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I. Introduction

The sluggish macroeconomic performance of advancedmarket economies

in the seven years after the Great Recession has raised interest in the pos-

sibility of the economy becoming stuck for long periods in a distinct stag-

nation state and that this stagnation might be associated with the zero

lower bound (ZLB) for the policy interest rate.1 One possible explanation

for the stagnation state is that it is caused by a wide-spread lack of confi-

dence on the part of economic agents. Specifically, a stagnation state with

low output, deflation and interest rates constrained by the ZLB may be a

self-fulfilling equilibrium of the economy. We develop an extension of a stan-

dard new Keynesian (NK) model to account for existence of a stagnation

steady state. Our analysis assumes that economic agents make forecasts

using adaptive learning (AL) and we impose the requirement that the stag-

nation steady state be (locally) stable under adaptive learning. Existence

of a stagnation steady state is consistent with the observation that under

the ZLB constraint, real economic performance of the US, Japanese and the

euro area economies appears to be clearly worse than in the earlier period

before the ZLB became binding.

Within the context of the standard NKmodel and rational expectations

(RE), the implications of the ZLB have been approached from several an-

gles. First, there is the possibility of exogenous shocks to demand that push

the economy to the ZLB. Exogenous discount rate or, more plausibly, credit-

spread shocks have been emphasized by Eggertsson and Woodford (2003),

Christiano, Eichenbaum, and Rebelo (2011), Corsetti, Kuester, Meier, and

Muller (2010) and Woodford (2011). These shocks are often assumed to fol-

low a two-state Markov process in which the credit-spread shock disappears

each period with a fixed probability, with aggregate output and inflation

recovering as soon as the exogenous shock stops operating.

While this approach has been fruitful in suggesting suitable monetary

and fiscal policy responses to such shocks, it has several somewhat unattrac-

tive features. It relies heavily on the persistence of a shock that evaporates

according to an exogenous process, and recession ends as soon as the exoge-

nous negative shock ends.2 Furthermore, this approach does not do justice
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to an independent role for expectations.

A second approach, emphasized by Benhabib, Schmitt-Grohe, and

Uribe (2001b), focuses squarely on the existence of multiple rational ex-

pectations equilibria (REE) when the interest-rate rule is subject to the

ZLB. In particular, in addition to the intended steady state at the inflation

rate targeted by monetary policy, there is a second, unintended steady state

at a low inflation or modest deflation rate, as well as perfect foresight paths

converging to the unintended steady state. This multiplicity was empha-

sized in Bullard (2010). Figure 1 gives a scatter plot of core inflation vs.

the policy interest rate, as originally done in Bullard (2010) for Japan and

US data and extended by Honkapohja (2016) using also euro area data.
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Figure 1: Interest rate vs inflation in Japan, US and euro area

Figure 1 uses monthly data, over 1/2002 to 1/2015 for euro area and

US and to 10/2013 for Japan, and combines them in one figure.3 The

illustrated policy rule is drawn with a two-percent inflation target and is

merely used to provide a common reference since the two percent target

does not exactly match either U.S. or euro area practice. Inflation and
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interest rates at the two steady states in Figure 1 correspond to the two

intersections of the Fisher equation and a Taylor-type interest rate rule. The

Japanese data from this period is essentially entirely within the liquidity

trap, while the US and euro area data show a mixture of liquidity-trap

and non-liquidity trap periods. Both the US and the euro area had brief

periods of deflation during 2009 and the Great Recession, followed by a

period of inflation. However more recently, since 2013, inflation in both the

euro area and the US has often been below target and sometimes shown

signs of decline. Figure 1 thus suggests some possibility of convergence to

an unintended low inflation steady state.

A major problem with this second approach is its neglect of the asso-

ciation of the ZLB with periods of recession, low output and stagnation.

Although there is a long-run trade-off in the NK model between output

and inflation, the extent of this trade-off is quite minor: at the unintended

low inflation steady state the level of aggregate output is only very slightly

below that of the intended steady state in Figure 1.

Figure 2, which gives real GDP per capita since 2001 for the US, Japan

and the euro area, illustrates the association of depressed output levels in

these countries with the ZLB. This is inconsistent with the view of two

steady-states in the second approach. Taken together with Figure 1, there

appears also to be the possibility of stagnation, i.e. persistently depressed

levels of output, at low inflation or deflation steady states. For the US,

the decrease from 2007Q4 to 2009Q2 was about 6.0%. Given an underlying

trend growth in the US of real GDP per capita of 2% per year, one would

have expected 3% total growth over this period, so one could argue this

corresponds to a 9% GDP gap. For Japan, the decrease in GDP per capita

from 1997Q1 to 1999Q1 was 3.5% and from 2008Q1 to 2009Q2 was 7.5%.

For the euro area the drop in GDP per capita from 2008Q1 to 2009Q2

was 5.5%. Again, allowing for usual trend growth in GDP per capita, the

resulting GDP gaps would be larger.

Another objection to the two-steady state view of recent events is that

the unintended low-inflation steady state is not stable under adaptive learn-

ing. This point was emphasized in Evans, Guse, and Honkapohja (2008)
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and Benhabib, Evans, and Honkapohja (2014). We expand on this at length

below, but the key point is that this makes it implausible that the economy

will converge to the unintended steady state.
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Figure 2: Real GDP per capita in local currency

A third approach relies on sunspot equilibria that can also be shown

to exist when there are two steady states. A sunspot is modelled as a two-

state Markov process with fixed transition probabilities. This can either

be a stationary 2-state sunspot equilibrium, as in Aruoba, Cuba-Borda,

and Schorfheide (2014) or a 2-state sunspot equilibrium with an absorbing

state at the targeted steady state, as in Mertens and Ravn (2014). In this

approach the state corresponding to deflation and recession is not due to a

fundamental shock, but to a pure confidence shock.

This approach is attractive in that it gives full weight to the multiple

equilibria issue. However it also has disadvantages. There is the practical

question of exactly what variable is used to coordinate expectations, and

there is again the issue of stability under learning. Two-state sunspot equi-

libria are not locally stable under learning when they are close to two steady

states, one of which is not locally stable under learning as in the present

case; e.g. see Evans and Honkapohja (2001), Chapter 12.

There is also an issue concerning the relatively small magnitude of re-

cessions on this approach. The size of recessions appears to be greatest in

the case of a Markov sunspot equilibrium with an absorbing state. However,

even in this case the size of the recession is relatively mild: in the illustra-

tions given in Mertens and Ravn (2014) the impact on output is −16%.
This is a magnitude well below those in the Great Recession, which in turn

were relatively small compared to the Great Depression during which sub-
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stantial deflation and the ZLB was also attained; real GDP figures for the

US show a 26.5% drop between 1929 and 1933.

This discussion motivates the approach that we take in the current pa-

per. The dynamics of private-sector expectations are modeled using the AL

approach rather than standard RE. RE assumes a great deal of knowledge

on the part of agents and also implicitly assumes coordination of agents on

those expectations. These criticisms of RE are particularly forceful when

the economy is in an unusual situation, i.e. outside the usual regime of

positive inflation and interest rates. In such circumstances the government

may also need to consider policies outside the usual range of experience.

In Evans, Guse, and Honkapohja (2008) and Benhabib, Evans, and

Honkapohja (2014) AL was introduced into the NK model with two steady

states arising from the ZLB. These papers showed that while the unintended

steady state is not locally stable under learning, it is on the edge of a

deflation trap region in which inflation and output fall without bound. In

the current paper we add lower bounds to inflation and consumption into

a NK model. As discussed in Section III., we think such bounds are both

plausible and more consistent with observed data. Although in normal

times the inflation and consumption lower bounds are not relevant, they

can play an important role during times of deep recession.

Depending on the magnitude of the inflation lower bound there are

then one or three steady states. The critical level is a net deflation rate

equal to the net discount rate. If the inflation lower bound is higher than

this critical rate then the deflation trap region does not exist. However, if

the inflation bound is below this critical rate, then there are three steady

states, including a stagnation steady state at the inflation lower bound. This

stagnation or “trap” steady state can have very low output accompanied

by moderate deflation.

The three steady states all satisfy RE, and the model is therefore in-

determinate. AL resolves the indeterminacy issue in the sense that, given

initial expectations and the learning rule, the time path of the economy

is pinned down. Thus AL explains how deep recessions accompanied by

deflation and zero interest rates can emerge. We show that the usual tar-
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geted steady state is locally stable under learning, whereas the unintended

steady state emphasized by Benhabib, Schmitt-Grohe, and Uribe (2001b)

is unstable. There will either be convergence to the intended steady state

or expectations will evolve toward the stagnation steady state, which is also

locally stable under learning.4

The key point of our approach is that the low output and inflation dur-

ing the period of exogenous discount rate, credit or other shocks, may have

made agents generally more pessimistic about the future, and that these

pessimistic expectations may well continue for a time after the exogenous

shocks have ceased and the economy may have gone out of the basin of

attraction of the targeted steady state.

The possibility of a stagnation steady state raises the question of

whether policy can return the economy to normal levels. Can fiscal pol-

icy prevent the economy from converging to stagnation? If the economy

has settled into stagnation, can fiscal policy return the economy to the tar-

geted steady state? Earlier work has shown that the fiscal policy effects

under AL can sometimes be significantly different from those based on the

RE assumption.5

The AL approach used in the current paper is implemented as follows.

We use the anticipated-utility approach advocated by Preston (2005) and

Eusepi and Preston (2010), but extended for policy changes as discussed in

Evans, Honkapohja, and Mitra (2009) and Mitra, Evans, and Honkapohja

(2013). Agents are assumed to incorporate the announced path of future

government spending and taxes into their intertemporal budget constraint,

and thus take into account the known direct impact of the policy. At the

same time, agents are assumed not to know the general equilibrium effects

of the temporary change in fiscal policy, and to use adaptive learning to

forecast future values of output and inflation. Under AL agents update

each period their estimates of the coefficients in their forecast model, and

the evolution of these parameters over time modulates the impact of fiscal

policy under learning vis-a-vis the impacts under RE.

The structure of our paper is as follows. In Section II. we present

the basic Rotemberg adjustment-cost version of the NK model with AL.
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In Section III. we extend the model to include lower bounds for interest-

rates, inflation and consumption. This section obtains the key existence

and learning stability results for the different steady states, demonstrating

in particular the possibility of a locally learnable stagnation steady state.

In Section IV. we first compare fiscal policy under RE and AL in nor-

mal times: the overall size of the output multipliers for government spend-

ing under AL and RE are about the same, but under AL the impact is

front-loaded. We then provide numerical results for fiscal policy when ex-

pectations are sufficiently pessimistic that there is a high likelihood under

unchanged policy of the economy converging to stagnation. We examine

the impact of a temporary fiscal stimulus for a stated period of time.

In the latter situation the impact of fiscal policy is nonlinear: for a given

duration, a small stimulus can fail to prevent convergence to the stagnation

state, while a sufficiently large temporary stimulus can be very effective in

returning the economy to the targeted steady state. The results are also

stochastic, since convergence to the targeted steady state depends in part

on the sequence of stochastic shocks, and the proportion of times stagnation

is avoided depends on the magnitude and length of fiscal stimulus.

Section V. considers several important extensions. We consider worst-

case situations in which the economy has converged to and fully adapted

to a stagnation steady state. Even in this case there are fiscal policies

that will return it over time to the targeted steady state. The section also

discusses the connection between the discount factor and the magnitude of

the deflation rate in the stagnation state and considers the implications of

financial frictions. We show that with a high discount rate and financial

frictions, the inflation rate in the stagnation steady state can be zero or

even a low positive rate.

II. New Keynesian Model

We use a NK model following the approach developed in Eusepi and

Preston (2010). The model uses a Rotemberg adjustment cost version of

the pricing friction, which is convenient for solving under AL. We index

households by  and firms by , but in the temporary equilibrium dynamics
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that we study all households and firms will make identical decisions. We

start with the households. We assume a cashless limit and that households

are Ricardian. In this section we assume the ZLB on interest rates is never

binding. The ZLB and other bounds are introduced in Section III..

The model incorporates random markup and productivity shocks, and

our approach is to linearize the model around the targeted steady state,

which is the usual procedure for local analysis. In Section III. we consider

more global aspects of the economy. As the model is stochastic, we con-

tinue to use the linearized model in the analysis except in Figure 4, where

the global learning dynamics incorporate quadratic adjustment costs in the

market-clearing condition. Global nonlinear analysis in the fully nonlinear

stochastic setup would be challenging, though approximations based on the

assumption of point expectations could be used. See e.g. Benhabib, Evans,

and Honkapohja (2014). Our results are consistent with that paper, so the

qualitative results seem to be robust to this issue.

A. Households

The objective for agent  is to maximize expected, discounted utility

subject to a standard flow budget constraint:

 ̂0

∞X
=0

 ( )(1)

s.t.  +  +Υ = −1
−1
 −1 + (2)

Here ̂0 denotes the subjective expectation of  at  = 0,  is the Dixit-

Stiglitz consumption aggregator,  is the labour input into production,

 denotes the real quantity of risk-free one-period nominal bonds held by

the agent at the end of period , Υ is the lump-sum tax collected by the

government, −1 is the nominal interest rate factor between periods − 1
and ,  is the aggregate price level and the inflation rate is  = −1.

The utility function is assumed to take the parametric form  = log−

1+

1+
 where   0. Household income  is given by  =




 + Ω

,

where  is the nominal wage and Ω
 denotes profits from holding shares
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in equal part of each firm. The subjective discount factor is denoted by

0    1 The household decision problem is subject to the usual ‘no

Ponzi game’ condition.

We assume households use a decision rule based on a linearization

around the targeted steady state. Details of the solution to the household

optimization problem are discussed in Online Appendix B (more details

may also be found in the earlier working paper version Evans, Honkapohja,

and Mitra (2016)). We assume consumers are Ricardian: they know the

government runs a balanced budget policy.6 Using the representative agent

assumption ̂ = ̂, ̂ = ̂ and ̂ = ̂ yields the consumption

function7

(3) ̂ = (1− )

" ∞X
=0

̂

Ã
̂+¡
̄̄

¢ − ̂+¡
̄̄

¢)!#− ̂

∞X
=1

̂+

where ̂̂ = ̂ and ̂̂ = ̂ and a hatted variable indicates proportional

deviations from its mean. e.g. ̂ =
−̄

̄
and ̂+1 =

+1−̄
̄



B. Firms

The production function for each firm, producing good , is given by

 = 

 where 0   ≤ 1 and  is a random productivity shock with

mean ̄. Output is differentiated and firms operate under monopolistic

competition. Each firm faces the downward-sloping demand curve

(4)  =

µ




¶−1


Here  is the profit maximizing price set by firm  consistent with its

production . The elasticity of substitution between two goods   1 is

assumed to be a random stationary process with mean .  is aggregate

output, which is exogenous to the firm. The firms’ problem is

max ̂

∞X
=

Ω
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where, due to log utility,  = − 


, for  ≥ , where

Ω = (1− )




 − 



 − 

2
(


−1
− ∗)2

and where  is the revenue tax rate to eliminate the steady state distortion

in output caused by monopolistic competition. Here ∗ is the (gross) rate

of inflation  = −1 targeted by policymakers. Thus firms view it as

costly to change prices by an amount that differs from the policymaker tar-

get ∗. We interpret the quadratic term as reflecting the costs of justifying

to consumers price increases at a rate higher than the target rate and the

additional marketing costs of making customers aware of price increases

below the target rate.8

We assume firms use a decision-rule for price setting based on a lin-

earization around the targeted steady state. Online Appendix B shows how

to obtain the infinite horizon linearized New Keynesian Phillips curve

(1− 1)̂ − 2̂ = 1

∞X
=1

(1)
̂̂+ + 2

∞X
=1

(1)
̂̂+

+

∞X
=0

(1)

³
−3̂̂+ − 4̂̂+ + 5̂̂+

´
(5)

where  = (1−), and coefficients 1  5 and 1 are defined in Online
Appendix B. Interpretation of (5) is standard; see Appendix B.

C. Temporary equilibrium and learning

We can now define the temporary equilibrium which is given by the

Phillips curve (5), the NK IS curve and an interest rate rule. The interest

rate rule is, for example,  = −1
¡
∗ + ( − ∗) + ̌ ( − ̄ )

¢
, which

in log-linearized form becomes

(6) ̂ = ̂ +  ̂

where ̂ = ( − ̄)̄, and  =
̌ ̄

∗ . We also assume a government

fiscal policy in which government spending is financed by lump-sum taxes.
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In Appendix B it is shown that the IS equation for ̂ which combines the

consumption function and the market clearing condition can be written as

̂ = ̄̂ + (1− )−1
∞X
=1

̂̂+ − (1− )̄−1
∞X
=1

̂̂+

−(1− ̄)(̂ − ̂̂+1)− (1− ̄)

∞X
=2

−1̂̂+(7)

where ̄ = ̄
̄
. This assumes the ZLB is not violated. The next section

shows how to allow for cases in which the ZLB may bind.

