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Vector Bundles

Let Vectk(M,F) be the set of isomorphism classes of
real (F=R) or complex (F=C) vector bundles of
rank k over a smooth connected m-dimensional
manifold M. Let

VectðM;FÞ ¼
[

k

VectkðM;FÞ

Principal Bundles – Examples

Let H be a Lie group. A fiber bundle

! : P ! M

with fiber H is said to be a principal bundle if there
is a right action of H on P which acts transitively on
the fibers, that is, if P=H=M. If H is a closed
subgroup of a Lie group G, then the natural
projection G ! G=H is a principal H bundle over
the homogeneous space G=H. Let O(k) and U(k)
denote the orthogonal and unitary groups, respec-
tively. Let Sk denote the unit sphere in Rkþ1. Then
we have natural principal bundles:

OðkÞ%Oðkþ 1Þ ! Sk

UðkÞ%Uðkþ 1Þ ! S2kþ1

Let RPk and CPk denote the real and complex
projective spaces of lines through the origin in Rkþ1

and Ckþ1, respectively. Let

Z2 ¼ f&Idg % OðkÞ
S1 ¼ f" ' Id : j"j ¼ 1g % UðkÞ

One has Z2 and S1 principal bundles:

Z2 ! Sk(1 ! RPk(1

S1 ! S2k(1 ! CPk(1

Frames

A frame s := (s1, . . . , sk) for V 2 Vectk(M,F) over an
open set O %M is a collection of k smooth sections
to V jO so that {s1(P), . . . , sk(P)} is a basis for the
fiber VP of V over any point P 2 O. Given such a
frame s, we can construct a local trivialization which
identifies O) Fk with VjO by the mapping

ðP;"1; . . . ; "kÞ ! "1s1ðPÞ þ ' ' ' þ "kskðPÞ

Conversely, given a local trivialization of V, we can
take the coordinate frame

siðPÞ ¼ P) ð0; . . . ; 0; 1; 0; . . . ; 0Þ

Thus, frames and local trivializations of V are
equivalent notions.

Simple Covers

An open cover {O#} of M, where # ranges over some
indexing set A, is said to be a simple cover if any
finite intersection O#1 \ ' ' ' \ O#k

is either empty or
contractible.

Simple covers always exist. Put a Riemannian
metric on M. If M is compact, then there exists a
uniform $ > 0 so that any geodesic ball of radius $ is
geodesically convex. The intersection of geodesically
convex sets is either geodesically convex (and hence
contractible) or empty. Thus, covering M by a finite
number of balls of radius $ yields a simple cover.
The argument is similar even if M is not compact
where an infinite number of geodesic balls is used
and the radii are allowed to shrink near 1.

Transition Cocycles

Let Hom(F, k) be the set of linear transformations of
Fk and let GL(F,k) % Hom(F,k) be the group of all
invertible linear transformations.

Let {s#} be frames for a vector bundle V over some
open cover {O#} of M. On the intersection O# \ O%,
one may express s# = #%s%, that is

s#;iðPÞ ¼
X

1*j*k
 #%;i

jðPÞs%;jðPÞ
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The maps  #% :O# \ O% ! GL(F, k) satisfy

 ## ¼ Id on O#

 #% ¼  #& &% on O# \ O% \ O&
½1,

Let G be a Lie group. Maps belonging to a
collection { #%} of smooth maps from O# \ O% to G
which satisfy eqn [1] are said to be transition
cocycles with values in G; if G % GL(F, k), they
can be used to define a vector bundle by making
appropriate identifications.

Reducing the Structure Group

If G is a subgroup of GL(F, k), then V is said to have
a G-structure if we can choose frames so the
transition cocycles belong to G; that is, we can
reduce the structure group to G.

Denote the subgroup of orientation-preserving
linear maps by

GLþðR; kÞ :¼ f 2 GLðR; kÞ: detð Þ > 0g

If V 2 Vectk(M,R), then V is said to be orientable if
we can choose the frames so that

 #% 2 GLþðR; kÞ

Not every real vector bundle is orientable; the first
Stiefel–Whitney class sw1(V) 2 H1(M;Z2), which is
defined later, vanishes if and only if V is orientable.
In particular, the Möbius line bundle over the circle
is not orientable.

