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Abstract

We demonstrate existence, and stability under adaptive learning, of restricted per-
ceptions equilibria in a nonlinear cobweb model.
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1 Introduction

Consider a nonlinear cobweb model in which firms make supply decisions conditional on
known cost shocks before observing market price. Closing the model requires specification
of how firms make forecasts. The standard rational expectations equilibrium (REE) posits
that firms have sufficient knowledge and capacity to forecast prices optimally, based on
their conditional distributions. However, the model’s nonlinear structure, and the fact that
the conditional distributions are endogenous equilibrium objects that depend on the fore-
casting models in use, suggest that in this setting reliance on REE is implausibly strong.

To address this concern, we take a restricted perceptions approach in which firms use
linear forecasting models to form price expectations. If each firm uses a linear forecasting
model that is optimal among those models under consideration then the economy is in a
restricted perceptions equilibrium (RPE). An RPE is an equilibrium in the Nash sense but
it is not an REE because superior forecasting models are in principle available. The RPE
concept has been widely used because it is consistent with approaches used in practice
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by econometricians who are faced with complex data structures, partial information, and
degrees-of-freedom restrictions – approaches that necessarily result in model misspecifi-
cation. Most of this literature focuses on misspecification in linear models due to omitted
observables or parsimonious lag structures.1

The current paper adds to the literature on RPE2 by focusing squarely on the issue of
forecasting in a nonlinear environment using linear forecasting models based on exogenous
observables.3 Because RPE is an equilibrium concept, it is important to assess whether and
how it might be attained. Following the adaptive learning literature we assume firms update
their forecast models over time, as new data become available. If their estimates converge
to models consistent with an RPE then the RPE is said to be stable under adaptive learning
(or, if the context is clear, just stable). We conduct our study using, as a laboratory, a
nonlinear version of the linear cobweb model in which RE was introduced by Muth (1961).

This paper is part of a broader research program in which RPE can generate important
and sometimes surprising results. Evans and McGough (2020) demonstrate, in a non-linear
environment, existence and stability of RPE in which forecast models condition linearly
on extrinsic, continuously-measured (sunspot) shocks. Branch, McGough, and Zhu (2017)
find that stable “sunspot RPE” exist in linear models for which no sunspot REE exist. Evans
and McGough (2018) use linear forecasting rules in nonlinear settings to model optimizing
behavior: see also Evans and McGough (2019) for applied examples. The recent focus in
macroeconomics on nonlinear models motivates a careful examination of the use of linear
forecast models in these environments. The central result of this paper is to show existence,
uniqueness and stability of RPE in a nonlinear stochastic cobweb model, using an approach
that can be implemented computationally in more general set-ups.

1The term RPE was coined in Evans and Honkapohja (2001), but the conceptual framework – an equi-
librium in which agents use optimally misspecified forecast models – is older. Marcet and Sargent (1989)
examine RPE in a linear economic environment in which agents’ forecasting models are underparameterized
in the number of lags (see also Sargent (1991)). Evans and Honkapohja (2001) consider linear models in
which agents omit some relevant observables or lags. For a general survey, see Branch (2006).

2Adam (2007) presents experimental evidence supporting existence and stability of RPE. Branch and
Evans (2006) show the RPE framework is compatible with endogenous forecast-model heterogeneity. Slo-
bodyan and Wouters (2012) estimate a medium-scale DSGE model under the assumption agents use uni-
variate AR(2) forecasting models. Bullard, Evans, and Honkapohja (2008) consider judgement in monetary
policy when the forecasting model used by policymakers is a low-order VAR. Hommes and Zhu (2014) show
that multiple RPE can arise with underparameterized dynamics.

3Several papers have looked at related issues in very specific settings. In a nonlinear OLG model Evans,
Honkapohja, and Sargent (1993) introduce a proportion of agents who know the distribution of prices but
are unaware of their time-series dependence. Hommes and Sorger (1998) consider a model with multiple
steady states and show the existence of “consistent expectations equilibria” (CEE) in which agents’ forecasts
match equilibrium autocorrelogams of a solution with complex deterministc dynamics; see also Hommes,
Sorger, and Wagener (2013). Using a closely related model with multiple steady states and additive white
noise shocks, Branch and McGough (2005) establish the existence of stable stochastic CEE.
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2 Model and results

We begin by recalling the cobweb model. Time is discrete. There is a unit mass of identical
firms indexed by i ∈I which produce a single perishable good sold in a competitive mar-
ket. Technology is captured by a cost function c= c(q,w), where q is the quantity produced
and w ∈Rn is an exogenous vector of cost shocks taken as common to all firms and known
when production decisions are made.

