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Introduction

— Macroeconomic models are usually based on optimizing agents in dynamic,
stochastic setting and can be summarized by a dynamic system, e.g., in the
simplest case of point expectations and representative agents,

yt = Q(yi,wt) or
vyt = QYt—1,Yr11, W) or

©. @)
Yt = Q(yt—la{yf—l—l}jzoawt)

yt = vector of economic variables at time ¢ (unemployment, inflation, invest-
ment, etc.), yf+1 — expectations of these variables, wy = exogenous random
factors at t. Nonstochastic models also of interest.

— The presence of expectations yi or yf, 1, or By f (y¢11, wsr1), and the
assumption that agents can solve dynamic programing problems, makes macro-
economics inherently different from natural science.



— The standard assumption of rational expectations (RE) assumes too much
knowledge & coordination for economic agents. We need a realistic model
of rationality. What form should this take?

— My general answer is given by the Cognitive Consistency Principle (CCP):
economic agents should be about as smart as economists, e.g.

—— model agents like economic theorists — an eductive approach, or
—— model them as econometricians — an adaptive approach,
—— one can also blend these, combining strategic and adaptive elements.

— We also need to reflect on the optimization assumption. In dynamic sto-
chastic settings the CCP and introspection suggest relaxing this assumption.

— Agents may fall short of the CCP standard but CCP is a good benchmark.

— In this talk | follow the adaptive approach.



Adaptive Learning: Key Concepts

The benchmark RE (rational expectations) approach assumes agents (i) opti-
mally forecast future variables, and (ii) can solve dynamic optimization prob-
lems. The AL (adaptive learning) approach relaxes these, but still aims for a
relatively high degree of (bounded) rationality.

Key elements of the AL approach are:

e Temporary equilibrium. This idea goes back to Hicks (1946).
— At t agents make (conditional) decisions based on the current state,
realizations of exogenous shocks, and expectations of relevant variables.
— Aggregation (of possibly heterogeneous agents) and market clearing —
the TE outcome for the economy’s endogenous variables.
— At t + 1 expectations are revised and the process repeats.
— The path of the economy is generated recursively by the sequence of TE.



e Stability. The equilibium stochastic processes to which the TE paths
converge over time should be stable against small perturbations in initial
conditions and how expectations are formed and decisions are made.

e Boundedly-rational expectations. The (broad) AL approach emphasizes
deviations of agents’ forecasts from RE. This can include
— LS learning, in which forecast rule parameters are updated over time.
— Choosing between forecast rules, e.g. simple behavioral rules, based on
past relative performance.
— Social learning based on the genetic algorithm approach.

e Bounded optimality. For long-lived agents, we consider alternative ap-
proaches to how agents attempt to solve dynamic optimization problems.



e Agent-level. Our preferred approach is to model aggregate agent-level
decision-making and explicitly aggregate these to get the TE. However,
AL is often a fruitful approach even in simple, stylized models.

e The cognitive consistency principle. Agents should at a minimum be
aiming to make good forecasts and attempting to optimize.

e Restricted Perceptions Equilibria (RPE). Under AL, REE (RE equilib-
rium) may be too strong, even as the equilibrium to which the TE path
converges. An RPE is a generalization of REE in which agents make opti-
mal forecasts within the class of forecast rules they consider.

We start with a benchmark example: LS learning in the “cobweb” model.



The Cobweb—type Model

Consider a simple univariate reduced form TE equation:

pt = p+ aE{_1pr + w1+ ny, with a # 1. (RF)

i 1Dt denotes expectations of p; formed at t — 1, w;_1 is a vector of exoge-
nous observables and 7, is an unobserved #¢d shock.
Muth’s example. Demand and supply equations:

d = mp— mppt+ viy
st = 11+ rpEi_1pt + w1 + v2g,
st = dy, yields (RF) where o = —rp/my < 0 if 7p, mp > 0.
Lucas-type simple monetary model. AS + AD + monetary feedback:
q = q+ Mpt— E{_1pt) + C,
mi+ve = pr+qe and my = + up + plwp_q
leads to yields (RF) with 0 < a=A/(14+X\) < 1.



