−1, so one must really be careful to pay attention to context when parentheses
are dropped.

The symbol Ωs is an n× n matrix of 1-forms, and αΩsα−1 denotes the matrix
of 1-forms whose (j, k) entry is

∑
p,q αjpω

s
pq(α

−1)qk. Likewise, dα must mean the
matrix of 1-forms obtained by applying d to each entry in α. Then (dα)α−1 is the
matrix whose (j, k)-entry is

∑
p dαjp · (α−1)pk. So the proposition says that

ωejk =
∑
p

dαjp · (α−1)pk +
∑
p,q

αjpω
s
pq(α

−1)qk.

Proof of Proposition A.1.7. It will be convenient to use Einstein sum-
mation convention in this proof. So we will write ej = αjksk, and inversely
su = (α−1)uvev. We now just calculate:

ωejm(v)em = Dvej = Dv(αjksk) = (∂vαjk) · sk + αjkDvsk

= (∂vαjk) · sk + αjkω
s
kl(v)sl

= (∂vαjk) · (α−1)kmem + αjkω
s
kl(v)(α

−1)lmem.

We see immediately that ωejm = dαjk · (α−1)km+αjkω
s
kl(α

−1)lm, which is what we
wanted. �

The transformation law of (A.1.8) is very important in the theory of connec-
tions, as we will begin to see in the next section.

A.1.9. Constructing connections on general bundles. Here are some of
the most useful ways for constructing connections on a bundle E → B:
(1) Pick local trivializations for the bundle, choose connections on each piece, and

make sure they patch together correctly.
(2) Pick local trivializations and connections on each piece, then “average them”

together using a partition of unity to make a global connection.
(3) Realize the bundle as a retract of some other bundle E → B that already has

a connection on it.
(4) Start with a connection on E that one already has, and alter it to make a new

connection on E.
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For the method of (1), imagine that U and V are open sets in B over which
the bundle is trivial. Let u1, . . . , un and v1, . . . , vn be a basis of sections defined
on U and V , respectively. A connection on E|U → U is specified by a connection
matrix ΩU of 1-forms on U , and likewise a connection on E|V → V is specified by
a matrix ΩV of 1-forms on V .

On the overlap U ∩V we may write vi =
∑
αijuj . Based on Proposition A.1.7,

the connections on E|U and E|V patch together to give a connection on E|U∪V if
we have ΩV = (dα)α−1 + αΩUα−1 on U ∩ V .

In general, one has a trivializing cover {Uσ}, a basis of sections sσ defined on
each element of the cover, and matrices Ωσ of 1-forms on Uσ. These patch together
to give a connection on the bundle E if the compatibility condition (A.1.8) is
satisfied for every pair of indices σ and σ′. Of course this may be a lot to check in
practice, and constructing connections in this way is of somewhat limited use. It is
also not immediately clear whether the construction is possible for any bundle.

Method (2) is based on the observation that if D and D′ are connections on a
bundle then so is tD + (1 − t)D′, for any t ∈ R. This is a very easy check which
we leave to the reader. Note that although we haven’t yet introduced a “space” of
connections, this observation suggests that once we do have such a space it will be
contractible (or even more, convex in some sense).

Pick a trivializing cover {Uσ} for the bundle E → B, and pick connections Dσ

for each E|Uσ → Uσ. Choose a partition of unity {ψσ} suppordinate to this cover,
and define D =

∑
σ ψσDσ. One readily checks that D is a connection on the bundle

E. We have therefore proven:

Proposition A.1.10. Every bundle admits a connection.

Although the above construction works, it would not be at all pleasant to use
in practice. A more accessible construction is given by the next method.

The method of (3) hinges on the following simple result:

Proposition A.1.11. Suppose that E ↪→ E is a subbundle which admits a
bundle retraction r : E→ E. Then a connection D on E induces a connection D on
E by the formula

Dv(s) = r[Dv(s)].

Proof. Easy. �

For example, suppose that E is a bundle with a metric on it, and E ⊆ E is a
subbundle. Then orthogonal projection gives a retraction E→ E, and therefore any
connection on E induces one on E. As any bundle over a compact CW-complex can
be embedded in a trivial bundle (and such a trivial bundle can of course be given a
metric), this method also guarantees the existence of connections on bundles over
such spaces.

To demonstrate the efficacy of this method we offer the following example:

Example A.1.12. Consider the tautological line bundle L → CP 1. This em-
beds into a rank 2 trivial bundle in the usual way: points of L are pairs (l, x) where
l is a line in C2 and x is a point on that line, and this representation exactly gives
an embedding L ↪→ CP 1 × C2.
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The bundle L is trivialized by the open cover {U, V } where U is the set of
points [z : w] with w 6= 0 and V is the set of points [z : w] with z 6= 0. Let z be the
standard complex coordinate on CP 1, so that really z is an abbreviation for the
point [z : 1]; likewise, use w as an abbreviation for the point [1 : w]. Note that on
the intersection of these two coordinate patches we have z = 1

w .
Trivializing sections over each piece of the cover are given by

sU (z) = (z, 1) and sV (w) = (1, w).

Note that on U ∩V we have sV = 1
z sU . Let α(z) = 1

z . Then by (A.1.8) one way to
specify a connection on L would be to give 1-forms (really 1×1 matrices of 1-forms)
ΩU and ΩV subject to the following transformation condition:

ΩV = (dα)α−1 + αΩUα−1 = − 1
z2 dz · z + ΩU = − 1

z dz + ΩU .(A.1.13)

Perhaps it is not so clear how to choose such a ΩU and ΩV , however.
Let us instead use method (3) to induce a connection on L via the embedding

L ↪→ CP 1 × C2. We give CP 1 × C2 the standard flat connection with respect to
the standard basis of C2. Recall that this means that if s = (s1, s2) is a section of
this bundle then

[Dvs](b) =
(
(∂vs1)(b), (∂vs2)(b)

)
.

We also give CP 1 × C2 the standard Hermitian metric.
Recall that for a unit vector u ∈ C2, projection onto the line spanned by u is

given by x 7→ (x · u)u. So if (a, b) ∈ C2 is an arbitrary nonzero vector, projection
onto the line spanned by (a, b) is given by

(z, w) 7→

[
(z, w) · 1√

aā+ bb̄
(a, b)

]
1√

aā+ bb̄
(a, b) =

1
aā+ bb̄

[
(z, w) · (a, b)

]
(a, b).

The induced connection on L is therefore given as follows. For the section sU we
have

[DvsU ](z) =

[
1

zz̄ + 1
(∂vz, 0) · (z, 1)

]
(z, 1) =

[
(∂vz)z̄
zz̄ + 1

]
(z, 1)

and so ΩU = z̄ dz
zz̄+1 for this connection. Likewise,

[DvsV ](w) =

[
1

ww̄ + 1
(0, ∂vw) · (1, w)

]
(1, w) =

[
(∂vw)w̄
ww̄ + 1

]
(w, 1)

and so ΩV = w̄ dw
ww̄+1 .

Because D is a connection on L, the patching equation (A.1.13) is automati-
cally satisfied. However, it is worth checking this by hand just to be assured that
everything is working as it should: use that w = 1

z , and therefore dw = − 1
z2 dz.

(Special thanks to Gustavo Granja for a useful conversation about this example.)

Example A.1.14. As a second example, consider the tangent bundle TS2 →
S2. The usual embedding S2 ∈ R3 gives an embedding to TS2 into the rank 3
trivial bundle. This induces a connection on TS2. If s is a section of TS2, write
s(p) = (s1(p), s2(p), s3(p)) for p ∈ S2 (using the embedding TS2 ↪→ S1 × R3). The
connection on TS2 is then given by

[Dvs](p) = πp(∂vs1(p), ∂vs2(p), ∂vs3(p))
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where πp denotes projection from R3 onto TpS2. This projection is given by the
formula πp(w) = w − (w · p)p, and using this we compute that if p = (x, y, z) then

[Dvs](p) =
[
(1− x2)∂vs1 − xy∂vs2−xz∂vs3, −xy∂vs1 + (1− y2)∂vs2 − yz∂vs3,

− xz∂vs1 − yz∂vs2 + (1− z2)∂vs3
]
.

The usefulness of this description is somewhat unclear, as it does not make use
of intrinsic coordinate systems on S2 or TS2 (both of which are two-dimensional
rather than three-dimensional).

Finally, we turn to method (4). The basic thing to notice is that if D and D′

are two affine connections on E → B, then D −D′ is C∞(B)-linear in the section
variable. In other words, (D −D′)X(fs) = f · (D −D′)Xs for all smooth functions
f : B → R. This is easy to see, as

(D −D′)X(f · s) = [(∂Xf) · s+ f ·DX(s)]− [(∂Xf) · s+ f ·D′
X(s)]

= f · (DX −D′
X)(s).

To paraphrase the above, (D−D′)X : Γ(E)→ Γ(E) is C∞(B)-linear. But it is
a general fact of bundle theory that any such C∞(B)-linear map must come from
a map of bundles. So we may regard (D −D′)X as a map E → E, or as a section
of End(E). The assignment

Γ(TB)→ Γ(End(E)), X 7→ (D −D′)X

is also C∞(B)-linear (because both D and D′ are C∞(B)-linear in the X-variable),
and so we actually have a bundle map TB → End(E). Call this bundle map A, and
regard it as an element of Γ(Hom(TB,End(E))). Finally, note the isomorphism

Hom(TB,End(E)) ∼= Hom(TB,R)⊗ End(E) = T ∗B ⊗ End(E)

so that the sections of this bundle are the 1-forms Ω1(B; End(E)). We will regard
A as belonging to this space.

The content of the above paragraph is perhaps overly obtuse, as we are not
actually doing anything substantial—we are just reorganizing information. If v is
a tangent vector to B at b then Av is the endomorphism Eb → Eb given as follows:
for p ∈ Eb, take any section s such that s(p) = b and send p to Dvs(b) −D′

vs(b).
While it seems that this depends on the choice of s, it actually does not. This
process describes our 1-form A ∈ Ω1(B; End(E)).

Elements of Ω1(B; End(E)) will be called connection potentials.

Proposition A.1.15. Fix a connection D0 on E → B. Then the set
of affine connections on E is in bijective correspondence with the vector space
Ω1(B; End(E)). To better illustrate the bijection it is useful to write

{space of affine connections on E} = D0 + {space of connection potentials.}

Proof. Above we showed the ⊆ inclusion: given any affine connection D,
then D − D0 is a connection potential. For the reverse direction, check that if
A ∈ Ω1(B; End(E)) then DX(s) = D0

X(s) + AX(s) is an affine connection. This is
easy, and left to the reader. �

Note, as a corollary, that the space of connections on E is contractible—because
Ω1(B; End(E)) is contractible, being a real vector space.
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Remark A.1.16. We have seen an incarnation of Ω1(B; End(E)) once before,
where it was a little simpler. If E is trivial of rank n, then choosing a basis
of sections for E allows us to identify End(E) with the trivial bundle of rank n2.
Then Ω1(B; End(E)) = Ω1(B; Rn2

), and this is precisely the space of all connection
matrices as discussed in Section A.1.5.

To get a sense of the above method for constructing affine connections, let us
consider an example.

Example A.1.17. Let B = S2 and E = TS2 be the tangent bundle. Let θ
and φ denote the usual spherical coordinates on S2, which give local coordinates
everywhere except the north and south poles. Write ∂θ and ∂φ for the associated
vector fields. These are depicted below:

x

y

z

∂φ

∂θ

∂φ

∂θ

A section of TS2 can be written (away from the poles) as

s(θ, φ) = s1(θ, φ) · ∂θ + s2(θ, φ) · ∂φ
An arbitrary affine connection on TS2 will then look like

(D∂θ
s) =

(
∂s1
∂θ

∂θ+
∂s2
∂θ

∂φ

)
+(Bs1(θ, φ)+Cs2(θ, φ))∂θ+(Es1(θ, φ)+Fs2(θ, φ))∂φ

(D∂φ
s) =

(
∂s1
∂φ

∂θ+
∂s2
∂φ

∂φ

)
+(Gs1(θ, φ)+Hs2(θ, φ))∂θ+(Is1(θ, φ)+Js2(θ, φ))∂φ

where the variables B through J denote smooth functions of θ and φ. Note that the
first terms in parentheses denote the standard flat connection with respect to the
basis ∂θ, ∂φ, whereas the later terms represent the connection potential A. Here

A∂θ
=
[
B C
E F

]
and A∂φ

=
[
G H
I J

]
,

where the matrices are interpreted as elements of End(TS2) defined away from the
poles, with respect to the basis ∂θ, ∂φ.

This is essentially all that we really know at this point, all that our general
machinery tells us so far. But to get a sense of how to put this information to
use, let’s ask a natural question. The bundle TS2 comes to us with a metric on
it, induced by the embedding S2 ↪→ R3. What is necessary for the above affine
connection to be compatible with the metric? That is, we want

∂v(s · t) = (Dvs) · t+ s · (Dvt)(A.1.18)

for all sections s and t of TS2.
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To recall how the metric works, we need to convert to Cartesian coordinates.
Recall that

x = cos θ sin θ, y = sin θ sinφ, z = cosφ.
Differentiating, we then find that

∂θ = [sin θ sinφ, cos θ sin θ, 0], ∂φ = [cos θ cosφ, sin θ cosφ,− sinφ].

So
∂θ · ∂θ = sin2 φ, ∂θ · ∂φ = 0, ∂φ · ∂φ = 1.

(Note that this conforms to our picture: the vectors ∂φ always have the same size,
but the vectors ∂θ get smaller as they approach the poles).

If we have sections s = s1∂θ+s2∂φ and t = t1∂θ+ t2∂φ, then s · t = s1t1 sin2 φ+
s2t2. Thus,

∂∂θ
(s · t) =

∂s1
∂θ

t1 sin2 φ+ s1
∂t1
∂θ

sin2 φ+
∂s2
∂θ

t2 + s2
∂t2
∂θ

.

We also compute that

(D∂θ
s) · t =

(∂s1
∂θ

+Bs1 + Cs2

)
t1 sin2 φ+

(∂s2
∂θ

+ Es1 + Fs2

)
t2

and
s · (D∂θ

t) = s1

(∂t1
∂θ

+Bt1 + Ct2

)
sin2 φ+ s2

(∂t2
∂θ

+ Et1 + Ft2

)
.

To guarantee (A.1.18) for all choices of s1, s2, t1, t2, we need B = F = 0, and
E = −C sin2 φ.

A similar computation of (A.1.18) for v = ∂φ shows that J = 0, I = −H sin2 φ,
and G = cotφ.

So there exists a 2-parameter family of connections that are compatible with
the metric. They look like

(D∂θ
s) =

(
∂s1
∂θ

∂θ +
∂s2
∂θ

∂φ

)
+ Cs2∂θ − Cs1 sin2 φ · ∂φ

(D∂φ
s) =

(
∂s1
∂φ

∂θ +
∂s2
∂φ

∂φ

)
+ (s1 cotφ+Hs2)∂θ −Hs1 sin2 φ · ∂φ

where C and H are arbitrary smooth functions of θ and φ.

A.2. Curvature

Given a connection D on a smooth bundle E → B, one can define an object
called the associated curvature. This may be described very loosely as follows. Let
b ∈ B and let v and w be two tangent vectors at b. Choose a coordinate system
on the manifold where moving each of the first two coordinates gives curves with
tangent vectors v and w. Let s be a vector in the fiber Eb. Using the curves of
our coordinate system, parallel transport the vector s in a “rectangle”: first in
the v-direction, then in the w-direction, then backwards in the w-direction, then
backwards in the v-direction. If one does this infinitesimally (whatever that means),
one gets a new vector in Eb. It turns out this construction is linear in s, thereby
giving a linear transformation Rv,w(b) : Eb → Eb. It also turns out to be alternating
tensorial in v and w—and so gives a 2-form in Ω2(B; End(E)). This entity is the
curvature 2-form corresponding to the bundle with connection (E,D).

There are different approaches to constructing this 2-form rigorously. All of the
methods involve cooking up some strange combination of symbols which turns out to
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be tensorial in all of the variables, but this tensorial nature is always just something
that falls out of a computation—it never seems intuitive from the beginning.

A.2.1. Method via the connection matrices. Suppose U ⊆ B is an open
set over which E is trivial, and let s1, . . . , sn be a basis of local sections for E over
U . We have seen that the connection on E|U is determined by a matrix Ωs, and
that if e1, . . . , en is another basis then the corresponding matrix Ωe is related by
the equation

Ωe = (dα)α−1 + αΩsα−1

where ei =
∑
αijsj .

Consider the expression Ks = dΩs−Ωs∧Ωs. First of all, what does this mean?
The first term, dΩs, can only mean the n×n matrix of 2-forms obtained by applying
d to each entry of Ωs. The term Ωs∧Ωs must then also be an n×nmatrix of 2-forms,
and it seems reasonable to imagine that it is given by (Ωs ∧Ωs)ij =

∑
k Ωsik ∧Ωskj .

We need to determine the relation betwen Ke and Ks. We first compute that

dΩe = d((dα)α−1 + αΩsα−1)

= −(dα)d(α−1) + (dα)Ωsα−1 + α(dΩs)α−1 − αΩsd(α−1).