Similarly, a real (resp. complex) bundle V is
said to be Riemannian (resp. Hermitian) if we can
reduce the structure group to the orthogonal group
O(k) % GL(R, k) (resp. to the unitary group
U(k) % GL(C, k)).

We can use a partition of unity to put a positive-
definite symmetric (resp. Hermitian symmetric) fiber
metric on V. Applying the Gram–Schmidt process
then constructs orthonormal frames and shows that
the structure group can always be reduced to O(k)
(resp. to U(k)); if V is a real vector bundle, then the
structure group can be reduced to the special
orthogonal group SO(k) if and only if V is
orientable.

Lifting the Structure Group

Let ' be a representation of a Lie group H to
GL(F, k). One says that the structure group of V can
be lifted to H if there exist frames {s#} for V and
smooth maps (#% :O# \ O% ! H, so '(#% = #%

where eqn [1] holds for (.

Spin Structures

For k - 3, the fundamental group of SO(k) is Z2.
Let Spin(k) be the universal cover of SO(k) and let

' : SpinðkÞ ! SOðkÞ

be the associated double cover; set Spin(2)= S1 and
let '(")="2. An oriented bundle V is said to be spin
if the transition functions can be lifted from SO(k)
to Spin(k); this is possible if and only if the second
Stiefel–Whitney class of V, which is defined later,
vanishes. There can be inequivalent spin structures,
which are parametrized by the cohomology group
H1(M;Z2).

The Tangent Bundle of Projective Space

The tangent bundle TRPm of real projective space is
orientable if and only if m is odd; TRPm is spin if
and only if m . 3 mod 4. If m . 3 mod 4, there are
two inequivalent spin structures on this bundle as
H1(RPm;Z2)=Z2.

The tangent bundle TCPm of complex projective
space is always orientable; TCPm is spin if and only
if m is odd.

Principal and Associated Bundles

Let H be a Lie group and let

(#% : O# \ O% ! H

be a collection of smooth functions satisfying the
compatibility conditions given in eqn [1]. We define
a principal bundle P by gluing O# )H to O% )H
using (:

ðP; hÞ# / ðP; (#%ðPÞhÞ% for P 2 O# \ O%

Because right multiplication and left multiplication
commute, right multiplication gives a natural action
of H on P:

ðP; hÞ# ' ~h :¼ ðP; h ' ~hÞ#

The natural projection P ! P=H=M is an H fiber
bundle.

Let ' be a representation of H to GL(F, k). For
) 2 P," 2 Fk, and h 2 H, define a gluing

ð); "Þ / ð) ' h(1; 'ðhÞ"Þ

The associated vector bundle is then given by

P )' F
k :¼ P ) Fk=/

Clearly, {'(#%} are the transition cocycles of the
vector bundle P )' F

k.
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Frame Bundles

If V is a vector bundle, the associated principal
GL(F, k) bundle is the bundle of all frames; if V is
given an inner product on each fiber, then the
associated principal O(k) or U(k) bundle is the bundle
of orthonormal frames. If V is an oriented Riemannian
vector bundle, the associated principal SO(k) bundle is
the bundle of oriented orthonormal frames.

Direct Sum and Tensor Product

Fiber-wise direct sum (resp. tensor product) defines the
direct sum (resp. tensor product) of vector bundles:

0 : VectkðM;FÞ ) VectnðM;FÞ
! VectkþnðM;FÞ

1 : VectkðM;FÞ ) VectnðM;FÞ
! VectknðM;FÞ

The transition cocycles of the direct sum (resp.
tensor product) of two vector bundles are the direct
sum (resp. tensor product) of the transition cocycles
of the respective bundles.