Firms make supply decisions before market price is realized, leading to the following
problem: maxqit Ei t−1 (ptqit− c(qit ,wt−1)) , where Ei t−1 denotes the expectations operator
of firm i. The first order condition is pe

it−1 = mci (qit ,wt−1) , where pe
it−1 = Ei t−1 pt and

mci is marginal cost. Assuming marginal cost is invertible in output, we may obtain the
supply curve for firm i ∈I , which we write as qit = si(pe

i,t−1,wt−1).

Exogenous demand is subject to an iid shock v that is independent of cost shocks:
q = d(p,v). Market equilibrium satisfies d(pt ,vt) =

∫
I si(pe

i,t−1,wt−1)di. Assuming ho-
mogeneous forecasts, and that demand is invertible in price we may obtain a function
F : R+⊕Rn⊕R→ R+ characterizing the equilibrium price path: pt = F

(
pe

t−1,wt−1,vt
)
,

where R+ ≡ (0,∞). Closing the model requires specification of pe
t−1.

2.1 Rational expectations

For fixed w, define T̂ :R+→R+ by T̂ (pe)=Ev (F (pe,w,v) |w), where Ev is the expectation
over v. A fixed point p̄e(w) of T̂ determines the rational forecast, thus

pt = F
(

p̄e
t−1 (wt−1) ,wt−1,vt

)
≡ p(wt−1,vt)

identifies the associated REE price path. The following assumptions are sufficient to guar-
antee existence and uniqueness of the REE.

Assumptions A

A.1 The cost shocks wt are determined by wt = ρwt−1 +σεt where ρ is a stable matrix,
εt is zero-mean iid with bounded support and σ ≥ 0.

A.2 The demand shock v has bounded support Kv ⊂ R.

A.3 The marginal cost function mc is continuous on cl(R+)⊕Rn and continuously dif-
ferentiable on R+⊕Rn, with mcq > 0 and mcwi ≤ 0. Also, for all w ∈ R marginal
cost satisfies limq→∞ mc(q,w) = ∞.

A.4 The demand function d(·,v) : R+ → R+ is continuously differentiable on R+ and
dp(·,v) < 0 for all v ∈ Kv; and d(p, ·) : Kv → R+ is measurable for all p ∈ R+.
Also, for all v ∈ Kv, the following Inada conditions are satisfied: limp→0 d(p,v) =
∞ and limp→∞ d(p,v) = 0.

Some comments are warranted. Assumption A.1 comprises two parts: the functional form
of the recursion identifying the Markov structure of the cost shocks; and the bounded sup-
port of the innovations to the cost shocks. The assumption of bounded support simplifies
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the application of the theory of stochastic recursive algorithms used to prove Theorem 3,
and can be weakened if desired – this point also applies to Assumption A.2. The functional
form of the recursion characterizing dynamics of w can be modified to include a non-linear
dependence on lagged w; however, the additive nature of the innovation is explicitly ex-
ploited in the proof of Theorem 2, where the coefficient σ is used as a perturbation device.
Assumptions A.3 and A.4 provide the smoothness needed for our analysis, and include ver-
sions of Inada conditions that guarantee a single crossing of supply and demand. Of course
there are other constellations of assumptions sufficient to guarantee single crossing, and
a natural alternative to A.3 and A.4 would be to simply assume sufficient smoothness and
uniqueness of market equilibrium for all germane expectations.

Theorem 1 Under the assumptions A the cobweb model has a unique REE.

All proofs are in the Appendix.

2.2 Restricted perceptions

The REE of our cobweb model takes the form pt = p(wt−1,vt). Rational expectations
requires firms compute Et−1 p(wt−1,vt). We view this requirement as unrealistic; instead,
we assume firms use a linear forecasting rule, or perceived law of motion (PLM) of the
form pt = a+ b′wt−1 + ζt to compute price expectations, where ζt is an error term.4 It
follows that pe

t−1 = a+ b′wt−1, thus yielding the actual law of motion (ALM) implied by
firms’ beliefs:

pt = F
(
a+b′wt−1,wt−1,vt

)
≡ F̂ (a,b,wt−1,vt) . (1)

By projecting the pt onto the span of (1,wt−1) we obtain a map from firms’ perceived
regression coefficients (a,b′) to the implied regression coefficients T (a,b):

a T a
−−−→ Ewσ ,v F̂ (a,b,wσ ,v)

b T b
−−−→ Σ

−1
wσ ·Ewσ ,v

(
wσ · F̂ (a,b,wσ ,v)

)
.

