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Abstract. We use analytic continuation to derive the Euler-Lagrange equa-

tions associated to the Pfaffian in indefinite signature (p, q) directly from the

corresponding result in the Riemannian setting. We also use analytic con-
tinuation to derive the Chern-Gauss-Bonnet theorem for pseudo-Riemannian

manifolds with boundary directly from the corresponding result in the Rie-

mannian setting. Complex metrics on the tangent bundle play a crucial role
in our analysis and we obtain a version of the Chern-Gauss-Bonnet theorem

in this setting for certain complex metrics.
Subject Classification: 53C20

1. Introduction

The use of analytic continuation to pass between the spacelike and the timelike
settings in pseudo-Riemannian geometry has proven to be a very fruitful technical
tool. In the study of Osserman geometry, Garćıa-Ŕıo et al. [14] examined complex
“tangent vectors” (i.e. elements of TM ⊗R C) to show that spacelike Osserman
and timelike Osserman were equivalent concepts; subsequently other authors used
a similar technique to show that timelike Ivanov–Petrova, spacelike Ivanov–Petrova,
and mixed Ivanov–Petrova were equivalent concepts as were spacelike Szabó and
timelike Szabó (see the discussion in [16] for example).

In this paper, we will use analytic continuation to show that results holding in
the Riemannian context can often be extended to the pseudo-Riemannian context
with relatively little additional fuss. For example, if (M, g, f) is a gradient Ricci
solution and if Hf is the Hessian, then

(∇∇f Ric) + Ric ◦Hf = R(∇f, ·)∇f + 1
2∇∇τ .

This result was first proved in the Riemannian setting [26] but extends to the
pseudo-Riemannian setting via analytic continuation [7].

In all cases, one first extends the relevant notions to complex “metrics” (i.e.
sections g to S2(T ∗M) ⊗R C satisfying det(g) 6= 0) or complex “tangent vectors”,
applies analytic continuation, and thereby passes from one signature to another.
This general meta principle is best illustrated by example and we shall take as our
example the circle of ideas related to Chern-Gauss-Bonnet theorem. In this paper
we shall derive the Chern-Gauss-Bonnet theorem for manifolds with non-degenerate
boundary in the pseudo-Riemannian context from the corresponding result in the
Riemannian setting; this gives what we believe is an elegant and conceptual proof
that makes direct use of the results of [8]. We shall also extend the formulae for the
Euler-Lagrange equations from the Riemannian to the pseudo-Riemannian setting.

The 4-dimensional Chern-Gauss-Bonnet integrand E4 is given by the invariant
1

32π2 {τ2−4|ρ|2 + |R|2} where τ is the scalar curvature, |ρ|2 is the norm of the Ricci
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tensor, |R|2 is the norm of the total curvature tensor, and the signature is Riemann-
ian. E4 has played a useful role in many papers recently in mathematical physics
- especially in the study of Einstein-Gauss-Bonnet Gravity (EGBG) using the as-
sociated Euler-Lagrange equations for E4. There has been an enormous amount of
work in this subject and we can only cite a few representative papers. Lovelock
[24] introduced generalized theories of this type. Chervon et al. [10] use the EGBG
equations to search for new models of the Emergent Universe (EmU) scenario and
study an EmU supported by two chiral cosmological fields for a spatially flat uni-
verse, and with three chiral fields when investigating open and closed universes. M.
Soltani and S. Sayyahi [28] investigate the Hawking-Unruh effect on the quantum
entanglement of bosonic field in background of a spherically symmetric black hole
of Gauss-Bonnet gravity beyond the single mode approximation. K. Bamba, A.
Makarenko, A. Myagky, and S. Odintsov [4] explore the bounce cosmology in F (G)
gravity with the Gauss-Bonnet invariant G and construct an F (G) gravity theory
realizing the bouncing behavior of the early universe.