Applying d to α·α−1 = I gives (dα)α−1+αd(α−1) = 0, or d(α−1) = −α−1(dα)α−1.
Using this, we have that

Ωe = (dα)α−1(dα)α−1 + (dα)Ωsα−1 + α(dΩs)α−1 + αΩsα−1(dα)α−1.

(If this looks truly awful to you, don’t worry—you are not alone, and things will
get better soon).

We next compute that

Ωe ∧ Ωe = ((dα)α−1 + αΩsα−1) ∧ ((dα)α−1 + αΩsα−1)

= (dα)α−1(dα)α−1 + (dα)Ωsα−1 + αΩsα−1(dα)α−1 + α(Ωs ∧ Ωs)α−1.

We find that there is some remarkable cancellation when we form dΩe − Ωe ∧ Ωe,
and we get

Ke = αΩsα−1 − α(Ωs ∧ Ωs)α−1 = αKsα−1.(A.2.2)

So when changing basis from s to e, the entity Ks changes in a very simple way.
This is the magic behind curvature!

Now let {Ui} be a collection of open sets in B that trivialize the bundle, let
si1, . . . , s

i
n be a basis of sections over each Ui, and let Ωi be the connection matrix for

D with respect to this basis. Let Ki = dΩi −Ωi ∧Ωi, which can either be thought
of as a matrix of 2-forms on Ui or as a 2-form on Ui with values in Mn×n(R). The
latter is a little better for our present purposes, because what we want to do is to
patch these local 2-forms together to make a global 2-form. Of course they don’t
patch together, for then we would have Ki|Ui∩Uj = Kj |Ui∩Uj and instead we have
the relation (A.2.2). But what (A.2.2) tells us is that if we regard Ki as a 2-form
on Ui with values in End(E) (which is the same as Mn×n(R) on Ui), then the forms
patch together. So we find the existence of a global 2-form

K ∈ Ω2(B; End(E)).

This K is called the curvature 2-form of the pair (E,D).
Of course this entire discussion begs a question: how did we decide to look

at the expression dΩ − Ω ∧ Ω in the first place? I don’t have a good answer to
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this, except to say that if one wrote down all possible ways of using Ω to make a
matrix of 2-forms (there aren’t many) then one would fairly quickly notice that this
particular combination results in lots of cancellation and a simple transformation
rule.

Remark A.2.3. WARNING: In some texts you will see the formula K = dΩ+
Ω∧Ω instead of the one we used. This seems confusing at first, for how could they
both be correct? The reason comes down to a subtle difference in notation. Recall
that our convention was

Dsi =
∑

ωijsj

and that Ω = (ωij). One could just as well have decided to write

Dsi =
∑

ω̃jisj

and have Ω̃ = (ω̃ji). Note that ωij = ω̃ji, or Ω = Ω̃T . Our curvature formula is
then

Kpq = dωpq −
∑
k

ωpkωkq = dω̃qp −
∑
k

ω̃kpω̃qk = dω̃qp +
∑
k

ω̃qkω̃kp

= [dΩ̃ + Ω̃ ∧ Ω̃]qp.

Note that the sign change is due to the ω̃ij ’s being 1-forms, which therefore anti-
commute. One could also write this key step as [Ω ∧ Ω]T = −ΩT ∧ ΩT .

If we were adopting the indexing convention of the w̃’s we would define K̃ =
dΩ̃ + Ω̃ ∧ Ω̃, and we would have to occasionally remember that this matrix is
the transpose of the matrix K that some other people use. Differential geometry
is filled with these kinds of differing indexing conventions, often leading to strange
sign changes. Once you’ve come to expect them they are somewhat less frustrating.

Remark A.2.4. Imagine that we have local coordinates x1, . . . , xr defined on
U . Then any 1-form on U may be written as

∑
i fidx

i where the fi are smooth
functions. In particular, we may do this simultaneously for every entry in the
matrix Ω. What results is an expression

Ω = Ω1dx
1 + Ω2dx

2 + · · ·+ Ωrdxr

where each Ωi is an n× n matrix of smooth functions. One readily computes that

dΩ =
∑
i,j

(∂iΩj)dxidxj =
∑
i<j

(∂iΩj − ∂jΩi) dxidxj

where ∂iΩj represents the matrix obtained by applying ∂
∂xi

to every entry of Ωj .
Likewise, one finds that

Ω ∧ Ω =
∑
i,j

ΩiΩjdxidxj =
∑
i<j

(ΩiΩj − ΩjΩi) dxidxj =
∑
i<j

[Ωi,Ωj ] dxidxj .

So
K = dΩ− Ω ∧ Ω =

∑
i<j

[
(∂iΩj − ∂jΩi)− [Ωi,Ωj ]

]
dxidxj .

For the moment, the above expression for K is just something of a curiosity. Instead
of focusing on each 2-form Kpq, we are focusing on the dxidxj components of all
those 2-forms together: and that is what (∂iΩj−∂jΩi)−[Ωi,Ωj ] tells us. In essence,
we can think of K either as a matrix of 2-forms or as a 2-form of matrices. Part of
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the challenge in learning this material is learning all the different ways of talking
about the same thing!

To close this first introduction to curvature, we give a computation where the
expression dΩ − Ω ∧ Ω ends up appearing naturally. Let X and Y be vector fields
on B. Start with DYsi =

∑
j ωij(Y)sj . Next calculate that

DXDYsi =
∑
j

DX(ωij(Y)sj) =
∑
j

[(
∂Xωij(Y)

)
sj + ωij(Y)DXsj

]
=
∑
j

[(
∂Xωij(Y)

)
sj +

∑
k

ωij(Y)ωjk(X)sk
]

=
∑
k

[
∂Xωik(Y) +

∑
j

ωij(Y)ωjk(X)
]
sk.

By symmetry one gets a formula for DYDXsi, and hence

DXDYsi −DYDXsi =
∑
k

[
(∂Xωik(Y)− ∂Yωik(X))+

∑
j

(ωij(Y)ωjk(X)− ωij(X)ωjk(Y))
]
sk.

Now recall that (α∧β)(u, v) = α(u)β(v)−α(v)β(u). So the term inside the second
sum is −(ωij ∧ ωjk)(X,Y). Provided that X and Y are vector fields associated to a
coordinate system x1, . . . , xr (that is to say, X = ∂xu and X = ∂xv for some u and
v), then ∂Xωik(Y) − ∂Yωik(X) is precisely (dωik)(X,Y) (this is a nice exercise, or
else see Exercise A.2.6(b) below for some hints). So we have

DXDYsi −DYDXsi =
∑
k

[
(dωik)(X,Y)− (Ω ∧ Ω)ik(X,Y)

]
sk

=
∑
k

(dΩ− Ω ∧ Ω)(X,Y)iksk.

This computation illustrates two important things. First, it shows us that
the matrix of 2-forms dΩ − Ω ∧ Ω has something to do with differentiating in two
different directions, and how that fails to commute. Secondly, it is telling us that
the matrix (dΩ− Ω ∧ Ω)(X,Y) should really be interpreted as an endormorphism:
it is the matrix for the transformation DXDY −DYDX. The next section takes up
this discussion in much more detail.

A.2.5. Constructing curvature in terms of iterated D operators. Let
B be a smooth manifold. A derivation on C∞(B) is an R-linear mapD : C∞(B)→
R such that D(fg) = (Df)g+f(Dg). A simple computation shows that if D and D′

are derivations then the commutator [D,D′] = DD′ −D′D is another derivation.
There is a map

Γ(TB)→ (Derivations on C∞(B)), X→ ∂X,

and this turns out to be an isomorphism. So if X and Y are vector fields on B,
there is a unique vector field which is the preimage of [∂X, ∂X]. We denote this
vector field by [X,Y]. Note that if f ∈ C∞(B) then

[fX,Y] = f [X,Y]− (∂Yf)X.
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This is a simple computation with differential operators:

∂fX∂Yg − ∂Y∂fXg = f · ∂X∂Yg − ∂Y(f · ∂Xg) = f · (∂X∂Y − ∂Y∂X)g − (∂Yf)∂Xg.

One important instance of this bracket construction is as follows. Suppose
that x1, . . . , xr are local coordinates on B, and let ∂1, . . . , ∂r be the associated
vector fields. Then one readily checks that [∂i, ∂j ] = 0 for all i, j (because partial
derivatives commute in Rn).

Exercise A.2.6. Let x1, . . . , xr and ∂1, . . . , ∂r be as in the preceding para-
graph. If U is a vector field on B, write U =

∑
ui∂i.

(a) Check that [U,V]i = ∂Uv
i − ∂Vui. In other words, [U,V] =

∑
i(∂Uv

i − ∂Vui)∂i.
(b) Let ω be a 1-form on B. Prove that

(dω)(U,V) = ∂Uω(V)− ∂Vω(U)− ω([U,V]).

(Hint: Write ω =
∑
fidx

i, so that ω(V) =
∑
fiv

i. Now just compute every-
thing by brute force.)

Let E → B be a smooth vector bundle with an affine connection D. We
consider the map

R : Γ(TB)⊗ Γ(TB)⊗ Γ(E)→ Γ(E)
defined via the formula

X⊗ Y ⊗ s 7→ DXDYs−DYDXs−D[X,Y]s = RX,Y(s).

Once again this is a formula that I am pulling out of my hat, without much mo-
tivation. I don’t know any way of thinking about this formula that immediately
calls out “Yes, this is the right thing to be looking at!” But there are a few things
I can say. First, we saw at the end of the last section that curvature should have
something to do with the commutator DXDY − DYDX. However, if our formula
only used this commutator then it would not be C∞(B)-linear in the variables
X and Y (this is an easy check)—in other words, it would not describe a tensor.
Upon realizing this, one might start looking around for terms to add to the formula
that guarantee the C∞(B)-linearity—and eventually one would stumble upon the
D[X,Y]-term. But secondly, one could almost guess this: looking at the computation
from the end of the last section, at a crucial stage we used a formula for (dω)(X,Y)
which we explained did not always hold. The version of that formula that does
always hold is Exercise A.2.6 above, and the extra term needed precisely comes
from [X,Y]. Finally, it is worth observing that when [X,Y] = 0 (e.g., when X and
Y are the coordinate vector fields from a Euclidean neighborhood) then the formula
for R really is just the commutator that came up in the last section.

Setting aside the question of motivation, we claim the amazing thing about the
formula defining R is that it is C∞(B)-linear in all three variables. We will mostly
leave the verifcation to the reader, but here is the first part:

RfX,Y(s) = DfXDYs−DYDfXs−D[fX,Y]s

= fDXDYs− (∂Yf)DXs− fDYDXs− fD[X,Y]s+ (∂Yf)DXs

= fDXDYs− fDYDXs− fD[X,Y]s

= fRX,Ys.

Since R is C∞(B)-linear in each variable, it comes from an associated map of
bundles R : TB⊗TB⊗E → E. By adjointness this is a map TB⊗TB → End(E),
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and one readily checks that it factors through
∧2(TB). So we may interpret R as

a bundle map
∧2(TB)→ End(E), or equivalently

R ∈ Γ(Hom(
∧2(TB),End(E))) ∼= Γ(Hom(

∧2(TB),R)⊗ End(E))

= Ω2(B; End(E)).

So we regard R as a 2-form on B with coefficients in End(E).
As always with defining differential forms, it can be a little obtuse trying to

figure out what this is really saying. Keep in mind that for every b ∈ B and tangent
vectors v, w ∈ TbB, then Rv,w(b) is a linear map Eb → Eb. And this is alternating
in the tangent vectors, so that Rv,w(b) = −Rw,v(b).

Let s1, . . . , sn be a local basis of sections for E. Since Rv,w is a linear transfor-
mation, we can represent it as a matrix

Rv,w(si) =
∑
k

[Rv,w]k,isk.(A.2.7)

(The choice of indexing comes from the convention of having matrices act on the
left). We will move symbols around from time to time, e.g. writing Rk,i(v, w) for
[Rv,w]k,i.

Given any independent tangent vectors v and w at b, we can find a coordinate
system x1, . . . , xr where ∂1(b) = v and ∂2(b) = w. Taking X = ∂1 and Y = ∂2,
the computation at the end of the last section shows that we have the equality
Rki(X,Y) = (dΩ − Ω ∧ Ω)ik(X,Y). That is, R = (dΩ − Ω ∧ Ω)T . (Note that we
could have avoided the transpose by adopting the opposite indexing convention in
(A.2.7)).

A.2.8. Expressing curvature in terms of a connection potential. Sup-
pose given a local basis of sections e1, . . . , en for E. Let x1, . . . , xr be local co-
ordinates on B, and ∂1, . . . , ∂r the corresponding vector fields. In the following
computation we will write i, j, k for elements of {1, . . . , r} and α, β, γ for elements
of {1, . . . , n}. Given a local section s of E, we will write s(x) =

∑
α s

α(x) · eα.
Let A denote a connection potential, and let D = D0 + A where D0 is the

standard flat connecion with respect to the basis e1, . . . , en (so really D is just a
connection on E|U where U is the open set on which our basis is defined). So

Dvs =
∑
α

(∂vsα) · eα +Av(s).(A.2.9)

It will be convenient to write

Av(eα) =
∑
β

Aβv,αeβ ,(A.2.10)

and so Av(s) =
∑
α,β(A

β
v,αs

α)eβ . Note that with this notation the matrix rep-
resenting Av, with respect to the basis e1, . . . , en, is the matrix (Av)β,α = Aβv,α
(where matrices act on the left). In other words, β corresponds to the row index
and α to the column. Below we will need a consequence of this, that the matrix
for the composition Aw ◦ Av has (β, α)-entry equal to Aβw,γA

γ
v,α (using Einstein

summation convention, as always).
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Write Dis as an abbreviation for D∂is. From (A.2.9) and (A.2.10) it follows
that

Dis =
∑
α

(∂isα) · eα +
∑
α,β

Aβi,αs
αeβ

and so in particular
Dieγ =

∑
β

Aβi,γeβ .

Based on these formulas we can now calculate

Rij(eβ) = DiDjeβ −DjDieβ −D[∂i,∂j ]eβ

= Di(A
γ
jβeγ)−Dj(A

γ
iβeγ)

= ∂i(A
γ
jβ)eγ +AγjβA

δ
iγeδ − (∂jA

γ
iβ)eγ −A

γ
iβA

δ
jγeδ

=
(
∂iA

γ
jβ − ∂jA

γ
iβ +AδjβA

γ
iδ −A

δ
iβA

γ
jδ

)
eγ

=
(
∂iA

γ
jβ − ∂jA

γ
iβ +AγiδA

δ
jβ −A

γ
jδA

δ
iβ

)
eγ

=
(
∂iA

γ
jβ − ∂jA

γ
iβ + (AiAj)

γ
β − (AjAi)

γ
β

)
eγ .

It follows at once that

Rij = ∂iAj − ∂jAi + [Ai, Aj ].(A.2.11)

Recall what everything means here. Each Ai is an n×n matrix of smooth functions,
and so all the terms on the right are also n × n matrices of smooth functions. So
equation (A.2.11) describes a 2-form on our open set with values in n× n matrices
(such matrices are the local form of End(E)). We may also write

R =
∑
i<j

(∂iAj − ∂jAi + [Ai, Aj ]) dxidxj .

Remark A.2.12. The reader might notice that we have seen this calculation
before, back in Remark A.2.4. However, the end result there was a similar-looking
formula involving Ω’s and a sign change on the commutator term. As in Re-
mark A.2.3, this is due to a difference in indexing conventions. Whereas we had
Dei =

∑
ωijej , we also wrote Dei =

∑
Aβγeγ . At first this change seems very in-

nocuous, but when we formed the product AiAj it was key that we were regarding
these matrices as having the β’s represent the row index and the γ’s represent the
column index. This shows that the ω-summation and the A-summation are using
the opposite indexing conventions, and we are in the domain of Remark A.2.3.

Example A.2.13. Let E = R4 × C → R4 be the trivial complex line bundle
over R4, and let D be the u(1)-connection on E determined by the vector potential
A = iA1 + iA2 + iA3 + iA4 ???? Note that [Ai, Aj ] = 0 for all i, j (the Lie algebra
u(1) is actually commutative), and so Rjk = ∂jAk− ∂kAj . This precisely says that
the curvature tensor is

R = d(A1dx+A2dy +A3dz +A4dt).

But the entity on the right is what we usually think of as the electromagnetic
2-form F corresponding to the magnetic potential A. We will come back to this
example in some detail in Section 6.3.
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A.2.14. A Sample Curvature Computation. In this section, we will use
the theory we’ve developed to actually compute the curvature in a familiar concrete
example. We will consider the two-dimensional sphere with radius R. Let’s use the
cylindrical coordinates r and θ, with translation back to Euclidian coordinates in
the ambient space given by:

x = r cos θ
y = r sin θ

z =
√
R2 − r2.

At any point (in the coordinate patch) the tangent space is spanned by the
tangent vectors ∂r and ∂θ. In the coordinates of the ambient space, we can compute

∂r =
[
cos θ, sin θ,− rz

]
∂θ = [−r sin θ, r cos θ, 0].

Note that we are mixing cylindrical coordinates and Euclidean coordinates when-
ever convenient.