The set of line bundles Vect1(M,F) is a group
under 1. The unit in the group is the trivial line
bundle l :=M) F; the inverse of a line bundle L is
the dual line bundle L2 :=Hom(L,F) since

L1 L2 ¼ l

Pullback Bundle

Let ! :V ! M be the projection associated with
V 2 Vectk(M,F). If f is a smooth map from N to M,
then the pullback bundle f 2V is the vector bundle
over N which is defined by setting

f 2V :¼ fðP; vÞ 2 N ) V : f ðPÞ ¼ !ðvÞg

The fiber of f 2V over P is the fiber of V over f (P).
Let {s#} be local frames for V over an open cover

{O#} of M. For P 2 f(1(O#), define

ff 2s#gðPÞ :¼ ðP; s#ðf ðPÞÞÞ

This gives a collection of frames for f 2V over the
open cover {f(1(O#)} of N. Let

f 2 #% :¼  #% 3 f

be the pullback of the transition functions. Then

ff 2s#gðPÞ ¼ ðP;  #%ðf ðPÞÞs%ðf ðPÞÞÞ
¼ fðf 2 #%Þðf 2s%ÞgðPÞ

This shows that the pullback of the transition
functions for V are the transition functions of the
pullback f 2(V).

Homotopy

Two smooth maps f0 and f1 from N to M are
said to be homotopic if there exists a smooth map
F :N ) I ! M so that f0(P)= F(P, 0) and so that
f1(P)= F(P, 1). If f0 and f1 are homotopic maps from
N to M, then f 21V is isomorphic to f 22V.

Let [N,M] be the set of all homotopy classes
of smooth maps from N to M. The association
V ! f 2V induces a natural map

½N;M, ) VectkðM;FÞ ! VectkðN;FÞ

If M is contractible, then the identity map is
homotopic to the constant map c. Consequently,
V = Id2V is isomorphic to c2V =M) Fk. Thus, any
vector bundle over a contractible manifold is trivial.
In particular, if {O#} is a simple cover of M and if
V 2 Vect(M,F), then VjO#

is trivial for each #. This
shows that a simple cover is a trivializing cover for
every V 2 Vect(M,F).

Stabilization

Let l 2 Vect1(M,F) denote the isomorphism class of
the trivial line bundle M) F over an m-dimensional
manifold M. The map V ! V 0 l induces a stabili-
zation map

s : VectkðM;FÞ ! Vectkþ1ðM;FÞ

which induces an isomorphism

VectkðM;RÞ ¼ Vectkþ1ðM;RÞ for k > m

VectkðM;CÞ ¼ Vectkþ1ðM;CÞ for 2k > m
½2,

These values of k comprise the stable range.

The K-Theory

The direct sum 0 and tensor product 1 make
Vect(M,F) into a semiring; we denote the associated
ring defined by the Grothendieck construction by
KF(M). If V 2 Vect(M,F), let [V] 2 KF(M) be the
corresponding element of K-theory; KF(M) is gener-
ated by formal differences [V1]( [V2]; such formal
differences are called virtual bundles.

The Grothendieck construction (see K-theory)
introduces nontrivial relations. Let Sm denote the
standard sphere in Rmþ1. Since

TðSmÞ 0 l ¼ ðmþ 1Þl

we can easily see that [TSm]=m[ l ] in KR(Sm),
despite the fact that T(Sm) is not isomorphic to ml
for m 6¼ 1, 3, 7.

Let L denote the nontrivial real line bundle over
RPk. Then TRPk 0 l= (kþ 1)L, so

½TRPk, ¼ ðkþ 1Þ½L, ( ½ l ,
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The map V ! Rank(V) extends to a surjective
map from KF(M) to Z. We denote the associated
ideal of virtual bundles of virtual rank 0 by

fKFðMÞ :¼ kerðRankÞ

In the stable range, V ! [V]( k[ l ] identifies

VectkðM;RÞ ¼gKRðMÞ if k > m

VectkðM;CÞ ¼gKCðMÞ if 2k > m
½3,

These groups contain nontrivial torsion. Let L be the
nontrivial real line bundle over RPk. Then

gKRðRPkÞ ¼ Z ' f½L, ( ½ l ,g=2*ðkÞZf½L, ( ½ l ,g

where *(k) is the Adams number.