Higher dimensional examples also are important. Although a-priori the Euler-
Lagrange equations defined by Em can involve the 4th derivatives of the metric
in dimensions n > m, Berger [5] conjectured it only involved curvature; this was
subsequently verified by Kuz’mina [19] and Labbi [20, 21, 22]. Following de Lima
and de Santos [23], one says that a compact Riemannian n-manifold is 2k-Einstein
for 2 ≤ 2k < n if it is a critical metric for the Einstein-Hilbert-Lovelock functional
L2k(g) =

∫
M
E2k dvol when restricted to metrics on M with unit volume. This

involves, of course, examining the associated Euler-Lagrange equations for this
functional. The Euler-Lagrange equations were determined very explicitly in the
Riemannian setting in [17] using invariant theory. In this paper we use analytic
continuation to extend these results to the pseudo-Riemannian context without
significant additional effort; the original treatment in [18] involved redoing the
analysis in [17] and we think this an elegant independent derivation.

1.1. Riemannian manifolds without boundary. The classical 2-dimensional
Gauss-Bonnet formula

χ(M2) =
1

4π

∫
M2

τ dvolg (1.a)

has been generalized to the higher dimensional setting by Chern [8] (see related
work by Allendoerfer and Weil [1]). For example, in the crucial 4-dimensional
setting, one has as noted above:

χ(M4) =
1

32π2

∫
M4

{τ2 − 4|ρ|2 + |R|2} dvolg .

Let (M, g) be a smooth compact Riemannian manifold of dimension m without
boundary; we shall consider the case when M has boundary presently in Section 1.3.
If ~x = (x1, . . . , xm) is a system of local coordinates, let

dvolg = det(gij)
1/2dx1 . . . dxm

be the Riemannian measure. Let ∇ be the Levi-Civita connection of M and let

Rijkl := g((∇ei∇ej −∇ej∇ei −∇[ei,ej ])ek, el)

be the components of the Riemann curvature tensor relative to an arbitrary local
frame field {ei} for the tangent bundle TM . We adopt the Einstein convention and
sum over repeated indices. Let m = 2` be even. Define the Pfaffian by setting:

Em(g) :=
1

(8π)``!
Ri1i2j2j1 ...Ri2`−1i2`j2`j2`−1

g(ei1 ∧ ... ∧ ei2` , ej1 ∧ ... ∧ ej2`) . (1.b)
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We refer to Chern [8] for the proof of the following result; there is also a heat
equation proof due to Patodi [25]. Note that the Euler characteristic χ(M) of any
compact manifold without boundary of odd dimension vanishes so only the even
dimensional case is of interest.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold without boundary of
even dimension m. Then

χ(M) =

∫
M

Em(g) dvolg .

1.2. Pseudo-Riemannian manifolds without boundary. Avez [3] and Chern
[9] independently extended Theorem 1.1 to the indefinite setting (there is a slight
mistake in Chern’s paper as the the sign change (−1)p/2 is not present in [9]). Let
(M, g) be a compact pseudo-Riemannian manifold without boundary of signature
(p, q). The volume element is then given by

|dvolg | = |det(gij)|1/2dx1 . . . dxm .

We use Equation (1.b) to define Em(g) without change. One then has:

Theorem 1.2. Let (M, g) be a compact pseudo-Riemannian manifold of signature
(p, q) without boundary of even dimension m. If p is odd, then χ(M) vanishes. If
p is even, then

χ(M) = (−1)p/2
∫
M

Em|dvolg |.

We refer to work by Bonome et al. [6] and by Derdzinski and Roter [11] for a
discussion of the role that Theorem 1.2 plays in pseudo-Riemannian geometry.

Rather than invoking the Chern-Weil homomorphism as was done by Chern [9] or
by going back to the original proof of Chern as was done by Avez [3], we shall derive
Theorem 1.2 directly from Theorem 1.1 using analytic continuation. In Section 3,
we shall consider complex “metrics” on the tangent bundle and show the associated
Euler-Lagrange equations for the Pfaffian Em vanish. This will enable us to extend
Theorem 1.1 to a restricted class of complex metrics – see Theorem 3.2. We will then
derive Theorem 1.2 from Theorem 3.2. We shall not deal with arbitrary complex
metrics since it may not be possible to extract an appropriate square root but shall
content ourselves with considering complex metrics which can be connected by a
smooth family to Riemannian metrics in order to avoid problems with holonomy.

1.3. Riemannian manifolds with boundary. If M is a 2-dimensional manifold
with smooth boundary, then Equation (1.a) must be adjusted to include a boundary
contribution. Let κg be the geodesic curvature. We then have

χ(M2) =
1

4π

∫
M2

τdA+
1

2π

∫
∂M2

κgds .