The shocks to  and  are assumed to follow exogenous AR(1)

processes given by

(8) ̂ = ̂−1 +  and ̂ = ̂−1 + 

where 0     1 and the shocks  and  are iid normal variables

with zero mean and constant variances 2 and 2.

This completes the description of the model apart from a specification

of how expectations are formed. Under RE the solution technique is stan-

dard. See Online Appendix B for details. Under AL agents need to form

forecasts of future inflation and output and, when a fiscal policy change

occurs, of government spending and taxes. We assume that agents know

the interest rate rule.

Under AL agents have perceived laws of motion (PLMs) of the same

form as the RE solution of the economy under standard policy, but they

update the coefficients using constant gain least-squares to allow for the

indirect general-equilibrium impact of a policy change on future output

and inflation. There is a stochastic steady state of the form

(9) ̂ =  + ̂ + ̂ and ̂ =  +  ̂ +  ̂

where ̂ ̂ are observable processes (with known coefficients) given by (8).

Under AL agents estimate the coefficients of (9) using constant-gain least

squares, which discounts past data. (Online Appendix B gives details).
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Given their time  estimates of the coefficients , , ,  ,  ,  

forecasts ̂+ and ̂̂+ are given by

̂̂+ =  + 

̂ + 


̂ and ̂̂+ =  +  


̂ +  


̂

These forecasts can then be inserted into the model (5)-(7), and the infinite

series summed, to determine the temporary equilibrium at time . When

there is no fiscal policy change, government spending is constant and ̂ =

̂̂+ = 0 and the corresponding terms in (5)-(7) are zero.

III. Model with Lower Bounds

We now extend the temporary equilibrium framework of the model un-

der learning to allow for the ZLB and other lower bounds. Most of the RE

literature, following Eggertsson and Woodford (2003), has assumed that

low inflation and output at the ZLB are triggered by exogenous prefer-

ence or credit shocks that shift the RE equilibrium in such a way that the

ZLB becomes a constraint.9 Under RE the path of the economy is largely

determined by these exogenous preference shocks.

In contrast, the approach followed here focuses directly on a pessimistic

shock to expectations. An initial pessimistic expectations shock, under

learning, has the capacity to drive the economy to low levels of output

and inflation and become self-sustaining.10 As noted in the Introduction,

it is known from earlier work on AL in the NK model that there is the

possibility of deflation traps that cannot be overcome by interest rate policy,

due to the ZLB, and which push the economy along divergent deflationary

trajectories. We think that in these circumstances other bounds may also

be important, which will act to stabilize the economy along an otherwise

divergent trajectory.

A. Lower bounds on   and 

A zero lower bound on net nominal interest rates corresponds to a

bound  ≥ 1. Usually, central banks prefer not to reduce net interest

rates below a small positive number   0 and we thus impose the lower
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bound  ≥ 1 + . At the global level we also introduce two other lower

bounds that will plausibly arise in extreme circumstances: an inflation lower

bound  and a consumption lower bound .

An inflation lower bound is natural because it seems implausible that

an output level slightly but persistently below the steady state level will

eventually lead to deflation rates that intensify without bound. A lower

bound can be motivated by downward wage rigidity or money illusion,

e.g. see Akerlof and Dickens (2007) and Akerlof and Shiller (2009). This

may also be empirically appealing because the extent of deflation appears

bounded even at very low levels of aggregate output (see e.g. Ball and

Mazumder (2011) and IMF (2013)).11 We capture these factors through

the simple device of an inflation lower bound , which we usually take to

correspond to a modest rate of deflation.12 The value of  may vary over

time and across countries.

We assume   ∗, where ∗ is the inflation rate targeted by mone-

tary policy. A consumption lower bound would plausibly arise when con-

sumption approaches the (perhaps socially determined) subsistence level.

Below we assume that  is significantly below the targeted steady state.

The spirit of this bound is similar to the subsistence level parameter used

in Stone-Geary preferences; see, for example King and Rebelo (1993) and

Ravn, Schmitt-Grohe, and Uribe (2008).13 Although in normal times these

bounds would not be apparent, they can play a role in stabilizing the econ-

omy at low levels of output at the ZLB.

We begin with a discussion of the steady states that may arise when the

lower bounds may be binding. In this section it is convenient to simplify

the monetary policy rule, so that the Taylor-type rule responds only to

inflation. Together with the interest-rate lower bound we have

∗ = −1( − ∗) + −1∗ with   1, and

 = max(∗  1 + )

This parameterization is consistent with our earlier linearization ̂ = ̂

at the intended steady state. In this section for convenience we abstract
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from the intrinsic random productivity and mark-up shocks.

To analyze the possible non-stochastic steady states we can focus at-

tention on the Euler equations for consumption and price setting. These

will hold with equality unless constrained by the consumption or inflation

lower bounds. Setting  = +1 =  and  = , the consumption Euler

equation implies the Fisher equation

 = −1

unless consumption is at its lower bound. Figure 3, which shows this rela-

tionship together with the steady state interest rate rule

 = max
¡
−1( − ∗) + −1∗ 1 + 

¢


illustrates the usual indeterminacy result that in addition to the intended

steady state at  = ∗ there is an unintended steady state at  =  ≡
(1+). Figure 3 also shows the additional stagnation steady state arising

when inflation and consumption are constrained at their lower bounds.

Figure 3: Existence of multiple steady states.

We assume 0    −1∗ − 1 and   1 so that   1 exists.
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This multiplicity issue was analyzed in detail, under the RE assumption,

in Benhabib, Schmitt-Grohe, and Uribe (2001b) and Benhabib, Schmitt-

Grohe, and Uribe (2001a). Bullard (2010) gave a forceful argument that

the pattern of inflation and interest rates in Japan and the US was cause

for concern that the US experience might converge to a Japanese style

stagnation with steady mild deflation. The remaining steady state equation

is obtained from combining the price-setting Euler equation, the household

static first-order condition and the mark-up equation. Online Appendix B

shows these yield

(10) ( − ∗)(1− ) =




£
1+ − (1− )(1− −1)

¤


This is the steady-state NK Phillips curve equation, which must hold unless

inflation is constrained by its lower bound. We will also need the GDP

steady state accounting identity

(11)  =  ++


2
( − ∗)2

The above steady-state Phillips curve and Fisher equations hold unless

inflation or consumption are constrained by their lower bounds. The infla-

tion lower bound  holds if (10) would otherwise lead to an inflation rate

lower than this bound, and similarly the consumption lower bound holds

if otherwise we would have   . Taking these into account, the Euler

equation thus leads to the inequality

(12)  ≥ −1 and  ≥ , with c.s.,

which one could call the Fisher inequality, and the Phillips curve inequality

( − ∗)(1− ) ≥ 



£
1+ − (1− )(1− −1)

¤
(13)

and  ≥ , with c.s.

Here c.s. denotes that these inequalities hold with complementary slackness,

i.e. if either inequality holds strictly then the other holds with equality. We
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can also write the interest-rate rule subject to its lower bound as

(14)  ≥ −1( − ∗) + −1∗ and  ≥ 1 + , with c.s.

Using the three inequalities (12), (13), (14) we can examine the possible

steady states. We assume throughout that   0 and it is convenient to

strengthen this slightly and assume that     0 where  is specified

below. In addition we assume that the consumption lower bound  is not

too large, as further specified below.

B. Existence and local stability of steady states under learning

The number of steady states in the economy will depend critically on

the inflation lower bound   ∗, specifically on whether     = 

or   . Full analytical results are available for cases in which price

adjustment costs are small. The existence results are given in the following

proposition:

Proposition 1. (i) Suppose that   . For   0 sufficiently small,

there are exactly three steady states, with  ∈ {∗  }. (ii) If    

∗ then there is a unique steady state at  = ∗. (iii) If  =  then for

  0 sufficiently small there is a steady state at  = ∗ and a continuum

of steady states at  = 

Proofs of Propositions are given in Online Appendix C. We now con-

sider the stability under AL of the steady states just described. As is well

known, the local stability of an RE solution under least-squares learning, of

the type outlined in Section II.C. is determined by expectational stability, or

“E-stability” conditions, as discussed, for example in Evans and Honkapohja

(2001). Although one could allow for the inclusion of exogenous productiv-

ity and mark-up shocks in this analysis, local stability in the current setting

is governed by the intercepts of the forecast rules. We therefore simplify the

theoretical stability results by assuming that the PLM for both output and

inflation takes the form of an unknown constant plus a perceived white noise
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disturbance. Furthermore, for theoretical convenience in this section, we as-

sume a forward-looking interest-rate rule ̂ = max[̂̂+1 1 + ] where

  1. (Proposition 2 also holds for the analogous contemporaneous-data

rule.). We have:

Proposition 2. If    then the steady state at 
∗ is locally E-stable

and the steady state at  is locally E-stable, while the steady state at 

is locally E-unstable for  sufficiently small. If    then the (unique)

steady state at ∗ is locally E-stable.

For the case   , Figure 4 illustrates the global E-stability dy-

namics that give the mean dynamics of expectations under AL, based on

linearized decision rules subject to the lower-bound constraints, but incor-

porating the nonlinear market clearing condition (11). Here  is expected

inflation,   is expected output, E is the targeted steady state, S is the

stagnation steady state and U is the unstable unintended steady state. The

dashed line is the border between the basin of attractions for E and S. See

Online Appendix C for a numerical example and details.

Figure 4: E-stability dynamics with forward-looking Taylor rule for the

case of three steady states.  and   are expected inflation and output.

The targeted and stagnation steady states have relatively large basins of at-
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traction in the state space while the middle steady state creates a separating

curve for these basins. The Figure shows that pessimistic expectations from

negative shocks can create dynamics towards the stagnation state. Under

AL, when   , there is a stable stagnation steady state with deflation

at  =  and a low level of output underpinned by the consumption lower

bound. This possibility is potentially a major policy concern.

This theoretical analysis gives an explanation for the considerable con-

cern among US and European policymakers about deflation and the possi-

bility of their economies, following the financial crisis of 2007-9, becoming

enmeshed in a long period of stagnation with mild deflation, similar to that

experienced by Japan since the mid 1990. This concern has been a large

part of the motivation for setting and keeping policy interest rates near

zero, and for innovative monetary policies like “quantitative easing” and

“forward guidance.” Because, in the stagnation-deflation trap, steady-state

interest rates are at the ZLB, conventional monetary policy cannot move

the economy back to the targeted steady state. The effectiveness of fiscal

policy in this setting is then of particular interest.

In turning to an examination of fiscal policy we do not mean to suggest

that monetary policy is not crucial in the face of large pessimistic shocks.

For example the speed with which the policy rate is reduced can be critical.

In addition, quantitative easing arising from purchases of a broad range

of assets can be effective,14 affecting a spectrum of interest rates. Finally,

both forward guidance concerning future interest rates and explicit inflation

targets may be important in affecting how household and firm expectations

respond to observed data. We study fiscal policy in this setting primarily

in order to examine its effectiveness as an alternative or supplement to

unconventional monetary and financial policy when conventional monetary

policy appears insufficient to guarantee avoiding convergence to stagnation.

IV. Fiscal Policy

We turn now to fiscal policy. A growing literature has been reconsid-

ering the effects of fiscal policy in light of the relatively large fiscal stimuli

adopted in various countries in the aftermath of the Great Recession. For
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example, Christiano, Eichenbaum, and Rebelo (2011), Corsetti, Kuester,

Meier, and Muller (2010) and Woodford (2011) demonstrate the effective-

ness of fiscal policy in models with monetary policy when the ZLB on the

interest rate is reached. For a contrary view see Mertens and Ravn (2014).

Most of this literature makes the RE assumption. The AL literature has

shown that quite different results can arise both in NK and Real Business

Cycle models; see Evans, Guse, and Honkapohja (2008), Benhabib, Evans,

and Honkapohja (2014), Mitra, Evans, and Honkapohja (2013), Gasteiger

and Zhang (2014) and Mitra, Evans, and Honkapohja (2016).

In this section we examine fiscal policy under AL, and it is convenient

to study its impact first in normal times, when the economy is near the

targeted steady state. We then turn to cases in which the economy would

otherwise be at risk of falling into the stagnation steady state or even has

already converged to the stagnation steady state.

Because we assume Ricardian households, we examine the impact of

changes in the level of government purchases, and we focus on temporary

increases in the level of government spending on goods and services.15 When

there is a change in fiscal policy, agents will take account of the tax effects

of the announced path of policy. Given the Ricardian assumption, we can

assume balanced budget increases in spending so that the path of taxes

matches the path of government spending. We assume that initially, at

 = 0, we are in the stochastic steady state corresponding to  = ̄, and

that at  = 1 the government announces an increase in government spending

for  periods, i.e.

 =   =

(
̄0,  = 1  

̄,  ≥  + 1

Thus government spending and taxes are changed in period  = 1 and this

change is reversed at a later period  + 1. We assume that the announce-

ment is fully credible and the policy is implemented as announced. These

assumptions could, of course, be relaxed.

Using simulations we study the impact on endogenous variables and

also the distributed lag and discounted cumulative output multipliers for

the fiscal policy (defined in Online Appendix E). The baseline parameters
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used in the simulations in both this and the following section are

 = 066  = 099  = 767  = 0  = 2  = 1  = 1288

̄ = 02  =  = 08  =  = 00033

 = 1085 is chosen so that output is approximately one; precisely  =

10081 We interpret the parameters as corresponding to a quarterly cal-

ibration. For the inflation target we set ∗ = 1005 For quarterly data

this corresponds to an annual rate of inflation of 2% which is a frequently

used target for monetary policymakers. The value for  is based on a

15% markup of prices over marginal cost suggested in Leeper, Traum, and

Walker (2011) (see their Table 2) and the price adjustment costs estimated

from the average frequency of price reoptimization at intervals of 15 months

(see Table 1 in Keen and Wang (2007)).

The numerical simulations in this section use the linearized system

of equations given in Section II.. It would be possible to combine the

linearized decision rules for consumption and price setting with the non-

linear equations for market clearing, production, factor prices and labor

supply, but this raises computational complexity.16 The notation ̂  ̂ ̂,

etc., continues to denote deviations from the targeted steady state values.

As a reference point we first briefly discuss multipliers for normal times

when the ZLB does not bind. For our policy, there is not a large quantitative

difference between the output multipliers under RE and AL, but they do

differ in the time profile. Suppose the economy is initially in a steady state

and consider a 10% increase in  for  = 10 periods. Under both RE and

AL the maximum multiplier is about 08, but this is reached under RE at

 = 10, while under AL this occurs at the start of the policy. Under AL the

impact of policy is front-loaded, and is partially offset following the end of

policy. Details and discussion are provided in Online Appendix E (see also

figure E1 there).

We now turn to fiscal policy when the economy is at low levels of output

and inflation due to pessimistic expectations following earlier large adverse

shocks. In such cases the ZLB will often bind and from the earlier literature
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multipliers can now be expected to be large. However, when the stagnation

steady state is a possible outcome without policy, there is the possibility of

very large multipliers if policy can avoid stagnation.

A zero lower bound on net nominal interest rates corresponds to a

bound on the gross nominal one-period interest rate  ≥ 1. Recall that
the steady state real interest rate factor is ̄ = −1. When the target

inflation rate is ∗ ≥ 1, the steady state nominal interest-rate factor is

̄ = −1∗. Because ̂ = ( − ̄)̄ = () 
∗ − 1, it follows that at

the ZLB we have ̂ = ∗− 1. In practice, in our numerical simulations,
much like the actual monetary policy followed in the US and the UK in the

2008 - 2015 period, we will assume net interest rates are bounded by some

small value   0. Thus the ZLB is defined by the bound ̂ ≥ (1+)

∗ − 1.
We continue to assume that in normal times the interest-rate policy is given

by the Taylor rule. With the ZLB added policy takes the form

̂ = max

½
̂∗ 

(1 + )

∗
− 1
¾
 where ̂∗ = ̂ +  ̂.

The New Keynesian Phillips curve (5) is unaffected because it does not

depend on the interest rate. However, the New Keynesian IS equation (7)

is altered because expected future interest rates and the current interest

rate may be subject to the ZLB.

Whether agents expect the ZLB to bind in the future depends both

on the fundamental shocks and the beliefs of agents as measured by their

estimates of the parameters of the PLM. There are actually four cases to

consider depending on whether the ZLB is expected to bind in all future

periods, no future periods, after a finite number of periods or up to some

date. These cases are discussed in Online Appendix D. The condition de-

termining the applicable case depends in part on the parameters  and ,

and for analytical convenience we restrict attention to the case  = .

For each case we must also allow for the possibility of the ZLB binding in

the temporary equilibrium.