Equation (RF)

pt = o+ aBy_1pt + 8wy 1 + my, with a # 1. (RF)

is the TE equation.

One bounded rationality approach is to specify expectations Ef ;p; as following
behavioral rules or rules of thumb. In lab experiments Hommes and coauthors
have found subjects often use one of several simple rules (naive, trend-chasing,
adaptive expectations, etc.). The composition evolves over time.

AL usually focuses on a forecasting equation that nests RE but with Least
Squares learning of the relevant coefficients.



Adaptive Least-Squares Learning

The model p; = u + aE;_1pt + 6'wi_1 + n; has the unique REE
pt = a-+ El’wt_l + 14, where
a = (1—a) tpandb=(1-a)" 16

Special case: If only white noise shocks or the model is nonstochastic then
§ = 0. In this case b = 0 and the REE is p; = @ + 7, with E;_1p; = a.

Under LS learning, agents have the beliefs or perceived law of motion (PLM)

Pt = a—+ bwt—l + Urr

but a, b are unknown. At the end of time t — 1 they estimate a, b by LS (Least
Squares) using data through t — 1. Then they use the estimated coefficients
to make forecasts Ef p;.



— End of t — 1. w;_1 and p;_q1 observed. Agents update estimates of a, b
to a;_1, by_1 and make forecasts

Ef 1pt =a;_1+ b;s—l’wt—l-
— Temporary equilibrium at ¢: (i) p; is determined as
pt = p+ aBf_1pt + 8wy 1 +my
and wy is realized. (ii) agents update estimates to a¢, by and forecast
Efpiy1 = ag + bpwy.

The dynamic system under LS learning is written recursively (RLS) as

Ef_ipt = ¢y_12-1 where ¢y_1 = (az_1,b}_1) and z;_q1 = (1, ws1)
pt = p+aBf ip+ w1 +ny,
¢ = dp_1+t "Rz 1(pr — ¢h_121-1)
Ry = Ry 1+ t_l(zt_lzé_l — R;_1).



Question: Will (a¢, bt) — (@, b) as t — oco?

Theorem (Bray & Savin (1986), Marcet & Sargent (1989)). Convergence to
RE, i.e. (at,b}) — (@,b') as. if @ < 1. If @ > 1 convergence with prob. 0.

Thus the REE is stable under LS learning both for Muth model (o < 0) and
Lucas model (0 < o < 1), but is not stable if & > 1.

In general models, stochastic approximation theorems are used to prove con-
vergence results. However the expectational stability (E-stability) principle,
below, gives the stability condition.



E-Stability

There is a simple way to obtain the stability condition. Start with PLM
pt = a+ bwi_1 +ny,
and suppose (a, b) were fixed at some (possibly non-REE) value. Then
B 1pr = a+ bwy_y,
which would lead to the Actual Law of Motion (ALM)
pt = p+ ofa + b'wp_1) + w1 + ny.
The implied ALM gives the mapping 1T: PLM — ALM:
T (a,b) = (u+ aa,d + ab).
The REE &, b is a fixed point of T'.



Expectational-stability ( “E-stability) is defined by the ODE

%(a,b) =T (a,b) — (a,b),

where 7 is notional time. @, b is E-stable if it is stable under this ODE. Here
T' is linear and the REE is E-stable when o < 1.

Intuition: under LS learning the parameters a¢, by are slowly adjusted, on
average, in the direction of the corresponding ALM parameter.

This technique can be used in multivariate linear models, nonlinear models, and
if there are multiple equilibria.

For a wide range of models E-stability governs stability under LS learning, see
Evans & Honkapohja (2001). This is the E-stability principle.

It is not always the case that REE are stable under learning. When there are
multiple REE, E-stability provides a selection criterion.