Finally, we record the inner products of these tangent vectors, which encodes
the metric on the sphere induced by its embedding in Euclidian space:

〈∂r, ∂r〉 =
R2

z2
〈∂r, ∂θ〉 = 0 〈∂θ, ∂r〉 = 0 〈∂θ, ∂θ〉 = r2.

So now we have a manifold S2 with a metric. The next piece of data we need
to talk about curvature is a connection on the tangent bundle. Using our basis, we
can specify this by writing

Dv(∂r) = A11(v)∂r +A21(v)∂θ
Dv(∂θ) = A12(v)∂r +A22(v)∂θ,

where the Aij are 1-forms, and together we can think of A as a 1-form with values in
the endomorphism bundle of TS2. The defining properties of an affine connection
say that, for an arbitrary vector field sr∂r + sθ∂θ,

Dv(sr∂r + sθ∂θ) = ∂v(sr)∂r + srDv(∂r) + ∂v(sθ)∂θ + sθDv(∂θ)
=
(
∂v(sr)∂r + ∂v(sθ)∂θ

)
+
(
srDv(∂r) + sθDv(∂θ)

)
= D0

v(sr∂r + sθ∂θ) +A(v) ·
[
sr
sθ

]
where D0 is the standard flat connection in these coordinates, and the End(TS2)-
valued 1-form A is what we’re calling the “connection potential”.

Any choice of connection potential A gives us a connection, but we want one
that is compatible with the metric if the curvature of the connection is going to tell
us anything about the geometric curvature. Recall that this means

∂v〈X,Y 〉 = 〈DvX,Y 〉+ 〈X,DvY 〉,
for all vector fields X and Y . By replacing X and Y with the vector fields ∂r and ∂θ,
and replacing v with the tangent vectors ∂r and ∂θ, one gets six equations involving
the Ajk’s (it seems like it should be eight equations, but there are duplicates because
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〈∂r, ∂θ〉 = 〈∂θ, ∂r〉). Let’s compute these:

∂v〈∂r, ∂r〉 = 〈Dv∂r, ∂r〉+ 〈∂r,Dv∂r〉
= 2〈Dv∂r, ∂r〉
= 2A11(v)〈∂r, ∂r〉

= 2A11(v)
R2

z2
.

Taking v = ∂r, this says

∂

∂r

(
R2

R2 − r2

)
= 2A11(∂r)

R2

R2 − r2
,

and solving for A11(∂r) we find

A11(∂r) =
r

z2
.

Taking v = ∂θ we easily find A11(∂θ) = 0. Putting these together, we have found
the differential form

A11 =
r

z2
dr.

If we do the same thing for ∂v〈∂θ, ∂θ〉, we end up finding

A22 =
1
r
dr.

And finally, computing ∂v〈∂r, ∂θ〉 we get the condition

A12 = −r
2z2

R2
A21.

So the connection is not yet completely determined; many connections are compat-
ible with the metric.

Differential geometers like to impose an extra condition on the connection be-
yond metric compatibility, and together these two conditions uniquely determine
the connection: this is the so-called “Levi-Civita connection”. The extra condition
is that the connection be torsion-free, meaning that

DXY −DYX = [X,Y ]

for any vector fields X and Y , where [X,Y ] is the Lie bracket.
So to proceed with our analysis, let us use the torsion-free condition. This gives

us the equation
0 = D∂r (∂θ)−D∂θ

(∂r),
which forces

A21 =
1
r
dθ, A12 = −rz

2

R2
dθ.

We have now completely determined the Levi-Civita connection, and we can
succinctly write the connection potential as

A =
[
r
z2 0
0 1

r

]
dr +

[
0 − rz

2

R2
1
r 0

]
dθ.

We would now like to compute the curvature of this connection. The curvature
R ∈ Ω2(B,End(TS2)) is an End(TS2)-valued 2-form. As a 2-form, R is alternating,
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so all we really need to compute is R∂r,∂θ
. Earlier we found an equation for the

curvature of a connection in terms of the connection potential:

Ri,j = ∂iAj − ∂jAi + [Ai, Aj ].

Using this we get

R∂r,∂θ
=

∂

∂r

[
0 − rz

2

R2
1
r 0

]
− ∂

∂θ

[
r
z2 0
0 1

r

]
+
[[

r
z2 0
0 1

r

]
,

[
0 − rz

2

R2
1
r 0

]]
=
[

0 r2

R2

− 1
z2 0

]
.

In other words,

R =
[

0 r2

R2

− 1
z2 0

]
dr ∧ dθ ∈ Ω2(S2,End(TS2)).

We have now computed the curvature 2-form for the Levi-Civita connection
arising from the metric induced on the sphere by its embedding into 3-dimensional
Euclidian space. It’s worth emphasizing that this curvature depends only upon the
metric, since the Levi-Civita connection is uniquely determined by the metric. So
what is R telling us about the geometry of the sphere? To see this, we will need
one more theorem from differential geometry, which says that the quantity

K(v, w) =
〈Rv,w(w), v〉
|v ∧ w|2

is the sectional curvature in the plane Span{v, w}. Applying this to our example,
and recalling that

〈∂r ∧ ∂θ, ∂r ∧ ∂θ〉 = det
[
〈∂r, ∂r〉 〈∂r, ∂θ〉
〈∂θ, ∂r〉 〈∂θ, ∂θ〉

]
,

we find

K(∂r, ∂θ) =
〈R∂r,∂θ

(∂θ), ∂r〉
|∂r ∧ ∂θ|2

=
r2

R2 〈∂r, ∂r〉
〈∂r, ∂r〉〈∂θ, ∂θ〉

=
r2

R2

r2
=

1
R2

.

So the sectional curvature is constant, and depends only on the radius of the
sphere—as one would expect.

Example A.2.15. We will re-do the above example in two other ways. Set
e1 = ∂r and e2 = ∂θ. Recall that the matrix Ω for the connection is defined by

Dv(ei) =
∑
j

ωijej .

Comparing to the above example, we find that

Ω =

[ r
z2 dr

1
r dθ

− rz
2

R2 dθ
1
r dr

]
.

Then we compute that

dΩ =

[
0 − 1

r2 drdθ

(−1 + 3r2

R2 ) drdθ 0

]
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and

Ω ∧ Ω =
[

0 ( 1
z2 −

1
r2 ) drdθ

( 2r2−R2

R2 ) drdθ 0

]
.

Next we form

K = dΩ− Ω ∧ Ω =

[
0 − 1

z2 drdθ

r2

R2 drdθ 0

]
.

Finally, we recall from the discussion after (A.2.7) that dΩ−Ω∧Ω is the transpose of
the matrix representing R. This recovers the R-matrix from the previous example,
and then the sectional curvature computation proceeds as before.

Now let us re-do everything using a different coordinate system on S2. We could
use the coordinates x and y, but here ∂x and ∂y turn out not to be orthogonal—this
doesn’t cause any problem with our methods, but it does make all the calculations
more cumbersome. Instead let us use spherical coordinates θ and φ. One finds that

∂θ · ∂θ = R2 sin2 φ, ∂θ · ∂φ = 0, ∂φ · ∂φ = R2.

The connection is given by

Dv(∂θ) = A11(v)∂θ +A21(v)∂φ
Dv(∂φ) = A12(v)∂θ +A22(v)∂φ

and the Ω-matrix is

Ω = AT =
[
A11 A21

A12 A22

]
.

We start with the metric compatibility equation

∂v〈∂θ, ∂θ〉 = 2〈Dv∂θ, ∂θ〉,
and upon computing both sides for v = ∂θ and v = ∂φ we arrive at A11 = (cotφ)dφ.
A similar analysis for ∂v〈∂φ, ∂φ〉 yields that A22 = 0, and the analysis for ∂v〈∂θ, ∂φ〉
yields that A21 = −A12 sin2 φ. Finally we write down the equation for the torsion-
free condition:

0 = D∂θ
∂φ −D∂φ

∂θ = A12(∂θ)∂θ − [A11(∂φ)∂θ +A21(∂φ)∂φ].

It follows that A21(∂φ) = 0 (and hence A12(∂φ) = 0 as well), and that A12(∂θ) =
A11(∂φ) = cotφ. So A12 = (cotφ) ∂θ, and we have found that

Ω =

[
(cotφ) dφ −(sinφ cosφ) dθ

(cotφ) dθ 0

]
.

Next we compute

dΩ =

[
0 cos(2φ) dθdφ

1
sin2 φ

dθ dφ 0

]
and

Ω ∧ Ω =
[

0 (cos2 φ) dθ dφ
(cot2 φ) dθ dφ 0

]
.

Then

dΩ− Ω ∧ Ω =
[

0 −(sin2 φ) dθdφ
dθdφ 0.

]
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Again, recall that this is the transpose of the curvature matrix and so

R =
[

0 dθdφ
−(sin2 φ) dθdφ 0.

]
.

The sectional curvature is
〈R∂θ,∂φ

(∂φ), ∂θ〉
〈∂θ, ∂θ〉〈∂φ, ∂φ〉

=
〈∂θ, ∂θ〉

〈∂θ, ∂θ〉〈∂φ, ∂φ〉
=

1
〈∂φ, ∂φ〉

=
1
R2

.

A.3. DeRham theory with coefficients in a bundle

Let E → B be a smooth vector bundle equipped with an affine connection D.
Given a section s of E and a tangent vector v, the connection gives us a derivatve
Dvs. We can phrase this differentiation process as a map

dD : Γ(E) −→ Γ(T ∗B ⊗ E).

We with to extend this via a type of Leibniz rule to get a sequence of maps

Γ(E) dD−→ Γ(T ∗B ⊗ E) dD−→ Γ(
∧2

T ∗B ⊗ E) dD−→ Γ(
∧3

T ∗B ⊗ E) dD−→ · · ·
It will not be the case that d2

D = 0, however; instead we will find that d2
D measures

the curvature of E.

A.3.1. Wedge product of forms.
Recall that we write Ωp(B;E) for Γ(

∧p
T ∗B ⊗ E), and elements of this space

are called differential p-forms with coefficients in E. Such differential forms are
spanned by elements α⊗ s where α ∈ Ωp(B) and s ∈ Γ(E).

Assuming we have two bundles E and F, there are natural maps

Ωp(B;E)⊗ Ωq(B;F) −→ Ωp+q(B;E⊗ F)

which are uniquely determined by saying that

(α⊗ s)⊗ (β ⊗ t) 7→ (α ∧ β)⊗ (s⊗ t).
If we have a third vector bundle G and a pairing µ : E⊗F → G then we can compose
with this pairing to get

Ωp(B;E)⊗ Ωq(B;F) −→ Ωp+q(B;E⊗ F) −→ Ωp+q(B;G).

We will call this composite map the wedge product, usually denoting it ∧ but
sometimes by ∧µ when we need to be specific.

Example A.3.2. Some important examples of the above setup are as follows:
(a) E = Hom(E,E), F = G = E, and E⊗F → G is the natural action of Hom(E,E)

on E.
(b) E = F = G = Hom(E,E) and E ⊗ F → G is composition. In this example,

suppose that A ∈ Ω1(B; End(E)) is a connection potential.. In local coordinates
on B we may write A =

∑
Ajdx

j where Aj is a local section of End(E). Then

A ∧A =
∑
j,k

AjAkdx
j ∧ dxk =

∑
j≤k

(AjAk −AkAj)dxj ∧ dxk(A.3.3)

=
∑
j<k

[Aj , Ak]dxj ∧ dxk.
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(c) Suppose that E has a Lie bracket [−,−] : E ⊗ E → E. The main examples for
us will be when E is the trivial bundle associated to a Lie algebra g, or when
E = End(E) and the bracket is the commutator. Using the above construction,
the bracket gives rise to pairings Ωp(B;E) ⊗ Ωq(B;E) → Ωp+q(B;E). Our
custom would be to denote this by ∧ or ∧[−,−], but here it will be convenient
to drop the wedge and just write is as [−,−].

Let A,C ∈ Ω1(B;E) and write A =
∑
iAidx

i and C =
∑
j Cjdx

j where
x1, . . . , xn is some local coordinate system on B. Then

[A,C] =
∑
i,j

[Ai, Cj ]dxidxj =
∑
i<j

(
[Ai, Cj ]− [Aj , Ci]

)
dxidxj .

As a consequence, note that

[A,A] =
∑
i<j

(
[Ai, Aj ]− [Aj , Ai]

)
dxidxj = 2

∑
i<j

[Ai, Aj ]dxidxj .

When E = End(E), observe that 1
2 [A,A] = A ∧ A. This is another source

of multiple notations in differential geometry. For instance, if D0 is a flat
connection on a bundle E → B and A is a connection potential, then the
curvature of the connection D = D0 +A may be written as

R = dA+A ∧A or R = dA+ 1
2 [A,A]

and the two formulas say exactly the same thing.
(d) As our final example, let E = F = G = Mn×n(R) be the trivial bundle of n× n

matrices, and let E⊗ F → G be matrix multiplication. An element of Ωp(B;E)
may be thought of either as a matrix-valued p-form or as an n × n matrix of
real-valued p-forms. Let us use Greek letters α, β, . . . to denote the former, and
the corresponding capital Roman letters A,B, . . . to denote the latter. So α
and A are in some sense the same object, just thought of in different ways.

We claim that the product α∧β corresponds to the ordinary matrix product
AB. This is really an “obvious” fact, although in my opinion it’s the kind of
thing that is only obvious after one sees the somewhat-wordy explanation. In
any case, here is the explanation. By linearity in all the variables we might as
well assume that A has a single nonzero entry—in spot (i, j), say—and that B
also has a single nonzero entry—in spot (r, s). Note that the matrix product
AB is the zero matrix unless j = r, in which case its single nonzero entry is

(AB)is = Aij ∧Bjs.
Changing our perspective and looking at these objects as matrix-valued

forms, we have

α = Aij ⊗ eij and β = Brs ⊗ ers
where epq denotes the matrix with all zeros except a single 1 in spot (p, q).
Then

α ∧ β = (Aij ∧Brs)⊗ (eij · ers).
The matrix product eij · ers is zero unless j = r, in which case it equals eis,
and so one readily sees that the matrix of forms corresponding to α∧ β is AB.
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Remark A.3.4. The following is often useful. Let α ∈ Ω1(B;E) and β ∈
Ω1(B;F). Then α ∧ β ∈ Ω2(B;G) is the 2-form whose value at tangent vector
v, w ∈ TbB is

(α ∧ β)b(v, w) = α(v)β(w)− α(w)β(v).
To verify this, choose local coordinates x1, . . . , xn on B and write α =

∑
Aidx

i

and β =
∑
Bjdx

j . Then α ∧ β =
∑
i,j AiBjdx

i ∧ dxj and so

(α ∧ β)(v, w) =
∑
i,j

AiBj [dxi ∧ dxj ](v, w)

=
∑
i,j

AiBj
[
dxi(v)dxj(w)− dxi(w)dxj(v)

]
=
(∑

i

Aidx
i(v)

)(∑
j

Bjdx
j(w)

)
−
(∑

i

Aidx
i(w)

)(∑
j

Bjdx
j(v)

)
= α(v)β(w)− α(w)β(v).

A.3.5. The deRham maps.
We have already defined dD : Γ(E) → Γ(T ∗B ⊗ E). Extend this to

dD : Ωp(B;E)→ Ωp+1(B;E) by requiring that

dD(α⊗ s) = (dα)⊗ s+ (−1)pα ∧ dD(s)

where dα denotes the ordinary deRham differential on Ω∗(B). We leave it to the
reader to check that this gives a well-defined map. So we have a sequence of
composable maps

Γ(E) = Ω0(B;E) dD−→ Ω1(B;E) dD−→ Ω2(B;E) dD−→ · · ·(A.3.6)

Unlike the ordinary deRham situation, this is not actually a cochain complex. The
following proposition in some sense says that the extent to which it fails to be a
cochain complex is measured by the curvature of the connection D:

Proposition A.3.7. Let R ∈ Ω2(B; End(E)) be the curvature 2-form for the
affine connection D. Then for any η ∈ Ω∗(B;E), d2

D(η) = R ∧ η. (The wedge
product here is the one from Example A.3.2(a).)

Proof. The heart of the proof is checking this when η ∈ Ω0(B;E). To see
that it reduces to this case, let s1, . . . , sn be a local basis of sections for E. Then
any η ∈ Ωp(B;E) may be written (locally) as η =

∑
i αi ⊗ si for some αi ∈ Ωp(B).

We compute that

dD(η) =
∑
i

[
(dαi)⊗ si + (−1)pαi ∧ dD

]
si

and so

d2
D(η) =

∑
i

(−1)p+1(dαi)⊗ dDsi + (−1)pdαi ∧ dDsi + (−1)p(−1)pαi ∧ d2
Dsi

=
∑
i

αi ∧ d2
Dsi.

If we know that d2
Dsi = R ∧ si then we have

d2
D(η) =

∑
i

αi ∧R ∧ si =
∑
i

R ∧ αi ∧ si = R ∧
∑
i

αi ∧ si = R ∧ η.
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Note that in stating αi ∧R = R ∧ αi we are using two things, first that R is even-
dimensional (it is a 2-form) and secondly the commutativity of scalar multiplication
on the bundle End(E) (the values of αi being scalars).

