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is given by the real analytic functions

¢ = e, i@ = ek
Grr1 = e cos(b11), gio = e sin(by1),
Pn—1 := e cos(byt).p  » = e™'sin(by,t).
The associated curve op : R — R”, the curvature k of op, the element of arc length ds, and the
g
total first curvature k[0 p] are given by:
__llep AGp]l

lop |
© \lop APl

ds = ”O’p ”dl, K[UP] :=/ Kkds = / 5 2
op —o lopll

op(t) = ($1(1),....0n())K
dt.

Let R(A) (resp. J(A)) be the real (resp. imaginary) part of a complex number A. We say the rea/
roots are dominant if ri > 0 > rr and if r; > R(A) > rg for any A € R — {ry, r¢}. This means
that lim; o [[e ™ op|| = 1, lim;—— |[e " op| = 1, and lim; oo [|op || = oco. The remain-
ing roots are then said to be subdominant. We refer to P. Gilkey, C. Y. Kim, H. Matsuda,
J. H. Park, and S. Yorozu [21] for the proof of the following result.
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C.Y. Kim H. Matsuda S. Yorozu

Theorem 4.1  Let op be the curve defined by a real constant coeflicient ordinary differential
equation P of order n with simple roots and with ; > 0 > rg.

1. The curve op is a proper embedding of R into R” with infinite length. The total first cur-
vature k[op] is finite if and only if the real roots are dominant.

2. If there are no complex roots, then k[op] < Zn(n — 1). Given € > 0, there exists an ODE
P¢ of order n with no complex roots so that k[op.] > %(n — 1) — € and so that the real
roots are dominant. Consequently, any universal upper bound must grow at least linearly
with n and at worst quadratically. If subdominant complex roots are allowed, then there is
no uniform upper bound.

If op is defined by some other basis for the solution space of P than the standard basis, then
Assertion 1 continues to hold and can be generalized to the case when the roots have multiplicities
greater than 1.




5.3. THE HODGE DECOMPOSITION THEOREM
Now if the indices {i, j, £} are distinct, then

c(ei)c(ej)c(ee) = c(ej)c(ee)c(ei) = c(ee)c(ei)c(ej).

We have Rijk[ = —R,-jgk. The Bianchi identity yields Riﬂk + Rjuk + R[ijk = 0. Conse-
quently, we may assume that the indices {7, j, £} are not distinct in Equation (5.3.b). We can-
not have i = j as Rijgk + le-gk = 0. Consequently, either i = £ or j = £; this yields the same
thing. We suppose i = £ # j. Then c(eH)e(el)e(el) = c(el). We may derive Assertion 3 from
Assertion 2 by computing:

%c(ei)c(ej)R(ei,ej)ek = Rijkic(ej)l = pjkej.
Suppose p > 0. Then

(Ao, 0)2 = (—wi,0)2 + (po,0)12
= (Vo, va))Lz + (pa)’w)L2 = (pw’a))Lz >0.

Consequently, if @ is a smooth 1-form with A'w = 0, then Vo = 0 so w is parallel and hence
@]l is constant. But since p > 0 at some point, we have (pw, w)(P) = 0so w(P) = 0. Since ||o||
is constant, this implies @ vanishes identically which proves Assertion 4. O

5.3.3 POINCARE DUALITY. The following result is due to the French mathematician J.

Poincaré in the topological setting.

!
Jules Henri Poincaré (1854-1912)

Let  be the Hodge operator and let ¢(dvol) be Clifford multiplication by the volume
form as discussed in Section 5.2. We shall apply Lemma 5.9 and use the Hodge Decomposition
Theorem to establish Poincaré duality [53]. If V and W are finite-dimensional vector spaces,
then we say that a map f from V x W to R is a perfect pairing if f is bilinear, if given any v in
V there exists w in W so that f(v, w) # 0, and if given any w in W there exists v in V' so that
S (v, w) # 0. Equivalently, f exhibits V' as the dual of W and W as the dual of V. Let

L(wp, Om—p) = / wp A Op—p forw, € C°(APM) and Oy, € C(A"PM). (5.3.0)
M
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The Fundamental Theorem of Ordinary Differential Equations is often called the Cauchy—
Lipschitz Theorem or the Picard-Lindeldf Theorem and is named after Emile Picard, Ernst Lin-
delof, Rudolf Lipschitz, and Augustin—Louis Cauchy. It deals with the existence and uniqueness
of solutions to an ordinary differential equation.