Classifying Spaces

Let Grk(F, n) be the Grassmannian of k-dimensional
subspaces of Fn. By mapping a k-plane + in Fn to the
corresponding orthogonal projection on +, we can
identify Grk(F, n) with the set of orthogonal projec-
tions of rank k:

f) 2 HomðFnÞ: )2 ¼ ); )2 ¼ ); trð)Þ ¼ kg

There is a natural associated tautological k-plane
bundle

VkðF; nÞ 2 VectkðGrkðF; nÞ;FÞ

whose fiber over a k-plane + is the k-plane itself:

VkðF; nÞ :¼ fð); xÞ 2 HomðFnÞ ) Fn : )x ¼ xg

Let [M, Grk(F, n)] denote the set of homotopy
equivalence classes of smooth maps f from M to
Grk(F,n). Since [f1]= [f2] implies that f 21V is
isomorphic to f 22V, the association

f ! f 2VkðF; nÞ 2 VectkðM;FÞ

induces a map

½M;GrkðF; nÞ, ! VectkðM;FÞ

This map defines a natural equivalence of functors
in the stable range:

½M;GrkðR; * þ kÞ, ¼ VectkðM;RÞ for * > m

½M;GrkðC; * þ kÞ, ¼ VectkðM;CÞ for 2* > m
½4,

The natural inclusion of Fn in Fnþ1 induces natural
inclusions

GrkðF; nÞ%GrkðF; nþ 1Þ
VkðF; nÞ%VkðF; nþ 1Þ

½5,

Let Grk(F,1) and Vk(F,1) be the direct limit
spaces under these inclusions; these are the infinite-
dimensional Grassmannians and classifying bundles,

respectively. The topology on these spaces is the
weak or inductive topology. The Grassmannians are
called classifying spaces. The isomorphisms of
eqn [4] are compatible with the inclusions of eqn [5]
and we have

½M;GrkðF;1Þ, ¼ VectkðM;FÞ ½6,

Spaces with Finite Covering Dimension

A metric space X is said to have a covering
dimension at most m if, given any open cover {U#}
of X, there exists a refinement {O%} of the cover so
that any intersection of more than mþ 1 of the {O%}
is empty. For example, any manifold of dimension
m has covering dimension at most m. More
generally, any m-dimensional cell complex has
covering dimension at most m.

The isomorphisms of [2]–[4], and [6] continue to
hold under the weaker assumption that M is a metric
space with covering dimension at most m.

Characteristic Classes of Vector
Bundles

The Cohomology of Grk (F,1)

The cohomology algebras of the Grassmannians are
polynomial algebras on suitably chosen generators:

H2ðGrkðR;1Þ;Z2Þ ¼ Z2½sw1; . . . ; swk,
H2ðGrkðC;1Þ;ZÞ ¼ Z½c1; . . . ; ck,

½7,

The Stiefel–Whitney Classes

Let V 2 Vectk(M,R). We use eqn [6] to find
! :M ! Grk(R,1) which classifies V; the map !
is uniquely determined up to homotopy and, using
eqn [7], one sets

swiðVÞ :¼ !2swi 2 HiðM;Z2Þ

The total Stiefel–Whitney class is then defined by

swðVÞ ¼ 1þ sw1ðVÞ þ ' ' ' þ swkðVÞ

The Stiefel–Whitney class has the properties:

1. If f :X1 ! X2, then f 2(sw(V))= sw(f 2V).
2. sw(V 0W)= sw(V)sw(W).
3. If L is the Möbius bundle over S1, then sw1(L)

generates H1(S1;Z2)=Z2.

The cohomology algebra of real projective space
is a truncated polynomial algebra:

H2ðRPk;Z2Þ ¼ Z2½x,=xkþ1 ¼ 0
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Since TRPk 0 l= (kþ 1)L, one has

swðTRPkÞ ¼ ð1þ xÞkþ1

¼ 1þ kxþ ðkþ 1Þk
2

x2 þ ' ' ' ½8,

Orientability and Spin Structures

The Stiefel–Whitney classes have real geometric
meaning. For example, sw1(V)= 0 if and only if V
is orientable; if sw1(V)= 0, then sw2(V)= 0 if and
only if V admits a spin structure. With reference to
the discussion on the tangent bundle or projective
space, eqn [8] yields

sw1ðTRPkÞ ¼ 0 if k . 0 mod 2
x if k . 1 mod 2

!

Thus, RPk is orientable if and only if k is odd.
Furthermore,

sw2ðTRPkÞ ¼ 0 if k . 3mod4
x if k . 1mod4

!

Thus, TRPk is spin if and only if k . 3mod4.