Here the presence of σ emphasizes the dependence of wσ on the variance of the cost-
shock innovations σεt . The positive definite matrix Σwσ is the covariance of the cost shocks
and Ewσ ,v is the expectation taken with respect to the distribution of v and the stationary
distribution of wσ .

At a fixed point (āσ , b̄σ) of the T-map agents’ beliefs minimize mean-square forecast
error. These beliefs, together with the implied process for prices, characterize the RPE.

Theorem 2 Under the assumptions A, and for all σ sufficiently small, the cobweb model
has a unique RPE.

4Our approach is consistent with more general forecast rules. Least-squares updating requires forecast
models that are linear in its parameters, but the forecast models could condition, for example, on finite-degree
polynomials of observables. A version of our results would extend to this setting. In principle one could also
envisage firms updating their forecast rule using kernel estimators. However, in practice degrees of freedom
considerations in time-series forecasting favor parsimonious models. Here we focus on the simplest restricted
perceptions formulations with expectations depending on wt−1.

4



2.3 Adaptive learning

To assess whether the RPE is stable under adaptive learning, denote by (at ,bt) the firms’
estimates obtained using data (ps,wσ

s−1) for s≤ t. Assume, without loss of generality, that
firms know Σwσ . The state at the beginning of time t is (wσ

t−1,at−1,bt−1). The following
recursion provides the economy’s dynamics:

pt = F̂ (at−1,bt−1,wt−1,vt)

at = at−1 +κt
(

pt−at−1−b′t−1 ·wσ

t−1
)

bt = bt−1 +κtΣ
−1
wσ ·wσ

t−1 ·
(

pt−at−1−b′t−1 ·wσ

t−1
)

wσ

t = wσ

t−1 +σεt

(2)

Here κt > 0 is the gain sequence, used to weight the forecast error.5 If there is an open
neighborhood U of (āσ , b̄σ) such that (at ,bt)

a.s.−−→ (āσ , b̄σ) whenever (a0,b0) ∈U then we
say that the associated RPE is stable under adaptive learning.

Theorem 3 Assume ∑κt = ∞ and ∑κ2
t < ∞. Under the assumptions A, and for all σ

sufficiently small, the unique RPE of the cobweb model is stable under adaptive learning.

2.4 Example

The cost function is quadratic, resulting in the supply curve s(pe,w) = cpe− γ ′w. The
demand curve is d(p,v) = vp−α . Here, α > 0 and v is iid and distributed uniformly on the
interval [v̄−δ , v̄+δ ], with 0 < δ < v̄.

The temporary equilibrium map is p = v1/α (cpe− γw)−1/α . Integrating each side of this
equation with respect to v determines REE price expectations p̄e(w). The non-stochastic
steady state is p̄ = p̄e(0) = v̄1/1+αc−1/1+α .

To conduct our numerical exercise, we set c = α = v̄ = γ = 1, yielding p̄ = p̄e = 1. The
cost shock is univariate and its innovation ε is standard normal.6 Finally, ρ = 0.5,σ = 0.25
and δ = 0.02. With this calibration the unique RPE beliefs are (āσ , b̄σ)≈ (1.03,0.534).

Panels 1(a) and 1(b) of Figure 1 provide the result of a simulation initialized with
(a0,b0) = (0.9,0.75).7. The dashed red lines identify the RPE beliefs and the solid black
lines provide the real-time estimates. As expected, convergence to RPE obtains.

5We assume the algorithm (2) includes a projection facility that guards against unusual patterns of shocks
leading to unrealistic estimates. Use of projection facilities is standard when specifying real-time learning
algorithms. See Evans and Honkapohja (2001) for further discussion.

6That ε is taken as normally distributed violates assumption A.2 requiring that the innovation ε have
bounded support. Because the support of ε can be of arbitrarily large finite diameter, we do not view this
violation as particularly egregious. Alternative, but more cumbersome methods can dispense with A.2.