E-Stability in Multivariate Linear Models.

Often macro models can be set up in a standard form

yt = ME{yr 1+ Nyg1 + Py,
The usual RE solution takes the form y; = @ + byy_1 + cvy, with here @ = 0.

Under LS learning agents use a PLM to make forecasts:

Yyt = a+by1+ cu
Efyiy1 = (I+Db)a+by_q+ (b + cF)vy,

based on estimates (a¢, bt, ct) which they update using LS.

Inserting the forecasts into the model yields the ALM

y = M(I + b)a + (Mb*> + N)ys_1 + (Mbc + NcF + P)v,



This gives a mapping from PLM to ALM:
T(a,b,c) = (M(I 4 b)a, Mb* + N, Mbc + NcF + P).
The REE (a, b, ¢) is a fixed point of T'(a, b, c). If
d/dr(a,b,c) =T(a,b,c) — (a,b,c)

is locally asymptotically stable at the REE it is said to be E-stable. See EH,
Chapter 10, for details. The E-stability conditions can be stated in terms of
the derivative matrices

DT, = M(I+b)
DT, = VY®@M+1I® Mb
DT. = F/@M+1Q Mb,
where ® denotes the Kronecker product and b denotes the REE value of b.

E-stability governs stability under LS learning. This issue is distinct from
the “determinacy” question.



Variation 1: constant-gain learning dynamics

— For discounted LS the “gain” t—1is replaced by aconstant 0 < v < 1, e.g.
~ = 0.04. Often called “constant gain” (or “perpetual”) learning.

— Especially plausible if agents are worried about structural change.

— With (small) constant gain in the Muth/Lucas and @ < 1 convergence of
(a¢, by) is to a stochastic process around (a, b).

— In the Cagan/asset-pricing model

pt = p+aBipq+ dw
Wt = pwWg—1 T Et

constant gain learning leads to excess volatility, correlated excess return, etc.

— Escape dynamics can also arise (Cho, Williams and Sargent (2002)).



Special case: If 6 = 0, agents have the PLM p; = a + 7, and they use
constant-gain learning with gain 0 < «v < 1, then (in e.g. the cobweb model)

Ef_1pt = a1 and at = az_1 + v(pt — at—1),
which is equivalent to
Efpty1 = By_1pt + (pt — Ef—lpt) :
This, of course, is simply “adaptive expectations’ with AE parameter ~.

Thus AE is a special case of LS learning with constant gain in which the only
regressor Is an intercept.



Variation 2: misspecified models

e Actual econometricians make specification errors. What happens if our
agents make such errors?

e Under LS learning convergence would now be to a Restricted Perceptions
Equilibrium (RPE). There are many types of RPE:
— Omitted variables, e.g. in the cobweb model if w; = (w14, wot), PLMy

might include only wi;.
— Omitted lags, e.g. using a VAR(1) when the REE is VAR(p), p > 2
— Functional form, e.g. if the TE map is nonlinear, but agents use a linear

forecasting rule.

e In an RPE agents use the best (minimum MSE) econometric model within
the class considered.



Variation 3: heterogeneous expectations

In practice, there is heterogeneity of expectations across agents.

— This arises if different agents have different initial expectations (priors),
different (possibly random) gains, and/or asynchronous updating.

— Heterogeneity also arises from dynamic predictor selection (Brock & Hommes):
alternative heuristic forecasting models with discrete choice (‘behavioral ratio-

nality,’” Hommes)

— Dynamic predictor selection can be combined with LS learning of parame-
ters of alternative forecasting models. (Branch and Evans (2006, 2007, ...),
‘misspecification equilibria’).

— Social learning (genetic algorithm learning as in Arifovic (1994, 1995, ...)
yields heterogeneous expectations.



