
PHYS 391- Lab 1: Introduction into Programming
This lab is to get you acquainted with programming in python, so all directions are python
specific. If you wish, you may use any language (including shell scripts) you like EXCEPT
Excel or other spreadsheet programs. If you have never programmed before, use python
(2.7.x). It is strongly recommended that you complete a tutorial at codecademy.com on
python as well. DO NOT WORK WITH A LAB PARTNER FOR THIS LAB! Use the
python cheat sheets on the website and examples to get you started. Save all scripts to a file
such that if I copied and pasted your script as is, it would give me the correct output (i.e. it
works). You will turn in your lab by emailing two separate files (part I and part II) to me.

Goals

• Reading in data files
• Plotting
• Coding simple mathematical operations
• Writing Loops
• Creating functions and calling on command lines.

Preliminary Items: Using the Virtual Machine

Starting the Virtual Machine
Click on the virtual machine (VM) icon; click start. After the VM loads, type the following
commands in the open terminal window (or any other terminal window in the VM):

• You should see a terminal window in a “virtual” environment. This environment is
closed off to the rest of the computer except for a folder called pyraf_share which
allows you to drop files in and appear on the pc or mac side.

• In the lab391 directory (you start in this directory), type python, which will start up
the python environment.

• Open another terminal and make your own directory using your email name or
whatever as long as it’s not confused for someone else. Use the command ‘mkdir’

 mkdir yourdirectory
use this to store your files TEMPORARILY. Copy or move these files to pyraf_share
so you can retrieve them later. Note: if you don’t store your files in a separate
directory, someone could copy over them with the same file name. Start the python
environment by typing:

python
• Once you are in the python environment, change to your directory by typing the

following two commands
import os
os.chdir(“yourdirectory”)

Gedit
Before we go any further, go to another terminal window and start the text editor gedit:
Type at the prompt:

gedit
This should bring up a text editor window with the file. If you want to edit an existing file,
type gedit filename at the prompt.

Okay now go back to your python window…

Saving work
The virtual box has a linked folder that connects it to the rest of the computer called
pyraf_share. If you wish to save your work you can copy your files to this folder and
retrieve them outside the virtual box. You can also sftp your files to your duck account too.

Python environment
Python is like other scripting language such that commands and mathematical expressions are
calculated right on the command line. To do math calculations in python type:
 import math

Now try these calculations by typing in the following:

sqrt(x)
log10(x)
x**2

see the cheat sheet for more tips.

Important! Turning off Virtual Box etc:
When you are ready to turn off the VM, exit out of ds9 and pyRAF. Close any gedit windows
too. Shut off the VM by going under the VM menu item ‘system’ and select Shut Down...
Don’t just click to close the window; that may screw up the VM and any work you have
contained in it. And it will also render the VM useless until we can fix it.
##	

Part I: Manipulating a Data file

Data File Description
The data file snlist.txt http://homework.uoregon.edu/pub/elsa/snlist.txt lists all supernovae
reported since 1885 through November 2014. It also contains basic information about the
properties of the supernova and host galaxy (the galaxy where the supernova exploded).
(Note you can save this text file and import it via python_share folder)
Briefly, the columns are:

• Supernova name
• Host galaxy name
• Sky coordinates of the supernova measured in hours minutes seconds. There are six

columns; the first three describe the right ascension (RA) position and the second set
of three describe the declination (Dec).

• Columns HRV and Z are distance measurements to the supernova in two different
unit systems

• Bmag is the brightness of the host galaxy measured in blue magnitudes (smaller the
number the brighter the object)

• LogD25 is a logarithmic measurement of the apparent diameter of the galaxy
• MaxMag is the brightness of the supernova at its absolute peak
• Type is the supernova type (e.g. Ia, II, etc)
• Disc is the discoverer.

It’s not important that you fully understand what each column means. More information will
be given if/as needed and you can always google for more info. Missing numerical data is

substituted with 99s or 99999 depending on the quantity. Missing character data is simply
blank.