7While it is common to assume the gain is proportional to t−1, in practice it is often convenient to use
a gain that converges to zero more slowly; this allows the data to move the estimates by larger magnitudes,
particularly earlier on in the simulation, thus facilitating timely convergence. Note that any gain converging
to zero more rapidly than t−.5 meets the hypothesis of the theorem. For the simulation at hand, the gain is set
as κt = .1(1+ t0.6)−1
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Figure 1: Cobweb Example
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To better understand how data in this model are generated, we plot, in q, p-space and
w, p-space, the last 1000 realizations of the simulation underlying the upper panels of Fig-
ure 1: see panels 1(c) and 1(d). Panel 1(c) provides the q, p-plot, together with the mean
(solid) and extreme (dashed) supply and demand curves, and nicely illustrates the impact
of the model’s inherent non-linearity. Note that while demand is a function of price (left
axis), supply is a function of expected price (right axis, same scale).8 Panel 1(d) provides

8The extreme demand curves correspond to demand curves with the taste shocks at v̄± δ ; the extreme
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the w, p-plot, the RPE forecasting model (solid black), and first- (dashed blue) and second-
(dotted blue) order approximations to the REE beliefs function. Importantly, the first-order
approximation to the REE is distinct from the RPE, reflecting that the RPE retains the
model’s non-linearity.

The asymmetry in the data – specifically, that there are more data points “above” the
high-cost supply curve than “below” the low-cost one – reflects that supply is in fact a
function of price expectation, not price.

To explore this point more fully, panel 1(e) of Figure 1 provides the same plot as panel
1(d) of Figure 1, but without the data; and also, the scale has been altered to provide a
magnified view near the steady state. Naturally, at the non-stochastic steady state (w, p) =
(0,1) the first- and second-order approximations to the REE are coincident. The graph of
the RPE forecasting model is above each of these approximations to the REE: the RPE
coefficients adjust to compensate for the non-linearity in the data-generating process. The
large black dot, located just above the RPE graph at w = 0 identifies the sample mean price
level, a feature of the data that is well-captured by the RPE.

Finally, panel 1(f) of Figure 1 provides the analytically computed asymptotic densities
of prices, for alternative modeling assumptions, with the demand shock set to its mean.
The associated mean prices are identified by vertical lines. The solid, black curve is the
density for prices in an RPE, with its right skewness reflecting the model’s non-linearity:
the symmetric cost shock, together with constant elasticity of demand, yields a price distri-
bution symmetric in logs but skewed in levels. The red, dotted curve provides the density
for prices using the fully linearized model: naturally, this approach is symmetric in levels,
entirely missing the skewness induced by the non-linearity. Finally, the blue, dashed curve
provides the density that obtains if firms form forecasts using linear REE beliefs, but prices
are determined in temporary equilibrium using the non-linear specification of demand. This
density qualitatively lies part way between the solid, black RPE density and the red, dot-
ted linear REE density, and provides a measure of the skewness induced by the model’s
nonlinear demand (i.e. the “difference” between the red, dotted graph and the blue, dashed
graph), and the skewness induced by optimal linear beliefs (i.e. the “difference” between
the blue, dashed graph and the solid, black graph).

3 Conclusion

A significant issue with RE in non-linear models is the apparent implausibility that agents
would know and use the correct functional form when making forecasts. We show how this
issue can be overcome by making the realistic assumption that agents adopt linear forecast
rules that are optimally chosen.

supply curves take the cost shocks to be at plus/minus two standard deviations.
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Appendix

Proof of Theorem 1. We begin by observing a consequence of the implicit function
theorem: informally, if an equation f (x,y) = 0 has a unique solution for each x in some
open set U , and if the conditions of the implicit function theorem hold at each of these
solutions, then the solutions (x,y) with x ∈U may be parametrized by one function on all
U , rather than by a collection of functions each defined in an open neighborhood of a given
point in U . More formally, let U ⊂ Rm be open and suppose f : U ⊕Rn→ Rn is Ck, for
k ≥ 1. Assume

1. ∀x ∈U ∃!y(x) ∈ Rn with f (x,y(x)) = 0

2. ∀x ∈U det fy(x,y(x)) 6= 0

Then y : U → Rn is Ck−1 and yx(x) = fy(x,y(x))−1 fx(x,y(x)).

Turning now to the theorem we begin by establishing existence and properties of supply.
Define

X = {(pe,w) ∈ R+⊕Rn : pe > mc(0,w)} .
We claim that X is open in Rn+1. To see this, let (p̃e, w̃)∈ X and let ε = 1/2(p̃e−mc(0, w̃)).
Then mc(0, w̃) < p̃e− ε , thus, since mc(0, ·) : Rn → R+ is continuous, there is an open
neighborhood U of w̃ so that w ∈ U =⇒ mc(0,w) < p̃e− ε . We conclude that (p̃e−
ε,∞)×U is an open subset of X containing (p̃e, w̃), whence X is open.