General Implications of Adaptive Learning
Can assess plausibility of RE based on stability under LS learning

Use local stability under learning as a selection criterion in models with
Multiple Equilibria

— Multiple steady states in nonlinear models
— Cycles and sunspot equilibria (SSEs) in nonlinear models
— Sunspot equilibria in models with an indeterminate steady state

Persistent learning dynamics arise with modified adaptive learning rules

Policy implications: Policy should facilitate learning by private agents of
the targeted REE.



Bounded Optimality: Short- vs. long-horizon decision-making

e Most macromodels (RBC, NK, DSGE, etc) assume infinitely-lived (or
long-lived) agents who need to solve dynamic optimization problems.

Short-horizon decision-making. Based on 1-step ahead forecasts agents
make decisions that satisfy a necessary condition for optimal decisions.

— Shadow-Price Learning is developed in Evans and McGough (2018).
In LQ models SP-learning converges to fully optimal decisions.

— Euler-equation Learning (e.g. Evans and Honkapohja (2006)) can be
viewed as a special case of SP-learning.

— Value-function Learning also in Evans and McGough (2018). See
Evans D, Evans G and McGough (2019) for an application.

— SP, EE and value-function learning are boundedly optimal as well as
boundedly rational in forecasts. These approaches are tractable.



e Infinite-horizon decision-making. Agents solve their dynamic decision
problems each period, given their forecasts over the infinite horizon of
variables that are exogenous to their decisions.

— Agents are fully optimizing given their forecasts but use adaptive learning
to update their boundedly rational forecast rules.

— See Preston (2005, 2006), Eusepi and Preston (2011, 2018).

— IH-learning particularly useful if agents foresee a future change in policy.

e Internal rationality. Adam, Marcet & Beutel (2017). Agents solve their
dynamic decision problem with Bayesian updating based on a prior that
may not be externally valid.

e Finite-horizon decision-making also possible. See Branch, Evans and
McGough (2013).



The New Keynesian Model and Monetary Policy

e Log-linearized New Keynesian model (CGG 1999, Woodford 2003 etc.)
under EE learning

1. “IS" equation (IS curve)
vt = —p(it — Efmii1) + Bf w1 + gt
2. the “New Phillips” equation (PC curve)

T = Avy + BE{ 41 + w,

where x; —output gap, m¢ =inflation, 74 = nominal interest rate. Efzy,1,
Efmy 1 are expectations. Parameters ¢, A >0and 0 < 8 < 1.



Observable shocks follow independent stationary AR(1) processes.

Under Euler-equation learning these are behavioral (temporary equilibrium)
equations. IH-learning can also be used.

Interest rate setting by a standard Taylor rule, e.g.

it = XgTt+ XgZt where X, xz > 0or
it = XgpT¢—1+ XzTt—1 OF
it = XnEimip1 + X Ef o

Bullard and Mitra (JME, 2002) studied determinacy and E-stability for
each rule.



Results for Taylor-rules in NK model (Bullard & Mitra, JME 2002)

® iy = X7t + X,x¢t Yields determinacy and stability under LS learning if
Mxr—1)+(1—B8)x, > 0. Note x, > 1 is sufficient (Taylor principle).

o With 44 = x.m_1 + X,xt_1, determinacy & E-stability for . > 1
and x, > 0 small. There are also explosive and determinate E-unstable

regions.

o Forit = X Efmip1+xEfTiy1, determinacy & E-stability for x, > 1
and x, > 0 small. Indeterminate & E-stable for x. > 1 and x, large.

Honkapohja and Mitra (JME, 2004) and Evans and McGough (JEDC,
2005) find stable sunspot solutions in that region.



The zero lower bound (ZLB), stagnation and deflation

Evans, Guse, Honkapohja (EER, 2008), “Liquidity Traps, Learning and Stag-
nation” consider issues of liquidity traps and deflationary spirals under learning.

Possibility of a “liquidity trap” under a global Taylor rule subject to zero lower
bound. Benhabib, Schmitt-Grohe and Uribe (2001, 2002) analyze this for RE.

R 1+ f(x) V lp

TTL TE* T

Multiple steady states with global Taylor rule.