It remains to verify that d2
D(si) = R ∧ si. If dDsi = D(−)si =

∑
ωijsj , where

Ω = (ωij) is the local matrix for the connection D. Then

d2
D(si) = dD

(∑
j

ωij ∧ sj
)

=
∑
j

(dωij) ∧ sj − ωij ∧ dDsj

=
∑
j

(
(dωij)⊗ sj −

∑
k

ωij ∧ ωjk ∧ sk
)

=
∑
k

(
dωik −

∑
j

ωij ∧ ωjk
)
∧ sk

=
∑
k

(dΩ− Ω ∧ Ω)ik ∧ sk

=
∑
k

Rki ∧ sk

= R ∧ si.
In the last two lines, Rki is the local 2-form giving the matrix element for R with
respect to the basis s1, . . . , sn, and the equation R∧si =

∑
k Rki∧sk is an exercise

in chasing through definitions. �

A.3.8. The Bianchi identity. Let R be the curvature form of a vector bun-
dle E → B with connection D. As we have remarked before, for any b ∈ B and any
two tangent vectors v, w ∈ TbB, the endomorphism Rv,w : Eb → Eb says something
about what happens when you parallel transport vectors in Eb along small “par-
allelograms” oriented along v and w. Suppose now that one has a third tangent
vector u ∈ TbB. We can consider small “parallelpipeds” oriented along u, v, and
w, and it turns out that there is a relation between the different ways of parallel-
transporting around this parallelpiped. This results in a special property satisfied
by all curvature forms, called the Bianchi identity .

The description in the above paragraph is vague, but it gives a rough version
of the basic idea. The very short version is: curvature forms satisfy a special
equation. As always in differential geometry, there are multiple ways of writing
down this equation—different contexts, different notations, etc. We will explain a
few of these.

The first version of the Bianchi identity we present is, in my opinion, the most
elegant. But it also requires the most machinery, and it will use a version of the dD
map constructed in the last section. More precisely, recall from ???? that if one has
connections on bundles E and F then there is an induced connection on the bundle
Hom(E,F). So the connection D on E induces a connection on End(E)—we will
also call this new connection D, by abuse of notation. As a result, we have maps
dD : Ωp(B; End(E))→ Ωp+1(B; End(E)).

Proposition A.3.9. Let E → B be a smooth vector bundle with connection
D, and let R ∈ Ω2(B; End(E)) the associated curvature form. Then dD(R) = 0.

Proof. For η ∈ Ω∗(B;E) we compute d3
D(η) in two different ways:

d3
D(η) = dD(d2

Dη) = dD(R ∧ η) = (dDR) ∧ η +R ∧ (dDη)
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and
d3
D(η) = d2

D(dD(η)) = R ∧ (dDη).
Comparing these two, we find that (dDR) ∧ η = 0 for all forms η ∈ Ω∗(B;E). The
only way this can happen is if dDR = 0 (if there were some p ∈ B where (dDR)p 6= 0
then one could choose η to be a section of E that is nonzero in a neighborhood of
p, and this would yield a contradiction). �

Although the equation dDR = 0 is very simple to state, it is not so clear what
actual geometry is encoded in it! This is often the curse of modern mathematics:
machinery is developed that leads to extremely efficient and natural statements,
but at the same time makes the meaning more obtuse. So let us look at some other
versions of the Bianchi identity.

Recall that there is an induced connection on the bundle End(E), and we also
denote this connection by D. If X and Y are vector fields on B then RX,Y is a
section of End(E), and hence we can apply D to it and obtain another section of
End(E). The Bianchi identity says the following:

DU(RX,Y) +DX(RY,U) +DY(RU,X) = 0(A.3.10)

for all vector fields U, X, and Y on B.
Another way to write the Bianchi identity is in terms of commutators:

[DU, RX,Y ] + [DX, RY,U] + [DY , RU,X] = 0.(A.3.11)

At first this might seem very different from (A.3.10), so it could be surprising to
learn that they are equivalent. The key is to realize that the symbol D means
something different in the two equations. In (A.3.10) it refers to the connection
on End(E), whereas in (A.3.11) it refers to the connection on E. Note that both
RX,Y and DU (where D = DE) are operators on the space of sections of E, and we
may compose them (in either order) to obtain other operators. The commutators
in (A.3.11) are to be interpreted in this context.

To explain the equivalence of (A.3.10) and (A.3.11), let us for just a moment
write D̃ for the connection on End(E). Recall that this is defined by

(D̃α)(s) = D(αs)− α(Ds),

where α is any section of End(E). Writing D̃(α) = [D,α] is a reasonable encoding
of the same statement. Thus, the term DU(RX,Y) in (A.3.10) would be written
D̃U(RX,Y) in our present discussion, and is exactly equal to the term [DU, RX,Y ] in
(A.3.11). The same of course applies to the other two terms.

Note that if U, X, and Y are commuting vector fields—e.g., coordinate vectors
fields for a certain system of coordinates on B—then RU,X = [DU, DX] and similarly
for the other curvature operators. So (A.3.11) is equivalent to

[DU, [DX, DY ]] + [DX, [DY , DU]] + [DY , [DU, DX]] = 0,

which is a triviality—it is just the Jacobi identity for the operators DU, DX, and
DY . This does not exactly serve to prove the Bianchi identity, as of course it is not
true that all vectors fields commute, but it at least helps provide some intuition
about why such a formula might hold.

Remark A.3.12. The formulas we have called the “Bianchi identity” are in
some texts called the second Bianchi identity. In those texts the “first” Bianchi
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identity is something that holds only for the curvature form of the Levi-Civita
connection on the tangent bundle of a Riemannian manifold:

Ru,v(w) +Rv,w(u) +Rw,u(v) = 0

for all p ∈ B and all u, v, w ∈ TpB. (Note that such a formula wouldn’t even make
sense for the curvature form of an arbitrary bundle, because u, v, and w would be
two tangent vectors and a section—it would not make sense to permute them)

The first and second Bianchi identities are of a very different nature: note that
the former contains no derivatives. There is a certain similarity between them in
that they both can be written in a form involving cyclic permutations of three
variables—in fact, they both connected to the Jacobi identity—but other than that
they are not particularly related.
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A.4. Principal connections

Let G be a Lie group and let P → B be a principal G-bundle. Note that the
right action of G on P gives rise to a right action of G on TP . Precisely, if v ∈ TpP
and g ∈ G then define

v · g =
d

dt

∣∣∣∣
t=0

(γ(t) · g)

where γ is any path in P having tangent vector v when t = 0. As another per-
spective, if Rg : P → P is right multiplication by g then its derivative at p ∈ P is
(DRg)p : TpP → TpgP . Our definition just says that

v · g = (DRg)p(v).

It is clear from this description that we indeed have a well-defined action.
Given p ∈ P there is a smooth embedding jp : G ↪→ P given by g 7→ pg. The

derivative of jp at the identity is a map (Djp)e : g → TpP . Let Vp ⊆ TpP be the
image of this map, which we will call the vertical subspace of TpP . It is precisely
the tangent space of the fiber of P → B that passes through p. Note that the
collection of all Vp forms a subbundle of TP , called the vertical subbundle.

The picture below depicts a principal bundle P → B—with the fibers drawn
as circles—and two fibers of the vertical subbundle of TP .

P

B

While at every point in P there is a well-defined vertical subspace, notice that
there is no canonical choice of a complementary “horizontal” subspace. We will
discuss this more in just a moment, as it is intimately tied up with the notion of a
connection on a principal bundle.

There are certain canonical vector fields that exist on any principal bundle. In
the above picture, for instance, there is the vector field that circulates “counter-
clockwise” around the fibers. In general, any element of TeG determines a vector
field on P . if X ∈ g we define this precisely by

Xp = (Djp)e(X).

Then p 7→ Xp gives a vector field on P which we will denote by φX but sometimes
abbreviate to just X. It is important to note that Xpg 6= Xp · g. Instead there is
the more complicated relation

Xpg = (gXg−1)p · g = [Ad(g)(X)]p · g.(A.4.1)
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Here we have written gXg−1 as a useful abbreviation for the adjoint action of G
on g, since in the case of matrix groups the adjoint action is exactly conjugation.

To understand (A.4.1) we argue as follows. Pick a path γ : [−1, 1] → G such
that g(0) = e and g′(0) = X. Then

Xpg =
d

dt

∣∣∣∣
t=0

(pg · γ(t)) =
d

dt

∣∣∣∣
t=0

(p · gγ(t)) =
d

dt

∣∣∣∣
t=0

(p · gγ(t)g−1 · g)

=
d

dt

∣∣∣∣
t=0

(p · gγ(t)g−1) · g

= (gXg−1)p · g.
The second-to-last equality is the definition of the right G-action on TP , and the
last equality is because t 7→ gγ(t)g−1 is a path in G whose tangent vector at t = 0
is gXg−1.

Example A.4.2.
(a) Extending the above ideas, produce a map µ : P × TG→ TP such that

(1) If x ∈ G, p ∈ P , and v ∈ TxG then µ(p, x) lies in TpxP ;
(2) The restriction of µ to P ×TeG sends (p,X) to Xp ∈ TpP as defined above.

(b) Let Z be any smooth manifold and consider smooth maps σ : Z → P and
g : Z → G. Let σg : Z → P denote z 7→ σ(z)g(z). For z ∈ Z and v ∈ TzZ,
verify that

D(σg)z(v) = (Dσz)(v) · g(z) + σ(v) · (Dg)z(v).
Here the product in the first term refers to the right action of G on TP , whereas
the product in the second term refers to the map µ constructed in the first part
of the exercise.

(c) If g ∈ G and X ∈ TxG then Xg ∈ TxgG. This is the right action of G on its
tangent bundle. Prove that for any p ∈ P and X ∈ TxG one has

[p ·X] · g = p · (Xg).
Here the first and the third multiplication symbols refer to the map µ con-
structed in (a), whereas the second such symbol is the right action of G on TP .
Note also that p ·X ∈ TpxP , and so [p ·X] · g ∈ TpxgP . Likewise, Xg ∈ TxgG
and so p · (Xg) ∈ TpxgP .

Here is a useful lemma to help reinforce your understanding of some of these
concepts:

Lemma A.4.3. Let X ∈ g and let φX denote the associated vertical vector field.
Let Y be any vector field on P that is G-equivariant, in the sense that Yp·g = Yp · g
for all p ∈ P , g ∈ G. Then [φX,Y] = 0.

Proof. Let ϕt(p) = p · etX , for every p ∈ P ; equivalently, ϕt is the right
multiplication map RetX . Then ϕ is a local flow for the vector field φX. Differential
geometry (???) tells us that

[φX,Y]p = lim
t→0

1
t

[
Yϕt(p) − (Dϕt)p(Yp)

]
= lim
t→0

1
t

[
Yp·etX − (Yp · etX)

]
.

The G-equivariance of Y tells us that the final expression inside the brackets is
zero. �
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A.4.4. Connections. We are now ready to define the notion of a connection
on a principle bundle. As often is the case in differential geometry, there are several
ways of looking at this same concept. We concentrate on two main approaches.

Definition A.4.5. Let P → B be a principal G-bundle.
(1) A horizontal connection on P is a sub-vector-bundle H ⊆ TP such that for

every p ∈ P one has Hp ⊕ Vp = TpP and such that Hpg = Hp · g for every
p ∈ P , g ∈ G. The subspaces Hp ⊆ TpP are called horizontal subspaces.

(2) A principal connection on P is a form ω ∈ Ω1(P ; g) such that
(a) ωp(Xp) = X for every X ∈ g, and
(b) kerωpg ⊇ (kerωp) · g for every p ∈ P and g ∈ G.

Condition (b) looks different from how most texts define the notion principal
connection, but we will shortly see that it is equivalent to the commonly-used
version.

To understand the relationship between the definitions in (1) and (2), note that
if ω is a principal connection then ωp is a linear map TpP → g which is surjective
and becomes an isomorphism when restricted to the vertical subbundle (because
of property (a)). The kernel of ωp is therefore a complement to Vp inside of TpP ,
and is our candidate for the horizontal subspace. Note that dim(kerωp) is therefore
dimP − dimG, and this holds for all p ∈ P . It follows by equality of dimensions
that the subset in property (b) is actually an equality, and therefore these kernels
satisfy the condition for being a horizontal connection.

Conversely, given a horizontal connection H ⊆ TP then one defines ωp : TpP →
g to be the unique map which is zero on Hp and satisfies property (a) on Vp (in
other words, it sends Xp to X for every X ∈ g). The kernel of this form is exactly
Hp, and so property (b) is satisfied and we have a principal connection. Thus, we
see that the two notions of connection are completely equivalent.

Principal connections enjoy a certain equivariance property, giving a relation-
ship between ωpg(v · g) and ωp(v):

Proposition A.4.6. If ω ∈ Ω1(P ; g) is a principal connection then

ωpg(v · g) = g−1[ωp(v)]g = Ad(g−1)[ωp(v)]

for every p ∈ P , v ∈ TpP , and g ∈ G.

Proof. Since Vp and Hp = kerωp are complementary subspaces of TpP , it will
suffice to check the equation for v ∈ Vp and v ∈ Hp. In the latter case, note that
v · g ∈ kerωpg by property (b) from the definition of principal connection, and so
both sides of the equation are zero.

It remains to check the equation for v ∈ Vp. We claim that this is actually forced
by condition (a) in the definition of principal connection. Explicitly, condition (a)
in conjunction with (A.4.1) gives that

X = ωpg(Xpg) = ωpg((gXg−1)p · g)
for every X ∈ g. Since any vector Y ∈ g may be written as gXg−1 for some X
(namely X = g−1Y g), this is equivalent to

ωpg(Yp · g) = g−1Y g = g−1[ωp(Yp)]g

for every Y ∈ g. Since every vector v ∈ Vp is of the form Yp for some Y ∈ g, this
completes the proof. �
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Remark A.4.7. Many texts replace condition (b) in the definition of principal
connection with the equation from Proposition A.4.6. We have shown that the
former implies the latter, and it is easy to see that the converse is also true. So our
definition is equivalent to the more common one.

Finally, we give a way of looking at connections in terms of vector bundles. Let
π denote the map P → B. Then there is a short exact sequence of vector bundles
on P

0→ V → TP → π∗(TB)→ 0.
We claim that specifying a horizontal connection on P → B is equivalent to spec-
ifying a splitting of this sequence. Clearly a splitting χ gives a horizontal connec-
tion, simply by taking the horizontal subspaces to be the image of the splitting
map. Conversely, suppose give a horizontal connection. Then for every p ∈ P and
v ∈ Tπ(p)B there is a unique vector in Hp that is a preimage for v under (Dπ)p,
and this readily translates into a definition for the splitting χ.

For any p ∈ B and v ∈ Tπ(p)B, let vp ∈ Hp denote the vector given by the
above splitting. This gives a vector field p 7→ vp defined on the fiber π−1(p), and
it is readily seen to be G-equivariant: the tangent vector vp · g lies in Hp and
is a lifting for v, so by uniqueness we must have vp · g = vpg. Generalizing this
somewhat, we find that any vector field X on B lifts uniquely to a horizontal vector
field on P (obtained by applying the splitting χ), and that such vector fields are
G-equivariant. Vector fields on P that are both horizontal and G-equivariant are
called basic vector fields; they are in bijective correspondence with vector fields on
B.

A.4.8. Local form of a principal connection. Suppose that U ⊆ B is an
open set over which P is trivial. This means that there is a section σ : U → P .
Let ΩσU = σ∗ω ∈ Ω1(U ; g). If χ : U → P is another section, then we can write
χ(u) = σ(u)g(u) for a unique map g : U → G. We claim that

ΩχU = gΩσUg
−1 + g−1 dg.(A.4.9)

As usual, let us first process what the terms in this equation even mean. If v is
a tangent vector to U at the point u, then ΩσU (v) is an element of g. Therefore
gΩσU (v)g−1 refers to the action of g on ΩσU (v) under the adjoint representation
(usually written Ad(g)[ΩσU (v)])—this is also an element of g. The object (dg)u(v)
is another name for (Dg)u(v) and lies in Tg(u)G. Left-multiplying by g(u)−1 moves
this tangent vector into TeG, and so g(u)−1 · dgu(v) is again an element of g.

Let us prove equation (A.4.9). Let b ∈ U and v ∈ TbU . Then

(ΩχU )b(v) = ωχ(b)

(
(Dχ)b(v)

)
= ωχ(b)

(
(Dσ)b(v) · g(b) + σ(b) · (Dg)b(v)

)
using Exercise A.4.2(b)

= ωχ(b)

(
(Dσ)b(v) · g(b) +

[
σ(b) · (Dg)b(v)g(b)−1

]
· g(b)

)
using (A.4.2)(c)
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To ease notation let us write p = σ(b), g = g(b), and X = (Dg)b(v) ∈ Tg(b)G.
Continuing, we have

(ΩχU )b(v) = ωpg

([
(Dσ)b(v) + p ·Xg−1

]
· g
)

= g−1
[
ωp
(
(Dσ)b(v) + p ·Xg−1

)]
g by Proposition A.4.6

= g−1
[
ωp
(
(Dσ)b(v)

)
+ ωp

(
p ·Xg−1

)]
g

= g−1
[
(ΩσU )b(v) +Xg−1

]
g by (a) from defn. of a principal connection

= g−1
[
(ΩσU )b(v)

]
g + g−1X

= g(b)−1
[
(ΩσU )b(v)

]
g(b) + g(b)−1(Dg)b(v).