By assumption A.3, given (pe,w) ∈ X there is a unique q > 0 such that pe = mc(q,w).
It follows from the implicit function theorem that s is continuously differentiable on X ,
with spe > 0 and swi ≤ 0.

Having demonstrated the existence and properties of supply we turn to temporary
equilibrium. Observe that pe > mc(0,w) implies s(pe,w) > 0 and that s(pe,w)→ 0 as
pe→ mc(0,w)+. Thus, for fixed w and v, the Inada conditions on demand and the positive
slope of supply show that provided pe > mc(0,w) for each v ∈ Kv there exists a unique
p≡ F(pe,w,v) solving d(p,v) = s(pe,w). The implicit function theorem then implies that
for each v ∈ Kv, F is continuously differentiable on X . Direct computation may then be
used to show that on X⊕Kv we have that Fpe < 0 and limpe→mc(0,w)+ F(pe,w,v) = ∞.

Now define T̂ : X→R+ by T̂ (pe,w) =
∫

Kv
F(pe,w,v)µ(dv) with µ the measure associ-

ated to v. The properties of F then imply T̂pe(pe,w)< 0 and limpe→mc(0,w)+ T̂ (pe,w)=∞. It
follows that for each w there is a unique p̄e(w)> mc(0,w) such that p̄e(w) = T̂ (pe(w),w).
This completes the proof of the theorem, though we note that the implicit function theorem
may then be used to show that p̄e is continuously differentiable in w and that p̄e

w < 0.

Proof of Theorem 2. Let w̃t = ρw̃t−1+εt and define T̃ (a,b,σ), where T̃ : R⊕Rn⊕R→
R⊕Rn, by

a T̃ a
−−−→ Ew̃,v F

(
a+b′w̃,σw̃,v

)
b T̃ b
−−−→ Σ

−1
w̃ ·Ew̃,v

(
w̃ ·F

(
a+b′w̃,σw̃,v

))
.

We make explicit the dependence of T̃ on σ because perturbations of σ will be required to
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obtain our result. It follows that T̃ is continuously differentiable, and a generalized version
of Leibniz’s theorem allows for the computation of derivatives.

We will use the implicit function theorem to determine a parameterized family of fixed
points

(
ãσ , b̃σ

)
for the map T̃ . Recall that p̄e(w) is the REE expectation and note that

T̃ (p̄e(0),0,0) = (p̄e(0),0)≡
(
ã0, b̃0

)
, and that, by Theorem 1, this is the unique such fixed

point. We now compute derivatives, which are all taken as evaluated at
(
ã0, b̃0,0

)
; these

arguments will be omitted for convenience, but we will retain the dependence on v as
needed.

T̃ a
a = Ew̃,v Fpe(v) = Ev dp(v)−1spe < 0

T̃ a
b = Ew̃,v Fpe(v)w̃′ = 0

T̃ a
σ = Ew̃,v Fw(v)w̃ = 0

T̃ b
a = Σ

−1
w̃ ·Ew̃,v w̃ ·Fpe(v) = Σ

−1
w̃ ·Ew̃,v w̃ ·dp(v)−1spe = 0

T̃ b
b = Σ

−1
w̃ ·Ew̃,v w̃Fpe(v)w̃′ = In ·Ev dp(v)−1spe

T̃ b
σ = Σ

−1
w̃ ·Ew̃,v w̃Fw(v)w̃ = EvFw(v)′

It follows that detD(a,b)T̃ 6= 0, and so, by the implicit function theorem, there exists σ̄ > 0
so for |σ | < σ̄ there is a C1 collection

(
ãσ , b̃σ

)
with T̃

(
ãσ , b̃σ ,σ

)
=
(
ãσ , b̃σ

)
. It’s worth

noticing that b̃σ

σ =(EvFpe(v))−1 EvFw(v)′, which is generically non-zero, as expected. Also,
ãσ

σ = 0, which aligns with the standard finding that stochasticity has no first order impact
on the steady-state.