Chern’s original paper [8] also gives a formula for the Euler characteristic in the
context of Riemannian manifolds of dimension m with smooth boundary. Near the
boundary ∂M , let X be an inward pointing normal vector field and let {e2, . . . , em}
be an arbitrary local frame field for the tangent bundle of the boundary. This
gives a local frame field {X, e2, . . . , em} for TM . The components of the second
fundamental form are then given by

Lab := g(X,X)−1/2g(∇eaeb, X) . (1.c)

The transgression of the Pfaffian is defined by summing over indices which range
from 2 to m and by summing over relevant expressions in the second fundamental
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form:

TEm(g) :=
∑
µ

{
Ra1a2b2b1 ...Ra2µ−1a2µb2µb2µ−1

La2µ+1b2µ+1
...Lam−1bm−1

(8π)
µ
µ! Vol(Sm−1−2µ)(m− 1− 2µ)!

× g(ea1 ∧ · · · ∧ eam−1 , eb1 ∧ · · · ∧ ebm−1)

}
.

(1.d)

Note that if m is odd, then χ(M) = 1
2χ(∂M) so we may apply Theorem 1.1 to

compute χ(∂M) and thereby express χ(M) in terms of curvature. We therefore
assume m is even.

Theorem 1.3. Let (M, g) be a compact smooth manifold Riemannian manifold of
even dimension m with smooth boundary ∂M . Then:

χ(M) =

∫
M

Em(g) dvolg +

∫
∂M

TEm(g) dvolg|∂M .

Alty [2] generalized this result to the case of pseudo-Riemannian manifolds with
boundary under the assumption that the normal vector was either spacelike, time-
like, or null on each boundary component by combining the analysis of Avez [3] with
the original discussion of Chern [8]. We shall not deal with the null case and in the
interests of simplicity shall simply assume the normal vector to be either timelike
or spacelike or, equivalently, that the restriction of the metric to the boundary is
non-degenerate. We use Equation (1.c) and Equation (1.d) to define TEm where
we replace g(X,X)1/2 by |g(X,X)|1/2 just like we replaced det(g)1/2 by |det(g)|1/2
previously when defining the Pfaffian. We then have:

Theorem 1.4. Let (M, g) be a compact smooth pseudo-Riemannian manifold of
even dimension m and signature (p, q) which has smooth boundary ∂M . Assume
g|∂M is non-degenerate. If p is odd, then χ(M) = 0. Otherwise

χ(M) = (−1)p/2
{∫

M

Em(g)|dvolg |+
∫
∂M

TEm(g)|dvolg|∂M |
}
.

We refer to the articles by Dappiaggi, Hack, and Pinamonti [12]; Saa [27]; and
Dunn, Harriott, and Williams [13] for a discussion of the role Theorem 1.4 plays in
various applications. Section 4 will be devoted to a derivation of this result from
Theorem 1.3 using analytic continuation.

1.4. Euler-Lagrange Equations. We use the formula of Theorem 1.1 to define
the Pfaffian and to consider

∫
M
E2`(g) dvolg. Let gε be a smooth 1-parameter family

of Riemannian metrics. Let h := ∂εgε|ε=ε0 . We differentiate with respect to the
parameter ε and integrate by parts to define the Euler-Lagrange equations:

∂ε

{∫
M

E2`(gε) dvolgε

}∣∣∣∣
ε=ε0

=

∫
M

〈E2`(gε0), h〉dvolgε0 (1.e)

for E2`(·) ∈ C∞(S2(TM)) where 〈·, ·〉 denotes the natural pairing between S2(TM)
and S2(T ∗M). Although a-priori E2` can involve the 4th derivatives of the metric
in dimensions m > 2`, Berger [5] conjectured it only involved curvature; this was
subsequently verified by Kuz’mina [19] and Labbi [20, 21, 22]. An explicit formula
was derived for this invariant in [17]:

Theorem 1.5. Let (M, g) be a Riemannian manifold of dimension m > 2`. Then:

E2` :=
1

(8π)``!
Ri1i2j2j1 ...Ri2`−1i2`j2`j2`−1

ei2`+1
◦ej2`+1

g(ei1∧...∧ei2`+1 , ej1∧...∧ej2`+1) .