Chern Classes

Let V 2 Vectk(M,C). We use eqn [6] to find
! :M ! Grk(C,1) which classifies V; the map !
is uniquely determined up to homotopy and, using
eqn [7], one sets

ciðVÞ :¼ !2ci 2 H2iðM;ZÞ

The total Chern class is then defined by

cðVÞ :¼ 1þ c1ðVÞ þ ' ' ' þ ckðVÞ

The Chern class has the properties:

1. If f :X1 ! X2, then f 2(c(V))= c(f 2V).
2. c(V 0W)= c(V)c(W).
3. Let L be the classifying line bundle over

S2 =CP1. Then
R
S2 c1(L)= (1.

The cohomology algebra of complex projective
space also is a truncated polynomial algebra

H2ðCPk;ZÞ ¼ Z½x,=xkþ1

where x= c1(L) and L is the complex classifying line
bundle over CPk =Gr1(C, kþ 1). If TcCPk is the
complex tangent bundle, then

cðTcCPkÞ ¼ ð1þ xÞkþ1

The Pontrjagin Classes

Let V be a real vector bundle over a topological
space X of rank r= 2k or r= 2kþ 1. The Pontrjagin

classes pi(V) 2 H4i(X;Z) are characterized by the
properties:

1. p(V)= 1þ p1(V)þ ' ' ' þ pk(V).
2. If f :X1 ! X2, then f 2(p(V))= p(f 2V).
3. p(V 0W)= p(V)p(W) mod elements of order 2.
4.
R
CP2 p1(TCP2)= 3.

We can complexify a real vector bundle V to
construct an associated complex vector bundle VC.
We have

piðVÞ :¼ ð(1Þic2iðVCÞ

Conversely, if V is a complex vector bundle, we can
construct an underlying real vector bundle VR by
forgetting the underlying complex structure. Mod-
ulo elements of order 2, we have

pðVRÞ ¼ cðVÞcðV2Þ

Let TCPk be the real tangent bundle of complex
projective space. Then

pðTCPkÞ ¼ ð1( x2Þkþ1

Line Bundles

Tensor product makes Vect1(M,F) into an abelian
group. One has natural equivalences of functors
which are group homomorphisms:

sw1 : Vect1ðM;RÞ ! H1ðM;Z2Þ
c1 : Vect1ðM;CÞ ! H2ðM;ZÞ

A real line bundle L is trivial if and only if it is
orientable or, equivalently, if sw1(L) vanishes. A
complex line bundle L is trivial if and only if
c1(L)= 0. There are nontrivial vector bundles with
vanishing Stiefel–Whitney classes of rank k > 1. For
example, swi(TSk)= 0 for i > 0 despite the fact that
TSk is trivial if and only if k= 1, 3, 7.

Curvature and Characteristic Classes

de Rham Cohomology

We can replace the coefficient groupZ byC at the cost
of losing information concerning torsion. Thus, we
may regard pi(V) 2 H4i(M;C) if V is real or ci(V) 2
H2i(M;C) if V is complex. Let M be a smooth
manifold. Let C1"pM be the space of smooth
p-forms and let

d : C1"pM ! C1"pþ1M
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be the exterior derivative. The de Rham cohomology
groups are then defined by

Hp
deRðMÞ :¼

kerðd : C1"pM ! C1"pþ1MÞ
imðd : C1"p(1M ! C1"pMÞ

The de Rham theorem identifies the topological
cohomology groups Hp(M;C) with the de Rham
cohomology groups Hp

deR(M) which are given
differential geometrically.

Given a connection on V, the Chern–Weyl theory
enables us to compute Pontrjagin and Chern classes in
de Rham cohomology in terms of curvature.

Connections

Let V be a vector bundle over M. A connection

r : C1ðVÞ ! C1ðT2M1 VÞ

on V is a first-order partial differential operator
which satisfies the Leibnitz rule, that is, if s is a
smooth section to V and if f is a smooth function
on M,

rðfsÞ ¼ df 1 sþ frs

If X is a tangent vector field, we define

rXs ¼ hX;rsi

where h' , 'i denotes the natural pairing between the
tangent and cotangent spaces. This generalizes to the
bundle setting the notion of a directional derivative
and has the properties:

1. rfXs= frXs.
2. rX(fs)=X(f )sþ frXs.
3. rX1þX2s=rX1sþrX2s.
4. rX(s1 þ s2)=rXs1 þrXs2.