This completes our explanation of (A.4.9).
????

Remark A.4.10. The reader should note the similarity between the present
discussion and the discussion of affine connections for vector bundles. If E → B
is a real vector bundle then Fr(E) → B is a principal GLn(R)-bundle. A local
trivialization of E is the same as a local section of Fr(E). The Lie algebra of GLn(R)
is simply Mn×n(R) (the general linear group is an open subset of Mn×n(R) and so
they share the same tangent spaces). ?????

A.4.11. Horizontal and vertical forms, and the covariant derivative.
Let P → B be a principal G-bundle and let ω be a principal connection. Recall
that ω determines horizontal subspaces Hp ⊆ TpP via Hp = kerωp. Let us say
that an r-form α ∈ Ωr(P ; g) is horizontal if αp(u1, . . . , ur) = 0 whenever at least
one ui belongs to Vp. In other words, horizontal forms vanish if any of their inputs
is a vertical tangent vector. Let Ω∗H(P ; g) ⊆ Ω∗(P ; g) denote the subspace of all
horizontal forms. There is a similar definition for vertical forms. Note that ω itself
is vertical.

The connection ω gives us a retraction ρ : Ω∗(P ; g) → Ω∗H(P ; g). To see this,
for any p ∈ P let πp : TpP → Hp be the projection that annihilates Vp. For
α ∈ Ωr(P ; g) define ρ(α) to be the form given by

[ρ(α)]p(u1, . . . , ur) = α(πp(u1), . . . , πp(ur)).

We leave it as an exercise to check that if α is horizontal then ρ(α) = α.
The covariant derivative associated to the principal connection is the map

D : Ωr(P ; g) → Ωr+1
H (P ; g) given by D(α) = ρ(dα). In other words, D is the

composite
Ωr(P ; g) d−→ Ωr+1(P ; g)

ρ−→ Ωr+1
H (P ; g).

A.4.12. Curvature of a principal connection. Again suppose that P →
B is a principal G-bundle with a connection ω ∈ Ω1(P ; g). The curvature form
associated to this connection is defined to be

R = Dω ∈ Ω2
H(P ; g).

This 2-form can also be described as follows:

Proposition A.4.13. R = dω + 1
2 [ω, ω].
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The reader should compare the above description to ????, keeping in mind
Example ????.

Proof. We must prove, for every p ∈ P and u, v ∈ TpP , that

(dω)(πpu, πpv) = (dω)(u, v) +
1
2
[ω, ω](u, v).(A.4.14)

By bilinearity and antisymmetry, it sufficese to check this in three cases: (i) u, v ∈
Hp, (ii) u ∈ Hp and v ∈ Vp, and (iii) u, v ∈ Vp. Note that [ω, ω](u, v) = 2[ω(u), ω(v)]
by Remark A.3.4. So if either u or v lies in Hp then this term vanishes.
Case (i): u, v ∈ Hp. Since πp(u) = u and πp(v) = v and the third term of
(A.4.14) vanishes, this case is obvious.
Case (ii): u ∈ Hp, v ∈ Vp. Here πp(v) = 0, so the first and third terms in
(A.4.14) vanish. To analyze the second term we first extend u locally to a basic
vector field U (recall that “basic” means horizontal and G-equivariant). Since v is
vertical, we can write v = Yp for some Y ∈ g. Let us write Y for the vertical vector
field on P determined by Y . Next, use the formula

(dω)(U,Y) = ∂U(ω(Y))− ∂Y(ω(U))− ω([U,Y])

from Exercise A.2.6. The vector field ω(U) is identically zero because U is horizontal,
and ω(Y) is the constant function Y by property (a) in the definition of principal
connection—therefore ∂U(ω(Y)) also vanishes. Finally, the bracket [U,Y] vanishes
by Lemma A.4.3.
Case (iii): u, v ∈ Vp. Here πp(u) = πp(v) = 0, so the left-hand-side of (A.4.14)
vanishes. Since both u and v are vertical we can write u = Xp and v = Yp for some
X,Y ∈ g. Write X and Y for the vector fields on P determined by X and Y . As in
case (ii), we can write

(dω)(X,Y) = ∂X(ω(Y))− ∂Y(ω(X))− ω([X,Y]).

The functions ω(X) and ω(Y) are constant, and so the first two terms vanish. The
Lie bracket [X,Y] is just the vector field associated to [X,Y ] by ???, so (dω)(X,Y) =
−[X,Y ]. Finally, the third term of (A.4.14) is equal to [ω(X), ω(Y)] = [X,Y ]. At
this point one readily verifies that (A.4.14) holds. �



APPENDIX B

Background on compact Lie groups and their
representations

When examining the progression of physics over the last century, one thing
that stands out is the ever-increasing role of symmetry . These symmetries appear
most often in terms of an action of some Lie group G. The rotation group SO(3) is
perhaps the most intuitive example here, but as physics has progressed it has found
ample use for less familiar groups like Spin(3) (in the Dirac theory of electron spin),
SU(3) (in the most basic theory of quarks), and even the exceptional Lie groups
E6, E7, and E8. It is therefore important that one has a working knowledge of
basic Lie theory: namely, what are all the compact Lie groups and what do we
know about their representations?

There are ample texts that discuss these issues, but not always in a brief,
“this-is-what-you-need-to-know” kind of way. We try to provide such a survey in
the present section. Our presentation is heavily influenced by [Ad] and [BtD].

B.1. Root systems

Root systems are purely geometric objects. While it seems unlikely (to me)
that they would have arisen naturally, without their role in Lie theory, it is useful
to introduce them as if that had happened. Doing so makes a clear separation
between what parts of the classification are “about Lie groups” and what parts are
really about “configurations of vectors in Euclidean space”.

Definition B.1.1. Let V be a finite-dimensional real vector space with a
positive-definite inner product. A root system in V is a finite collection Φ of
nonzero vectors such that
(1) The elements of Φ span V .
(2) If α ∈ Φ then −α ∈ Φ, and no other scalar multiples of α belong to Φ.
(3) For every α ∈ Φ, the set Φ is closed under reflection in the hyperplane orthog-

onal to α.
(4) For every α, β ∈ Φ, the projection of β onto the line spanned by α lies in

Z〈 12 〉.α. That is,
〈α, β〉
〈α, α〉

∈ 1
2Z.

The elements of Φ are called roots. The root system will usually be denoted as a
pair (V,Φ). An isomorphism of root systems is an isomorphism of vector spaces
V → V ′ (not necessarily an isometry!) which sends Φ bijectively to Φ′. The rank
of a root system is the dimension of V .

Remark B.1.2. Note that if (V,Φ) and (V ′,Φ′) are two root systems, then
(V ⊕ V ′,Φ ∪ Φ′) is also a root system (where V ⊕ V ′ is given the evident inner

207
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product in which V and V ′ are orthogonal). Root systems that do not arise in this
way are called irreducible.

Remark B.1.3. If (V,Φ) is a root system and U ⊆ V is a subspace, then
(U,U ∩ Φ) is also a root system.

Up to isomorphism there is only one root system of rank 1, namely (R, {1,−1}).
With a little work one finds that there are exactly four root systems of rank 2. They
are called A1, A2, B2, and G2 (the reasons for these names will become clear a little
later):

A1 A2

B2 G2

If α and β are independent roots in a root sytem, then restricting to the sub-
space R〈α, β〉 gives a 2-dimensional root system (see Remark B.1.3). Since there
are only four such 2-dimensional systems, we deduce the following:

Lemma B.1.4. Let (V,Φ) be a root system. For any α, β ∈ Φ, the angle be-
tween them (in degrees) lies in the set {0, 30, 45, 60, 90, 120, 135, 150, 180}. Also,
the following hold:
(1) If the angle is 0◦ or 180◦, then |α| = |β|.
(2) If the angle is 30◦ or 150◦, then |α|/|β| is

√
3 or 1√

3
.

(3) If the angle is 60◦ or 120◦ then |α| = |β|.
(4) If the angle is 45◦ or 135◦ then |α|/|β| is

√
2 or 1√

2
.

If α ∈ Φ then let Rα : V → V be reflection in the hyperplane orthogonal to
α. The Weyl group of Φ is the subgroup of isometries of B generated by the
reflections Rα. This is always a finite group. For the rank 2 root systems, the
Weyl groups turn out to be Z/2×Z/2 for A1, the symmetric group Σ3 for A2, the
dihedral group D4 (of order eight) for B2, and the dihedral group D6 (of order 12)
for G2.
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For each i let Hi be the hyperplane orthogonal to the root θi. Removing
these hyperplanes from V leaves a collection of connected components called Weyl
chambers. The chambers are all conjugate under the action of the Weyl group. We
choose one chamber C (it doesn’t matter which one) to be called the fundamental
Weyl chamber. (See Example B.1.5 below for two pictures).

Choose a hyperplane H that doesn’t contain any of the roots, and such that the
fundamental Weyl chamber is all contained on one side of the hyperplane. Exactly
half the roots lie on one side of H, and the remaining half lie on the other. The
roots that lie on the same side of H as C are called the positive roots, and the
set of such roots is denoted Φ+. Another (and faster) way to say all of this is that
Φ+ is the set of roots θ with the property that 〈θ, v〉 ≥ 0 for all v ∈ C.

A root in Φ+ is called simple if it cannot be written as the sum of two positive
roots, and the set of simple roots is denoted ∆. One can prove that ∆ forms a basis
for V , and that the angle between any two simple roots is at least 90◦.

Example B.1.5. The following diagram shows the hyperplanes Hi and the
Weyl chambers for the systems A2 and B2; our choice of fundamental Weyl chamber
is the non-shaded chamber. The positive roots are marked with + or ⊕, with the
simple roots all marked with ⊕.
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A root system gives a so-called Dynkin diagram in the following way. The
diagram contains one node for every simple root. If two roots are orthogonal, they
are not connected by an edge. If two roots make an angle of 120◦, the nodes are
connected by a single undirected edge. If the roots make an angle of 135◦, they are
connected by a double edge that is directed toward the shorter root. If the roots
make an angle of 150◦, they are connected by a triple edge that is again directed
toward the shorter root.

One proves that root systems are in bijective correspondence with Dynkin dia-
grams, with irreducible root systems corresponding to connected Dynkin diagrams.
Without much trouble one can write down all the possible root systems: they break
up into four infinite families and five sporadic ones, with the following Dynkin di-
agrams:
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d d d · · · d d d
d d d · · · d d d>

d d d · · · d d d<

d d d · · · d d dd��
HH

An

Bn

Cn

Dn

d d d d> d d>

d d d d dd
d d d d d dd
d d d d d d dd

F4

E6

E7

E8

G2

Note that in the families one starts counting basis elements from the right. So
B2 and C2 are both the root system d d>

which is also known as G2, whereas D2 is the root systemd d
which is isomorphic to A1 ×A1. Note also that D3

∼= A3, but D4 6∼= A4.

B.1.6. Weyl groups. It is a theorem that the Weyl group acts simply-
transitively on the set of Weyl chambers. In particular, the order of the Weyl
group is the same as the number of Weyl chambers. Using this, it is not hard to
determine the structure of the Weyl group for each of the root systems. To describe
this, let Ωn = {e1, . . . , en,−e1, . . . ,−en} ⊆ Rn. Let Σn ⊆ Aut(Ωn) be the subgroup
of permutations of the indices, and let Un ⊆ Aut(Ωn) be the subgroup of all sign
changes (so Un ∼= (Z/2)n). Finally, let Uevn ⊆ Aut(Ωn) be the subgroup of even
numbers of sign changes. The Weyl groups for types An–Dn are as follows:

An Σn
Bn the subgroup of Aut(Ωn) generated by Σn and Un
Cn the subgroup of Aut(Ωn) generated by Σn and Uevn
Dn the subgroup of Aut(Ωn) generated by Σn and Un.

The Weyl group of G2 is D6 (order 12). The Weyl groups of F4, E6, E7, and
E8 have respective orders of 1152; 51,840; 2,903,040; and 696,729,600.

B.2. Classification of simply-connected, compact Lie groups

Let G be a compact, simply-connected Lie group, and let T ↪→ G be a maximal
torus of rank n. We have the exponential map exp: TeG → G, which maps TeT
into T . As the notation TeT is horrible, let us just denote this tangent space as
M . The integral lattice inside of M is the set of points that map to e under the
exponential map; let us denote this lattice as MZ ⊆M .

The irreducible complex representations of a torus are all 1-dimensional, and
therefore correspond bijectively with group homomorphisms T → S1. In turn,
group homomorphisms T → S1 are in bijective correspondence with maps M → R
that send the integral lattice into Z—in other words, with elements θ ∈M∗ having
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the property that θ(MZ) ⊆ Z. Such θ are called weights, and the subgroup of
M∗ consisting of all weights is called the weight lattice M∗

Z ⊆ M∗. It is an
easy exercise to check that M∗

Z
∼= HomZ(MZ,Z); the two lattices M∗

Z and MZ are
naturally dual.

Next regard TeG as a G-representation via the adjoint action. Restrict-
ing via T ↪→ G gives an induced T -action on TeG, and therefore also on
C ⊗R TeG. This complex representation of T will split up into irreducible rep-
resentations (necessarily 1-dimensional). Some of these are trivial, and for the
nontrivial ones let θ1, . . . , θr ∈ M∗

Z be the corresponding weights. Finally, let
Φ = {θ1, . . . , θr,−θ1, . . . ,−θr}. With a little work one can prove that Φ is a root
system for M∗.

Here is a list of basic Lie groups and their associated root systems:

SU(n) An
SO(2n+ 1) or Spin(2n+ 1) Bn

Sp(n) Cn
SO(2n) or Spin(2n) Dn

Recall that Sp(n) is the subgroup of GLn(H) consisting of those matrices that
preserve the standard Hermitian form on Hn.

We explain some portions of the above table through the following examples:

Example B.2.1. Let G = SU(n). For our maximal torus T we choose the set
of diagonal matrices in SU(n), namely the matrices of the form

Ω =


ω1

ω2

. . .
ωn


where ω1, . . . , ωn−1 ∈ S1 and ωn = (ω1 · · ·ωn−1)−1.

The tangent space TeG consists of trace zero matrices X such that X+X
T

= 0,
and it has the inner product given by 〈X,Y 〉 =

∑
j,k xjkyjk. The space M = TeT

is the subspace of diagonal matrices in TeG. Thus M consists of matricesia1

. . .
ian


where a1, . . . , an−1 ∈ R and an = −(a1+· · ·+an−1). It will be convenient to identify
elements of M with the corresponding vectors a = (a1, . . . , an) ∈ Rn; under this
identification M corresponds to the subspace of Rn consisting of vectors a with∑
k ak = 0.

Let ei denote the diagonal matrix with (i, i)-entry equal to 1 and all other
entries zero, which of course corresponds to the standard basis for Rn under our
identification. Then a basis forM is e1−en, e2−en, . . . , en−1−en. Write bi = ei−en,
so that b1, . . . , bn−1 is this basis. Note that 〈bj , bk〉 is 2 if j = k and 1 if j 6= k.

Note that there are two natural candidates for a “dual basis” for M∗. One is
the standard algebraic dual, defined by b̃i(bj) = δij . The other is defined using the
inner product onM , and is given by b̂i(bj) = 〈bi, bj〉. To understand the relationship
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between them, look at the vector of values b̃i(b) = (b̃(b1), b̃(b2), . . . , b̃(bn−1)) and
b̂i(b) = (b̂(b1), b̂(b2), . . . , b̂(bn−1)). One has

b̃i(b) = (0, 0, . . . , 0, 1, 0, . . . , 0)

with the 1 in the ith spot, whereas

b̂i(b) = (1, 1, . . . , 1, 2, 1, . . . , 1)

with the 2 in the ith spot. Note that under the identification of M with a subspace
of Rn, b̃i is the (restriction of the) functional that takes a to ai. The basis b̃
generates the integral lattice for M∗, whereas the basis b̂ does not.

There is one last bit of preparation which will be handy before we look into
the Lie theory of this example. The inclusion M ⊆ Rn dualizes to give a surjection
(Rn)∗ � M∗. If e1, . . . , en is the standard basis for Rn, let ê1, . . . , ên be the
dual basis (note that the dual basis with respect to the algebraic pairing and the
Euclidean inner product coincide). Then the map (Rn)∗ → M∗ sends êi to b̃i for
i < n, whereas it sends ên to −(b̃1 + · · · + b̃n−1). It will be convenient to use this
notation for elements of M∗, so that êi and b̃i are synonymous for i < n and ên is
just another name for −(b̃1 + · · · + b̃n−1) = − 1

n (b̂1 + · · · + b̂n−1). In other words,
we can identify M∗ with the quotient (Rn)∗/〈ê1 + · · ·+ ên〉.