In Section 2 we will use analytic continuation to extend this to the pseudo-
Riemannian setting and establish a result originally established in [18] using a
direct computation:
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Theorem 1.6. Let (M, g) be a pseudo-Riemannian manifold of dimension m > 2`.
Then:

E2` :=
1

(8π)``!
Ri1i2j2j1 ...Ri2`−1i2`j2`j2`−1

ei2`+1
◦ej2`+1

g(ei1∧...∧ei2`+1 , ej1∧...∧ej2`+1) .

2. The proof of Theorem 1.6

Let g ∈ C∞(S2(T ∗M) ⊗ C) be a complex “metric”. We assume det(g) 6= 0 as
a non-degeneracy condition. The Levi-Civita connection and curvature tensor may
then be defined. To maintain analyticity, we set dvol := det(gij)

1/2dx1 . . . dxm; we
do not take the absolute value. There is a subtlety here since, of course, there are
2 branches of the square root function. We shall ignore this for the moment in the
interests of simplifying the argument and return to this point in a moment. The
invariant E2`(g) is then defined by Equation (1.e). Here E2`(·) ∈ C∞(S2(TM)⊗C)
defines the Euler-Lagrange equations for the Lovelock functional of the Pfaffian
E2`.

We regard E2`, the curvature tensor R, the covariant derivative of the curvature
∇R, and so forth as polynomials in the derivatives of the metric tensor with coeffi-
cients which are analytic in the gij variables. The identity of Theorem 1.5 is then
an identity between two analytic expressions in the variables {gij , gij/k, gij/kl, . . . }
where det(gij) 6= 0. Since the zeros of det(gij) have codimension 2 in the linear
space of symmetric 2-tensors, the condition det(gij) 6= 0 does not disconnect the pa-
rameter space. Consequently since the identity holds where det(gij) 6= 0, gij is real,
and the signature is positive definite, the identity holds in general so Theorem 1.6
follows immediately from Theorem 1.5. �

3. The proof of Theorem 1.2

The following is a useful technical observation which we shall need subsequently.
Although it is well known, we present the proof to keep our treatment self-contained.

Lemma 3.1. Let (M, g1) be a pseudo-Riemannian manifold of signature (p, q).
There exist smooth complementary subbundles V± of TM so that TM = V− ⊕ V+,
so that V+ is perpendicular to V−, so that restriction of g1 to V+ is positive definite,
and so that the restriction of g1 to V− is negative definite.

Proof. Let gr be an auxiliary Riemannian metric. Express g1(ξ1, ξ2) = gr(Tξ1, ξ2)
where T is an invertible linear map of the tangent bundle which is self-adjoint with
respect to gr. The bundle V+ (resp. V−) can then be taken to be the span of the
eigenvectors of T corresponding to positive (resp. negative) eigenvalues of T . �

Let m = 2`. The Chern-Gauss-Bonnet theorem shows that Em vanishes on real
positive definite metrics and hence using the argument of Section 2, it vanishes on
complex metrics as well. The following result is now immediate from Theorem 1.1:

Theorem 3.2. Let M be a compact manifold of dimension m = 2` without bound-
ary. Let gε be a smooth 1-parameter family of complex metrics which contains a
Riemannian metric for some ε. Then we can define a branch of det(gε)

1/2 along
this family so that

∫
M
Em(gε) dvolgε is independent of ε and consequently

χ(M) =

∫
M

Em(gε) dvolgε for any ε .

If M is not simply connected, there may be difficulties in defining det(g)1/2

consistently over the manifold. And furthermore, if g is not in the same homotopy
class as a Riemannian metric, there may be difficulties evaluating the integral.
However Theorem 3.2 as stated is sufficient to establish Theorem 1.2. We argue as
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follows. Let (M, g1) be a compact pseudo-Riemannian manifold without boundary
of even dimension m and signature (p, q). Apply Lemma 3.1 to decompose the
tangent bundle TM = V− ⊕ V+. Let g± := ±g1|V± so g1 = −g− ⊕ g+. Let
g0 := g−⊕g+ be a Riemannian metric on M . We follow a circular arc from 1 to −1

in the complex plane given by eεπ
√
−1 to define the following variation connecting

g0 to g1:

gε := eεπ
√
−1g− ⊕ g+ . (3.a)

We note det(gε) = det(g0)epεπ
√
−1 so the family is admissible and we have:

det(gε)
1/2 = epεπ

√
−1/2 det(g0)1/2 .