Inflation and consumption are also subject to lower bounds, and the

modified IS and Phillips curve equations are described in Sections C and
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D of the Online Appendix. We will take  to correspond to a modest rate

of deflation. The lower bounds  and  come into play when expectations

are very pessimistic and can become binding in the stagnation trap regions.

We now use simulations to study the possible paths of the economy, un-

der AL, that can arise from a pessimistic expectation shock, and examine

the potential role for fiscal policy to prevent stagnation or ameliorate bad

outcomes. We emphasize that these simulation results are designed to be

illustrative, i.e. to exhibit the range of possible results that can be obtained

in our model. Using the model to fit actual historical episodes is reserved

for future research.

The impact of fiscal policy will depend sensitively on the values of  and

 and the nonstochastic component of ̂(0) = (0) and ̂ (0) =  (0).

There are cases in which without policy the economy will converge to a

stagnation steady state rather than to the targeted steady state. If initial

expectations are close to the edge of the stagnation trap region, fiscal policy

may be able to shift the path to the targeted steady state. In cases involving

possible convergence to the stagnation regime, the impact of fiscal policy

may depend critically on the size and length of fiscal policy.

Before turning to simulations, recall that there are three possible steady

states when the inflation lower bound  is below  = (1+ ). In propor-

tional deviation form this corresponds to ̂  ̂ where ̂ = ∗ − 1 and
̂ = (1+ )∗− 1. The first steady state is the targeted steady state at
 = ∗ i.e. at ̂ = 0 There is a second steady state at ̂ = ̂ with ̂  ̂.

This steady state, however, is unstable under learning. Finally, there is the

stagnation steady state at ̂ = ̂ and ̂ = ̂. If instead ̂  ̂ then the

usual targeted steady state is the unique steady state, and if ̂ = ̂ there

will also be a continuum of steady states at ̂ = ̂ with ̂  ̂.

For our parameterization with  = 099 and  = 00001, the critical

value  for the inflation bound is approximately −00099. This is a de-
flation rate of 099% per period, which we take to be a quarter, i.e. just

under 4% per annum. In our simulations below we set ̂ = −0017 or
̂ = −001475 The inflation lower bound ̂ = −0017, which corresponds
to about −121% per quarter, leads to three steady states, while the lower
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bound ̂ = −001475, corresponding to about −098% per quarter, leads to
a unique steady state.

For the consumption lower bound we set ̂ = −03, which corresponds
to a 30% reduction in consumption from the targeted steady state and which

in turn corresponds to a drop of roughly 24% in aggregate output. Thus the

level of output in the stagnation state corresponds roughly to the output

drop in the Great Depression in the United States in the 1930s.17 This

is a fairly extreme assumption, and it would straightforward to examine

calibrations consistent with stagnation steady states more in line with the

Great Recession. We choose the setting ̂ = −03 in order to consider the
effectiveness of fiscal policy even in extreme cases in which the economy has

settled into a persistent stagnation with output far below normal levels.18

We set the gain parameter of agents at  = 010. This relatively high value

reflects the fact that we consider expectations that are sometimes far from

rational values. In these circumstances agents have an incentive to adjust

expectations relatively quickly to eliminate systematic forecast errors.19

To study the effectiveness of fiscal policy we choose initial expecta-

tions sufficiently pessimistic so that without policy change stagnation is

likely:  = −00148 and  = −0015. With an annual inflation target of
∗ = 2%, and since steady state output is approximately ̄ = 10081, these

values for  and  correspond to initial inflation expectations of just un-

der −10% per quarter (an annual rate of −39%) and output expectations
15% below the level of the targeted steady state (assuming the exogenous

shocks are at their mean values). This setting can be thought of as follows.

At the beginning of time  = 0 the economy suffers a pessimistic expec-

tation shock, which resets mean expectations to levels below the targeted

steady state, specifically ̂ = −00148 and ̂  = −0015. The  = 0 values
of inflation and output are also at these same pessimistic values. We then

contrast the evolution of the economy under learning when fiscal policy is

unchanged with the evolution of the economy under learning when at  = 1

a temporary fiscal stimulus is initiated of known duration. One natural in-

terpretation of the pessimistic expectations at  = 0 is that they arose from

the impact of recent adverse discount rate or credit friction shocks that had
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dissipated by  = 120
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Figure 5: Large policy change. Paths for output gap ̂ (in percent) and

inflation (annualized percent rate) under learning with policy (solid line)

and without policy (dashed line). Top: means of paths with convergence

to targeted steady state under policy. Lower: means of paths with

convergence to stagnation trap despite policy.

Without fiscal policy these initial expectations are sufficiently pes-

simistic so that inflation at  = 1 falls immediately to the lower bound

̂ = −0017. This is accompanied by small reductions in consumption and
output, and the interest rate falls to the ZLB. Because of the ZLB, and with

inflation at its (negative) lower bound, current and expected future real in-

terest rates are positive and approximately equal to the deflation rate. Using

the temporary equilibrium consumption function and market clearing equa-

tions, with inflation and expected inflation at the lower bound, it is shown at

the end of Online Appendix D that ̂ = −∆, where∆ =
(1−̄)(−)
(1−)∗  0,

and ̂ = (1 − ̄)−1̂. Thus at each time  output is lower than expected

output resulting in expected output falling over time. More specifically, it

can be shown that the RLS updating equation for  in Section II.C. can

be approximated by +1 =  + 
³
̂ − 

´
=  − ∆, with also

    → 0. It follows that ̂+ =  ̂ and ̂ will steadily fall

24



over time until ̂ is constrained by the consumption lower bound, at which

point the economy reaches and stays in the stagnation steady state. With

no fiscal policy change the initial pessimistic expectations lead the econ-

omy into a deflation trap at  with output approximately 24% below the

targeted steady state.

As shown in Online Appendix E, Figure E2, a small fiscal stimulus fails

to prevent stagnation. In contrast, if  is changed by a sufficiently large

amount the economy can be shifted to the targeted steady state. In Figure

5 we consider a policy that increases government spending from  = 02 to

 = 028 for  = 4 periods. Output and inflation increase monotonically

during the period of the stimulus,  = 1     4. In approximately 9961%

of the simulations there is then convergence to the intended steady state

under this fiscal policy. Figure 5 illustrates the results based on 10 000

simulations. The top panel shows the mean paths of output and inflation

for the paths for which fiscal policy is effective in the sense that it leads to

convergence to the intended steady state. The lower panel shows that in the

relatively few simulations (approximately 039%) in which the economy fails

to avoid convergence to stagnation, fiscal policy still has substantial positive

effects on output. In sharp contrast, without policy change, all simulations

converge to the stagnation state. As seen in the Online Appendix, Figure

E3, the multipliers are very large.

The intuition for the results in which there is convergence to the in-

tended steady state under policy is as follows. In period  = 1 pessimistic

expectations for inflation and output are predetermined. The increase in 

has a large effect on output because there is only a small crowding out effect

on consumption. Although there is deflation and interest rates are near the

ZLB, the high level of output in period  = 1 increases inflation above its

expected level. Consequently in the following period inflation and output

expectations are both revised upward. The higher inflation and output ex-

pectations and continued high  lead in period  = 2 to even higher output

and to inflation close to the target level. Beginning in period  = 3, infla-

tion has risen above target. The high output and inflation levels in period

 = 3 4 result in inflation and output expectations being large enough so
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that when the government stimulus is removed in  = 5, output falls back

close to normal levels, though inflation remains above target for a sustained

period of time. Because expectations of inflation are above target levels,

it still takes significant time for the economy to converge to the targeted

steady state, but expectations are now within the basin of attraction of the

targeted steady state and there is asymptotic convergence to the target.

In summary, temporary increases in  are effective in raising output.

Small temporary increases in  lead only to temporary increases in  , but

large temporary increases in  can shift the economy back to the targeted

steady state resulting in a permanent increase in output. It is important

to note that whether or not the fiscal policy is successful in pushing the

economy back to the targeted steady state depends in part on the sequence

of stochastic shocks hitting the economy over time.

Table 1 shows the results for the same initial expectations and for al-

ternative values of  and  . Table 1 shows the probability that the fiscal

stimulus results in eventual convergence to the targeted steady state.21 It

is not surprising that many entries in Table 1 are neither 100 or 0. Starting

from the given initial pessimistic expectations, the sequence of serially cor-

related random productivity and mark-up shocks affect realized inflation

and output over time, which under learning affects the expected inflation

and output.22 For a fiscal policy that is usually successful, a particularly

unfavorable sequence of shocks can adversely affect expectations enough to

prevent the policy from working. Similarly, under a fiscal policy that will

normally be unsuccessful, a particularly favorable sequence of shocks can in

some cases be sufficient to lead to convergence to the targeted steady state.

Table 1 shows, however, that for a substantial range of policies, in particu-

lar for  between 027 and 040 with  between 2 and 5 quarters, a fiscal

stimulus is successful at least 99% of the time. In these cases the cumula-

tive multipliers are very large, reflecting the fact that the policies prevent

the economy from descending into stagnation and push it back permanently

(or almost permanently) to the targeted steady state, even though the fiscal

stimulus is temporary.
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\ 1 2 3 4 5 10 20 40

022 0 0 0 0 0 0 0 0

024 2 12 16 22 21 13 3 0

027 88 100 100 100 99 86 99 10

028 98 100 100 100 100 96 70 14

030 100 100 100 100 100 100 100 39

035 100 100 100 100 100 100 97 99

040 100 100 100 100 100 98 92 100

050 100 100 100 99 98 86 39 49

060 100 100 100 99 95 59 21 2

10 100 98 89 56 42 9 2 2

Table 1: Percentage of simulations in which fiscal policy successfully results

in convergence to the targeted steady state starting from pessimistic expectations.

It can also be seen that in many cases a fiscal stimulus that is too long

can be counterproductive. For example, for = 028 the effectiveness of the

stimulus decreases if  is increased to  = 10 quarters or longer. This is a

reflection of the negative effect on consumption of the tax burden associated

with higher government spending, which we assume is correctly foreseen by

households. In particular, in the first period when a fiscal policy of a given

magnitude ∆, for  periods, is initiated, the impact on aggregate output

is largest if  = 1. In this case the present value of the tax burden is simply

∆ and the direct impact of this on consumption is −(1 − )∆, which

is very small compared to the increase in aggregate demand for output

from government spending ∆. For larger  the present value of the tax

burden is larger; consequently the reduction in consumption in the initial

period is greater, leading to a smaller initial increase in aggregate output

and inflation. Against this, of course, a larger  means that the increase in

demand continues for a longer period of time, which means under learning

that expectations will adjust to a greater extent to the higher values of

output and inflation realized during the policy. These offsetting factors

account for the complicated patterns seen in Table 1.

It is also of interest to investigate fiscal policy for cases of initial pes-
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simistic expectations when ̂ is high enough that there is a unique steady

state. Figure E4 in the Online Appendix gives results for the case in which

̂ is just above the level needed to avoid the low-level trap. Although with-

out the fiscal stimulus there is no longer the possibility of convergence to

a stagnation steady state, there would still be a deep recession. The depth

and severity of the recession in this case can be greatly reduced by a large

fiscal stimulus: multipliers are large, reaching levels over 3, with a long-run

cumulative multiplier of over 5. Thus even in cases in which there is a

unique steady state, fiscal policy can be important when there is a suffi-

ciently large pessimistic expectations shock that drives the economy into

recession and deflation and monetary policy to the ZLB.

V. Further Results and Discussion

Our results raise two key questions. In the preceding section we looked

at the effectiveness of fiscal policy when expectations were subject to a

pessimistic shock that would lead to convergence to the stagnation trap

equilibrium in the absence of fiscal policy. Suppose, however, that fiscal

policy is not contemplated until the economy has already converged to the

trap. Can a fiscal stimulus still be effective is extracting the economy from

the stagnation trap and returning it to the targeted steady state? The

second question we consider is the size of the critical deflation rate below

which a stagnation trap exists. Under our calibration this corresponds to

an annual deflation rate of about 4% per year. Are there circumstances in

which milder deflation can result in a stagnation trap?

A. Escape from stagnation

Suppose now that the economy has been allowed to converge to the

stagnation steady state as a result of a large pessimistic shock. This is

clearly a worst-case setting since we are assuming that expectations have

fully adapted to the stagnation steady state. To examine this question we

use numerical simulations, with the calibration of the previous section, but

now set the intercepts of the forecast rules so that mean forecasts correspond
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to mean inflation and output rates at the stagnation steady states. Table 2

gives the results for 100 simulations. As in Table 1 we consider combinations

of increased government spending levels  and policy length 

\ 1 2 3 4 5 6 7 8 12 16 20

04 0 0 0 0 0 0 0 0 0 0 0

07 0 0 0 1 6 19 47 60 82 60 37

08 0 0 1 13 53 77 86 89 63 33 25

09 0 1 29 68 85 90 88 81 36 17 11

10 0 14 66 87 90 91 80 60 20 9 5

12 0 73 91 88 79 61 44 31 4 4 3

15 58 89 84 62 33 22 11 9 1 2 1

17 76 88 72 32 16 10 6 6 2 1 0

2 83 66 30 13 6 5 4 2 3 0 0

Table 2: Percentage of simulations in which fiscal policy successfully results

in convergence to the targeted steady state starting from stagnation expectations.

From Table 2 it can be seen that a fiscal stimulus can be successful in

extracting the economy from the stagnation trap even if expectations have

settled into levels consistent with the trap. However, the size of the stimulus

is now very large — much larger than was required in Table 1, when expec-

tations were less pessimistic — and it has a lower chance of full success. The

policies with the highest probability of success, between 89% and 91%, are

fiscal expansions that are both relatively short and big, e.g. a six-quarter

stimulus at  = 10, a five-fold increase in . A less huge, but still very

large, stimulus of  = 07 for twelve quarters, has a 82% chance of success.

Table 2 shows a general trade-off between magnitude and duration, with

some intriguing nonlinearities that reflect the balance of factors discussed

earlier in connection with Table 1.23 Of course our numerical results will

be sensitive to the parameterization used. For example, a smaller stimu-

lus might have a higher chance of success if the consumption lower bound

corresponds to a less drastically reduced level of output in the stagnation

steady state.
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While we find from these results that a sufficiently large stimulus of

appropriate duration can have a high probability of extracting the economy

from a stagnation trap steady state, an equally important conclusion is that

a higher probability of avoiding the stagnation trap can be achieved, with a

much smaller stimulus, if the policy is implemented earlier, when expecta-

tions are less pessimistic. Following a large adverse shock to expectations,

in which there is risk of the economy descending into the stagnation trap,

a fiscal stimulus should be implemented as early as possible.

B. Credit frictions and calibration of discount factor

The results of the previous section emphasize the importance of the

level of the inflation lower bound for the existence of a stagnation steady

state. This brings up two delicate but important issues. The first is appro-

priate calibration of the discount factor . Our numerical results have used

the quarterly calibration of  = 099. While this is fairly standard, there are

good reasons to consider alternative, higher, values. The historical average

realized net real interest rate on US Treasuries bills is not more than 1%

per annum. In an economy without growth this corresponds to a discount

factor of about  = 09975 In Online Appendix E, Figure E5, we provide

simulation results for  = 09975.24 With pessimistic initial expectations we

again get a very high likelihood of convergence to stagnation, but now, in

the stagnation state, there is deflation at around 14% per annum. Again a

large fiscal stimulus can avoid stagnation in a very high proportion of cases.

A second factor that can lead to a higher level of the critical inflation

rate is the existence of credit frictions. Various models have been proposed

that generate a spread between different interest rates on loans. A promi-

nent example within a NK setting is described in Curdia and Woodford

(2010) and developed at length in Curdia and Woodford (2015). Their

framework posits a heterogenous agents set-up with two types of house-

hold, at any given time, experiencing different realizations of taste shocks.

This leads to lending from agents who are currently more patient to those

who are currently more impatient. Frictions in the financial intermediation

sector result in a borrowing rate above the lending rate.
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Embedding a heterogeneous agents framework into our model is be-

yond the scope of the current paper. However, it is natural to incorporate a

shortcut, motivated by Woodford (2011), which is to assume that the mar-

ket interest rate relevant in household Euler equations for the “intertem-

poral allocation of expenditure is not the same as the central bank’s policy

rate” (p. 16). Woodford (2011) and Curdia and Woodford (2015) focus

on the implications of the time variation in this spread, while for our pur-

poses the key implication is a positive steady state spread  =  −   0,

where  is the policy rate and  is the interest rate relevant for house-

hold decision-making. The benchmark calibration in Curdia and Woodford

(2015) corresponds to a value  = 00025, i.e. to 1% per annum.