The Curvature 2-Form

Let !p be a smooth p-form. Then

r : C1ð"pM1 VÞ ! C1ð"pþ1M1 VÞ

can be extended by defining

rð!p 1 sÞ ¼ d!p 1 sþ ð(1Þp!p ^rs

In contrast to ordinary exterior differentiation, r2

need not vanish. We set

#ðsÞ :¼ r2s

This is not a second-order partial differential
operator; it is a zeroth-order operator, that is,

#ðfsÞ ¼ ddf 1 s( df ^rsþ df ^ rsþ fr2s

¼ f#ðsÞ

The curvature operator # can also be computed
locally. Let (si) be a local frame. Expand

rsi ¼
X

j

! j
i 1 sj

to define the connection 1-form !. One then has

r2si ¼ d! j
i ( !

k
i ^ !

j
k

" #
1 sk

and so

# j
i ¼ d! j

i ( !
k
i ^ !

j
k

If s̃= js
i j is another local frame, we compute

~! ¼ dgg(1 þ g!g(1 and ~# ¼ g#g(1

Although the connection 1-form ! is not tensorial, the
curvature is an invariantly defined 2-form-valued
endomorphism of V.

Unitary Connections

Let (' , ') be a nondegenerate Hermitian inner product
on V. We say that r is a unitary connection if

ðrs1; s2Þ þ ðs1;rs2Þ ¼ dðs1; s2Þ

Such connections always exist and, relative to a
local orthonormal frame, the curvature is skew-
symmetric, that is,

#þ #2 ¼ 0

Thus, # can be regarded as a 2-form-valued element
of the Lie algebra of the structure group, O(V) in the
real setting or U(V) in the complex setting.

Projections

We can always embed V in a trivial bundle 1* of
dimension *; let +V be the orthogonal projection on
V. We project the flat connection to V to define a
natural connection on V. For example, if M is
embedded isometrically in the Euclidean space R*,
this construction gives the Levi-Civita connection on
the tangent bundle TM. The curvature of this
connection is then given by

# ¼ +V d+V d+V

Let VP be the fiber of V over a point P 2 M. The
inclusion i :V % Rn defines the classifying map
f :P ! Grk(R,n) where we set

f ðPÞ ¼ iðVPÞ
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Chern–Weyl Theory

Let r be a Riemannian connection on a real vector
bundle V of rank k. We set

pð#Þ :¼ det I þ 1

2+
#

$ %

Let #T denote the transpose matrix of differential
form. Since #þ #T = 0, the polynomials of odd
degree in # vanish and we may expand

pð#Þ ¼ 1þ p1ð#Þ þ ' ' ' þ prð#Þ

where k= 2r or k= 2rþ 1 and the differential forms
pi(#) 2 C1"4i(M) are forms of degree 4i.

Changing the gauge (i.e., the local frame) replaces
# by g#g(1 and hence p(#) is independent of the
local frame chosen. One can show that dpi(#)= 0;
let [pi(#)] denote the corresponding element of de
Rham cohomology. This is independent of the
particular connection chosen and [pi(#)] represents
pi(V) in H4i(M;C).

Similarly, let V be a complex vector bundle of
rank k with a Hermitian connection r. Set

cð#Þ :¼ det I þ
ffiffiffiffiffiffiffi
(1

p

2+
#

 !

¼ 1þ c1ð#Þ þ ' ' ' þ ckð#Þ

Again ci(#) is independent of the local gauge and
dci(#)= 0. The de Rham cohomology class [ci(#)]
represents ci(V) in H2i(M;C).

The Chern Character

The total Chern character is defined by the formal
sum

chð#Þ :¼ trðe
ffiffiffiffiffi
(1

p
#=2+Þ

¼
X

*

ð
ffiffiffiffiffiffiffi
(1

p
Þ*

ð2+Þ**!
trð#*Þ

¼ ch0ð#Þ þ ch1ð#Þ þ ' ' '

Let ch(V)= [ch(#)] denote the associated de Rham
cohomology class; it is independent of the particular
connection chosen. We then have the relations

chðV 0WÞ ¼ chðVÞ þ chðWÞ
chðV 1WÞ ¼ chðVÞchðWÞ

The Chern character extends to a ring isomorph-
ism from KU(M)1Q to He(M;Q), which is a
natural equivalence of functors; modulo torsion,
K theory and cohomology are the same functors.