This use of Rn and (Rn)∗, which are in some sense “external” to the situation,
is not necessary at all: we could do everything that follows just using the b̃’s and b̂’s.
But the use of the standard basis for (Rn)∗ makes certain formulas a little easier to
remember. However, we need a WARNING: with this notation one must be careful
about inner products. The vector ên has norm 1 in (Rn)∗, but −(b̃1+· · ·+b̃n−1) does
not have norm 1 in M∗. It is possible to get oneself confused via this. There is a
way to make things work out, however. The map (Rn)∗ →M∗ has a splitting which
sends b̂i to êi− ên for all i, and this splitting map preserves all inner products. The
image is the set of all sums

∑
i ciêi such that

∑
ci = 0. So as long as we represent

cosets in the quotient (Rn)∗/〈ê1 + · · · + ên〉 by representatives with
∑
ci = 0, we

can compute inner products and get the same answers as in M∗.
After this long preamble we can start looking at Lie theory. Our first task

will be to analyze the adjoint action of T on TeG and to determine the roots. For
r 6= s and z ∈ C write Xrs(z) for the matrix with z in the (r, s)-spot, −z̄ in the
(s, r)-spot, and zeros elsewhere. Abbreviate Xrs(1) as just Xrs. If Ω ∈ T then one
readily checks that

Ω ·Xrs(z) · Ω−1 = ωrω
−1
s ·Xrs(z).

It follows that {Xrs(z) | z ∈ C} is a two-dimensional irreducible real representation
of T . When one complexifies, this breaks up into two 1-dimensional representations
with characters Ω 7→ ωrω

−1
s and Ω 7→ ω−1

r ωs. The corresponding weights are given
by θrs(a) = ar−as and its negative. Note that θrs = êr− ês, or else we could write

θrs =

{
b̂r − b̂s if r < n and s < n;
b̂r if s = n.

We choose our positive cone to be determined by the roots θrs for r < s. The
simple roots are then

θ12 = ê1 − ê2, θ23 = ê2 − ê3, . . . θn−1,n = ên−1 − ên.
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Write Θi = θi,i+1 for brevity. Note that in the b̂-basis we would write

Θ1 = b̂1 − b̂2, Θ2 = b̂2 − b̂3, . . . Θn−2 = b̂n−2 − b̂n−1, Θn−1 = b̂n−1.

One readily computes that 〈Θi,Θj〉 = 0 unless j ∈ {i− 1, i}, and 〈Θi,Θi+1〉 = −1
(use that the ê basis for Rn is orthonormal). It follows from this that we are looking
at the root system An−1.

Next let us consider the Weyl group. Let Rrs be the reflection in the hyperplane
orthogonal to θrs = b̂r − b̂s. For i /∈ {r, s}, b̂i is orthogonal to θrs and hence
Rrs(b̂i) = b̂i. Likewise, since b̂r = 1

2 (b̂r + b̂s) + 1
2 (b̂r − b̂s) and the first term is

orthogonal to θrs, it follows that

Rrs(b̂r) = 1
2 (b̂r + b̂s)− 1

2 (b̂r − b̂s) = b̂s.

A similar computation shows that Rrs(b̂s) = b̂r (or else use that Rrs(b̂r − b̂s) =
b̂s − b̂r).

???
One gets a map of groups W → Σn, where Σn is the symmetric group on n

letters. It turns out that this is an isomorphism.

B.3. Representation theory

We start with some basic observations. Let RC(G) denote the complex repre-
sentation ring of G. Additively, this is a free abelian group with basis consisting of
the irreducible representations; the multiplication is given by the tensor product.

A representation V of G has an induced character χV : G → C given by
χV (g) = tr(gV ) where gV : V → V is left multiplication by g. These characters are
class functions, meaning that they are continuous maps satisfying χV (hgh−1) =
χV (g) for all g, h ∈ G. The set of all class functions Cl(G) forms a ring under
pointwise addition and multiplication, and we obtain a ring map

χ : RC(G)→ Cl(G).

This turns out to be a monomorphism.
For a torus T the representation ring is easy to understand. The irreducible

representations of T are 1-dimensional, and for such representations the character
is a group homomorphism and must take its values in S1 ⊆ C. The 1-dimensional
representations of T are in bijective correspondence with group homorphisms T →
S1, which are in turn in bijective correspondence with elements of the weight lattice
M∗

Z ⊆ M∗ (recall M = TeT is the tangent space of T at the identity). If V and
W are 1-dimensional representations with corresponding weights v and w, then
V ⊗C W is a 1-dimensional representation with weight v + w.

Recall that if H is a group then the group ring Z[H] consists of finite, for-
mal linear combinations

∑
ni[hi] with ni ∈ Z, where the multiplication is deter-

mined by the group structure in H via the formula [hi] · [hj ] = [hihj ]. When H
is the free abelian group Zk note that Z[H] is an algebra of Laurent polynomials
Z[x±1

1 , . . . , x±1
k ]. Consider Z[M∗

Z ], the group ring on the abelian group M∗
Z ; by the

previous remarks this is an algebra of Laurent polynomials in k variables where
k = rankT . The considerations on representations of T from the above paragraph
give us an isomorphism

Z[M∗
Z ]

∼=−→ RC(T ),
with weights w ∈M∗

Z mapping to their associated 1-dimensional representation.
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The notation for elements of Z[M∗
Z ] can be a little confusing in the present

situation, as for v, w ∈ M∗
Z we have distinct elements [v] + [w] and [v + w] and in

fact [v] · [w] = [v + w]. To help with this, it will be convenient to write ev for [v].
Note that this is purely notational, the exponential doesn’t really mean anything!
With this notation, however, elements of Z[M∗

Z ] look like
∑
nie

vi with vi ∈ M∗
Z ,

and the multiplication is determined by ev · ew = ev+w.
Let G be a compact, connected Lie group with maximal torus T ↪→ G. Then

any G-representation becomes a T -representation by restriction, and this gives us
a map res : RC(G)→ RC(T ). Comparing with the rings of class functions, we have

RC(G) //
��

��

RC(T )
��

��
Cl(G) // Cl(T ).

We have already remarked that the vertical maps are injective. It is a fact from Lie
theory that G is covered by the conjugates of T , and from this it follows at once that
Cl(G) → Cl(T ) is injective. We deduce that RC(G) → RC(T ) is injective as well.
In other words, representations of G are uniquely determined by their restrictions
to T .

Let W = NG(T )/T be the Weyl group (the quotient of the normalizer of
T by T ). Each element n ∈ W gives a group homomorphism Cn : G → G via
g 7→ ngn−1, which restricts to a homomorphism T → T . These homomorphisms
induce horizontal maps

RC(G)
Cn //

res

��

RC(G)

res

��
RC(T )

Cn // RC(T ).

The top map is readily checked to be the identity: restricting a representation along
an inner automorphism always gives an isomorphic representation. The maps Cn
give an action of W on RC(T ), and the above square shows that the restriction
RC(G)→ RC(T ) has image inside of the ring of invariants:

res : RC(G) ↪→ RC(T )W .

The following is a key result:

Theorem B.3.1. For any compact Lie group G the map res : RC(G) ↪→
RC(T )W is an isomorphism.

At this point we find ourselves wanting to understand Z[M∗
Z ]W , where the Weyl

group W acts on T and therefore has an induced action on the the weight lattice
M∗

Z . The orbits O of W in M∗
Z are all finite, so let S(O) =

∑
v∈O e

v. We call S(O)
the “symmetric sum” corresponding to the orbit O; it clearly lies in Z[M∗

Z ]W . It is
easy to see that additively Z[M∗

Z ]W is precisely the free abelian group generated by
such symmetric sums, and we can write this fact as

Z[M∗
Z ]W ∼= Z〈M∗

Z/W 〉
(one basis element for every element of the orbit space M∗

Z/W ). One final point
about terminology: if u ∈ M∗

Z we will abuse notation somewhat by writing S(u)
for S(W.u).
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Let V be any representation of G. Then χ(V |T ) ∈ Z[M∗
Z ]W may be written

uniquely as
χ(V |T ) =

∑
niS(Oi)

for integers ni ∈ Z>0 and orbits Oi ∈M∗
Z/W . Each orbit Oi has a unique element ωi

lying in the positive cone C+. In this way, every representation gives us a collection
of positive weights and multiplicities.

One can define a partial ordering on the weights as follows. Say ω1 ≤ ω2 if ω1

lies inside the convex hull of the points in the orbit Wω2. This is clearly reflexive
and transitive. It is not quite antisymmetric, but if ω1 ≤ ω2 and ω2 ≤ ω1 then
ω2 = φ(ω1) for some φ ∈ W . Note that a given pair of weights ω1, ω2 may or may
not be comparable: it is not necessarily true that ω1 ≤ ω2 or ω2 ≤ ω1.

Theorem B.3.2. Suppose that V is an irreducible representation of G.
(a) Among the associated weights of V there is one that is larger than all others with

respect to ≤; this weight occurs with multiplicity one. It is called the highest
weight (or dominant weight) of V .

Said differently, there is a unique weight ω ∈ C+ such that

χ(V |T ) = S(ω) + (lower terms).

(b) Every weight in C+ occurs as the dominant weight for a unique irreducible
representation. So there is a bijection between irreducible representations and
weights lying in the positive cone.

Theorem B.3.3. Assume that G is simply-connected, with simple roots
θ1, . . . , θk. Then there exists a unique collection of weights ω1, . . . , ωk such that
〈θr,ωt〉
〈θr,θr〉 = 1

2δr,t for all r and t. We have that

(1) ω1, . . . , ωk is a Z-basis for the weight lattice M∗
Z , and

(2) The set of weights in the positive cone coincides with the free abelian semi-group
generated by the ωi’s. That is, every weight in the positive cone can be written
uniquely as

∑
niωi with ni ∈ Z≥0.

We call the ω1, . . . , ωk in the above theorem the simple weights of G. Note
that every simple root θr has the corresponding simple weight ωr.

Corollary B.3.4. Assume that G is simply-connected. Let ρ1, . . . , ρk be the
irreducible representations whose highest weights are ω1, . . . , ωk. Then Z[G] is the
polynomial ring Z[ρ1, . . . , ρk].

Remark B.3.5. If G is a simply-connected, compact Lie group then the fol-
lowing sets of objects are in bijective correspondence:
(1) The nodes of the Dynkin diagram of G;
(2) The simple roots θ1, . . . , θk;
(3) The simple weights ω1, . . . , ωk;
(4) The irreducible representations ρ1, . . . , ρk that generate Z[G].

B.3.6. Examples in complex representation theory.

Example B.3.7. G = SU(n). We will use all the notation and information
from Example B.2.1. Our first task is to determine the simple weights ω1, . . . , ωn−1.
If we write ω1 = c1ê1 + . . .+ cnên with

∑
ci = 0 then 〈ω1,Θi〉 = ci − ci+1 for all i.

So we need c1 − c2 = 1, ci − ci+1 = 0 for i > 1, and
∑
ci = 0. It follows that

ω1 =
(
n−1
n

)
ê1 − 1

n ê2 −
1
n ê3 − · · · −

1
n ên.
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Using that ên = −
(
ê1 + · · ·+ ên−1

)
we can also just write ω1 = ê1.

Similar computations shows that

ω1 = ê1, ω2 = ê1 + ê2, ω3 = ê1 + ê2 + ê3, . . . ωn−1 = ê1 + · · ·+ ên−1.

Recall that these weights are supposed to lie in the positive cone. As an exercise,
check that

ω1 =
(
n−1
n

)
Θ1 +

(
n−2
n

)
Θ2 + · · ·

(
1
n

)
Θn−1.

The fact that the coefficients are positive confirms that ω1 is in the positive cone.
Find similar formulas for the other simple weights.

We next compute the elements S(ωi) in Z[M∗
Z ]W . It will be visually somewhat

more pleasing if we introduce yet another notation and write ξi = êi. Recall
that the weight lattice M∗

Z has basis ξ1, . . . , ξn−1 and that ξn is shorthand for
−(ξ1 + · · · + ξn−1). Also recall that the Weyl group W = Σn acts on M∗

Z by
permuation of the ξ’s. Then

S(ω1) = S(ξ1) = eξ1 + eξ2 + · · ·+ eξn

= eξ1 + · · ·+ eξn−1 + e−(ξ1+···+ξn−1)

and

S(ω2) = S(ξ1 + ξ2) =
∑
i<j

eξi+ξj =
∑
i<j

eξieξj

=
∑

1≤i<j<n

eξieξj +
∑
i

e−(ξ1+···+ξ̂i+···+ξn−1)

(where here the hat on ξi indicates that that term is omitted).
In general, S(ωk) is the kth elementary symmetric function in the terms

eξ1 , . . . , eξn , with of course the usual proviso that ξn is shorthand for −(ξ1 + · · ·+
ξn−1).

Our final goal is to determine the fundamental representations ρ1, . . . , ρn−1

corresponding to the simple weights ω1, . . . , ωn−1. Let V denote the standard
representation of SU(n) on Cn. The character of this representation is clearly
eξ1 + · · ·+ eξn which is S(ω1), which confirms that this representation is irreducible
with highest weight ω1. One readily checks that for k < n the character of ΛkV is
the kth elementary symmetric function on the eξi ’s, and so ΛkV is irreducible with
highest weight ωk. Our fundamental representations are therefore

ρ1 = V, ρ2 = Λ2V, . . . ρn−1 = Λn−1V

and we have
RC(SU(n)) = Z[V,Λ2V, . . . ,Λn−1V ].

It is worth being very specific about what the representation theory of SU(n)
is like for low values of n, so we do this next.

Example B.3.8 (A closer look at SU(2)). For SU(2) the rank is 1. The
weight lattice is generated by an element ξ1, and the roots of SU(2) are ±2ξ1.
We have RC(SU(2)) = Z[V ] where V is the standard representation of SU(2) on
C2. Unfortunately, this description of RC(SU(2)) does not tell us the irreducible
representations of SU(2). It tells us that they can all be found inside the tensor
powers V ⊗k, but it does not tell us exactly how to find them. So we have to work
harder.
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Let z1 and z2 be two formal variables, and let Hn denote the complex vector
space of degree n homogeneous polynomials in z1 and z2. Elements of Hn look like

f(z1, z2) = a0z
n
1 + a1z

n−1
1 z2 + a2z

n−2
1 z2

2 + · · ·+ anz
n
2 .

Note that dimHn = n + 1. Elements of Hn are certain functions C2 → C, and
we make SU(2) act on them via the natural action of SU(2) on C2. That is, if
X ∈ SU(2) then

(X.f)(z) = f(X−1z).
Note that

[X.(Y f)](z) = (Y f)(X−1z) = f(Y −1(X−1z)) = f((XY )−1z) = [(XY ).f ](z)

and so this really is an action.
Let us compute the character of Hn. The monomial functions zn−k1 zk2 generate

1-dimensional representations of the torus, with
[
ω 0
0 ω−1

]
acting via ωn−2k. It

follows that
χ(Hn) = enξ1 + e(n−2)ξ1 + e(n−2)ξ1 + · · · e−nξ1 .

So Hn is the irreducible representation with highest weight nξ1, and therefore

C = H0, H1, H2, H3, . . .

is a complete list of the irreducible representations of SU(2).
Note that we now have two bases for RC(SU(2)): the basis consisting of the

irreducible representations Hn, and the basis consisting of the powers of V . It is
perhaps useful to think a little about how these two bases relate to each other.
Clearly V = H1 (as both are irreducible representations of dimension 2, and only
one such representation exists). The character of V ⊗2 is

χ(V ⊗2) = χ(V )2 = (eξ1 + e−ξ1)2 = e2ξ1 + 2 + e−2ξ1 = (e2ξ1 + 1 + e−2ξ1) + 1

= χ(H2) + χ(C).

This immediately tells us that V ⊗2 ∼= H2 ⊕ C. Similar computations work for the
higher tensor powers; for instance,

χ(V ⊗3) = e3ξ1 + 3eξ1 + 3e−ξ1 + e−3ξ1 = χ(H3) + 2χ(H1)

and hence V ⊗3 ∼= H3 ⊕H1 ⊕H1.
A natural question is whether one can see these decompositions in a more

concrete way, without recourse to character calculations. This gets into some in-
teresting representation theory, and mostly we won’t pursue it here, but let us at
least remark on the first instance of this. We saw above that V ⊗2 contains a trivial
representation, but how can we write down the explicit one-dimensional subspace
that is fixed by the action?

Consider the antisymmetric form on V given by 〈v, w〉 = det[v|w] (where el-
ements v ∈ V = C2 are identified with column vectors). Then SU(2) preserves
this form, since 〈Xv,Xw〉 = det[Xv|Xv] = det(X · [v|w]) = det(X) det[v|w] and
det(X) = 1 for X ∈ SU(2). Regarding our form as a map V ⊗ V → C, we see
that this is a surjective map of representations: so the trivial representations is
a quotient, and therefore a summand, of V ⊗2. This approach doesn’t give the
splitting for free, but one can easily guess it: the element 1 ∈ C should be sent
to e1 ⊗ e2 − e2 ⊗ e1. One readily checks that this antisymmetric tensor is fixed
by the SU(2) action, and therefore generates our copy of C inside V ⊗ V . Now
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having guessed this, though, we can engineer an even better explanation. Because
the space of antisymmetric 2-tensor is precisely Λ2V , and the quotient of V ⊗V by
these antisymmetric tensors is Sym2 V . That is, we have an exact sequence

0→ Λ2V → V ⊗ V → Sym2 V → 0

and this is clearly an exact sequence of SU(2)-represenations. Since V is 2-
dimensional Λ2V is the determinant representation of SU(2), which is trivial. So
V ⊗2 ∼= C ⊕ Sym2(V ). The representation Sym2(V ) is essentially H2 (although
technically H2 = Sym2(V ∗), but one readily checks that V ∼= V ∗ as representations
by using the adjoint of the determinant form V ⊗ V → C).