Instructions
Do the following tasks. Present your answers as scripts to generate the output or plot
exactly. Also show the first and last 10 lines of the output or plot. Save this all to one
file. Email part I to me elsa@uoregon.edu

1) Extract out the Galaxy and HRV columns.
2) Extract out rows that contain only NGC galaxies.
3) Plot z vs MaxMag
4) Plot the supernova position in units of degrees. RA is the horizontal coordinate ranging
from 0 to 360 degrees and Dec ranges from -90 to 90. The conversion formulas are:

RA (deg) = 15*(H +M/60 + S/3600)
Dec (deg) = (D + M/60 + S/3600)*(-1 if D is negative or +1 if D is positive)

For example 1885A has the coordinates: 00 42 44 +41 16 08
RA = 15*(00 +46/60+44/3600) = 11.68
Dec = (41+16/60+8/3600)*(+1) = 41.269

5) Plot the positions of only Ia and Ia subtypes (e.g. Ia pec etc)

Part II Coding and Plotting a Physics Function:
Instructions
For this portion you will create a complete python script (program) and call it on the
command line. You do not need to include the output. Other than changing the path in then #!
line, I should be able to run it without any other changes. Hint, Hint, Hint: see the cheat
sheets for help. Email part II to me: elsa@uoregon.edu

A. Using your new python skills, create a program that will plot the position as a
function of time for a ball falling from a height of 1000 meters. You can code this
with or without a 'for' loop. Take initial velocity = 0 and g=9.8m/s2. Note that if your
time array is too long, the ball will have already hit the ground and any distance
values after this point will be nonsensical since the ground is defined at 0 m. You can
do this in a few different ways:

a. Simply set lower limit of the y axis to 0 when plotting.
b. Use an ‘if statement’ that will give a value of 0 for time after the ball has hit

the ground or use a ‘while’ loop.
c. Or try the python function ‘clip’ or ‘where’ on your distance array

(e.g. >>>a=[9,-10,0,1,2]
 >>>b=a.clip(0)
 >>>b=[9,0,0,1,2])

 Note! the above function will only work on NumPy arrays. It won't work on
lists!

 There are many solutions – find the one that makes sense to you!

B. Make a second plot that graphs velocity as a function of time. Have the velocity equal
zero when it hits the ground. This means changing the values to zero if distance =0,
which is easily implemented in a loop. If you haven't used a 'for' loop and you can

change all values at a certain velocity to be zero. (Python Code Hint: for multiple
plots & after importing matplotlib as plt, use:
>>> fig1=plt.figure()
>>> fig2=plt.figure()
>>> dist=fig1.add_subplot(111)
>>> vel=fig2.add_subplot(111)
>>> dist.plot(t,y) #plot the distance
>>> vel.plot(t,v) #plot the velocity

C. Part A should be relatively straightforward to code. Unfortunately most physics
problems aren’t so nice. Let’s make this harder and show the use of loops:
Calculate the position when drag force FD is included. Recall that drag force
increases as v2 meaning that your acceleration is no longer due to just gravity. In fact
it becomes the equation of motion:

𝑚
𝑑𝑣
𝑑𝑡 = 𝑚𝑔 − 𝑐𝑣!

where c is the drag coefficient.
Technically you can solve this analytically, but let’s pretend that you can’t and must
solve it numerically which will require a ‘for’ loop. This will entail correcting the
total acceleration on the ball for each time step to account for changing velocity.
Basically start with very small steps in time, calculate the ball's velocity and position
for the first time increment, then use the former to update the drag force (ergo the
total acceleration) on the ball. Now go to the next time step in the loop.
Or more explicitly:
At t=t0:

v0(t0)=0	
 	

a(t0)=9.8	

y(t0)=1000	

k=c/m	

Δt	
 =	
 0.1	

1st time step (t	
 =	
 t0+Δt):	
 	

o v(t0+Δt)	
 =	
 v0	
 (t0)-­‐a(t0)*	
 Δt	
 	

o y(t0+Δt)	
 =	
 y(t0)	
 +v(t0+Δt)*Δt	

o a(t0+Δt)	
 =	
 g-­‐k[v(t0+Δt)]2	

2nd time step (t=	
 t0+2Δt):	

o v(t0+2Δt)	
 =	
 v0	
 (t0+Δt)-­‐a(t0+Δt)*	
 Δt	
 	

o y(t0+2Δt)	
 =	
 y(t0+Δt)	
 +v(t0+2Δt)*Δt	

o a(t0+2Δt)	
 =	
 g-­‐k[v(t0+2Δt)]2

 etc….

Please see the cheat sheets for making for loops. You will need create a list of
time increments and apply these to v,y,a.

Experiment with different values of k. Drag coefficients (constant c) usually range
from .001 to 2. Find a value that can be easily seen (ie on the same scale) as the first
plot.

Plot this with your position graph in part A so there are two lines on one plot. Do the
same with velocity. In the end when your script is executed, there should be two plots that
pop up: position and velocity. The plots should make sense to you. Here's what is necessary
for a good grade:
-Distance must decrease in time
-Velocity is negative
-With drag force, the velocity should become constant in time and the corresponding distance
should become a linear plot.
-Distance and velocity must stop at zero