Other Characteristic Classes

The Chern character is defined by the exponential
function. There are other characteristic classes
which appear in the index theorem that are defined
using other generating functions that appear in
index theory. Let x := (x1, . . . ) be a collection of
indeterminates. Let s*(x) be the *th elementary
symmetric function;

Y

*

ð1þ x*Þ ¼ 1þ s1ðxÞ þ s2ðxÞ þ ' ' '

For a diagonal matrix A := diag("1, . . . ), denote the
normalized eigenvalues by xj :=

ffiffiffiffiffiffiffi
(1

p
"j=2+. Then

cðAÞ ¼ det 1þ
ffiffiffiffiffiffiffi
(1

p

2+
A

 !

¼ 1þ s1ðxÞ þ ' ' '

Thus, the Chern class corresponds in a certain sense
to the elementary symmetric functions.

Let f (x) be a symmetric polynomial or more
generally a formal power series which is symmetric.
We can express f (x)= F(s1(x), . . . ) in terms of the
elementary symmetric functions and define
f (#)= F(c1(#), . . . ) by substitution. For example,
the Chern character is defined by the generating
function

f ðxÞ :¼
Xk

*¼1
ex*

The Todd class is defined using a different
generating function:

tdðxÞ :¼
Y

*

x*ð1( e(x* Þ(1

¼ 1þ td1ðxÞ þ ' ' '

If V is a real vector bundle, we can define
some additional characteristic classes similarly. Let
{&

ffiffiffiffiffiffiffi
(1

p
"1, . . . } be the nonzero eigenvalues of a

skew-symmetric matrix A. We set xj =( "j=2+
and define the Hirzebruch polynomial L and the Â
genus by

LðxÞ :¼
Y

*

x*
tanhðx*Þ

¼ 1þ L1ðxÞ þ L2ðxÞ þ ' ' '

ÂðxÞ :¼
Y

*

x*
2 sinhðð1=2Þx*Þ

¼ 1þ Â1ðxÞ þ Â2ðxÞ þ ' ' '

The generating functions

x

tanhðxÞ and
x

2 sinhðð1=2ÞxÞ
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are even functions of x, so the ambiguity in the
choice of sign in the eigenvalues plays no role. This
defines characteristic classes

LiðVÞ 2 H4iðM;CÞ and ÂiðVÞ 2 H4iðM;CÞ

Summary of Formulas

We summarize below some of the formulas in terms
of characteristic classes:

1. c1(#)=

ffiffiffiffiffiffiffi
(1

p
tr(#)

2+
,

2. c2(#)=
1

8+2
{tr(#2)( tr(#)2},

3. p1(#)= ( 1

8+2
tr(#2),

4. ch(V)= kþ c1 þ
c21 ( 2c2

2
þ ' ' '

! '
(V),

5. td(V)= 1þ c1
2
þ (c21þ c2)

12
þ c1c2

24
þ'' '

! '
(V),

6. Â(V)= 1( p1
24
þ 7p21 ( 4p2

5760
þ ' ' '

! '
(V),

7. L(V)= 1þ p1
3
þ 7p2 ( p21

45
þ ' ' '

! '
(V),

8. td(V 0W)= td(V)td(W),

9. Â(V 0W)= Â(V)Â(W),

10. L(V 0W)=L(V)L(W).

The Euler Form

So far, this article has dealt with the structure groups
O(k) in the real setting and U(k) in the complex
setting. There is one final characteristic class which
arises from the structure group SO(k). Suppose k= 2n
is even. While a real antisymmetric matrix A of shape
2n) 2n cannot be diagonalized, it can be put in block
off 2-diagonal form with blocks,

0 "*

("* 0

$ %

The top Pontrjagin class pn(A)= x21 ' ' ' x2n is a perfect
square. The Euler class

e2nðAÞ :¼ x1 ' ' ' xn
is the square root of pn. If V is an oriented vector
bundle of dimension 2n, then

e2nðVÞ 2 H2nðM;CÞ

is a well-defined characteristic class satisfying
e2n(V)2 = pn(V).