— What happens under learning? EGH2008 consider a standard NK model.
Monetary policy follows a global Taylor-rule, which implies two steady states.

— The key equations are the (nonlinear) PC and IS curves

oy oy
7(7775 —1)m = B— (77%11 - 1) Tyl
1 _
e+ gr)tTEVE —q (1 — ;) (ct +gt)e; !
ct = cfpq(nfi1/BRYYL

— Two stochastic steady states at w7 and 7*. Under “steady-state” learning,

7* is locally stable but 7 is not.

— Pessimistic expectations c®, 7€ can lead to deflation and falling output.
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e To avoid this we recommend adding aggressive fiscal policies at an
inflation threshold 7, where 7w < 7 < 7*.

e Benhabib, Evans and Honkapohja (JEDC, 2014) obtain similar qualitative

results for an |H-learning specification and study impacts of alternative
fiscal policies in greater detail.
— Evans, Honkapohja and Mitra (2016) “Expectations, Stagnation and
Fiscal Policy” further develop this model by adding inflation and con-
sumption lower bounds. This generates an additional locally stable
stagnation steady state.



Neo-Fisherian Monetary Policy
“Interest Rate Pegs in New Keynesian Models” (Evans and
McGough, JMCB, 2018)

e Following the Financial Crisis of 2008-9, the US federal funds rate was
essentially at the ZLB for the whole period 2009 — 2015.

e Beginning Dec. 2015 the Fed has started to normalize interest rates. This
can be viewed as a return to Taylor rule.

e The Neo-Fisherian view (Cochrane, 2011, 2017/8 and Williamson, 2016)
is that normalization should instead be to a fixed interest rate peg at
the steady state level consistent with the 2% inflation target.



e Evans and McGough (JMCB, 2018 and JME, 2019) argue using AL that
the neo-Fisherian view is misguided.

e Neo-Fisherianism starts from the Fisher equation

R=rm

where R is the nominal interest rate factor, 7 is the real interest rate factor
and 7 is the inflation factor. In steady state r is determined by £ and the
growth rate.

e The neo-Fisherian argument is: given r, if the inflation target is 7* then
R should be set at R* = ra*. In the basic NK model, and for simplicity
ignoring exogenous shocks, the steady state is an REE and must satisfy

¢ =n=R"/r =n*



e The neo-Fisherian policy conclusion: if interest rates are low and if
inflation and expected inflation are below target, then announce a fixed
interest rate peg at the higher level R* = rx@*. The Fisher equation

ensures that 7, w€ must increase in line R*.

e This argument goes against conventional wisdom that low R increases 7 by
increasing demand. EMcG (2018) argue the conventional view is right.
Neo-Fisherian policies can lead to instability and recession.

e \We show this for both short- and long-horizon AL. Here we use the NK
model with IH-learning developed in Eusepi and Preston (AEJmacro,
2010) and extended in Evans, Honkapohja and Mitra (2016).



e Agents use linearized decision rules

. ~ 2—
g o= (L-B)E Y B — LUB Y 5 Rie + VB Y 8%

§>0 T s>0 s>1

" A o 0,27'('

i = (L—y1)Ee Y (Bv1)° Fiqs + B> (B71)° Gttsy
s>0 y s>0

G = & =4& and #y = 7.

e The interest rate follows a forward-looking Taylor rule subject to ZLB.

e We assume this is the full model: fiscal policy is “passive” (and here for
simplicity g = 0). For cases of “active” fiscal policy, with possible regime
switching, see McClung (2018).



Instability of fixed interest rate peg

Suppose initially in steady state with 7* target 1% per year (1.0025 quar-
terly). At t = 10 the CB increases the target to 3%. The steady state interest
rate increases from 2% to 4% (i.e. from R* = 1.005 to R* = 1.01 quarterly).