As one final example concerning SU(2), let us consider the adjoint action of
SU(2) on its complexfied tangent space C ⊗ TISU(2). As we have seen before
(????), the character of this representation is

χ(C⊗ TISU(2)) = e2ξ1 + 1 + e−2ξ1 .

It follows that C⊗TISU(2) ∼= H2, the irreducible representation of dimension three.

Example B.3.9 (A closer look at SU(3)). Here our group is rank 2. The
weight lattice is generated by ξ1 and ξ2, and the roots are ±(ξ1 − ξ2), ±(ξ1 − ξ3),
and ±(ξ2− ξ3) where ξ3 is shorthand for −(ξ1 + ξ2). Thus we can also say that the
roots are ±(ξ1 − ξ2), ±(2ξ1 + ξ2), and ±(ξ1 + 2ξ2). The simple roots are

θ1 = ξ1 − ξ2 and θ2 = ξ2 − ξ3 = ξ1 + 2ξ2,

and the simple weights are

ω1 = ξ1, ω2 = ξ1 + ξ2.

We know that RC(SU(3)) = Z[V,Λ2V ]. Again, this description by itself does not
tell us much about the irreducible representations. We do know that there will
be one irreducible representation with highest weight vector kω1 + nω2 for any
k, n ∈ Z≥0, and that these will be all the irreducible representations.

The following picture shows the weight lattice of SU(3) (the hexagonal lattice
in the background). It also shows the root system, and the shaded region is the
fundamental dual Weyl chamber.

θ1

θ2

ξ1=ω1

ξ2

ξ3

ω2

The Weyl group is Σ3 and is generated by the reflections in the lines 〈ξ1 + ξ2〉,
〈ξ1 + ξ3〉, and 〈ξ2 + ξ3〉.



B.3. REPRESENTATION THEORY 219

The characters of V and V ∗ are

χ(V ) = eξ1 + eξ2 + eξ3 and χ(V ∗) = e−ξ1 + e−ξ2 + e−ξ3 .

We can also depict these by drawing weight diagrams, as follows:

V V ∗

Note that the weights of Λ2(V ) coincide with those of V ∗, showing that these
two representations are isomorphic.

We know that there will be an irreducible representation Γa,b with highest
weight aω1 + bω2, for each a, b ∈ Z≥0. So far we have constructed Γ1,0 = V and
Γ0,1 = V ∗. To construct others, note that if W and W ′ are representations then
the weights of W ⊗W ′ are the set of weights w⊗w′ where w is a weight of W and
w′ is a weight of w′. This shows immediately that V ⊗ V will have highest weight
2ω1; but just as we saw in the SU(2) example, V ⊗V will not be irreducible. There
is an exact sequence

0→ Λ2V → V ⊗ V → Sym2(V )→ 0.

So let us instead focus on Sym2(V ). The weights are readily computed, and we
find that

χ(Sym2 V ) = e2ξ1 + e2ξ2 + e2ξ3 + eξ1+ξ2 + eξ1+ξ3 + eξ2+ξ3 .

A similar computation holds for Sym2(V ∗), where the only change is the sign on
all the exponents. The results are again best depicted in terms of diagrams:

Sym2(V ) Sym2(V ∗)
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One observes, of course, that these weight diagrams all have a high degree of
symmetry—and we knew this already, as they must be symmetric under the action
of the Weyl group.

At this point we have constructed irreducible representations whose highest
weights are ω1, ω2, 2ω2, and 2ω1. They have dimensions 3, 3, 6, and 6 (respectively),
and they come in dual pairs of W and W ∗.

To get a representation whose highest weight is ω1 + ω2 one naturally is led to
look at V ⊗ V ∗, which has the following weight diagram:

V ⊗ V ∗

Here the three circles at the origin indicate that this weight occurs with multiplicity
three. The representaton V⊗V ∗ is not irreducible, as one readily sees by considering
the evaluation map V ⊗V ∗ → C. This is a surjective map of representations, which
shows that C splits off V ⊗ V ∗. The remaining eight-dimensional representation is
irreducible, although it takes some work to see this. It coincides with the adjoint
representation of SU(3) on its Lie algebra TISU(3), as one readily sees from the
root computation (the two weights that are zero correspond to the maximal torus
of SU(3) acting trivially on the torus’s Lie algebra).

In general, to construct an irreducible representation with highest weight aω1+
bω2 one can start with the representation Syma(V )⊗Symb(V ∗). This representation
has the correct highest weight, but is not necessarily irreducible. There is a map

Syma(V )⊗ Symb(V ∗)→ Syma−1(V )⊗ Symb−1(V ∗)

given by

(v1⊗· · ·⊗va)⊗(β1⊗· · ·βb) 7→
∑
i,j

βi(vj)(v1⊗· · ·⊗ v̂i⊗· · · va)⊗(β1⊗· · · β̂j⊗· · ·βb).

This map turns out to be surjective, and its kernel Γa,b clearly has highest weight
aω1+bω2 (because this weight is too small to appear in Syma−1(V )⊗Symb−1(V ∗)).
It is far from obvious, but Γa,b turns out to be irreducible. See [FuH, Section 13.2]
for more details about this. The complete details are not crucial for us, as these
Γa,b’s will not be used in the main text.

B.3.10. Real representations. Let RR(G) represent the real representation
ring of G. As a group, it is the free abelian group on the irreducible representa-
tions of G on real vector spaces. We would like to understand these real repre-
sentations, just as we have understood the complex ones. It turns out that one
cannot understand the real representations without also studying the quaternionic
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representations—the representations of G on vector spaces over H. Let RH(G) de-
note the Grothendieck group of such representations, which is again the free abelian
group generated by the irreducible quaternionic representations. (Note that RH(G)
is not a ring due to the lack of a tensor product for quaternionic vector spaces).
Our goal is to understand both RR(G) and RH(G) by comparing them to RC(G).

We will need the following functors on representations:

RepR(G)
c // RepC(G)

t

��

r
oo

q // RepH(G).
rH

oo

Here c(V ) = V ⊗R C and q(V ) = V ⊗C H. The functors r and rH are restriction
functors, or forgetful functors: if V is a complex representation then rV is the same
set, with the same G-action, but regarded as a real vector space. Similarly, rH takes
a quaternionic representation to its underlying complex representation. Finally, if
V is a complex representation then tV is its conjugate: the same set, and same
G-action, but given the conjugate complex structure.

The following relations between these functors are readily checked (we write
the relations in terms of isomorphism classes of representations):

rc = 2, tc = c, cr = 1 + t, rt = r; t2 = 1;
rHq = 1 + t, qrH = 2, trH = rH, qt = q.

These relations mean, for instance, that if V is a real representation the rc(V ) ∼=
V ⊕ V , whereas if W is a complex representation then cr(W ) ∼= W ⊕ tW .

The above functors induce maps between the Grothendieck groups:

RR(G)
c // RC(G)

t

��

r
oo

q // RH(G).
rH

oo

Here both c and t are ring homomorphisms, but r is not (and recall that RH(G)
doesn’t have a ring structure at all). The relations rc = 2 and qrH = 2 show that
c and rH are injective.

Note that of the functors listed above, only t is guaranteed to send irreducibles
to irreducibles (which follows because t2 = 1).

Complex representations that are in the image of r or rH are called real-
type and quaternionic-type, respectively. If a complex representation V satisfies
tV ∼= V we say it is self-conjugate. Note that both real-type and quaternionic-
type representations are self-conjugate. It is a theorem that every irredicuble,
self-conjugate representation is either real-type or quaternionic-type, but not both.

Remark B.3.11. It is commonplace to shorten “real-type” to just “real”, and
“quaternionic-type” to just “quaternionic”. This creates some confusion about
what one means by the phrase “real representation”: does it mean a representation
on a real vector space, or does it mean a complex represenation of real type? While
the answer is usually clear from context, it does create some confusion when one
wants to talk about all these things at once. We will therefore stick to the longer,
but less ambiguous, adjectives.

Here is a useful result:

Lemma B.3.12. Let V be a complex representation of G.
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(a) V is real-type (resp. quaternionic-type) if and only if V admits a symmetric
(resp. skew-symmetric) bilinear form V ⊗ V → C that is invariant under the
action of G.

(b) V is real-type (resp. quaternionic-type) if and only if V admits a G-equivariant,
conjugate-linear, self-map j : V → V such that j2 = 1 (resp. j2 = −1). Such a
j is called a structure map of real- or quaternionic- type.

Example B.3.13. Consider the standard representation of SU(2) on V = C2.
The bilinear form on V given by 〈v, w〉 = det[v|w] (with v and w regarded as column
vectors) is skew-symmetric and invariant under the SU(2)-action. Therefore V is
a quaternionic representation. Structure map ????

Write Irr(G; C) for the isomorphism classes of irreducible complex representa-
tions. Write Irr(G; C)R and Irr(G; C)H for the isomorphism classes of irreducible
real-type and quaternionic-type representations. Finally, let Irr(G; C)C denote the
isomorphism classes of irreducible representations that are not self-conjugate. Such
isomorphism classes come in conjugate pairs, so write 1

2 Irr(G; C)C for any subset
which contains exactly one isomorphism class from each conjugate pair. One has a
disjoint union

Irr(G; C) = Irr(G; C)R q Irr(G; C)C q Irr(G; C)H.

The first and third components together equal the self-conjugate representations.
Let V ∈ Irr(G; R). Then cV is self-conjugate, and so it can be written as

cV = (U1 ⊕ tU1)⊕ · · · ⊕ (Uk ⊕ tUk)⊕ (W1 ⊕ · · · ⊕Ws)

where each Ui is in Irr(G; C)C and Wi is in Irr(G; C)R ∪ Irr(G; C)H. Applying r
gives that

2V = rcV = 2(rU1)⊕ · · · ⊕ 2(rUk)⊕ rW1 ⊕ · · · ⊕ rWs.

But V is irreducible, and so the number of summands on the right hand side can be
at most two: (k, s) is either (1, 0), (0, 1), or (0, 2). In the first case we conclude that
V = rU1; in the second, cV is irreducible and therefore lies in Irr(G; C)R. In the
final case we have cV = W1⊕W2 where Wi is self-conjugate, and V = rW1 = rW2.
Note that if Z is a real-type representation then rZ is necessarily reducible (because
rc = 2), hence neither W1 nor W2 are real-type; that is, they are quaternionic type.

The above paragraph gives three possibilities for what an object in Irr(G; R)
can look like. More of these kinds of arguments—playing around with the functors
r, c, t, rH, and q—easily yield the following result:

Theorem B.3.14. The set Irr(G; R) is the disjoint union of the three pieces
(1) {V ∈ Irr(G; R) | cV ∈ Irr(G; C)R}
(2) {rW |W ∈ Irr(G; C)C}
(3) {rW |W ∈ Irr(G; C)H}.
(Note that it is not immediately obvious that sets (2) and (3) are subsets of Irr(G; R)
in the first place). Likewise, the set Irr(G; H) is the disjoint union of the three pieces
(1) {V ∈ Irr(G; H) | rHV ∈ Irr(G; C)H}
(2) {qW |W ∈ Irr(G; C)C}
(3) {qW |W ∈ Irr(G; C)R}.
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Our next goal is to understand real-type and quaternionic-type representations
in terms of their weights. Let K denote the set of weights in the fundamental Weyl
chamber. We know that there is a bijection between K and the set of irreducible
complex representations; if µ ∈ K then let Vµ denote the irreducible complex
representaton with higest weight µ. We also know that K is the free semi-group on
the fundamental weights ω1, . . . , ωk. Our goal is to understand which weights in K
correspond to elements of Irr(G; C)R and which weights correspond to elements of
Irr(G; C)H.

We can define a Z/2-action on K as follows. If µ ∈ K, let µ denote the highest
weight in the irreducible representation tVµ. Let us also say that a weight µ ∈ K is
self-conjugate, real-type, complex-type, or quaternionic-type if the corresponding
representation Vµ is so. Finally, for a self-conjugate weight µ define the index of
µ to be 1 if µ is real-type, and −1 is µ if quaternionic-type.

Theorem B.3.15. Let µ ∈ K.
(a) µ is self-conjugate if and only if −µ ∈W.µ (where W.µ is the orbit of µ under

the Weyl group).
(b) Let µ, ν ∈ K be self-conjugate, with indices ε and ε′. Then µ+ ν is self-

conjugate and has index equal to εε′.
(c) For any µ ∈ K, the weight µ+ µ is self-conjugate and real-type.

Example B.3.16 (SU(2) and SU(3)). For SU(2) the weight lattice is Z〈ξ1〉,
so that K = {0, ξ1, 2ξ1, 3ξ1, . . .}. The representation Vξ1 has character eξ1 + e−ξ1

and so is clearly self-conjugate. The Z/2-action on K therefore fixes ξ1, and hence
fixes all of K: all weights are self-conjugate.

We also know that Vξ1 equals the standard representation of SU(2) on C2,
and we saw in Example B.3.13 that this is quaternionic-type. It follows from
Theorem B.3.15(b) that 2ξ1 is real-type, 3ξ1 is quaternionic-type, and so forth. So
we have

Irr(SU(2); C)R = {C,H2,H4,H6, . . .}, Irr(SU(2); C)C = ∅,
Irr(SU(2); C)H = {H1,H3,H5, . . .}.

For SU(3) the weight lattice is Z〈ξ1, ξ2〉 and K is generated by ω1 = ξ1 and
ω2 = ξ1 + ξ2. Recall that Vω1 is the standard representation on C3 and Vω2 is its
dual. This shows that ω1 = ω2, and by linearity this determines the Z/2-action on
all of K. In particular, the self-conjugate weights are those of the form n(ω1 + ω2)
for n ≥ 0; all of the other weights are complex-type.

But ω1 +ω2 = ω1 +ω1, and so by Theorem B.3.15(c) this is real-type. By part
(b) of the same theorem, each multiple n(ω1 + ω2) is also real-type.

To summarize:

Irr(SU(3); C)R = {Vn(ω1+ω2) |n ≥ 0}
Irr(SU(3); C)C = {Vpω1+qω2 | p, q ≥ 0, p 6= q}
Irr(SU(3); C)H = ∅.

Returning to our discussion of general compact Lie groups G, let ω1, . . . , ωk be
a fundamental system of weights for G. It is clear that the Z/2-action on K must
permute these ωi’s. Write

{ω1, . . . , ωk} = {ν1, . . . , νr} q {σ1, σ1, . . . , σs, σs}.



224 B. BACKGROUND ON COMPACT LIE GROUPS AND THEIR REPRESENTATIONS

where νi = νi for all i. Then the self-conjugate weights are precisely the ones of
the form

µ =
∑
i

ni(σi + σi) +
∑
j

mjνj .

If εj denotes the index of νj , then Theorem B.3.15(b,c) tell us that the index of µ
is
∏
j ε
mj

j . So we can readily identify the type of every weight in K. Here is a brief
summary of this:

Corollary B.3.17. Let Q ⊆ {1, . . . , k} be the set of indices i such that ωi
is self-conjugate and quaternionic-type. If µ =

∑
i niωi with ni ∈ Z≥0 and µ is

self-conjugate, then the index of µ is 1 or −1 depending on whether
∑
i∈Q ni is

even or odd.

We close this section with a discussion of how to determine RR(G) and RH(G).
These are embedded into RC(G) via the maps

RR(G) c−→ RC(G) rH←− RH(G).

The image of c is generated, as an abelian group, by the set

Irr(G; C)R ∪ {2W |W ∈ Irr(G; C)C} ∪ {2W |W ∈ Irr(G; C)H}.
??????

B.4. The groups SO(n) and Spin(n).

Recall that for n > 2 one has π1SO(n) ∼= Z/2, and that Spin(n) is the universal
cover of SO(n). These two Lie groups therefore share the same Lie algebra, and
in particular the same root system. However: the representation theory of the two
groups, although intricately linked, is somewhat different. Recall that many of our
general results on representation theory assumed that the group G was simply-
connected, so those results will only apply to Spin(n).

The material in this section is organized as follows. We first consider only the
groups SO(n), ignoring their double covers. The analysis of these groups is different
when n is even or odd. We discuss the root systems in each case, then discuss what
we can about the representation theory. Only afterwards do we turn our attention
to Spin(n), again considering the odd and even cases separately.

B.4.1. Preliminaries. We begin with some preliminaries. For any α ∈ R
write

Rθ =
[
cosα − sinα
sinα cosα

]
.

The set of matrices Rθ constitutes the group SO(2) (which is isomorphic to S1, of
course). Consider the action of this group on M = M2×2(R) given by conjugation:
A.X = AXA−1 for A ∈ SO(2) and X ∈ M . If we equip M with the standard
inner product 〈X,Y 〉 =

∑
xijyij , then this is invariant under the SO(2)-action.