The proof is complete by verifying that when 0 < σ < σ̄ it follows that (ãσ ,σ−1b̃σ) is a
fixed point of the T-map, and thus identifies an RPE. We proceed with direct computation:

T a (ãσ ,σ−1b̃σ ,σ
)

= Ewσ ,v F
(
ãσ +σ

−1b̃σ wσ ,wσ ,v
)

= Ew̃,v F
(
ãσ + b̃σ w̃,σw̃,v

)
= ãσ

T b (ãσ ,σ−1b̃σ ,σ
)

= Σ
−1
wσ ·Ewσ ,v

(
wσ · F̂

(
ãσ +σ

−1b̃σ wσ ,wσ ,v
))

= Σ
−1
wσ ·Ew̃,v

(
σw̃ · F̂

(
ãσ + b̃σ w̃,σw̃,v

))
= σ

−1
Σ
−1
w̃ ·Ew̃,v

(
w̃ · F̂

(
ãσ + b̃σ w̃,σw̃,v

))
= σ

−1b̃σ .

Proof of Theorem 3. The learning algorithm may be written(
at
bt

)
=

(
at−1
bt−1

)
+κtR

−1
(

1
wσ

t−1

)(
F̂
(
at−1,bt−1,wσ

t−1,vt
)
− (at−1 +b′t−1wσ

t−1)
)

(3)

where R = 1⊕Σwσ . Stability analysis involves the study of the differential system (ȧ, ḃ) =
h(a,b), where

h(a,b) = Ewσ ,v

[
R−1

(
1

wσ

)(
F̂ (a,b,wσ ,v)− (a+b′wσ)

)]
.
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Now observe

h(a,b) = = R−1Ewσ ,v

[(
1

wσ

)
F̂ (a,b,wσ ,v)−

(
1 (wσ)′

wσ (wσ)′⊗wσ

)(
a
b

)]

=

(
Ewσ ,v F̂ (a,b,wσ ,v)−a

Σ
−1
wσ Ewσ ,v wσ F̂ (a,b,wσ ,v)−b

)

=

(
T a(a,b,σ)
T b(a,b,σ)

)
−
(

a
b

)
.

It follows that the RPE (aσ ,bσ) is a fixed point of the differential system. Ljung’s theory
tells us that if the system is Lyapunov stable, and if the learning algorithm is augmented
with a projection facility, then the theorem is proved.

To establish Lyapunov stability, we show that the derivative of h evaluated at (aσ ,bσ)
has eigenvalues with negative real parts; and to establish this, we show that the derivative
of the T-map has eigenvalues with real parts less than one when evaluated at (a0,b0,0), and
then we appeal to the continuity of eigenvalues in σ . We compute

T a
a = Ewσ ,v Fpe(v) = Ev dp(v)−1spe < 0

T a
b = Ewσ ,v Fpe(v)(wσ)′ = 0

T b
a = Σ

−1
wσ ·Ewσ ,v wσ Fpe(v) = Σ

−1
wσ ·Ewσ ,v wσ ·dp(v)−1spe = 0

T b
b = Σ

−1
wσ ·Ewσ ,v wσ Fpe(v)(wσ)′ = In ·Ev dp(v)−1spe .

It follows that DT has n+1 eigenvalues, all equal to Ev dp(v)−1spe < 0, so that (aσ ,bσ) is
indeed a Lyapunov stable fixed point of the system (ȧ, ḃ) = h(a,b).

It remains to specify the projection facility, which amounts to choosing two sets K1 ⊂
K2 containing the steady state, and then requiring, at each time t, that if the right-hand-
side of the recursion would place (at ,bt) outside of K2 then instead the value for (at ,bt)
is selected arbitrarily (randomly or deterministically) from within K1. To specify these
two sets, we require a Lyapunov function, which is guaranteed by the stability of (aσ ,bσ).
Specifically, there exists a twice continuously differentiable Lyapunov function V on the
basin of attraction of (aσ ,bσ), which we denote by D ⊂ Rn+1. Thus V : D→ R+ satisfies
V (aσ ,bσ) = 0 and V (x)> 0 for x 6= (aσ ,bσ), as well as other important properties: see page
132 of Evans and Honkapohja (2001) for details. For c > 0 let

K(c) = {x ∈ D : V (x)≤ c} .

Choose 0 < c1 < c2 < c so that K(c2)⊂ int(K(c)). Then Ki = K(ci) determine the required
sets. That the various shocks are bounded allows for the technical conditions on pages 124
and 125 of Evans and Honkapohja (2001) to be easily verified, and the result follows from
Corollary 6.8 on page 136 of Evans and Honkapohja (2001).
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