EXISTING CONTEXT:

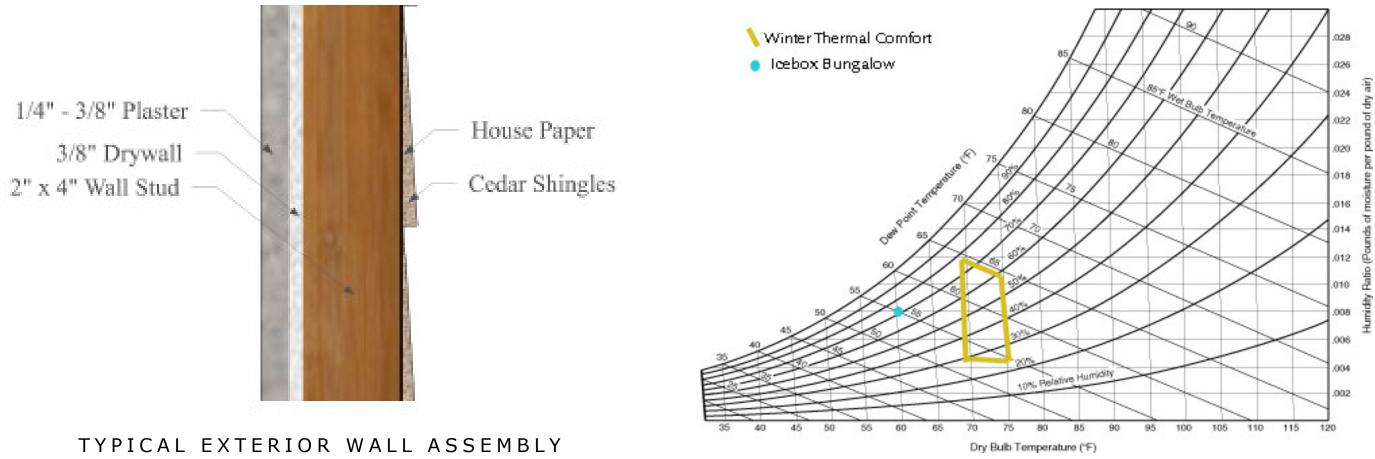
HYPOTHESIS

The wall assembly of Jessie's house does not meet ASHRAE Standard 55-2004 for thermal comfort.

TABLE 1: ASHRAE STA MEEB Table G1) ²	ANDARD 55-2004
Envelope Component	Maximum U-Value
Fixed Window	1.22
Light Framed Wall	0.089

0.066

0.081


ABSTRACT

Floor

Roof

The assembly components and thermal conduction of walls of a 1953, 732 square foot bungalow were evaluated with the use of an infra-red digital thermometer, an infra-red camera and visual inspection. The assessment was made to determine if the envelope met ASHRAE standards. Measurements were made with and without home heating on. Following initial measurements a second assessment was made with insulating foam panels placed against the exterior wall of the living room. After calculating u values for the envelope and estimating heat loss, the opportunity costs of insulation purchase was evaluated against CO2 production and natural gas heating costs. Fuel savings over 35 months would cover the cost of installing additional insulation.

EXISTING CONDITION OF UNDER FLOOR INSULATION

Arch 591: ECS Final Case Study Project Andrew Cusack, Eric Lindstrom, Barbara Reed, Jessie Scott

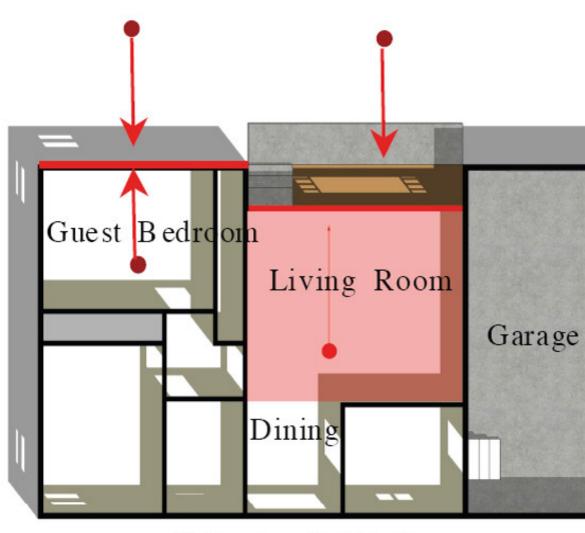
Material 75" hard ecking 33.6 density ongue and roove 2×6 joists a) 12% fran R 13 insula

@ .33 of fl Total R Va


 $R = {}^{\circ}F/hft^2$

Floor Asse Wall Asser Ceiling/Roof Infiltration 15mph, 66.2 Total Heat Total Therm