Online Appendix G shows that incorporating the spread  and the

policy rate ZLB into a Taylor rule, with inflation target ∗, leads to the

market interest rate equation  = max
¡
−1( − ∗) + −1∗ 1 + 0

¢
,

where 0 =  +  and  is the policy rate ZLB which we set near zero. To

capture the impact of a credit friction   0 we can thus simply replace

 by 0 =  + . A higher spread  increases  = (1 + 0). This has

a number of implications, one of which is particularly relevant for policy:

if (1 + 0)  1 then it is possible to have 1      ∗, so that the

stagnation steady state has a zero or low positive inflation rate.
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Figure 6: High  and credit spread. Paths under learning with policy

change (solid line) and without policy change (dashed line). Means of

paths with eventual convergence to targeted steady state under policy.
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Figure 6 gives simulation results using the higher discount factor of

 = 09975 and adding a credit friction corresponding to 108% annually

(very slightly above the the benchmark rate used in Curdia and Woodford

(2015)). Here again ̂ denotes the output gap in percent and inflation is

at annual rates. For these simulations we set ̂ = −00049, somewhat
below the critical value, so that there are three steady states, including a

low-level stagnation trap. This value of ̂ corresponds to  = 1000755,

yielding an inflation lower bound 003%, i.e. slightly above zero. Initial

expectations following a presumed large pessimistic shock are set at ̂ =

−00048 (expected inflation rate just under 01% per annum) and ̂  =

−005. For these initial expectations, there is a high likelihood, without a
fiscal stimulus, of converging to the stagnation steady state.

We consider fiscal policies that increase  from 020 to 038 for  = 2

periods, i.e. a very large, but short, fiscal stimulus. Based on 10 000

simulations, almost 86% of the with-policy simulations converged to the

intended steady state, 11% eventually sank to the stagnation steady state,

while approximately 3% had not yet converged. In sharp contrast, without

policy change, 7366% of the simulations sink to the stagnation steady state,

2533% converge to the targeted steady state while the remaining 11%

had not yet converged.25 Figure 6 shows the mean paths of the 86% of

simulations that under the policy converge to the intended steady state.26

Online Appendix G, Figure E6, discusses the remaining paths and also the

multipliers for the case of Figure 6.

In summary, credit frictions increase the critical inflation rate. This

indicates an additional reason for concern if inflation and inflation expec-

tations are persistently below the central bank target, especially if they

are low and falling. Such circumstances raise the possibility of a path to

stagnation and the potential need for aggressive macroeconomic policy.

VI. Conclusions

Sluggish real economic performance at a long-lasting ZLB has made

the possibility of secular stagnation a prominent topic of discussion. Our

first objective in this paper was to extend a standard NK model in a way
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that makes stagnation at the ZLB, with a low level of aggregate output,

a possible steady state outcome for the economy. The model can have

three steady states, with stagnation arising when economic agents have

pessimistic expectations concerning future inflation and aggregate output.

We show that both the targeted and stagnation steady states are locally

stable under AL (adaptive learning), while the third steady state is unstable

under learning.

A second objective of our paper has been to consider the impact of

fiscal policy. Under AL agents take account of the direct effects of the

announced policy, but use learning rules to forecast future values of inflation

and aggregate output. A large pessimistic expectation shock (due, say, to a

recent financial crisis) can push the economy to the ZLB and along a path to

steady state stagnation and deflation. In this setting a fiscal stimulus can be

particularly potent. A sufficiently large temporary increase in government

spending can increase output and inflation enough to prevent the economy

being pulled into deflation and stagnation. The chances of policy success are

significantly greater if the policy is implemented early, before expectations

deteriorate greatly. However, even if expectations have adapted to the

stagnation trap, a large temporary fiscal stimulus can dislodge the economy

from a stagnation trap.

The existence of a stagnation steady state arises if the inflation lower

bound is below a critical rate. If the discount factor is near one and there are

significant credit frictions then the critical rate can be high enough so that

the stagnation state has zero or even positive inflation. Thus positive but

low and declining inflation and inflation expectations raise the possibility of

the economy entering a stagnation trap. The speed with which the economy

returns to the targeted steady state can depend on the size and duration of

a fiscal stimulus and whether the stimulus is implemented early or later.

From these observations it can be seen that the framework of this paper

can encompass a wide range of outcomes arising from a large pessimistic

shock to expectations. Using this framework to explain recent (and future)

events for the different major economies in the wake of the 2007-9 financial

crisis is reserved for future research.27
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Notes

1For different arguments and explanations for long-lasting stagnation

see, for example, Summers (2013), Teulings and Baldwin (2014), Eggertsson

and Mehrotra (2014) and Benigno and Fornaro (2015).
2There is also an issue with existence of a rational expectations solution

when the probability of the shock ending is too small. A related issue for

calibrated models is the length of time that Japan has been at the ZLB.
3See Online Appendix A for details of data used in Figures 1 and 2.
4Our stability results bear some similarities to other macroeconomic

learning models with multiple steady states, e.g. Marcet and Nicolini (2003)

and Evans, Honkapohja, and Romer (1998). The former examines policies

to avoid hyperinflation in seigniorage models of inflation. The latter demon-

strates the possibilitity of self-fulfilling cycles between high and low growth

rates.
5The Great Recession and the ZLB have led to renewed interest in fiscal

policy and a fairly voluminous recent literature; see, e.g., Ramey (2011),

Leeper, Traum, and Walker (2011) and Coenen et al. (2012).
6Thus agents immediately know the full tax impact of changes in fiscal

policy. One could instead assume agents forecast future taxes using AL; in

an RBC model Mitra, Evans, and Honkapohja (2016) found this slightly

strengthened fiscal multipliers.
7We are assuming that households forecast their own future incomes

when making consumption decisions, as in Eusepi and Preston (2010) and

Eusepi and Preston (2012). An advantage of our approach is that it yields a

consumption function close to traditional formulations based on the perma-

nent income and life-cycle models. An alternative approach is that agents

forecast wage rates and their share of profits. For this approach see Online

Appendix F.
8Benhabib, Schmitt-Grohe, and Uribe (2001b) and Benhabib and Eusepi

(2005) use this formulation in the context of the utility loss of household-

firms. Eusepi and Preston (2010) also use this formulation with ∗ = 1.
9See Christiano, Eichenbaum, and Rebelo (2011) and Woodford (2011).

On this approach global indeterminacy isssues are often not addressed.
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10Arias, Erceg, and Trabandt (2016) and Milani (2011) consider expec-

tation shocks in other settings.
11An alternative empirical explanation in the Great Recession, e.g. Coibion

and Gorodnichenko (2015), is that inflation expectations stayed above ac-

tual experience. We want to allow for expected inflation to adapt to ob-

served inflation in the long run. For the Great Depression, Eggertsson

(2008) argues that New Deal policies generated positive wage and price

inflation wedges.
12One can justify  formally by introducing an asymmetry into the infla-

tion adjustment cost term: see Benhabib, Evans, and Honkapohja (2014).

If nominal wage rigidity were explicitly modeled, the bound could be on

wage deflation.
13Our procedure for incorporating the consumption lower bound differs

somewhat from using Stone-Geary preferences, but is convenient given our

treatment of the two other lower bounds. Because the key property is a

positive lower bound to consumption, it is clear that changing to Stone-

Geary preferences would yield very similar qualitative results.
14See Honkapohja (2016) for an example in a variant of the current model.
15In further work it would be of interest to introduce alternative fiscal

frameworks with distortionary taxes and/or public debt.
16Mitra, Evans, and Honkapohja (2016) found in an RBC model that

including nonlinear temporary equilibrium equations made little difference,

even when the shocks were large or steady states were changed. However,

the computations were 150 times slower.
17In our simulations we continue to use the linearized model, for the

reasons given earlier, but now the relevant equations are subject to the

lower bounds on the interest rate, inflation and consumption.
18In the US Great Depression, deflation rates of about 10% per year

were observed during 1931-2, but from 1933 deflation became less severe

or nonexistent. Several explanations are possible. New Deal policies were

introduced specifically to limit wage and price decreases. In addition, a

version of our model with a lower bound on wage inflation is consistent

with temporarily high price deflation rates associated with reductions in

35



aggregate output that ease bottlenecks.
19The qualitative features are fairly robust to the value of the learning

gain parameter , but quantitative results may be affected by .
20In order to focus on the impact of pessimistic expectations we have not

explicitly included these shocks. Introducing them would clearly allow us

to generate suitable initial expectations.
21These results are based on 100 simulations for each cell. The extreme

value  = 10 and extended lengths of  = 20 and 40 are included only

for purposes of comparison. In the Online Appendix Table E1 gives the

corresponding cumulative multipliers as of  = 40 i.e. 10 years after the

policy has been implemented.
22We remark that for our calibration of exogenous shocks, with expec-

tations initially at the targeted steady state, deflation is rarely observed

— less than once every two hundred periods. Increasing the variances of

the shocks, or increasing their serial correlation holding the unconditional

variances constant, makes the results more stochastic.
23There is no reason a priori to restrict the fiscal stimulus to be of fixed

size over time until termination. We have not studied other time profiles.
24We note that Eggertsson (2010) uses a calibration of  = 0997 in a

model of the US economy during the Great Depression. During the Great

Depression deflation reached 10% per year during the trough.
25The smaller difference between ∗ and , when  and  are high,

increases the importance of the sequence of random shocks in determining

the asymptotic path.
26Note that the mean without policy path shown in Figure 6 includes

some paths that do not converge to the stagnation state.
27As we have emphasized, our results have been obtained through an

extension of the basic standard New Keynesian model; this facilitates un-

derstanding of the key forces at work. For serious applied work it would, of

course, be important to incorporate many features found in more elaborate

models, including investment and capital, separate wage and price frictions,

habit persistence, distortionary taxes, and an explicit financial sector.
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Appendix for Online Publication

A Data

Figure 1: The interest-rate rule curve takes the form I = ∗exp(Π),

where Π denotes net inflation and I denotes the net interest rate. Japan
switched the policy target in 2013 to monetary base.

Figure 2: Data are from Macrobond data base which in turn utilizes

standard data sources. GDP data is volume data with 2010 as reference

year and in local currency. GDP data is annualized. This was specifically

done for the Euro area by multiplying quarterly data by 4. Population data

is total population and it is interpolated for quarters.

B Model Details

We develop here the model outlined in Section II. following the analysis

of Eusepi and Preston (2010).

Consumers

There is a static FOC for the household concerning labor-leisure choice,

which is

(B1)




= 

To derive the linearized consumption function, we first linearize the Euler

equation

(B2) −1 = ̂

¡
−1+1

−1
+1

¢
to get

(B3) ̃ = ̂̃+1 − ̄̂̃+1

1



where tilde indicates deviation from the steady state, e.g. ̃ =  − ̄,

and the bar denotes the deterministic steady state. Here

+1 ≡ 

+1


The next step is iterate the linearized Euler equation forward. We have

̃ = ̂̃+ − ̄̂

X
=1

̃+

where ̃ =  − ̄ and ̃+ = + − ̄. This can also be written as

̂ = ̂̂+1 − ̂̂+1,

̂ =
 − ̄

̄
and ̂+1 =

+1 − ̄

̄


which yields

(B4) ̂ = ̂̂+ − ̂

X
=1

̂+

where we have used −1 = ̄.

Next use the flow budget constraint and the NPG (no Ponzi game)

condition to obtain an intertemporal budget constraint. Write

(B5)  = −1 + 

where  = −1 and

 =  −  −

In (B5) consumers are assumed to know that the government will run a

balanced budget policy. Iterate (B5) forward and impose

(B6) lim
→∞

̂(+)
−1+ = 0

2



where

+ =

Y
=1

+

with + = +−1+ We obtain the life-time budget constraint of the

household

0 = ∆−1 +  +

∞X
=1

̂(+)
−1+

where ∆−1 = −1 and

(B7) + = + − + −+

Because there is zero net government debt and we have representative

agents, it follows that ∆−1 = −1 = 0 for all agents. Thus

(B8) 0 =  +

∞X
=1

̂(+)
−1+

Linearizing (B8) we have

0 = ̃ +

∞X
=1

̃+ − ̄

∞X
=1

+1
X

=1

̃+

̃+ = ̃+ − ̃+ − ̃+

where tilde denotes deviation from the non-stochastic steady state for each

variable, for example, ̃+ = + − ̄  Note that here ̄ = 0 by market

clearing. Thus, using also ̃+ = ̃+ for all , the linearized lifetime

budget constraint of the household is

(B9)

∞X
=0

̃+ =

∞X
=0

(̃+ − ̃+)

Here  is the level of government purchases, assumed exogenous, and we

are assuming Ricardian households with identical taxes so that for each

agent we may setΥ = . (For explanation of the terms Ricardian and non-

Ricardian households in this context see Benhabib, Evans, and Honkapohja

3



(2014).)

Combining (B4) with the linearized budget constraint in expectational

form we get:

0 = ̃ − ̃ − ̃ +

∞X
=1

̂(̃+ − ̃+)

−
∞X
=1

̃ − ̄

∞X
=1

̂

X
=1

̃+

This yields the consumption function for consumer 

̃ = (1− )[̃ − ̃ +

∞X
=1

̂(̃+ − ̃+)]

−̄̂

∞X
=1

̃+

This can also be written in proportional form yielding

̂ = (1− )

"
̂¡

̄̄
¢ − ̂¡

̄̄
¢ + ∞X

=1

̂

Ã
̂+¡
̄̄

¢ − ̂+¡
̄̄

¢)!#

−̂

∞X
=1

̂+

which is (3) making use of the representative agent assumption.

Firms

The first-order condition for the firm’s choice of  is given by

0 = (1− )(1− )

µ




¶−
(B10)

+

µ




¶−−1
− 



−1

µ


−1
− ∗

¶
+̂+1






+1



µ
+1



− ∗
¶

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Here we use  = 1 and

(B11)  =



=




−1


is the real marginal cost. It’s useful to define the mark-up  by

(B12)  =


 − 1 .

The steady state at ∗ satisfies

(1− )(1− ) + ̄ = 0

In the steady state, of course,  = (−1)−1. From above steady state real
marginal cost is

(B13) ̄ =
( − 1)(1− )


= (1− )−1

The steady-state NK Phillips curve (10) is obtained from the relation-

ship (B10), setting  =   =   =  ,  =   =  +1 =

 =  and +1 = . This gives

0 = (1− )(1− ) +  − ( − ∗) + ( − ∗)

Using (B1) and (B11) gives  = −1−11+−, which leads to (10).

We remark that the steady-state Phillips curve equation here differs

somewhat from the one in Evans, Guse, and Honkapohja (2008). The latter

paper uses a representative household-firm in which the price-adjustment

costs are quadratic in utility. In the current set-up households and firms

are distinct. With utility log() this leads to a multiplicative factor  on

the right-hand side of (10) not present in Evans, Guse, and Honkapohja

(2008).

We make the assumption that the target inflation rate is −1 =

∗ ≥ 1, i.e. the net inflation rate may be positive. As discussed above,

price adjustment costs are assumed to be quadratic in terms of the deviation

5



from the target inflation rate and this is also analytically convenient. The

market clearing condition is

(B14)  =  + +
1

2
( − ∗)2

We need to linearize around the steady state ∗ ̄  ̄ ̄ ̄ ̄. Clearly ̄ =

∗ is the steady state value of +1 and ̄ is given above. From (B14)

with  = ∗ we have ̄ = ̄+ ̄. Finally, in a steady state (B11) and (B1)

can be combined to give

(B15) ̄ = −1−1̄1+−̄

Equation (B15) together with the steady-state production function ̄ =

̄, market-clearing ̄ = ̄ + ̄ and (B13) determines steady values of

̄  ̄ ̄ ̄ at the targeted steady state ∗.

