
 
 

Python Cheat sheet (from your instructor) 
Note: All of these commands are based on Python 2.x versions not 3.x  
This by no means is comprehensive, but it will help you with a few tasks in lab 1 and HW 1.  
 
1) Reading a file into the python environment 
file='myfile.txt' 
fl=open(file,"r") 
	  
2) Writing and calling executable python files 
If you are writing a function that you will store in a file and call from the terminal command line, 
you need to include the path to python (see above) as the first line in the file. For the following 
example it is this: #!/usr/bin/python 
The path varies depending on operating system. To find out where your path is, type  
which python 
at the terminal 
 
#!/usr/bin/python 
	  
To call it on the command line, you must make the file executable by using the command 
chmod on the terminal line: 
chmod 777 myscript.py 
 
To run it use ./ before you call it: 
./myscript.py 
	  
if your script must read a data file, you call it as so: 
./myscript.py datafile 
	  
 
Okay now you try: 
Copy this script into a text editor, save it with any name you like with a .py extension and run on 
the command line. 
	  
#!/usr/bin/python 
import math 
import numpy as np 
import matplotlib.pyplot as plt 
 
x=np.arange(0,10,0.2) 
#arange function creates an array of values 
# in this case we start with 0, end with 10 and step 
# in increments of 0.2 
y=np.sin(x) 
plt.plot(x,y) 
plt.show() 
	  
3) Defining a function: 



A. In the python environment: 
Example 1: 
 
def simple_ave(a,b): 
    foo = (a+b)/2 
    return foo 
#call it in the python environment as so: 
 
val1 = simple_ave(4.0,5.0) 
print val1 
 
val2 = simple_ave(77.0,14.3) 
print val2 
 
 
Example 2: 
 
def pythag(a,b): 
    foo = (a**2+b**2)**0.5 
    return foo 
 
val1 = pythag(3.0,4.0) 
print val1 
 
val2 = pythag(8.0,5.0) 
print val2 
 
 
B. Creating a function inside a script is very useful when you need to call a task several times.   
 
#!/usr/bin/python 
import math 
import numpy as np 
import matplotlib.pyplot as plt 
 
#Sine function with amplitude a. 
def myfun(a,t): 
 foo=a*np.sin(t) 
 return foo 
 
x=np.arange(0,10,0.2) 
amp=5 
#run the function 
y=myfun(5,x) 
#Now plot it. 
plt.plot(x,y) 
plt.show() 
 
 
4) Reading column data. There are many variations on this and many more elegant than the one 



presented here. However, I know this one works. 
 
Suppose you have already read a data file into the python environment. Everything is organized 
into 10 columns. The variable for the file is called  “fl” 
for lines in fl:   
  lines=lines.strip() # removes the return character at end 
  col = lines.split() # splits the line into separate columns  
# extract the first column and save it to a variable : 
  x = col[0] 
#Extract the 10th column and save to a variable: 
  y = col[9] 
 
5) Lists and Arrays 
Create an empty list: 
 
stuff =[] 
 
create a list of 100 elements all equal to 5: 
stuff= [5]*100 
 
create a list of words:  
stuff = ['I','like','peanut','butter','and','jelly'] 
 
Access 3rd element in a list 
stuff[2] 
 
Change an element: 
stuff[5]='chocolate' 
print stuff 
 
Change more than one element to the same value 
stuff = [1]*10 
stuff[3:5]=2 
print stuff 
 
Add an element to a list/array: 
stuff = [1]*5 
stuff.append(2) 
print stuff 
 
Return the length of an array: 
len(stuff) 
 
iterate over an array: 
method 1: 
stuff = ['I','like','peanut','butter','and','jelly'] 
for word in stuff: 
 print word 
 
method 2: 



for i in range(len(stuff)): 
  print stuff[i] 
 
Arrays are multidimensional lists - they can also be just 1D too. Create a 1D array sequence using 
the package NumPy 
import numpy as np 
stuff=np.arange(0,10,0.2) #(start, end, increment)  
 
NumPy is nice because you can utilize more powerful array functions than just a simple python 
array (list) 
 
Other NumPy Array Creation: 
 
random array 
stuff = np.random.rand(10) 
 
create array of 100 elements of the same value (3): 
stuff = np.array([3]*100)  
 
change elements based on criteria: 
stuff = np.arange(10) 
stuff 
 ## output array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 
stuff[stuff>4] = 20 
stuff 
 ## output array([ 0,  1,  2,  3,  4, 20, 20, 20, 20, 20]) 
 