If V is the underlying real oriented vector bundle
of a complex vector bundle W,

e2nðVÞ ¼ cnðWÞ

If M is an even-dimensional manifold, let em(M) :=
em(TM). If we reverse the local orientation of M,
then em(M) changes sign. Consequently, em(M) is a
measure rather than an m-form; we can use the
Riemannian measure on M to regard em(M) as a
scalar. Let Rijkl be the components of the curvature of
the Levi-Civita connection with respect to some local
orthonormal frame field; we adopt the convention
that R1221= 1 on the standard sphere S2 in R3. If
"I,J := (eI, eJ) is the totally antisymmetric tensor, then

e2n :¼
X

I; J

"I;JRi1i2j2j1 ' ' 'Rim(1imjmjm(1

ð8+Þnn!

Let R :=Rijji and !ij :=Rikkj be the scalar curvature
and the Ricci tensor, respectively. Then

e2 ¼
1

4+
R

e4 ¼
1

32+2
ðR2 ( 4j!j2 þ jRj2Þ

Characteristic Classes of Principal
Bundles

Let g be the Lie algebra of a compact Lie group G.
Let + :P ! M be a principal G bundle over M. For
) 2 P, let

V) :¼ ker +2 : T)P ! T+)M and H) :¼ V?
)

be the vertical and horizontal distributions of the
projection +, respectively. We assume that the metric
on P is chosen to be G-invariant and such that
+2 :H) ! T+)M is an isometry; thus, + is a Rieman-
nian submersion. If F is a tangent vector field on M,
let HF be the corresponding vertical lift. Let !V be
orthogonal projection on the distribution V. The
curvature is defined by

#ðF1; F2Þ ¼ !V½HðF1Þ;HðF2Þ,

the horizontal distributionH is integrable if and only if
the curvature vanishes. Since the metric isG-invariant,
#(F1, F2) is invariant under the group action. We may
use a local section s to P over a contractible coordinate
chart O to split +(1O=O)G. This permits us to
identify V with TG and to regard # as a g-valued
2-form. If we replace the section s by a section s̃, then
#̃ = g#g(1 changes by the adjoint action of G on g.

If V is a real or complex vector bundle over M,
we can put a fiber metric on V to reduce the
structure group to the orthogonal group O(r) in the
real setting or the unitary group U(r) in the complex
setting. Let PV be the associated frame bundle. A
Riemannian connection r on V induces an invariant
splitting of TPV =V 0H and defines a natural
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metric on PV ; the curvature # of the connection r
defined here agrees with the definition previously.

Let Q(G) be the algebra of all polynomials on
g which are invariant under the adjoint action. If
Q 2 Q(G), then Q(#) is well defined. One has
dQ(#)= 0. Furthermore, the de Rham cohomology
class Q(P) := [Q(#)] is independent of the particular
connection chosen. We have

QðUðkÞÞ ¼ C½c1; . . . ; ck,
QðSUðkÞÞ ¼ C½c2; . . . ; ck,
QðOð2kÞÞ ¼ C½p1; . . . ; pk,

QðOð2kþ 1ÞÞ ¼ C½p1; . . . ; pk,
QðSOð2kÞÞ ¼ C½p1; . . . ; pk; ek,=e2k ¼ pk

QðSOð2kþ 1ÞÞ ¼ C½p1; . . . ; pk,

Thus, for this category of groups, no new character-
istic classes ensue. Since the invariants are Lie-
algebra theoretic in nature,

QðSpinðkÞÞ ¼ QðSOðkÞÞ

Other groups, of course, give rise to different
characteristic rings of invariants.
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Introduction

The relationship between topological invariants and
functional integrals from quantum Chern–Simons
theory discovered by Witten (1989) raised several

challenges for mathematicians. Most of the tremen-
dous amount of mathematical activity generated by
Witten’s discovery has been concerned primarily with
issues that arise after one has accepted the functional
integral as a formal object. This has left, as an
important challenge, the task of giving rigorous
meaning to the functional integrals themselves and to
rigorously derive their relation to topological invar-
iants. The present article will discuss efforts to put the
functional integral itself on a rigorous basis.
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