Neo-Fisherian policy implements this by announcing new 7* of 3% and in-
creasing R* to a fixed 4%. Suppose agents immediately adjust 7€ from 1% to
2.8%, i.e. almost all the way to 3%. Thereafter 7€ is revised in response to
observed inflation using AL. Figure 2 of EMcG (2018) gives the result.
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The economy moves into recession, which becomes increasingly severe. 7 ini-
tially falls somewhat short of its target and this feeds back into w€. This
increases the real interest rate, which leads to contracting output. The result
is a cumulative self-fulfilling recession with falling 7, y:

m< 7t —| 77— R/ —|y—| .

Because R is held at a fixed peg nothing impedes the recession.

Suppose, even more favorably to the neo-Fisherian hypothesis, 7€ at ¢ = 10
increases the full way to the target. Suppose at ¢ = 11 there is small one-time
negative shock to aggregate demand. This again sets off a cumulative process
that leads to falling inflation and recession (Figure 3).
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The neo-Fisherian policy necessarily generates instability if there is any
sensitivity whatsoever of expectations to actual data.

The central mechanism given here is essentially the same as in Howitt
(1992), Bullard and Mitra (2002), Evans and Honkapohja (2003), Eusepi
and Preston (2010), Benhabib, Evans and Honkapohja (2014) and Evans,
Honkapohja and Mitra (2016).

As in Bullard and Mitra (2002), the Taylor principle is key: to stabilize
the economy the interest rate must be adjusted more than one-for-one in
response to deviations of inflation or inflation expectations from target.

One is tempted to say that under AL agents in the economy learn gradually,
but there are some economists who never learn.



Near-rational sunspot equilibria in NK model

e Before leaving the NK model, recall that for a forward-looking Taylor rule,
if monetary policy responds too aggressively to output there is indetermi-
nacy with stable sunspot equilibria. These results were established for the
linearized short-horizon NK model.

e Blanchard (IMF Blog, Dec. 11, 2011): “...the world economy is pregnant
with multiple equilibria — self-fulfilling outcomes of pessimism or optimism,
with major macroeconomic implications.” This view makes imperative un-
derstanding when and how sunspot equilibria, which represent and char-
acterize the class of stationary multiple equilibria, are consistent with the
modern DSGE paradigm.



e Evans and McGough (2019) have shown how to examine this issue for

agents using linear forecasting rules, but nonlinear short-horizon deci-

sion rules. We think this a natural way to model agent’s decision-making.
We call these equilibria NRSE: near-rational sunspot equilibria.

e [he nonlinear NK model is:

Ut
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If policymakers use relatively large values of a, ay then the steady-state

Is indeterminate.



Agents forecast using

Tt = a+ b77t —+ CUy, where Nt = ()\ T ‘S)Ut—l T Et,

for ' = (y, ) and sunspot 1,. We show convergence under AL to an NRSE
— extra y, w volatility. This can be avoided by reducing o, avy.

Output densities of near-rational MSV and NRSE



Learning about Risk and Return: a simple model of bubbles and
crashes

(Branch and Evans, AEJ macro 2011)

Thus, this vast increase in the market value of asset claims is in part the indirect
result of investors accepting lower compensation for risk. Such an increase
in market value is too often viewed by market participants as structural and
permanent ... Any onset of increased investor caution elevates risk premiums
and, as a consequence, lowers asset values and promotes the liquidation of the
debt that supported higher asset prices. This is the reason that history has not
dealt kindly with the aftermath of protracted periods of low risk premiums.

Alan Greenspan (2005).



We use a simple mean-variance linear asset pricing model, similar to DelLong,
Shleifer, Summers and Waldman (1990) and add boundedly rational AL. Re-
lated model of asset-pricing, using the internal rationality approach, are Adam,
Marcet, Nicolini (2016) and Adam, Marcet and Beutel (2017).