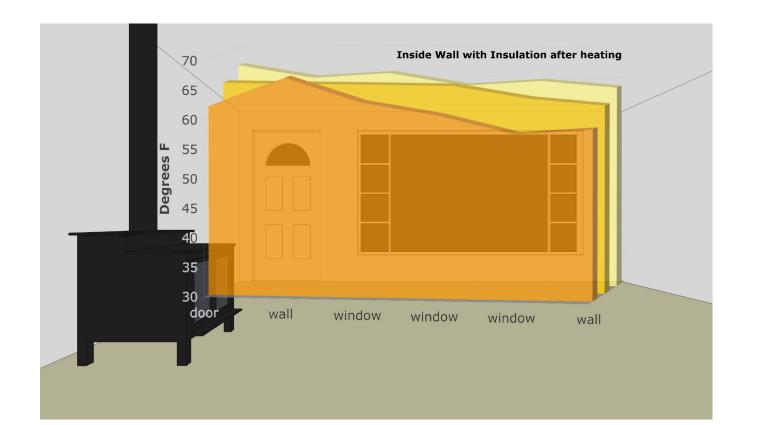
*U=1/R or

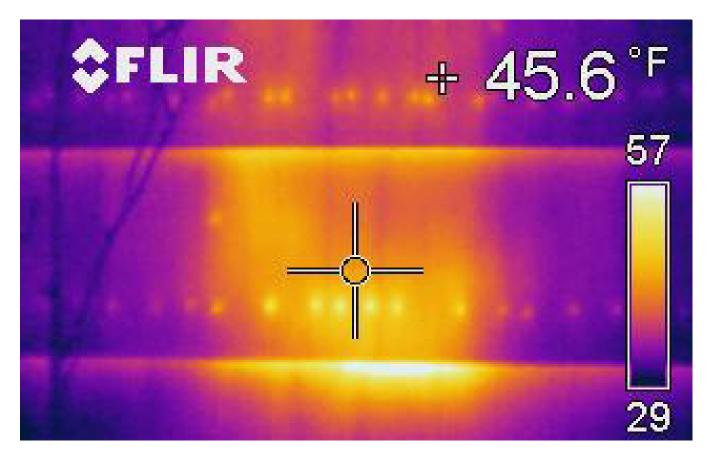

ENVELOPE AND R VALUES

TESTING & RESULTS:

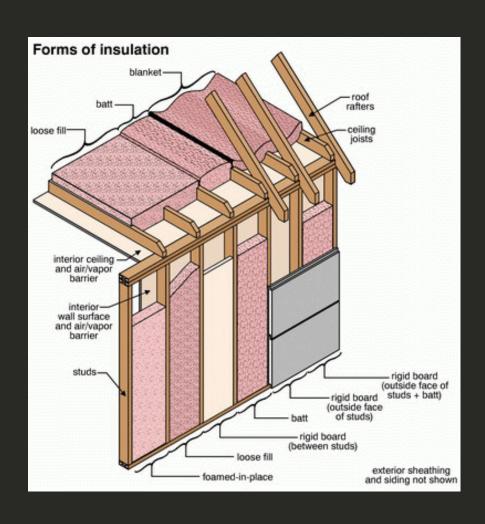
loor		Wall	Wall			
s	R*	Materials	R		Materials	R
dwood	0.68	Interior air film	0.68		0.25" plaster	0.16
ty I	0.99	0.25" lightweight gypsum plaster	0.16		0.5" drywall	0.45
R-18 aming	2.16	0.5" drywall	0.45		8" blown-in mineral fiber insulation	22.00
ation loor	4.30	3.75" airspace (2 x 4 studs	1.10		2.5' average air space	8.80
alue	8.13	2 x 4 joists R-18 @ 12% framing	1.32		Interior air film	0.68
		1953 tarpaper	0.5" intermediate density sheathing		2 x 6 joists R-18 @ 12% framing	2.16
		Double layer cedar shingles	1.19		0.5" intermediate density sheathing	1.09
t ² /Btu ((I-P)	Total R Value	5.99		Asphalt shingles	0.44
					Exterior air film	0.17
					Total R Value	35.95

Table 3. TOTAL HEAT LOSS OF THE UNIMPROVED THERMAL ENVELOPEINCLUDING WINDOWS AND DOORS


G WINDOWS AND DOOKS			
Materials	U *	Area ft ²	Q **
	0.25	40.50	202.50
e window with storm	0.51	87.10	888.42
ne vinyl window	0.51	75.72	772.34
embly	0.12	731.50	1755.6
embly	0.17	624.20	2122.28
of Assembly	0.028	731.50	409.64
(medium, (Δ T 28°F, wind speed			1468.49
.75 cfm, ACH 0.73)			
		Sum of Q	7619.274
Loss: Btu Per day (24 x Sum of Q)			182,862.58
ms per day (99,954 Btu/therm)			1.83
Btu/°F hft ² **Q=Btu/h Δ T = 20 °	F		



Researcher position taking sling psychrometer and IR thermometer measurements


- Wall being tested

MELTING THE ICE BOX: INCREASING ENERGY SAVINGS

TABLE 4. HOMEOWNER COST/BENEFIT ANALYSIS OF INSTALLING INSULATION

Cost be	Cost benefit analysis of installing insulation							
	Material Added	Old Q	New Q*	% Savings in Btu	Cost (\$/ft ²)	NW Natural Rebate (\$/ft ²)	Total cost after rebate	Pay back time months **
Floor	R-1 fiberglass batt insulation	1755.6	784.45	55%	0.70	0.25	329.12	31
Wall	R-19 Cementitious foam insulation through wall membrane	2122.28	577.43	73%	1.80	0.45	842.64	56
*calculations not shown ** @ cost of \$1.05/therm								

Envelope Component	Maximum U-Value	Existing U Values	U Values With Added Insulation	
Floor	0.066	0.12	0.054	
Light Framed Wall	0.089	0.17	0.046	
Fixed Window	1.22	0.51	No Change	
Roof	0.081	0.028	No Change	