The subspace of symmetric matrices is a subrepresentation of M , the subspace
of antisymmetric matrices is another subrepresentation, and the subspace of trace
zero matrices is yet another subrepresentation. Taking intersections of these readily
yields the following decomposition of M into irreducible SO(2)-representations:

M = 〈I〉 ⊕ 〈J〉 ⊕ 〈K,L〉
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where

J = Rπ/2 =
[
0 −1
1 0

]
, K =

[
1 0
0 −1

]
, L = JK =

[
0 1
1 0

]
(and I is the identity matrix). Note that 〈K,L〉 is the set of trace zero, symmetric
matrices, and 〈J〉 is the set of antisymmetric matrices.

B.4.2. The root systems. First consider the group SO(n) where n = 2k.
The maximal torus T is the set of block matrices

Ω =


Rα1 0 0 · · · 0
0 Rα2 0 · · · 0
...

...
. . . 0

0 0 0 · · · Rαk


where α1, . . . , αk ∈ R. This is clearly a cartesian product of k copies of SO(2), and
hence a torus as claimed.

The tangent space g = TISO(2k) is the set of (2k) × (2k) antisymmetric ma-
trices, which has dimension

(
2k
2

)
. For B ∈ M2×2(R) write Xrs(B) for the matrix

with B in the (r, s) block and −BT in the (s, r) block, and zeros elsewhere. For
r < s write Mrs for the space of matrices Xrs(B) with B arbitrary, and write Mrr

for the space of matrices Xrr(B) with B antisymmetric. Then g is the direct sum
of the Mrs subspaces for r ≤ s.

We need to analyze the adjoint action of T on g. If Ω is an element of T as
above, then

Ω.Xrs(B) = ΩXrs(B)Ω−1 = Xrs(RθrBR−θs).
So each Mrs is a T -subrepresentation of g. Note that each Mrr is one-dimensional
and is therefore the trivial representation (a fact that is also readily checked by
hand). We claim that each Mrs splits into two 2-dimensional irreducible representa-
tions, determined by the maps T → SO(2) given by Ω 7→ Rαr−αs and Ω 7→ Rαr+αs .
The former is the submodule spanned by Xrs(I) and Xrs(J), and this is easy to
see because both I and J commute with all elements of SO(2). The latter repre-
sentation is the submodule spanned by Xrs(K) and Xrs(L); this is seen using that
KRα = R−αK for all angles α, and that L = JK.

If e1, . . . , ek are the ???? then our roots are

θrs = er − es and θ′rs = er + es

(and their negatives), for r < s. The positive roots are the ones just listed, and the
simple roots are

e1 − e2, e2 − e3, . . . , ek−1 − ek, and ek−1 + ek.

Computing the inner products between them, one readily finds that the root system
is of type Dk:

d d d · · · d d dd��
HH

e1−e2

e2−e3

e3−e4

ek−2−ek−1

? ek−1−ek

ek−1+ek
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Next we turn to the case of SO(2k + 1). Here the maximal torus T is the set
of matrices

Ω =


Rα1 O O · · · O 0
O Rα2 O · · · O 0
...

...
. . . O 0

O O O · · · Rαk
0

0 0 0 · · · 0 1


where each O represents a 2 × 2 block matrix of zeros, and each 0 represents
either a 2 × 1 or 1 × 2 matrix of zeros. The Lie algebra g is again the space of
(2k + 1)× (2k + 1) antisymmetric matrices. Define Xrr(B) and Xrs(B) as before,
for B ∈ M2×2(R). If b ∈ R2 define Xi(b) to be the matrix with the column vector
b in the (2i − 1, 2k + 1)- and (2i, 2k + 1)-entries, and the row vector −bT in the
(2k + 1, 2i − 1)- and (2k + 1, 2i)-entries; here 1 ≤ i ≤ k. Write Mrs for the space
of matrices Xrs(B) with B arbitrary, write Mrr for the space of matrices Xrr(B)
with B antisymmetric, and write Mi for the space of matrices Mi(b) with b ∈ R2.
Then g is the direct sum of the Mrs spaces for 1 ≤ r ≤ s ≤ k and the Mi spaces
for 1 ≤ i ≤ k.

In computing the adjoint action of T on g, one finds that the action on the Mrs

spaces is exactly the same as in the case of SO(2k). One also finds that T acts on
Mi via

Ω ·Xi(b) = ΩXi(b)Ω−1 = Xi(Rαi
b).

So Mi is an irreducible subrepresentation with character Ω 7→ Rαi
. It follows that

the roots of SO(2k + 1) are ei − ej , ei + ej (i < j), and ei (and their negatives).
We take the positive roots to be ei − ej for i < j, ei + ej for i < j, and all the ei’s.
The simple roots are then

e1 − e2, e2 − e3, . . . , ek−1 − ek, and ek.

Note that these all have length
√

2 except for ek, which is shorter. One readily
computes the inner products and finds that the Dynkin diagram is type Bk, as
shown below:

d d d · · · d d d>
e1−e2

e2−e3

e3−e4

ek−2−ek−1

ek−1−ek

6

ek

B.4.3. Representation theory of the groups SO(n). If SO(2k) were
simply-connected then the first thing we would do is to determine the funda-
mental weights ω1, . . . , ωk. It is informative to attempt to do this anyway: if
θi = ei − ei+1 for i < k and θk = ek−1 + ek, then one must solve the system
of equations 〈θr, ωs〉 = δrs. One finds that

ω1 = e1, ω2 = e1 + e2, . . . , ωk−2 = e1 + . . .+ ek−2

but then something interesting happens because

ωk−1 = 1
2e1 + 1

2e2 + · · ·+ 1
2ek−1 − 1

2ek and ωk = 1
2e1 + 1

2e2 + · · ·+ 1
2ek−1 + 1

2ek.

These are not weights, as they do not lie in the integer lattice of [TISO(2n)]∗. For
SO(2k+1) the computation is similar, and one would find that ωi = e1+e2+· · ·+ei
for i < k but that ωk = 1

2 (e1 + · · · + ek). At the moment these computations just
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serve to remind us that SO(n) is not simply-connected and hence Theorem B.3.3
does not apply; but they will be more helpful when we start to talk about Spin(n).

Despite the fact that we don’t have a fundamental system of weights, we still
know by Theorem B.3.1 that the map

RC(SO(n))→ RC(T )W

is an isomorphism. The representation ring of the torus is the algebra of Laurent
series Z[e±α1 , . . . , e±αk ] (where either n = 2k or n = 2k+1). In the case n = 2k+1
the Weyl group W consists of all permuations of the αi’s together with all sign
changes. Some examples of invariants are the elementary symmetric functions

σi = σi(eα1 , e
−α1 , eα2 , e−α2 , . . . , eαk , e−αk)

and it is not hard to see that these are algebraically independent for 1 ≤ i ≤ k and
generate the entire ring of invariants. That is, R(T )W = Z[σ1, . . . , σk].

In the case n = 2k the Weyl group consists of all permutations of the αi’s
together with even numbers of sign changes. Of course all the σi’s are still invari-
ants, but when one gets up to σk one notices that it splits as the sum of two new
invariants:

σk = σ+
k + σ−k .

Here σ+
k is the sum of all terms e±α1±α2±···±αk in which there are an even number

of minus signs, whereas σ−k is the sum of all such terms in which there are an odd
number of minus signs. In fact this suggests a nice approach for understanding
RC(T )W : observe that it has an involution S defined by “changing an odd number
of signs”. This involution splits the ring into +1 and −1 eigenspaces, where the +1
eigenspace is exactly Z[σ1, . . . , σk] (the ring of invariants considered earlier). The
−1-eigenspace is a free module over the +1-eigenspace, generated by the element
σ−k . For a proof of this, see [Ad, Proof of 7.9]. This gives us a description of
RC(T )W . Note that this ring is not a polynomial algebra!

For SO(n) let U be the standard representation on Rn and let V = U ⊗R C.
So V consists of column-vectors over C of length n, with the action of SO(n) given
by left multiplication. Now assume n = 2k. Then it is easy to see that

χ(V ) = eα1 + e−α1 + · · ·+ eαk + e−αk = σ1.

More generally, χ(ΛiV ) = σi. So Z[V,Λ2V, . . . ,ΛkV ] ⊆ RC(G) is a polynomial sub-
algebra which maps to Z[σ1, . . . , σk] under the character map RC(G) → RC(T )W .
We will return to this in a moment, but let us pause to look at the odd case which
is easier. Because for n = 2k + 1 we have instead that

χ(V ) = eα1 + e−α1 + · · ·+ eαk + e−αk + 1 = σ1 + 1.

From this one readily deduces that χ(ΛiV ) = σi + σi−1. Since RC(T )W =
Z[σ1, . . . , σk] = Z[σ1 + 1, σ2 + σ1, . . . , σk + σk−1], we deduce that

RC(SO(2k + 1)) = Z[V,Λ2V, . . . ,ΛkV ].

It follows immediately that the embedding c : RR(SO(2k + 1))→ RC(SO(2k + 1))
is actually an isomorphism, since every ΛiV is the image of ΛiU . In particular,
every irreducible complex representation of SO(2k + 1) is real-type.

Remark B.4.4. As we have said before, be aware that knowing the represen-
tation ring of RC(SO(2k+1)) still doesn’t give us a complete list of the irreducible
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complex representations. But for the moment it is the end of our story as far as
the odd case is concerned.

Now return to the case of SO(2k), with U = R2k the standard representation
and V = C2k its complexification. Consider the Hodge ∗-operator

∗ : Λk(U)→ Λk(U),

which satisfies ∗(v1∧· · ·∧vk) = vk+1∧· · ·∧v2k for any oriented, orthonormal basis
v1, . . . , v2k. Note that if A ∈ O(2k) and ω ∈ Λk(U) then

∗(Aω) = (detA) ·Aω
(it suffices to check this when ω = v1 ∧ · · · ∧ vk with v as above, where the formula
follows from the fact that Av1, . . . , Av2k is still orthonormal). In particular, the
map ∗ is a map of SO(2k)-representations.

Note that ∗2 = (−1)k. If k is even then Λk(U) decomposes into the +1 and −1
eigenspaces for ∗; if k is odd then we need to first complexify, after which Λk(V )
decomposes into the +i and −i eigenspaces. In what follows we will try to treat
these two cases more or less simultaneously. If we letW1 andW2 be the eigenspaces,
we claim that by naming things appropriately one has

χ(W1) = σ+
k + (lower terms) and χ(W2) = σ−k + (lower terms).

To see this, let L ∈ O(2k) be any element of determinant −1, for example the
diagonal matrix with all 1’s and a single −1 on the diagonal. Then ω → Lω gives a
vector space isomorphism between the two eigenspaces. The map A 7→ LAL−1 is a
map of groups SO(2k)→ SO(2k), and we may restrict any representation along this
map to get a new representation: let us call this the “L-conjugate” representation.
Then ω → Lω is an isomorphism between the +1 (or +i) eigenspace and the −1
(or −i) eigenspace with its L-conjugate representation.

Write Λk(V )+ and Λk(V )− for the subrepresentations of Λk(V ) whose charac-
ters have σ+

k and σ−k in them, respectively.

Theorem B.4.5. RC(SO(2k)) is a free module over Z[V,Λ2V, . . . ,ΛkV ] on
two generators, 1 and Λk(V )+. When k is even all of these generators are real, so
the map c : RR(SO(2k)) → RC(SO(2k)) is an isomorphism. When k is odd then
V,Λ2(V ), . . . ,Λk(V ) are all real, and the representations Λk(V )+ and Λk(V )− are
conjugate to each other.

B.4.6. Spin representations. Let N be the kernel of Spin(n) → SO(n).
Then N is a subgroup of order 2, let us write it as {I, E}. Note that representations
of SO(n) are in bijective correspondence with representations of Spin(n) on which E
acts as the identity. This correspondence clearly sends irreducibles to irreducibles.

Example B.4.7 (Irreducible representations of SO(3)). The group Spin(3) is
just S3, also known as the group SU(2). The only elements of SU(2) that square
to I and I and −I, hence E = −I. Consider the irreducible complex representation
Hn of SU(2), consisting of the homogeneous degree n polynomials in z1 and z2. The
action of E is to change the sign of z1 and z2, and this will correspond to the identity
only if n is even. So the complete list of irreducible, complex representations of
SO(3) is

C = H0, H2, H4, H6, . . .

Recall that Hn has dimension n+ 1, so the dimensions are 1, 3, 5, 7, . . ..
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We have seen previously that all of the irreducible complex representations
of SO(3) are real-type, so the problem arises of giving real representations whose
complexifications are the H2n’s. This is usually done in terms of the so-called
spherical harmonics, which we briefly review here.

Consider functions F : R3 → R satisfying Laplace’s equation ∇2F = 0. To
solve this equation one works in spherical coordinates and first looks for solutions
of the form F (ρ, θ, φ) = R(ρ)Y (θ, φ). This leads to separate differential equations
in R and Y , and clearly SO(3) acts on the solution space for Y . The equation for
Y can be solved by again assuming a separation of variables Y (θ, φ) = Θ(θ)Φ(φ),
and one ends up discovering that there are a discrete set of solutions of the form
Y m` (θ, φ) indexed by integers ` and m where −` ≤ m ≤ `. Fixing `, one can check
that the space spanned by Y −`` , Y −`+1

` , . . . , Y `` is a subrepresentation of SO(3). It
turns out to be irreducible, and its complexification is H2`.

Since SO(n)-representations are precisely Spin(n)-representations on which E
acts as the identity, restricting along Spin(n) → SO(n) gives a embedding of rep-
resentation rings RC(SO(n)) ↪→ RC(Spin(n)). From the general theory of simply-
connected, compact Lie groups we know that RC(Spin(n)) is a polynomial ring on
fundamental representations ρ1, . . . , ρk (where n = 2k or n = 2k + 1). Let us see
what we can determine about these representations.

Let T̃ be the maximal torus in Spin(n), so that we have a double cover T̃ → T .
This induces a surjective map of tangent spaces M̃ →M which sends M̃Z onto MZ,
and therefore an injective map of the duals: M∗ ↪→ (M̃)∗ and M∗

Z ↪→ (M̃Z)∗. In
the latter case it must be that M∗

Z is an index 2 subgroup. If one now goes back
to our attempt, at the beginning of Section B.4.3, to calculate the fundamental
weights of SO(n), it is clear that (M̃Z)∗ must contain 1

2 (ξ1 + · · · + ξk). The fact
that 〈ξ1, . . . , ξk〉 is an index 2 subgroup then implies that we can identify

M̃∗
Z =

〈
ξ1, . . . , ξk,

1
2 (ξ1 + · · ·+ ξk)

〉
.

The calculation of the fundamental weights of Spin(n) is exactly what we tried
to do in the case of SO(n): for n = 2k one gets

ωi =


ξ1 + · · ·+ ξi if i ≤ k − 2,
1
2 (ξ1 + · · ·+ ξk−1 − ξk) if i = k − 1,
1
2 (ξ1 + · · ·+ ξk−1 + ξk) if i = k.

For n = 2k + 1 one has instead that

ωi =

{
ξ1 + · · ·+ ξi if i ≤ k − 1,
1
2 (ξ1 + · · ·+ ξk) if i = k.

Let V = Cn be the standard representation of SO(n), regarded as a representation
of Spin(n). Assume n = 2k + 1. Then

χ(V ) = 1 + eξ1 + e−ξ1 + · · ·+ eξk + e−ξk .

We see that the highest weight is ξ1 = ω1, so V = ρ1. The character computation
for Λi(V ) likewise reveals that the highest weight is ξ1 + · · · + ξi. So for i < k we
have ρi = Λi(V ). For i = k something interesting happens, though, because ωk
is only half of ξ1 + · · · + ξk. So it is not true that Λk(V ) = ρk. The irreducible
representation with highest weight ωk is called the half-spin representation, and
denoted ∆. ????
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Theorem B.4.8. The representation ring RC(Spin(2k + 1)) is the polynomial
ring Z[V,Λ2(V ), . . . ,Λk−1(V ),∆]. The map RC(SO(2k + 1)) → RC(Spin(2k + 1))
sends Λk(V ) to ∆2 − (1 + V + Λ2(V ) + · · ·+ Λk−1(V )).

Now consider the case n = 2k. The first part of the analysis is the same, in the
sense that Λi(V ) is an irreducible representation with highest weight ξ1 + · · ·+ ξi.
Here we conclude that ρi = Λi(V ) for i ≤ k − 2, but we don’t yet know ρk−1 or
ρk. These irreducible representations are again called half-spin representations,
denoted by ∆− and ∆+, respectively.

Theorem B.4.9. The representation ring RC(Spin(2k)) is the polynomial ring
Z[V,Λ2(V ), . . . ,Λk−2(V ),∆+,∆−]. The map RC(SO(2k))→ RC(Spin(2k)) sends

Λk−1(V ) −→ ∆+∆− − (Λk−3V + Λk−5V + · · · )

Λk(V )+ −→ ∆2
+ − (Λk−2V + Λk−4V + · · · )

Λk(V )− −→ ∆2
− − (Λk−2V + Λk−4V + · · · ).

The construction of the fundamental half-spin representations is usually done
via Clifford algebras and their modules. We will not recall this here, but see [BtD].
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