We need to linearize around steady state ̄  ̄ ∗ ̄ where ̄ is the

steady state value of +1 Note that ̄ = ∗. It is useful to define

the mark-up  by equation (B12). In the steady state  = ( − 1)−1.
Log-linearizing (B12) gives

̂ = −( − 1)−1̂

From above the mean real marginal cost is

̄ =
( − 1)(1− )


= (1− )−1

Next, we linearize (B10) and obtain

0 = (1− )(1− )̃ − (1− )(1− )̄

µ




− 1
¶
− (1− )̄ ̃ +

̄ ̃ + ̄̃ − ̄̄ (1 + )

µ




− 1
¶
+ ̄̄ ̃ −

∗

µ


−1
− ∗

¶
+ (∗)2 ̂

∙
̄

µ
+1



− ∗
¶¸



6



where ̃ =  − , ̃ =  − ̄  etc. Also, to the first order

+1



− 1 = ̃+1 − ̃

where ̃ ≡ ln − (∗ − 1) and ̃ ≡ ln − (∗ − 1). Note that

(1 − )(1 − )̃ = ̄̃, so these terms cancel. We must also take into

account that  depends on endogenous variables. Write (B11) in the

form


1
 

(−1)


µ




¶−(−1)
 = 

which is linearized:

̃ = 1 (−1)̃ +1−1 (−1)̄̃ + 1 −1
µ
− 1


¶
̄̃

+1 (−1)̄

µ−(− 1)


¶µ




− 1
¶


Solve for ̃ and use the approximation


− 1 = ̃ − ̃ from above to

get

̃ = ̃(
1 (−1))−−1̄−1̃(B16)

−
µ
− 1


¶
̄ −1̃ − ̄

µ−(− 1)


¶
(̃ − ̃) 

It follows that

0 = −(1− )̃ + 

∙
̄̂ − ̄−1̂ −

µ
− 1


¶
̄̂

¸
−̄[1− (− 1)


] (̃ − ̃) + ̄̃ −

∗̄ −1 (̃ − ̃−1) + ̂

£
̄̄ −1 (∗)2  (̃+1 − ̃)

¤


Then combine the terms involving ̃ − ̃ and rearrange the coefficients

using the steady state relations. Also combine the terms involving ̃ and

7



use the log-linearization between ̂ and ̂. This yields the result

̃ − ̃−1 = ̂(̃+1 − ̃) +
̄

̄
(̃ − ̃)(B17)

+
̄ ̄

̄
[̂ − −1̂ −

µ
− 1


¶
̂ + ̂]

where ̄ = ̄ ̄(1− (− 1)) and ̄ = ∗. Here

̂ =
 − 




Next, we use the back-shift operator technique on (B17); see pp. 393-5

of Sargent (1987). Here −1−1+ = −1++1 As emphasized by Sar-

gent, it is legitimate to operate on both sides of an equation by polynomials

involving non-positive powers of  Taking expectations ̂ of (B17) and

rearranging we get∙
1−

µ
1 + −1 +

̄

̄

¶
 + −12

¸
̂ ̃+1

= ̂

∙
− ̄

̄
̃ − ̄ ̄

̄
(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

¸


The quadratic in  can be factored into the product (1 − 1)(1 − 2)

with roots 0  1  1  2 satisfying

12 = −1 and 1 + 2 = −1(1 +  + ̄̄
−1
).

We write

(1− 1)(1− 2) ̃+1

= ̂

∙
− ̄

̄
̃ − ̄ ̄

̄
(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

¸
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or

(−1 − 1)(
−1 − 2) ̃−1

= ̂

∙
− ̄

̄
̃ − ̄ ̄

̄
(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

¸


Operating on both sides by (−1 − 2)
−1 we get

(−1 − 1) ̃−1

=
1

(−1 − 2)
̂

∙
− ̄

̄
̃ − ̄ ̄

̄
(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

¸
=

−12
(1− −12 −1)

̂

∙


̄
̃ +

̄ ̄

̄
(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

¸


Writing (1−−12 −1)−1 = 1+−12 −1+−22 −2+    and using 12 = −1

we obtain

̃ = 1̃−1 +
1

̄
×Ã ∞X

=0

−2 ̂

∙
̄̃+ + ̄ ̄(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

¸!
(B18)

as the evolution of the optimal price of firm 

We now define ̃ = ̃ − ̃−1. Note that ̃ is the rate of inflation net

of the target rate ∗. Using

∞X
=0

−2 ̂̃+ =

∞X
=0

−2 ̂ ̃+ −
∞X
=0

−2 ̂ ̃+−1

and ∞X
=0

−2 ̂ ̃+−1 = ̃−1 + −12

∞X
=0

−2 ̂ ̃+

we obtain

∞X
=0

−2 ̂ ̃+ = (1− −12 )
−1

∞X
=0

−2 ̂̃+ + (1− −12 )
−1̃−1
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Plugging into (B18) we obtain

̃ = 1̃−1 +
1̄

̄(1− 1)
̃−1 +

1̄

̄(1− 1)

∞X
=0

(1)
̂̃+ +

1̄ ̄

̄

∞X
=0

(1)
̂(̂+ − −1̂+ −

µ
− 1


¶
̂+ + ̂+)

Subtracting ̃−1 from both sides and collecting terms, and imposing the

representative agent assumption, the coefficient of ̃−1 becomes

(1 − 1) +
1̄

̄(1− 1)
=

(1 − 1)(1− 1) + (̄̄)1
1− 1

=
1(̄̄ +  + 1− 1)− 1

1− 1
=

12 − 1
1− 1

= 0

Note that

(B19) 1 = 1−
1̄

̄(1− 1)


Using the representative agent assumption the resulting equation becomes

̃ =
1̄

̄(1− 1)

∞X
=0

(1)
̂̃+ +

1̄ ̄

̄

∞X
=0

(1)
̂(̂+ − −1̂+ −

µ
− 1


¶
̂+ + ̂+)(B20)

Next use the equation

 = 

µ




¶



to obtain

(B21) ̂ =



(̂ − ̂) + (1− ̄)−1̂ − ̄

1− ̄
̂
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At the targeted steady state ̄ = ̄ + ̄ has the linear approximation

̂ = (1− ̄)̂ + ̄̂

where ̄ ≡ ̄
̄
and ̄

̄
= 1− ̄. We get

̃ =
1̄

̄(1− 1)

∞X
=0

(1)
̂̃+ +

1̄ ̄

̄

" ∞X
=0

(1)
̂[̂++

(
−1− 


)̂+ +

µ
1− 


+




+ (1− ̄)−1

¶
̂+ − ̄

1− ̄
̂+]

¸
(B22)

Letting ̂ ≡ ̃
∗ and substituting into (B20) we finally obtain the

Phillips curve

̂ = 1

∞X
=0

(1)
̂̂+ + 2

∞X
=0

(1)
̂̂+ − 3

∞X
=0

(1)
̂̂+

+4

∞X
=0

(1)
̂̂+ + 5

∞X
=0

(1)
̂̂+(B23)

where the coefficients  are defined as:

1 =
̄1

̄(1− 1)
; 2 =

1̄ ̄

̄∗

µ
1− 


+




+ (1− ̄)−1

¶
;

3 =
−1̄ ̄
̄∗

(
1 + 


); 4 =

−1̄ ̄
̄∗

̄

1− ̄
; 5 =

1̄ ̄

̄∗


Note that by (B19) we have 1 = 1− 1. Rearrange the above equation to

get (5). The interpretation of equation (5) is as follows. Higher expected

future inflation, and higher current and expected future aggregate output

lead to higher current inflation. Current inflation is also increased when

future monopoly power is expected to be higher. Higher expected future

productivity lowers expected future marginal costs and hence reduces in-

flation. Finally, conditional on expected future output, higher current and

expected future government spending is associated with lower consumption,

higher labor supply (conditional on real wages) and hence lower real wages,

which leads to lower inflation.
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Temporary equilibrium and learning

To get the IS curve, we combine the consumption function (3) with the

linearized market clearing condition ̂ =
̄
̄
̂ +

̄
̄
̂, or

(B24) ̂ = (1− ̄)̂ + ̄̂

where ̄ = ̄
̄
. (As in the Appendix to Eusepi and Preston (2010), the

adjustment costs drop out from the log-linearized market clearing equation.)

This yields

̂ = ̄̂+(1−)
"
̂ − ̄̂ +

∞X
=1

̂

³
̂+ − ̄̂+

´#
−(1−̄)̂

∞X
=1

̂+

Note that from +1 ≡ 

+1
we have

(B25) ̂+1 = ̂ − ̂+1

The market clearing condition is (B14) which at the targeted steady

state  = ∗ is

̄ = ̄ + ̄

It follows that the linear approximation around the targeted steady state is

̂ = (1− ̄)̂ + ̄̂

̄ ≡ ̄

̄
and

̄

̄
= 1− ̄

We thus have

̂ = (1− ) (1− ̄)
−1

̂ + (1− ) (1− ̄)
−1

∞X
=1

̂̂+

−(1− )̄ (1− ̄)
−1

̂ − (1− )̄ (1− ̄)
−1

∞X
=1

̂̂+

−̂ − ̂

∞X
=1

̂+ + ̂

∞X
=1

̂+(B26)
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For the contemporaneous interest rate rule ̂ = ̂ +  ̂ we have

̂ =
¡
(1− ) (1− ̄)

−1 − 
¢
̂

+
¡
(1− ) (1− ̄)

−1 − 
¢ ∞X
=1

̂̂+

−̂ + (1− )

∞X
=1

̂̂+ − (1− )̄ (1− ̄)
−1

̂

−(1− )̄ (1− ̄)
−1

∞X
=1

̂̂+(B27)

Next, we describe the least-squares updating rule for the forecast rule

coefficients of ̂ and ̂. Agents are assumed to use constant gain recursive

least squares (RLS). The parameter estimates based on data through time

 are

 =

⎛⎜⎝ 





⎞⎟⎠   =

⎛⎜⎝ 

 

 

⎞⎟⎠   =

⎛⎜⎝ 1

̂

̂

⎞⎟⎠ 

The RLS formulae corresponding to estimates of equations (9) are

 = −1 + R−1 ( − −1)

 = −1 + R−1 ( − −1)

R = R−1 + (
0
 −R−1)

Here 0    1 is the “gain” parameter that discounts old data at rate 1−
per period (taken to be one quarter), to allow for adaptation of parameters

to structural changes like policy changes. We assume that parameter esti-

mates under learning are updated at the end of the period. Thus in time

, when expectations are formed, agents observe the current value of the

exogenous variables ̂ and ̂ but use estimates −1, −1 in making

forecasts. The initial values of all parameter estimates  and R are set to

the initial steady state values under RE.

Temporary equilibrium, further computations

The IS curve under the contemporaneous interest-rate rule is obtained
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from combining the consumption function (B27) with the market-clearing

equation ̂ = (1− ̄)̂ + ̄̂. This yields

(1− ̄)̂ + ( + (1− ̄) ) ̂ = [(1− ̄)(1− )]

∞X
=1

̂̂+

+[(1− )− (1− ̄) ]

∞X
=1

̂̂+

+̄̂ − (1− )̄

∞X
=0

̂̂+(B28)

Henceforth, we use the following short-hand notation

1 ≡ (1− ̄)(1− )

2 ≡ (1− )− (1− ̄) 

Let us now write the price setting equation (5) and the demand equa-

tion (B28) (under subjective expectations) in matrix form. Let

(B29)  =

Ã
1− 1 −2

(1− ̄)  + (1− ̄)

!

Then



Ã
̂

̂

!
=

∞X
=1

Ã
1(1)

 2(1)


1
 2



!Ã
̂̂+

̂̂+

!
+

Ã
−4
̄

!
̂ +

∞X
=0

Ã
−3(1) 5(1)



0 0

!Ã
̂̂+

̂̂+

!
+

∞X
=1

Ã
−4(1)
−(1− )̄

!
̂̂+
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For the shock terms above we get

∞X
=0

Ã
−3(1) 5(1)



0 0

!Ã
̂

̂

!

=

⎛⎜⎝
∞X
=0

³
−3(1)̂ + 5(1)

̂

´
0

⎞⎟⎠
=

⎛⎜⎝
∞X
=0

³
−3(1)̂ + 5(1)

̂

´
0

⎞⎟⎠
=

Ã
−3(1− 1)

−1̂ + 5(1− 1)
−1̂

0

!


Consider a change in government spending that is known to be tem-

porary. We assume that initially, at  = 0, we are in the steady state

corresponding to  = ̄, and consider the following policy experiment,

assumed fully credible and announced at the start of period 1:

(B30)  =   =

(
̄0,  = 1  

̄,  ≥  + 1

i.e., government spending and taxes are changed in period  = 1 and this

change is reversed at a later period +1. Thus, the experiment is one where

the policy change is announced in period 1 to take place in the future for a

fixed number  of periods. Denote the change in government spending by

∆ (= ̄0 − ̄ ) so that

̂ =

(
∆
̄
,  = 1  

0,  ≥  + 1

We first consider the evolution of the learning economy during the period

when the policy increase is in effect i.e. for periods  = 1   Then we
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have

∞X
=1

Ã
−4(1)
−(1− )̄

!
̂̂+ =

−X
=1

Ã
−4(1)
−(1− )̄

!
∆

̄
=⎛⎜⎜⎜⎜⎝

−4
−X
=1

(1)


−(1− )̄

−X
=1



⎞⎟⎟⎟⎟⎠ ∆

̄
=

Ã
−41 1−(1)

−

1−1
−(1− )̄ 1−

−
1−

!
∆

̄


Write the final form of the model when agents are learning in the following

matrix form (which is true for 1 ≤  ≤  )



Ã
̂

̂

!
=

∞X
=1

Ã
1(1)

 2(1)


1
 2



!Ã
̂̂+

̂̂+

!
+Ã

−3(1− 1)
−1̂ + 5(1− 1)

−1̂
0

!
+Ã

−41 1−(1)
−

1−1
−(1− )̄ 1−

−
1−

!
∆

̄
+

Ã
−4
̄

!
∆

̄
(B31)

Note that when    the model evolution under learning is governed by



Ã
̂

̂

!
=

∞X
=1

Ã
1(1)

 2(1)


1
 2



!Ã
̂̂+

̂̂+

!
+Ã

−3(1− 1)
−1̂ + 5(1− 1)

−1̂
0

!
(B32)

since ̂ = 0 when    .

We consider PLMs of the same form as the standard minimal state

variable (MSV) solution of the economy. One can solve the model under

RE with fixed  to get a stochastic steady state of the form

̂ =  + ̂ + ̂

̂ =  +  ̂ +  ̂
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where ̂ ̂ are observable processes (with known coefficients) given by (8).

These can be used to construct forecasts ̂+ and ̂̂+ which are then

inserted into the model (B31) to govern the evolution of the economy for

the first  periods (and by (B32) for periods after  ).

Using the MSV form of the PLM we get

̂̂+ =  + ̂̂+ + ̂̂+

=  + 

̂ + 


̂

Similarly,

̂̂+ =  +  

̂ +  


̂

Consider the term below that needs to be evaluated in the first row of (B31)

1

∞X
=1

(1)
̂̂+ + 2

∞X
=1

(1)
̂̂+

= 1

∞X
=1

(1)
( + ̂̂+ + ̂̂+)

+2

∞X
=1

(1)
( +  


̂ +  


̂)

= (1 + 2 )
1

1− 1
+ (1 + 2 )

1
1− 1

̂

+(1 + 2 )
1

1− 1
̂

Similarly consider the term below that is required to be evaluated in the
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second row of (B31)

1

∞X
=1

̂̂+ + 2

∞X
=1

̂̂+

= 1

∞X
=1

( + ̂̂+ + ̂̂+)

+2

∞X
=1

(1)
( +  


̂ +  


̂)

= (1 + 2 )


1− 
+ (1 + 2 )



1− 
̂

+(1 + 2 )


1− 
̂

We can obtain a mapping from the PLM to the ALM from (B31) for the

first  periods (and from (B32) for periods after  ).

We now combine terms of the right hand side of (B31). The first row

on the right hand side of (B31) is given by

(1 + 2 )
1

1− 1
+ (1 + 2 )

1
1− 1

̂

+(1 + 2 )
1

1− 1
̂ − 3(1− 1)

−1̂

+5(1− 1)
−1̂ − 4(1

1− (1)−
1− 1

+ 1)
∆

̄


The second row on the right hand side of (B31) is given by

(1 + 2 )


1− 
+ (1 + 2 )



1− 
̂

+(1 + 2 )


1− 
̂ − ̄[(1− )

1− −

1− 
− 1]∆

̄


This process gives us the mapping for the T-map as below.

We collect the terms for the intercept in preceding two equations. This

gives two equations (B33) and (B34) to solve for the T-map for the intercept
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terms   :

(1− 1) − 2 = (1 + 2 )
1

1− 1

−4(1
1− (1)−
1− 1

+ 1)
∆

̄
(B33)

(1− ̄) + ( + (1− ̄) ) = (1 + 2 )


1− 

−̄[(1− )
1− −

1− 
− 1]∆

̄
(B34)

Similarly, consider the terms involving ̂

(B35) (1−1)−2  = (1+2 ) 1
1− 1

−3(1−1)−1

(B36) (1− ̄) + ( + (1− ̄) )  = (1 + 2 )


1− 


Equations (B35) and (B36) are solved for the coefficients  and  .

Finally, consider terms involving ̂

(B37) (1−1)−2  = (1+2 )
1

1− 1
+5(1−1)−1

(B38) (1− ̄) + ( + (1− ̄) )  = (1 + 2 )


1− 


and equations (B37)-(B38) are solved for the coefficients  and  .

These six equations (B33), (B34), (B35), (B36), (B37), and (B38) yield

the mapping

(        )→ (        )

from the PLM to the ALM in parameter space and the fixed points of the
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map correspond to the MSV REE solution. This is the T-mapping for

periods 1      For periods    the same equations, together with the

requirement ∆ = 0 give the T-map.

RE Solution with policy change

We need to compute the RE solution when the fiscal policy changes.

Computing the effect of policy changes under RE is somewhat simpler us-

ing the Euler equation approach. We first consider the IS curve equation.