A. Cauchy (1789-1857) R. Lipschitz (1832-1903) E. Picard (1856-1941)

For each g € G, this result shows that there exists an open neighborhood O, of g and
there exists €, > 0 so the flow @ exists for || < € on Oy. Since (Lg)+X = X, Ly commutes
with @Y, i, Ly} = & L,. This shows that & = L, P L, is well-defined on Lg(O,)
for |t| < €.. Consequently, we can choose € uniformly on G. We use the semi-group property
XX = QDSX;t to extend the flow for all # and prove Assertion 2. Since % = @5X,

exp?(tX) = (D{X = (th;

Assertion 3 follows.
Let F:G— Hbea group homomPrphism. If & € Te; G, choose X € g so X(eg) = €.
Let& := Fy§ € Tep H. Let X € ly satisfy X (eg) = £. Since Lpp F = FLy,

FX(h) = Fu(Lp)sX(€) = (Lr@w)«FxX(e) = Lrw§ = X(Fh)
and thus F, X = X. Thus, by Lemma 6.1, Fy is a Lie algebra morphism. If Fy = 0, then
3; F exp®(t8) |i=1 = XL (F exp®(£0§)) = 0

and, consequently, F exp9(¢§) = ep for all 7. Since exp? is a local diffeomorphism from a neigh-
borhood of 0 in T,; G to G, this implies F is constant on a neighborhood of eg. Since G is
connected, F is constant; this shows Assertion 4. m}

Suppose G is connected. We shall show in Corollary 6.20 that if G is compact, then exp?
is surjective. The exponential map need not be subjective if G is not compact; we will show in
Lemma 6.25 that exponential map for SL(2, R) is not surjective.

6.2.9 THE ADJOINT REPRESENTATION. Let g be the Lie algebra of a Lie group G. If
£ € g, let ad(§) € Hom(g) be defined by ad(§) : n — [n, £]. The Jacobi identity yields:

[ad(§), ad(n)]ly = ad(§) ad(n)y —ad(n)ad(§)y = ad(€)[n.y] —ad(n)[§, ]
= [& [yl = €yl = [[En], y] = ad[é, n]y.
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Proof. Let w be a p-form with A” =0, and let # € G. Because the metric is left-invariant,
LyA = ALj. Therefore, Ly € ker{A?} as well. On the other hand, G is assumed to be con-
nected. Consequently, there is a smooth curve y(¢) connecting 4 to the identity and providing a
homotopy between Lj and Lig. The homotopy axiom then shows [L} ] = [@] in de Rham co-
homology. The Hodge Decomposition Theorem (see Theorem 5.13) then shows Lyw = w. The
argument is the same for right-invariance; Assertion 1 now follows.

Suppose  is left-invariant and that w = d for some smooth (p — 1)-form which is not
necessarily left-invariant. We average over the group to see that:

/ (Liw) dvol(h) = / (Lidy)dvol(h) = d / (L) dvol(h)
G G G

w

= d{¥} where W::/(LZW)dvol(h).
G

Assertion 2 now follows by noting ¥ is left-invariant. We have used, of course, the fact that we
can interchange the order of differentiation and integration. Assertion 1 shows that [i] is surjective
and Assertion 2 shows that [] is injective as a map from H?(g*, d) to HfR(G). Assertion 3 now
follows. O

6.9.1 THE HOPF STRUCTURE THEOREM. The results in this section arise from work of
H. Hopf [33].

H. Hopf (1894-1971)

We refer the reader to the discussion in Section 8.1.6 for the definition of a unital graded ring.
We say that a connected unital graded ring R is a co-ring if we have a co-multiplication 6 which
is a graded ring morphism from R to R ® R which is co-associative, i.e.,

1d®0)of = (0 @1d)od.

We do not assume the co-multiplication is co-commutative. We say that R is a Hopf algebra if, in
addition, there is an augmentation € : R — F so

(Id®e)of =1d and (e®Id)od=1d.
We use the existence of a co-unit to pin § down slightly. We expand
0a) =1 b, +stuff +a, ® 1

where the deleted material “stuft” belongs to ®;>0,j>0,i+j=nRi ® R;. We conclude
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