There is a risky asset with dividend y; and price p+ and a risk-free asset that
pays the rate of return R = B71 where 0 < 8 < 1. Demand for the risky
asset Is

_ Ef(pra1 +yer1) — B
2dt — 2 3
a/O't

where E are (possibly) non-rational expectations and

0% — VaTZk(PtH + Yt41 — Rpt)-



Writing zg; for risky asset supply and setting z4; = z5¢ we have

pt = BE; (pre1 + yer1) — Bao?zs.

a > 0 measures risk-aversion.

This is a very simple model that incorporates risk. We keep it simple because
we are going to add learning.

We also assume: (i) Dividends y; are a constant plus white noise, and (ii) asset
supply zst = zg + v+, white noise, unless price falls below a small proportion of
its fundamental value. This implies that the price dynamics are entirely driven
by learning.



Rational Expectations Equilibria

Under RE, with exogenous supply, there are two solution classes.

— Fundamentals solution:

~ B(yo — ac?sp)
t = 15

— 6@02’075

2

Here o< is an equilibrium object.

— Rational bubbles solutions

pi = ac’so — yo+ B ' ps1 + actvy 1 + &,
where §; is an arbitrary MDS, i.e. E;§; 1 = 0.

Since 0 < B < 1 the bubbles solutions are explosive in conditional mean.



Stability under Learning

We give agents a PLM (perceived law of motion) that nests the fundamentals
solution and also allows for the bubble term in p;_1,

pt = k+cpi—1+ e,
o° = Vary(piy1 + yer1)

where ¢ is perceived white noise with constant variance.

Under learning agents estimate k, ¢ and o2 using an adaptive learning algo-
rithm: (recursive) LS learning for k, ¢ and a recursive estimate of o2

Proposition: (1) The fundamentals REE is locally stable under learning. (2)
The bubbles REE are unstable under learning.



However, the transitional learning dynamics exhibits paths in which the
agents’ PLM escapes to a random walk, £ = 0,c = 1, with asset prices
sensitive to changed estimates of risk, leading to bubbles and crashes.

The random walk PLM behaves like a near-rational bubble.

Discounted LS. Furthermore, under discounted (or “constant gain”) learn-
ing (in which agents discount past data at a geometric rate) there can be
recurring bubbles and crashes.

If the gains (discounting) are small, the dynamics stay near the fundamentals
RE. For larger gains (discounting) there are more frequent escapes.



Stochastic simulations.

Frequent bubbles and crashes arise when the gain on the estimate of risk (75)
is relatively large. We vary v, = 0.001 to 0.04.

Starting from the fundamentals RE, crashes and bubbles can arise from
various sequences of random shocks, e.g.

ur ~ 0, =~ 0 —| a% — T p+ — random-walk beliefs.
Random-walk beliefs are almost self-fulfilling and have price high volatility.

Explosive price bubbles —1 O'% — crashes.
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Macro Experiments 1: sunspots in the lab

Are Sunspots Learnable? An Experimental Investigation in a Simple
Macroeconomic Model

Jasmina Arifovic, George Evans and Olena Kostyshyna

Can agents coordinate on an SSE (stationary sunspot equilibrium)? We inves-
tigate this in a simple, stylized macro model. Agents/subjects are firms with

production function

Yt = ¢tﬁ7

where 1; indexes productivity. Profit is output minus labor costs and w is fixed

[y = /N — wng.



Productivity 1), depends on average n across all other firms N;. The economy

Is a sequence of static market equilibria.

Each subject/firm decides on n¢, before knowing productivity, 1, because it
does not know NN, when its decision is made. There is a positive production

externality:

Yy = 2.5 when N; <115
Yy = 2.5+ (Nt —11.5)  when 11.5 < N; < 13
Yy =4 when 13<N;

There are three perfect foresight steady states: ny = 6.25, n); = 12.54 and
ng — 16.

ny, and ng are stable under learning, while n s is not.



Each period there is a public announcement, either “High employment is fore-
casted this period” or “Low employment is forecasted this period”. The an-
nouncement is known to be exogenous and random with pgz = 0.8 and

pr;, = 0.7.