Imposing symmetry in equation (B3), we obtain

 − ̄

̄
= (

+1 − ̄

̄
)−(

+1 − ̄

−1
)

or in proportional deviation form

̂ = ̂+1 −̂+1

where

̂+1 =
+1 − ̄

̄
; ̄ = −1

Then using (B24), we obtain

(B39) ̂ = ̂+1 − ̄

̄
̂+1 +

̄

̄

³
̂ −̂+1

´
as the IS curve in (proportional) deviation form. If we use the interest rate

rule (6) in (B39) above we obtain

(B40) (1 +
̄

̄
 )̂ +

̄

̄
̂ = ̂+1 +

̄

̄
̂+1 +

̄

̄

³
̂ −̂+1

´
Since

̄

̄
= 1− ̄

̄
≡ 1− ̄

we can rewrite (B40) as

(B41)

(1 + (1− ̄) ) ̂+(1− ̄)̂ = ̂+1+(1− ̄)̂+1+ ̄
³
̂ −̂+1

´
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We now compute the one-step forward looking Phillips curve. Imposing

symmetry, we obtain from (B17)

̂ = ̂+1 +
̄ ̄

̄
(̂ − −1̂ −

µ
− 1


¶
̂ + ̂)

Substituting in (B21) ̂ =


(̂ − ̂) + (1− ̄)−1̂ − ̄

1−̄ ̂ this becomes

(B42)

̂ = ̂+1+
̄ ̄

̄

∙µ
1 + 


+

̄

1− ̄

¶
̂ + (̂ − (

1 + 


)̂)− ̄

1− ̄
̂

¸


Writing (B41) and (B42) in matrix form we getÃ
1 −̄ ̄

̄

³
1+

+ ̄

1−̄

´
(1− ̄) 1 + (1− ̄)

!Ã
̂

̂

!

=

Ã
 0

1− ̄ 1

!Ã
̂+1

̂+1

!
+

Ã
̄ ̄
̄
− (1+)̄ ̄

̄

0 0

!Ã
̂

̂

!

+

⎛⎝ −̄ ̄
̄

̄

1−̄ ̂

̄
³
̂ −̂+1

´ ⎞⎠ 

Note that ̄ ̄

=

(−1)̄ (1−)


which is denoted by  (with  = 0) in Eusepi-

Preston (2010) and is set equal to 006 in footnote 11, p. 243, of their

paper.

Inverting the matrix on the left hand side of the above system we can

obtain the system

(B43)

Ã
̂

̂

!
= Ψ

Ã
̂+1

̂+1

!
+z

Ã
̂

̂

!
+ Γ

⎛⎝ −̄ ̄
̄

̄

1−̄ ̂

̄
³
̂ −̂+1

´ ⎞⎠ 

which can used to compute numerically the RE solution with the fiscal

policy change. Thus, (B43) gives the system under RE when the Taylor

rule (6) is followed. We will be using this system to compute the RE

solution when there is a change in government purchases (and a balanced

budget).
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Solving this equation forward yieldsÃ
̂

̂

!
=

∞X
=0

Ψ

Ã
z

Ã
̂+

̂+

!
+ Γ+

!
, where

 =

⎛⎝ −̄ ̄
̄

̄

1−̄ ̂

̄
³
̂ −̂+1

´ ⎞⎠ 

which can be written as

(B44)

Ã
̂

̂

!
=

∞X
=0

Ψz

Ã
 0

0 

!Ã
̂

̂

!
+

∞X
=0

ΨΓ+

The first term on the right-hand side of (B44) is the MSV solution when

government spending is constant. This takes the formÃ
̂

̂

!


=

Ã
̄

̄ 

!
̂ +

Ã
̄

̄ 

!
̂

where Ã
̄

̄ 

!
= ( −)

−1Ã
̄

̄ 

!
= ( −)

−1

and

 =

Ã
1

1
1−1 2

1
1−1

1


1− 2


1−

!
,  =

Ã
−3(1− 1)

−1

0

!


 =

Ã
1

1
1−1 2

1
1−1

1


1− 2


1−

!
,  =

Ã
5(1− 1)

−1

0

!


The second term gives the modification due to changes in government spend-
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ing and it is calculated as follows. For  = 1 we have

1 ≡
∞X
=0

ΨΓ1+ =

−2X
=0

ΨΓ̄1 +Ψ−1Γ̄2

= (1−Ψ−1)(1−Ψ)−1̄1 +Ψ−1Γ̄2, where

̄1 =

Ã
−̄ ̄

̄
∆
1−̄

0

!
and ̄2 =

Ã
−̄ ̄

̄
∆
1−̄

−∆

!


In general,

 = (1−Ψ−)(1−Ψ)−1̄1 +Ψ−Γ̄2

for  = 1      − 1. For  =  we have

 = Γ̄2

and

 =

Ã
0

0

!
for  ≥  + 1.

In total, the RE solution is the sum of the MSV solution with constant

government spending plus the term .
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C Details of model with lower bounds

Proofs of Propositions

The more complete version of Proposition 1 is the following:

Proposition 3. Suppose that   . Then for   0 sufficiently small,

there are exactly three steady states

(i)  = ∗, with  = −1∗ and  uniquely determined by (10) and (11),

(ii)  = , with  = 1 +  and  uniquely determined by (10) and (11),

(iii)  = , with  = 1 +  and  = 

If     ∗ then there is a unique steady state at  = ∗ , with

 = −1∗ and  uniquely determined by (10)-(11).

If  =  then for   0 sufficiently small there is a steady state at  = ∗,

with  = −1∗ and  uniquely determined by (10)-(11) and a continuum of

steady states at  = , with  = 1+ and with  satisfying  ≤  ≤ ,

where  is uniquely determined by (10)-(11)

The proof of the Proposition 3 uses the following result:

Lemma 4. Let

(; ) = −(1+)
µ
 ++



2
( − ∗)2

¶(1+)
−(1− )(1− −1)

µ
 ++



2
( − ∗)2

¶


Let  =
¡
()(1− )(1− −1)

¢ 
1+ . Then provided   , there exists

̌  0 such that for all 0    ̌ the function (; ) is strictly

monotonically increasing in  and for given    ̌ and    we have

lim→∞ (; ) = +∞

Proof of Lemma 4: Computing the derivative we have





¯̄̄̄
=0

= 
1 + 



¡
−1( +)

¢ 1+

−1
+ −1( +)

1+


−(1− )(1− −1)
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If    then 



¯̄
=0

 0 for all  ≥ 0. Since  is continuous in ,

then result follows. ¥

Proof of Proposition 3: First suppose the inflation lower bound

satisfies   . (i)  = ∗, with  = −1∗ satisfy (12) and (14). From

(10) and (11) we have 0 = (;∗ ). We have (0;∗ ) = −(1−
)(1−−1)  0. Since we are assuming    it follows from the Lemma

that there is a unique  = ̄ that solves (10) and (11).

(ii)  = , with  = 1 +  satisfy (12) and (14). From (10) and

(11) we have ( − 1)(1 − )−1 = (; ). For  sufficiently

small the term ( − 1)(1 − )−1 can be made arbitrarily close to

zero. Since (0; ) = −(1− )(1− −1)
¡
+ 

2
( − ∗)2

¢
 0, the

Lemma again applies and there is a unique  =  that solves (10) and

(11).

(iii)  =  with  = 1 +  satisfy (12) and (14) provided  =  We

thus need to establish that (13) holds with strict inequality, i.e. that

( − 1)(1− )−1  (; )

As in part (ii) the Lemma implies that, given    and  sufficiently

small, there exists ̃  0 such that

( − 1)(1− )−1 = (̃; )

Thus for consumption lower bound   ̃ (13) holds with strict inequality.

It is straightforward to see that there is no other steady state. Suppose

first that there is a steady state at  with      or   ∗. Then

  −1. By (12) this implies  = . But there exists  such that (10)

is satisfied and since we can assume    it follows from the Lemma

that (13) holds with strict inequality. However this implies  = , which

contradicts our assumption. If instead     ∗. Then   −1. But

this contradicts (12).

Next, suppose     ∗. By (13) there cannot be a steady state

at   . Clearly there is again a steady state at  = ∗ ≥ 1. This is the
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unique steady state since steady states  with     ∗ or   ∗ can

be ruled out using the above arguments.

If  =   ∗ the steady state at ∗ again exists. Any other steady

state satisfies  ≥  and by (iii)  is a steady state. We also have ( −
1)(1 − )−1 = (; ) from part (ii) above. Then select ̌ ∈
() As the function (; ) is strictly increasing in  according

to the Lemma, we have ( − 1)(1− )−1  (̌; ) so that (13)

holds with strict inequality. It follows that ̌ is a steady state. ¥

Proof of Proposition 2: For the consumption function we employ

equation (B26), which with +, held constant can be written in the form

̂ =

µ
1− 

1− ̄

¶"
̂ +

∞X
=1

̂̂+

#
−
"
̂ + 

∞X
=1

̂̂+

#
+

" ∞X
=1

̂̂+

#


Assuming steady-state learning, we have ̂̂+ =  and ̂̂+ = .

With the forward looking interest rate rule ̂ = ̂̂+1 we also have

̂ = ̂̂+ =  for all  locally near the targeted steady state. Thus

near the targeted steady state

(C1) ̂ =

µ
1− 

1− ̄

¶µ
̂ +



1− 


¶
−  −

2

1− 
 +



1− 


Assuming that government spending and the shocks are constant in equa-

tion (5), the Phillips curve is

(1− 1)̂ − 2̂ = 1

∞X
=1

(1)
̂̂+ + 2

∞X
=1

(1)
̂̂+

= 1
1

1− 1
+ 2

1
1− 1



The third equation is the linearized market-clearing condition (B24). It can

be noted that at the steady state 1 = 1 − 1. For steady state learning,

the system giving the temporary equilibrium map (̂ ̂ ) =  (  ) takes

the linearized form with coefficient matrix  at the targeted steady state
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given by (Mathematica routine for the details is available on request)Ã
̂

̂

!
= 

Ã




!
, where

 =

Ã
(1−1)
1−1 +

2(−1)(̄−1)
1(1−)

2
1(1−1))

(−1)(̄−1)
1− 1

!


E-stability is determined by the eigenvalues of  −  and holds if these

have negative real parts. It is easily verified that tr( − )  0 and

det( − )  0 when   1 and ̄  1, implying E-stability of the

targeted steady state.

Next, consider the steady state . The lower bound on the interest

rate is binding locally near , so we impose the constraint  = 0 and

evaluate the other variables at their low steady state values and impose  =

0. Local stability of the low steady state is determined by the eigenvalues

of  at the steady state. It can be computed that

 =

Ã
2(1−̄)

(1−)(1−1) +
11

(1−1)(1−1)
2

(1−1)(1−1)
1−̄
1− 1

!

and that det( − )  0 since 2  0 and 0   1 1 ̄  1. By

continuity of eigenvalues, it follows that the low steady state  is unstable

also for sufficiently small   0.

Next, consider the trap steady state, where the bounds  and  are

strictly binding as described in part (iii) of Proposition 3. Then, at the trap

steady state values for  and  , we have that the temporary equilibrium

values for ̂ and ̂ are equal to their bounds. Moreover, for sufficiently

small variations in expectations  and  the temporary equilibrium for ̂

and ̂ remains at the bound values. It follows that ̂ = ̂ = 0

and ̂ = ̂ = 0 at the trap steady state which implies E-

stability of the steady state. ¥

We remark that det( − )  0 implies that the  steady state has

local dynamics under learning that take the form of a saddle. Stability of

the targeted steady state and instability of the  steady state have also
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been observed for the version of the model in which price adjustment costs

are formulated in terms of utility losses. See, for example, Benhabib, Evans,

and Honkapohja (2014).

Construction of Phase Diagram of Global E-stability Dy-

namics

In Figure C1 we use standard calibrated values for the structural para-

meters given below in Section E, and we set the interest rate rule parameters

at  = 15  = 00001. For convenience we set ∗ = 1. Finally, we set

the lower bound for consumption at 10% below the intended steady state

and the lower bound for (net) inflation at −13%i.e. ̂ = −0013. We also
impose an upper bound to inflation to ensure existence of a temporary equi-

librium. This is not needed in the linearized model with market clearing

linearized around the targeted steady state.

The origin of Figure C1 represents the targeted steady state ̂ = ̂ = 0,

i.e.   are in proportional deviation from targeted steady state form. The

unintended low steady state has an output level very close to the targeted

steady state; specifically, it is only −000040% below the value of output

at the targeted steady state. The corresponding (net) inflation rate at the

unintended steady state is −09901% i.e. ̂ = −001008. Finally the

stagnation trap steady state, corresponding to ̂ = −0013 has an output
level equal to 693% below the value of output at the targeted steady state.

It can be seen that the intended steady state at ̂ = ̂ = 0 is locally

stable under learning (with the dynamics locally cyclical). The unintended

steady state created by the ZLB is locally unstable (the dynamics are a

saddle) and the stagnation steady state is locally stable. The downward

sloping (almost straight line) curve through the middle steady state is the

line separating the basins of attraction of the target and stagnation steady

states. We refer to the latter domain as the “stagnation trap” or the “de-

flation trap” region. In Benhabib, Evans, and Honkapohja (2014) the basin

of attraction of the targeted steady state was called the “corridor of stabil-

ity” and the complement region containing explosive paths was called the

“deflation trap.”

We remark that if random productivity and mark-up shocks are intro-
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duced, real-time learning can converge to an ergodic distribution around

the two stable steady states. This requires a sufficiently large support for

the random shocks. See Sections 14.3.1 - 14.3.2 of Evans and Honkapohja

(2001) for this kind of phenomenon in a simple model.

Figure C1: E-stability dynamics with forward looking Taylor rule in the

case of three steady states. Here  and  denote expectations as

proportional deviations from the targeted steady state, i.e. ̂  and ̂

We here give the additional details for constructing and interpreting

Figure C1. In constructing this Figure we ignore the impact of exogenous

shocks, so that we set ̂ = ̂ = 0. Consequently, the forecast rule co-

efficients  and  consist only of the two intercepts  and  , which

allows us to illustrate global learning dynamics using a 2-dimensional fig-

ure. Under real-time learning the least-square updating equations at the
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end of Section C. simplify and are replaced by

 = −1 +  ( − −1)

 = −1 +  ( − −1) 

It is know that these real-time learning dynamics are, for small gains   0,

approximated by the E-stability equations given below.

The nonlinear market-clearing equation, where variables are expressed

in terms of proportional deviations from the targeted steady state, is given

by

(C2) ̂ = (1− ̄)̂ +


2̄
̂2 

We use this rather than the linearized market-clearing equation because we

are looking at global dynamics that include regions around all three of the

steady states. In Figure C1 we set ∗ = 1 and thus ̂ =  − 1. In the
absence of lower bound constraints the temporary equilibrium equation for

the Phillips curve is given by

(C3) (1− 1)̂ − 2̂ = (1 + 2 )
1

1− 1


where ̂ =  and ̂  = . The temporary equilibrium equation for

consumption is given by (C1). We modify (C1) by incorporating the ZLB

and the nonlinear market-clearing equation (C2) into it. This gives the

aggregate demand function

̂ =


2̄ 
̂2 +  − 1− ̄

1− 
max[  − 1] +

1− ̄

1− 
(C4)

≡ 

2̄ 
̂2 +  (  )

The temporary equilibrium for (̂ ̂) is given by equation (C3) and (C4),

where the Phillips curve and the consumption function underlying the ag-

gregate demand curve are interpreted as inequalities subject to lower bound

constraints and holding with complementary slackness. That is, (C3) holds
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unless ̂  , in which case ̂ = , and (C4) holds unless ̂  ̂, in

which case ̂ = ̂.

Substituting (C4) into (C3) gives

̂ = −11 2

∙


2̄ 
̂2 +  (  )

¸
+ −11 (  )

where

(  ) = (1 + 2 )
1

1− 1


This can be rearranged to

(C5) A̂2 − ̂ + −11 [2 (  ) +(  )] = 0

where

A =
−11 2

2̄ 


This shows that for given ̂ there are two solutions to the quadratic (C5),

provided ̂  =  is not too large, and we choose the one with the smaller

inflation rate, which is the economically relevant solution: this is the solu-

tion in which higher ̂  gives higher ̂ and ̂. If ̂
 is sufficiently large

no temporary equilibrium solution exists to our equations. (We omit the

formal details concerning existence of temporary equilibrium as they are

not central to our analysis. To cover this case we replace (C3) with the

common real part of the complex roots to (C5). This procedure means that

the vector field in Figure C1 is continuous. This real part is in effect a max-

imum inflation rate, i.e. an upper bound to inflation. (Assuming instead

for this case that inflation is given by a suitable fixed inflation upper bound

gives similar results.)