If p is odd, then det(g1)1/2 will be purely imaginary and thus χ(M) will be purely
imaginary. Since χ(M) is real, we conclude χ(M) = 0 in this case. On the other
hand, if p is even, then det(g1)1/2 = (−1)p/2 det(g0) and thus Theorem 1.2 follows
from Theorem 3.2. �

It is worth considering a few examples just to check the sign. Suppose (M, g0)
is a Riemann surface. Let g1 = −g0 have signature (2, 0). Then the Levi-Civita
connection of g1 and the Levi-Civita connection of g0 agree so

Rijk
`(g1) = Rijk

`(g0) and τ(g1) = gjk1 Rijk
i(g1) = −gjk0 Rijki(g0) = −τ(g0) .

As |dvol |(g0) = |dvol |(g1), one must change the sign in the Gauss-Bonnet theorem:

χ(M) = − 1

4π

∫
M

τ(g1)|dvol |(g1) .

In dimension 4, if (M, g) = (M1, h1)× (M2, h2) is the product of two Riemann sur-
faces, then the Gauss-Bonnet theorem decouples and we have χ(M) = χ(M1)χ(M2)
and E4(g) = E2(h1)E2(h2). Thus we will not need to change the sign in signature
(4, 0) or (0, 4) but we will need to change the sign in signature (2, 2). The fact that
the Euler characteristic vanishes if p and q are both odd is not, of course, new but
follows from standard characteristic class theory.

4. The proof of Theorem 1.4

If (M, g) is Riemannian, Theorem 1.3 follows from Chern [9]; a heat equa-
tion proof appears in [15]. So the trick is to extend Theorem 1.3 to the pseudo-
Riemannian setting directly rather than, as was done by Alty [2], redo the analysis
of Chern in the pseudo-Riemannian context by examining the index of vector fields
with isolated singularities. Again, we will use analytic continuation. But there is
an important difference. Let (M, g1) be a pseudo-Riemannian manifold. We sup-
pose g1|∂M is non-degenerate. Choose a non-zero vector field X which is normal to
the boundary and inward pointing. We can identify a neighborhood of the bound-
ary ∂M in M with [0, ε) × ∂M and choose local coordinates (x1, . . . , xm) so that
X = ∂x1

and so that ∂M = {x : x1 = 0}. We then have

det(g1|∂M )g1(X,X)|∂M = det(g1)|∂M . (4.a)

We use Lemma 3.1 to choose smooth complementary subbundles V± of TM so
that TM = V−⊕V+, so that V+ is perpendicular to V−, so that restriction of g1 to
V+ is positive definite, and so that the restriction of g1 to V− is negative definite.
We may further normalize the splitting to assume that if the normal vector X is
spacelike, then X ∈ C∞(V +|∂M ) while if the normal vector X is timelike, then
X ∈ C∞(V−|∂M ). Thus the splitting TM = V− ⊕ V+ induces a corresponding
splitting T (∂M) = W− ⊕W+ where W± = T (∂M) ∩ V±.

We now consider the smooth 1-parameter of complex variations gε given above
in Equation (3.a). The unit normal is then given by X · gε(X,X)−1/2. In the
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expressions for TEm, there are an odd number of terms which contain the second
fundamental form L and hence gε(X,X)−1/2 appears. By Equation (4.a):{

gε(X,X) det(gε|∂M )
}1/2

=
{

det(gε)
1/2
}∣∣∣∣
∂M

.

Thus once again, we must take the square root of (−1)p in the analytic continuation.
Apart from this, the remainder of the argument is the same as that used to prove
Theorem 1.2. We note that an appropriate analogue of Theorem 3.2 holds. �
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[6] A. Bonome, R. Castro, E. Garćıa-Ŕıo, L. Hervella, and Y. Matsushita, “Pseudo-Chern

classes and opposite Chern classes of indefinite almost Hermitian manifolds”, Acta Math.
Hungar. 75 (1997), 299–316.
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