In addition to the steady states there are SSEs in which agents choice depends
on the announcement. SSEs switching between ny and ng are stable under
learning.

Each period subjects are asked to forecast Ny, and based on this their choice
of optimal nt is made, which determines actual aggregate N;. Payoffs depend
on either their profits or on MSE..

Will agents coordinate on SSEs or only on steady states?

See Figures. The experiments find that often they appear to converge on the
stable SSE, but sometimes they converge on ny or ng.



Average employment and average forecast, Profits experiment 1, Nov 2011.
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Figure 4: Session 1 of profits treatment.
Average employment and average forecast, Profits experiment 2, Nov 2011.
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Figure 5: Session 2 of Profits treatment.
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Average employment and average forecast, FSE experiment 3.

20
10
0 1 1 1 1 1 1 1 1 1
(o] 5 10 15 20 25 30 35 40 45
Period
average employment
1t average forecast
<& equilibrium employment according to the announcement
Percent deviations from eq—m corresponding to the announcement.
100
50
L N 2 AN PN N NN
[0} 5 25 30 35 40 45
Period
deviation of average employment
11 deviation of average forecast
Figure 12: Session 3 of FSE treatment.
Average employment and average forecast, FSE experiment 4.
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Figure 13: Session 4 of FSE treatment.
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Macro Experiments 2: asset-price dynamics in the lab

Are long-horizon expectations (de-)stabilizing? A lab experiment
George Evans, Cars Hommes, Bruce McGough, Isabelle Salle

This experiment uses a Lucas “tree” type set-up. There is a single asset:
chickens. The dividend of the asset is the single consumption good: eggs.
Each period chickens can be traded for eggs at a market-clearing price. The
economy has a constant small probability of ending. Payoffs are based on either
utility of consumption or on MSFE (picked at random).

There are two types of subjects: short-horizon (7' = 1) and long-horizon
(T = 10). We give each type a boundedly rational trading decision, which
depends both on the market price and the expected average price over their
horizon.



There are 4 treatments: L, S, M70 (70% S) and M30 (30% S).

The expectational feedback parameter (from p€ to p) is positive and less than
one, but higher for S than for L. AL theory predicts markets will be more
likely to converge to fundamentals and be less volatile when it is populated
with long-horizon agents.

See Figures. Asset prices are less volatile and tend to converge to the fun-
damental price for treatments with L, while with S only there are frequent
divergences from fundamentals and there is more price volatility..
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Conclusions

REE requires a story for how expectations are coordinated.

Adaptive least-squares learning (AL) by agents is one natural way to im-
plement CCP.

The E-stability tools make assessment of local stability of an REE under
adaptive learning straightforward.

Additional dynamics arising from the learning transition, constant gain,
misspecification and model selection can give interesting and plausible
learning dynamics.



Implications of AL for policy:

— For interest-rate rules the Taylor principle x.. > 1 is important for enhancing
stability under AL.

— The unintended low-inflation steady state created by the ZLB is not locally
stable under AL. Large pessimistic expectations shocks can lead to large reces-
sions, deflation and stagnation.

— In severe recessions monetary policy may needed to be supplemented by fiscal

stimulus.

— The Neo-Fisherian policy of pegging the interest rate at a level consistent
with the desired 7* leads to instability under AL.



Implications of AL for endogenous fluctuations

— There are cases in the NK model in which stationary sunspot equilibria are
stable under learning (NRSE).

— Forward-looking monetary policy should obey the Taylor principle but must
avoid over-reaction to prevent NRSE.

— Experiments indicate that sunspot equilibria can arise in the lab.



AL and asset pricing

— The fundamental price is stable under AL, but if agents put significant weight
on recent data (constant-gain learning) then “escapes” can occur in which asset
price bubbles periodically arise and crash.

— Experiments indicate that deviations of asset prices from the fundamental
price is less likely if enough agents have long as opposed to short-horizon deci-

sion rules.