This procedure defines the temporary equilibrium map³
̂ ̂

´
= 

³
̂ ̂ 

´
giving the realized values of ̂ and ̂ for given expectations ̂

 and ̂ . The

three steady states correspond to the fixed points of this map. E-stability
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dynamics are given by





³
̂ ̂ 

´
= 

³
̂ ̂ 

´
−
³
̂ ̂ 

´


where  represents ”notional” time, which can, however, be linked to real

time  according to the equation  ≈  Figure C1 plots the vector field

generated by 
³
̂ ̂ 

´
−
³
̂ ̂ 

´
. This vector field shows the paths

of expectations
³
̂ ̂ 

´
= (  ) under the simple learning rule given

above.

To compute the curve separating the basins of attraction of the target

and trap steady states one recalls that middle steady state is a saddle point,

so that its one-dimensional stable manifold under the E-stability differential

equation gives the boundary.

D Temporary equilibria with lower bounds
and fiscal policy

We here develop the model details when the economy with exogenous

shocks is subject to interest rate, inflation and output lower bounds, and

fiscal policy is included. We start by focusing on the interest rate lower

bound (ZLB). The Phillips curve is unaffected by the ZLB. Using the cal-

culations after (B32) in Appendix B we have, using the first row of (B31),

the Phillips Curve

(1− 1)̂ − 2̂ = (1 + 2 )
1

1− 1

+

∙
(1 + 2 )

1
1− 1

− 3

1− 1

¸
̂

+

∙
(1 + 2 )

1

1− 1
+

5

1− 1

¸
̂(D1)

−4(1
1− (1)−
1− 1

+ 1)
∆

̄

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where the term in ∆
̄
is set to zero for    . It is convenient to write this

as

(1− 1)̂ − 2̂ = (  ̂ ̂ )

where 0 = (     ) and  0 = (  ).

For the IS curve we start by combining (B26) with ̂ = (1−̄)̂+̄̂,

which yields

̂ = ̄̂ + (1− )

∞X
=1

̂̂+ − (1− )̄

∞X
=0

̂̂+

−(1− ̄)

∞X
=1

̂(̂+−1 − ̂+)

We write this as

(D2) ̂ + (1− ̄)̂ =  +  + 

where

 = (1− )

∞X
=1

̂̂+ + (1− ̄)

∞X
=1

̂̂+

 = ̄̂ − (1− )̄

∞X
=0

̂̂+

 = −(1− ̄)

∞X
=2

̂̂+−1

 and  are given by

 =
(1− ̄)

1− 
 +  + ((1− ̄) + (1− ) )



1− 
̂

+((1− ̄) + (1− ) )


1− 
̂

and

 =

(
∆− (1− −)∆ if  ≤ 

0 if  ≥  + 1
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For  we need to determine when agents expect the ZLB to apply

in the future. For simplicity we assume  =  =  and 0 ≤   1. It

then can be shown that there are four cases, depending on ̂ and ̂. Let

 = ̂( +   ) + ̂( +   )

 =
(1 + )

∗
− 1−  −   

Note that  depends on ̂ and ̂ and that under learning both  and 

depend on the PLM parameter estimates, which are evolving over time.

The ZLB  ≥ 1 +  binds if and only if the forecasted interest rate

based on the Taylor rule satisfies

̂̂
∗
+ = ̂̂+ +  ̂̂+ ≤ (1 + )

∗
− 1

It is then easy to see that this holds when  ≤ . There are four cases:

1. The ZLB never binds (in anticipation) if   . This happens

when  ≥ 0   0 or if   0 and    or if  = 0  6= 0 or
if   0 and  = 0.

2. The ZLB holds for all  ≥ 1 if  ≤ 0  ≥ 0 or   0  ≤ .

3. The ZLB holds for all  ≥ ̂, where ̂ is the smallest integer below

̂∗ = ln() ln(), if   0    .

4. The ZLB holds for all 1 ≤  ≤ ̂ if   0  ≤ .

The value of  depends on the case. Let

 = −(1− ̄)×  in case  = 1 2 3 4.

In case 1 we have

1 =


1− 

h
̂( +   ) + ̂( +   )

i
+( +   )

2

1− 

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In case 2 we have

2 =
2

1− 

µ

(1 + )

∗
− 1
¶


In case 3 we have

3 =
2

¡
1− ()̂−1¢
1− 

h
̂( +   ) + ̂( +   )

i
+( +   )

(1− ̂−1)
1− 

+

µ

(1 + )

∗
− 1
¶

̂+1

1− 


In case 4 we have

4 =
()̂

1− 

h
̂( +   ) + ̂( +   )

i
+( +   )

̂+1

1− 
+

2

1− 

µ

(1 + )

∗
− 1
¶
(1− ̂−1)

We can now solve for the tentative temporary equilibrium values ̂  ̂ 


for ̂ ̂ that would obtain if none of the lower bounds at time  apply.

These are given by

(1− 1)̂

 − 2̂


 = (  ̂ ̂ )

(1− ̄)̂

 + (1 +  (1− ̄))̂ 

 = (  ̂ ̂ )

where (  ̂ ̂ ) =  +  +  and  =  for

case  = 1 2 3 4. Under real-time learning we use the time  estimates of

  .

We next need to incorporate the lower bounds on inflation, consump-

tion and interest rate in the time  temporary equilibrium. The consumption

lower bound gives an output lower bound. In proportional terms the lower

bound  is ̂ = −̄
̄
. From ̂ = (1− ̄)̂ + ̄̂ this gives the lower bound
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on ̂ of

̂  = (1− ̄)̂ + ̄̂, or

̂  = (1− ̄)̂ +
 − ̄

̄


Note that ̂  = (1− ̄)̂ after the fiscal policy stimulus has ended.

First we check for the ZLB at time . Assuming ̂

 +  ̂


 ≥

(1 + ) − 1 so that the ZLB at  does not bind then set  = ̂ 

  = ̂ 
 and  = ̂


 +  ̂


 . If instead ̂


 +  ̂


 

(1 + )− 1 then we set  = (1 + )− 1 and set   and  to solve

(1− 1) − 2  = (  ̂ ̂ )(D3)

(1− ̄) ((1 + )− 1) +   = (  ̂ ̂ )(D4)

Next, if    (“situation 1”) then we calculate    and

by simultaneously solving (D2) with ̂ =    and  =  +

   . If   (1 + )− 1 then the situation 1 step has ended
and we set  = ,   =    and  = . If instead

 ≤ (1 + ) − 1 then set  =    is set to solve (D4), and

 = (1 + ) − 1 If now    ̂  then  =    = ̂  and

 = max( +  ̂  (1 + )− 1).
It remains to consider situation 2 in which  ≥  and    ̂ .

It is assumed below that 2  0 and 0  1  1. This is satisfied in the

calibrated cases and ensures that   . We set   = ̂ ,  to solve

(D3) with   = ̂ , and  = max( +  ̂  (1 + )− 1).
The resulting values for    and  are the temporary equilib-

rium values for ̂ ̂ and ̂. We remark that we have not assumed that

firms and households restrict forecasts to obey the consumption and infla-

tion lower bounds. This seems natural since households may not be aware

of these aggregate lower bound constraints. Under adaptive learning ex-

pectations of future inflation and output will have to eventually obey these

lower bounds.

Consumption and output at the inflation lower-bound: If in-
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flation and inflation expectations are at the inflation lower bound, i.e.

̂ = ̂̂+ = ̂, where   , then interest rates and expected interest

rates are also at their lower bound, i.e. ̂ = ̂̂+ =
(1+)

∗ − 1 ≡ ̂.

Inserting these into the consumption function (B26) we obtain

(1− )̂ = (1− )̂ +  − (1− ̄)

1− 
(̂ − ̂).

Here we have simplified by ignoring the impact on expected output of the

exogenous shocks ̂ ̂, i.e. we are setting ̂+ = . This approxima-

tion is reasonable since in the temporary equilibrium at the inflation lower

bound the shocks do not affect output. Combining this equation with the

linearized market-clearing equation ̂ = (1− ̄)̂ gives

̂ =  − 1− ̄

1− 
(̂ − ̂) where

̂ − ̂ =
(1 + )− 

∗
=

 − 

∗
 0

since we assume   .

E Fiscal Policy Details and Further

Simulations

Denoting the change in government spending by ∆ (= ̄0 − ̄ ) we

have

̂ =

(
∆
̄
,  = 1  

0,  ≥  + 1

It is straightforward to compute
P∞

=0(1)
̂̂+ and

P∞
=0 

̂̂+,

which will depend on calendar time, and include these terms in (5) and (7)

when determining the temporary equilibrium.

It is useful to begin with looking at the fiscal multiplier in normal

times, when the ZLB does not bind, and then move on to the more general

case when the ZLB and the inflation and consumption lower bounds may be

binding. In both cases we will provide information on the output multipliers
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for changes in government spending, and we show both the multiplier viewed

as a distributed lag response and the cumulative multiplier over time. The

cumulative multipliers are computed as a discounted sum using the discount

factor . Specifically, we compute

 =
 − 




(̄0 − ̄)
and  =

P

=1 
−1( − 


 )

(̄0 − ̄)
P

=1 
−1  for  = 1 2 3   

Because of discounting the cumulative multiplier will be finite even in those

cases considered below in which policy leads to a permanent change in the

level of output. In the formula above, 

 denotes the level of output in

period  in the absence of a policy change.

Fiscal policy in normal times

Here we use the set-up of Section II. and compute numerically gov-

ernment spending multipliers during normal times when the ZLB does not

bind. To illustrate we consider the temporary policy change discussed above

with  = 10

In the examples we set  = 0 to prevent monetary policy from di-

rectly acting against the output effects of fiscal policy. However we set

  1 in line with the Taylor principle, in order to ensure both that the

economy is determinate and that it is stable under least-squares learning.

We set the values of   and   so that deflation is a very infrequent

phenomenon in normal times and the ZLB is almost never reached. The

gain parameter  of agents is set equal to 004. Figure E1 shows the output

and inflation paths under learning (solid line) and RE (dotted line) and the

output multipliers (impact and cumulative) for a surprise temporary policy

change with  = 10 Initial beliefs of agents and the values of the exoge-

nous variables are at the steady state. For this example we set  = 15

and  = 0 and consider an increase in  of 5%. The Figure shows the

mean values of percent deviations of inflation and output from the steady

state over 10 000 simulations. For this setting the ZLB is never violated.
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Figure E1: The upper panel shows the output and inflation paths under

RE (dotted line), learning (solid line) for a temporary policy change with

 = 10 (inflation in this and all figures is the actual annualized inflation

rate). The middle panel shows the paths of the corresponding

consumption and ex ante one period real rate of interest (̂ − ̂+1).

The lower panel shows the distributed lag and cumulative output

multipliers. Here and in subsequent figures ̂ is used for ̂

The most notable results are that the output and multiplier effects are

larger under learning in early periods of policy, compared to RE. Under

learning the maximum positive output effect is at the beginning of the pol-

icy, while under RE the maximum effect is in the last period of policy. Once

the policy ends, the output effects are reversed under learning, with nega-

tive deviations for several periods after the stimulus ends. This contraction

is the result of the higher expected inflation of agents, developed during the
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policy implementation, which leads agents to anticipate higher future real

interest rates in accordance with the active Taylor rule.

To understand these results, we first examine the path under RE, which

is fairly complex, and best analyzed starting from the last period of the pol-

icy. From  =  + 1 = 11, because there are no endogenous predetermined

state variables in the NK model, the economy will return to the initial RE

stochastic steady state. Consider next the economy at  =  = 10. The

extra government spending ∆ at  = 10 has an impact on aggregate de-

mand that is much larger than the small reduction in consumption resulting

from the corresponding one-period tax increase. Because of consumption

smoothing the reduction in consumption at  = 10 turns out to be rel-

atively small. The high level of output and employment at  = 10 leads

to higher real wages, and thus higher marginal costs and higher inflation

through the Phillips curve. This in turn leads to high nominal and real

interest rates through the Taylor rule. Now consider the economy at earlier

dates   10. The reduction in consumption is greater in earlier periods

and largest at  = 1. This is because households anticipate both a longer

period of higher taxes and a longer period of higher real interest rates. It

follows that under RE the increase in output is smallest at  = 1, due to the

crowding out, and also that the impact on inflation is low in early periods.

Under RE the largest impact of fiscal policy is at the end of the period of

increased government spending.

Consider in contrast the path under learning. This path is best un-

derstood beginning with the impact effect at  = 1. Households reduce

consumption because of the foreseen period of temporary tax increases, but

they do not foresee the sustained period of high real interest rates. The re-

duction in consumption is thus much smaller than under RE and there is a

large increase in output and employment due to the additional government

spending. Through the Phillips curve there is also an increase in inflation

and interest rates. At  = 2 expectations of future output and inflation

will both be revised upward. Because higher expected inflation translates,

into higher expected future nominal and real interest rates (since   1 in

the Taylor rule), consumption falls. For later periods with    increas-
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ing expected inflation and real interest rates leads to further reductions in

consumption and output, with continued moderate inflation. Finally, at

 = 11, when the policy ends, there is a substantial drop in output because

the reduction in government spending is not offset by an increase in con-

sumption, which remains low due to continued high expected inflation and

real interest rates under adaptive learning. The low output levels for   10

continue for a period of time until inflation expectations, in response to

observed low inflation rates, return to the steady state level. Thus under

learning the largest impact of fiscal policy is at the start of the policy, and

is partially offset following the end of the policy.

Similar results are obtained if, continuing to assume that the exoge-

nous variables are initially at their steady state levels, one now assumes

that initial beliefs of inflation and output are lower than steady state val-

ues, but not so low that the ZLB will ever be obtained. Simulation results

(not reported) show that this alters the path of the economy, both with and

without the change in fiscal policy, but the distributed lag and cumulative

output multipliers are broadly similar. The cumulative output multipliers

are higher under AL than under RE during the policy implementation pe-

riod, with the impact, relative to RE, concentrated in the early part of the

policy. The maximum output effect of the fiscal policy under learning is

in the early part of the policy, while the maximum output effect under RE

occurs as the policy ends. The additional output increase under learning

during the policy period is offset by lower levels of output after the policy

ends.

Fiscal policy when lower bounds may be binding

We now use the framework of Sections III. and IV.. Consider now

the effectiveness fiscal policy when the ZLB can be binding. For the same

initial expectations as used in Figure 5, the following Figure E2 shows the

impact of a small fiscal stimulus with a duration of  = 40 periods. Under

a fiscal policy that increases  by 10%, from  = 02 to  = 022, there

are positive multipliers during the policy period, with a cumulative multi-

plier of around 11, after 100 periods, which is mostly reached by period 40.

However, the economy sinks back into the deflation trap around period 40.
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Figure E2: Small policy change. The upper panel shows the output and

inflation paths under learning with policy change (solid line) and learning

without policy change (dashed line) for a policy change with  = 40. The

lower panel shows the distributed lag and cumulative output multipliers.

All except one of the 10 000 replications converge to the stagnation state

with policy change (all replications converge to the stagnation state

without policy change).

Results for large fiscal stimulus including multipliers were discussed

in the main paper. See Figure 5. Here Figure E3 the has an added bot-

tom panel showing the distributed lag and cumulative output multipliers

averaged over all 10 000 simulations.
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Figure E3: Large policy change. The top two panels show the output and

inflation paths under learning with policy change (solid line) and without

policy change (dashed line) for  = 4. Top panel: means of paths with

convergence to targeted steady state under policy. Middle panel: means of

paths with convergence to deflation trap despite policy. Bottom panel:

distributed lag and cumulative output multipliers across all paths.

The following Table E1 gives the cumulative multipliers for the pes-

simistic initial expectations  = −00148 and  = −0015 used in Figure
5 and Table 1 of main text.
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\ 1 2 3 4 5 10 20 40

022 46 31 26 23 22 22 15 11

024 126 146 116 111 84 36 17 11

025 368 359 279 194 140 54 22 11

027 762 431 290 219 175 81 175 13

028 735 378 254 192 154 77 34 14

030 599 302 203 153 124 64 34 15

035 400 202 136 102 83 69 23 16

040 300 151 102 77 62 32 17 13

050 200 101 68 52 40 20 12 10

060 150 76 50 37 29 14 10 10

10 74 35 21 14 11 09 09 09

20 29 10 07 07 08 09 09 10

Table E1: Cumulative multipliers through  = 40 for fiscal policies

starting from pessimistic expectations. Based on 100 simulations for each

cell.

Case of unique steady state.

In Figure E4 we consider the case in which the inflation lower bound

is high enough so that there is a unique steady state. In this case the low

level trap does not exist and the targeted steady state is unique. Initial pes-

simistic expectations can still lead to a very long transition to the targeted

steady state and effectiveness of fiscal policy is of interest.

Figure E4 shows the impact on output and inflation of an increase in

 from 020 to 024 for  = 40 periods where agents continue to use a gain

parameter of 10% For these simulations we set ̂ = −001475, about 098%
per quarter, i.e. just above the level needed to avoid the low-level trap. Ini-

tial expectations following a large pessimistic shock are set at ̂ = −00165
(inflation around −12% per quarter) and ̂ = −001. The results are re-
ported on the basis of 6000 simulations. The cumulative multipliers here

are smaller than the more dramatic values given in Table E1. However,

they are substantially larger than those seen in Figure E1. This is because,

although there is a unique steady state, the economy is initially in a liquid-
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ity trap. Consequently the multipliers are higher than when fiscal policy

is conducted in normal times and lower bounds are not present. The rela-

tively high values for the multipliers also in large part reflect the impact of

the fiscal policy on expectations under learning: the sustained increases in

output and inflation during the policy implementation period have positive

impacts on inflation and output after the policy has ended due to improved

expectations during the policy.
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Figure E4: Policy change when there is a unique steady state with

learning gain parameter equal to 10%. Top panel: output and inflation

paths under learning with policy change (solid line) and without policy

change (dashed line) for temporary policy change. Bottom panel:

distributed lag and cumulative output multipliers.

Deflation and calibration of the discount factor

The results of Section V. emphasized the importance of the level of the

inflation lower bound for the existence of a stagnation steady state and the
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how the critical inflation rate  depends upon both the discount factor 

and the credit spread . The simulations there allowed simultaneously for

both high  and   0. To illustrate the separate effects we here look at

the impact of high  with  = 0.

For  = 099 the critical , when  = 0, corresponds to 1% deflation

per quarter, i.e. to 4% per year Because the magnitude of deflation in

Japan and Europe (as well as the US even in 2009-2010) has been below

this value, this suggests either that the inflation lower bound  is above 

or that policy has prevented inflation from falling below the critical level.

On the other hand if  = 0995 or  = 09975 is the appropriate value to use

in the consumption Euler equation, then the critical deflation rate is only

around 2% or 1% per year, in line with values that have occasionally been

observed, e.g., in Japan in various periods since the 1990s. The possibility

of deflation rates above these levels would appear to be a serious concern,

for example, in at least some countries in Europe in 2016.

In Figure E5 we redo the simulations using the higher discount factor

of  = 09975. We again assume agents use a gain parameter 10% For these

simulations we set ̂ = −00085, which is somewhat below the critical value,
so that there are three steady states including a low-level trap. For this

value of ̂ steady state quarterly inflation is 09964575 which corresponds

to a deflation rate of about 14% per annum. As in Figures E1 and E2

(and Figure 5) we set ̂ = −03 which corresponds to a 30% reduction in

consumption from the targeted steady state. Initial expectations following

a presumed large pessimistic shock are set at ̂ = −00074 (about −1%
per annum) and ̂  = −0025.

From Figure E5 one can see that in the absence of fiscal policy the econ-

omy would fall into a stagnation state with deflation. For these parameters

a short but very aggressive fiscal stimulus is needed to avoid stagnation. In

these simulations we consider an increase in  from 020 to 035 for  = 2

periods.
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Figure E5: High discount factor,  = 09975. The top two panels show

paths under learning with policy change (solid line) and without policy

change (dashed line). Top panel: means of paths with eventual

convergence to targeted steady state under policy. Middle panel: mean

paths with eventual convergence to deflation trap despite policy. Bottom

panel: distributed lag and cumulative output multipliers across all paths.

Our fiscal policy almost guarantees that the stagnation state will be

avoided since for these parameters, based on 10 000 simulations, 986% of

the with-policy simulations converged to the intended steady state while

14% eventually sank to the stagnation steady state. In sharp contrast,

without policy change, 953% of the simulations sink to the stagnation

steady state and only the remaining 47% converge to the targeted steady

state. In Figure E5 the top panel shows the mean paths of those simulations

that under the policy converge to the intended steady state. The middle

47



panel shows the mean paths of those few paths that, despite policy, eventu-

ally converge to the stagnation steady state. For these cases we note that

the process is typically very slow. The bottom panel shows the multipliers

averaged over all simulations. We remark that the cumulative multipliers

are very high, even though the policy does not guarantee escape from even-

tual stagnation and deflation. Finding a mix of policies that maximizes the

chance of avoiding the stagnation trap would be useful to consider in future

work.

F Model with forecasting of wages and

profits

We have assumed that households forecast their own income while

making future decisions about their consumption as in Eusepi and Preston

(2010) and Eusepi and Preston (2012). In this approach households directly

forecast their period income which is the sum of wage income and profit

(dividend) income. Since agents’ wage income depends on their own labor

supply choice, this approach has agents forecasting variables (income) that

depend on endogenous variables like labor supply. This issue does not arise

in the case of firms forecasting aggregate income since the latter is assumed

to be exogenous to the firm’s choice of price level while maximizing their

own profits (however, see below). An advantage of our approach is that it

yields a consumption function close to traditional formulations based on the

permanent income and life-cycle models. Woodford (2013) also employs a

consumption function based on current and expected income net of taxes

and real interest rates.

Preston (2005), on the other hand, assumes that agents only forecast

variables that are exogenous to their own decision problem. We now show

that our results are robust when agents forecast in this fashion. This alter-

native approach is implemented by assuming that households forecast wage

rates and profits, i.e. only variables that are exogenous to their decision

problem (instead of their own income) as in Eusepi and Preston (2012b)

and Eusepi, Giannoni and Preston (2012). To operationalize this approach
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households use a consumption function that depends on forecasts of wages

and profits. The details of this approach are given below. Households use

PLMs for wages and profits which take the same form as the minimal state

variable solution and use constant gain learning of the same form used

before. This affects the consumption function (see equation (F3) in this

Online Appendix) and hence the aggregate demand equation of the model.

Firms take aggregate demand as exogenous when choosing their op-

timal price so their decision problem is unaffected and the Phillips curve

stays the same as before. We remark, however, that there are potentially

two ways of implementing the firms’ forecasting problem. In one approach

they are assumed to forecast future inflation, aggregate demand and wages

(apart from the exogenous shocks); see equation (B20) in Online Appendix

B. This approach is adopted in Eusepi and Preston (2012b) and Eusepi, Gi-

annoni and Preston (2012). However, since these authors assume constant

returns to scale in the production function, firms do not have to forecast

future aggregate demand in their analysis. As we assume decreasing returns

to scale, firms also have to forecast aggregate demand in equation (B20).

Alternately, if firms make use of the labor supply schedule, the production

function and the market clearing condition (i.e. use the three equations

preceding equation (B22)) then they only need to forecast future inflation

and aggregate demand as in equation (B22). We make use of this latter

simplifying assumption in what follows.

We consider the case when fiscal policy changes in normal times i.e.

in situations when the ZLB does not bind as in Section E. For illustra-

tive purposes we consider the same policy change in Figure E1. We find

that the qualitative dynamics illustrated in Figure E1 remain unchanged

when households forecast wages and profits instead of income (including

the dynamics of the distributed and cumulative lag output multipliers).

The quantitative dynamics are also similar and only slightly different, e.g.

consumption falls slightly more towards the end of the policy change when

households forecast wages and profits compared to the situation in Figure

E1 (for brevity, we do not present the figure here). This indicates that

our results are robust to the alternative approach in which agents forecast
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wages and profits.

It can be noted that a similar phenomenon is observed in Kuang and

Mitra (2015, 2016) in the context of the real business cycle model. The

statistical results, impulse responses etc. are very similar in these two sce-

narios: compare Kuang and Mitra.

Formal details.

We now redo the consumption function when households forecast wages

and profits. Refer to the linearized Euler equation and the lifetime budget

constraint i.e. (B3) and (B9) and the definition of household period income

which is

 =  + Ω


In deviation form, the previous equation is

(F1) ̃ = ̄̃ + ̃̄+ Ω̃


Since all households earn the same profits, Ω̃
 = Ω̃and using the static

linearized first order condition of the household i.e.

̃ =
̄

̄
̃ +

̄

̄
̃

we obtain (recall bars over variables indicate their steady state values)

̄̃ = ̄−1̃ − ̄−1̄̄−1̃

Substituting this in (F1) we obtain

̃ = (1 + −1)̄̃ − ̄̄−1̄−1̃ + Ω̃

In turn substituting this equation into the linearized infinite horizon budget

constraint we have

(F2)
X
≥0

̃+ =
X
≥0

[(1 + −1)̄̃+ + Ω̃+ − (1 + ̄−1̄̄−1)̃+]
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Defining

̃ = ̂

∞X
=1

̃+

̃ = ̂

∞X
=1

̃+

Ω̃ = ̂

∞X
=1

Ω̃+

and taking expectations at time  of equation (F2) we obtain the following

̃+̃ = (1+−1)̄(̃+̃)+ Ω̃+Ω̃−(1+ ̄̄−1̄−1)
∞X
=0

̂
̃+

Using the one-step ahead consumption Euler equation we then obtain the

following

(1 + ̄̄−1̄−1)(1− )−1̃ = (1 + −1)̄(̃ + ̃) + Ω̃ + Ω̃

−(1 + ̄̄−1̄−1)̄
∞X
=1


X

=1

̂̃+

Using
∞X
=1


X

=1

̂̃+ = (1− )−1
∞X
=1

̂̃+

we get finally

̃ =
(1− )

(1 + ̄̄−1̄−1)
[(1 + −1)̄(̃ + ̃) + Ω̃ + Ω̃ − ̃ − ̃]

−(1− )̄(1− )−1
∞X
=1

̂̃+
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In proportional deviation form, and dropping  (by symmetry),

̂ =
(1− )

(̄+ ̄̄−1)
[(1 + −1)̄̄(̂ + ̂) + Ω̄(Ω̂ + Ω̂)

−̄(̂ + ̂)]− ̂

∞X
=1

 ̂+

Here ̂+ = ̃+ Finally we obtain the consumption function of the repre-

sentative household in the case when they forecast future wages and profits

̂ =
(1− )

(̄+ ̄̄−1)
[(1 + −1)̄̄(̂ + ̂) + Ω̄(Ω̂ + Ω̂)

−̄(̂ + ̂)]− ̂ − ̂ + ̂(F3)

̂ = ̂

∞X
=1

̂+;̂ = ̂

∞X
=1

̂+

Since we only consider the case when the ZLB never binds, the interest

rate rule (6) is then plugged into the consumption function. ̂ is thus

determined based on ̂ Ω̂ ̂ ̂ ̂(if  6= 0) and expectations of these
variables.

In temporary equilibrium the following also hold

̂ = ̂ + ̂

̂ = (1− ̄)−1̂ + ̄̂

̂ = −1(̂ − ̂)

Ω̄Ω̂ = ̄ ̂ − ̄̄(̂ + ̂) = ̄ (̂ − (1− Ω̄)(̂ + ̂)

The above equations follow from the first order condition of the household,

market clearing condition, the production function and (F1) respectively,

all in proportional deviation from the targeted steady state. This gives

the temporary equilibrium in terms of ̂ from (F3), ̂ ̂ ̂ Ω̂ from the

previous four equations and ̂ from the original Phillips curve equation

(which remains unchanged in this formulation).

To obtain ̂ Ω̂ in (F3) we assume constant gain learning of Ω̂


and ̂ by regression of Ω̂ and ̂ on intercepts and on ̂ and ̂. For
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our policy change and assumed learning forms, the infinite sums simplify

further. ̂ = 0 for  ≥  while for 1 ≤  ≤  − 1

̂ =
(1− −)
1− 

∆

̄


For ̂ and Ω̂ we use the PLMs

̂ =  + ̂ + ̂

Ω̂ = Ω + Ω̂ + Ω̂

As before, under adaptive learning, agents estimate the coefficients of the

previous equations and given their time  estimates of the parameter coef-

ficients, the forecasts ̂̂+ and ̂Ω̂+ are given by

̂̂+ =  + 

̂ + 


̂

̂Ω̂+ = Ω + Ω

̂ + Ω


̂

Using these PLMs and continuing to use the same PLMs for ̂ ̂ as before

we obtain the following (the final line uses knowledge of the Taylor rule on

the part of households)

̂ = ̂

∞X
=1

̂̂+ =


1− 
 + 


1− 

̂ + 


1− 
̂

Ω̂ = ̂

∞X
=1

̂Ω̂+ =


1− 
Ω + Ω


1− 

̂ + Ω


1− 
̂

̂ = ̂

∞X
=1

̂̂+ =


1− 
 + 


1− 

̂ + 


1− 
̂

̂ =


1− 
 + 


1− 

̂ + 


1− 
̂

̂ = ̂ +  ̂

The Phillips curve continues to be given by equation (5) where the infinite
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sums simplify to

∞X
=1

(1)
̂̂+ =

1
1− 1

 + 
1

1− 1
̂ + 

1

1− 1
̂

∞X
=1

(1)
̂̂+ =

1
1− 1

 + 
1

1− 1
̂ + 

1

1− 1
̂

∞X
=0

(1)
̂̂+ =

∞X
=0

(1)
̂ =

1

1− 1
̂

∞X
=0

(1)
̂̂+ =

∞X
=0

(1)
̂ =

1

1− 1
̂

and finally for 1 ≤  ≤  − 1
∞X
=0

(1)
̂̂+ =

1− (1)−
1− 1

∆

̄

and the same sum is zero for  ≥  .

G Model with Credit Frictions

Curdia and Woodford (2015) work explicitly through the aggregation

problem and show that the aggregate implications correspond to interpret-

ing  as the average of  and the borrowing rate; the shortcut in our

representative-agent setting is then simply to directly interpret the mar-

ket interest rate for households as  =  + , where  is the interest rate

set by policymakers. It is, of course, the policy interest rate that is subject

to the lower bound. The benchmark calibration in Curdia and Woodford

(2015) corresponds to a value  = 00025, i.e. to 1% per annum.

We next discuss the implications of including credit frictions. Incor-

porating an interest rate spread   0 is formally identical to our Sec-

tion III. model without a credit friction, but in which the central bank

places a floor to its policy rate at 1 + 0 where 0 =   0. To see

this, note first that, in our current setting and with inflation target ∗,

the steady state market interest rate  satisfies  = −1∗ and the cor-
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responding policy rate with credit frictions is  = −1∗ − . The Tay-

lor rule for the policy rate, subject to the 1 +  lower bound, is given

by  = max
¡
−1( − ∗) + −1∗ −  1 + 

¢
. Equivalently the mar-

ket interest rate satisfies  = max
¡
−1( − ∗) + −1∗ 1 + 0

¢
 where

0 =  + . As in Section IV., under learning agents use knowledge of

this relationship and forecasts of inflation to forecast future market interest

rates. It follows that to capture the impact of a steady state credit friction

  0 in our model we simply replace  by 0 =  + .

Before turning to numerical simulations it is useful to reconsider Figure

3, showing the existence of multiple steady states. The variable  on the

vertical axis has a lower bound of 1+0 and is now interpreted as the market

interest rate, not the policy rate. The corresponding unintended steady

state is at  = (1 + 0). Provided the inflation lower bound satisfies

   there are three steady states as shown in Figure 3. For given 

an increase in the credit spread  increases 0 leading to an increase in the

(locally unstable) unintended steady state associated with . This will

increase the basin of attraction of the stagnation steady state and reduce

the basin of attraction of the targeted steady state.

A new result of considerable practical significance arising from credit

frictions is that if (1+0)  1 then it is possible to have 1      ∗.

Thus, not only does including a credit friction raise the critical inflation

rate to a mild deflation level, but it is also possible for the critical inflation

rate to be positive. In this case a stagnation steady state can correspond

to a zero or low positive inflation rate. Another new phenomenon is that if

 is large enough then both the targeted steady state and the unintended

steady state disappear and only the stagnation steady states remains.

Figure 6 of the main text looked at the case of high  and   0, and

showed the mean paths of those simulations that under the policy converge

to the intended steady state. Figure E6 gives additional detail concerning

the divergent paths and multipliers for this set of simulations. The top

panel shows the mean dynamics for the convergent cases as in Figure 6.

The middle panel shows the mean paths of those few paths that, despite

policy, eventually converge to the stagnation steady state. For these cases
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we note that the process is typically very slow. The bottom panel shows the

multipliers averaged over all simulations. We remark that the cumulative

multipliers are very high, even though the policy does not guarantee escape

from eventual stagnation and deflation. Finding a mix of policies that

maximizes the chance of avoiding the stagnation trap would be useful to

consider in future work.

20 40 60 80 100
t

-15

-10

-5

5

10

ỳt
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Figure E6: High  and credit spread. The top two panels show paths

under learning with policy change (solid line) and without policy change

(dashed line). Top panel: means of paths with eventual convergence to

targeted steady state under policy. Middle panel: mean paths with

eventual convergence to deflation trap despite policy. Bottom panel:

distributed lag and cumulative output multipliers across all paths.
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