Linear Collider Detectors

Jim Brau Univ. of Oregon

Fermilab April 5, 2002

- Many open issues for LC detectors
- Physics goals involve low event rates with relatively low backgrounds
 - opportunity for novel approaches

The "next" Linear Collider

The "next" Linear Collider proposals include plans to deliver **a** <u>few hundred</u> fb⁻¹ of integrated lum. per year

	TESLA	JLC-C	JLC-C NLC/JLC-X *	
	(DESY-Germany)	(Japan) (S	LAC/KEK-Japan)	
L _{design} (10 ³⁴)	3.4 → 5.8	0.43	$2.2 \rightarrow 3.4$	
E _{CM} (GeV)	500 → 800	500	500 → 1000	
Eff. Gradient (MV/m)	$23.4 \rightarrow 35$	34	70	
RF freq. (GHz)	1.3	5.7	11.4	
Δt_{bunch} (ns)	337 → 176	2.8	1.4	
#bunch/train	2820 → 4886	72	190	
Beamstrahlung (%)	$3.2 \rightarrow 4.4$		$4.6 \rightarrow 8.8$	

* US and Japanese X-band R&D cooperation, but machine parameters may differ

There is perception that Linear Collider Detectors are trivial

Not true!

But requirements are orthogonal to hadron collider requirements

0.06% X₀

Here are some comparisons

LC

Tracker thicknes	SS:
CMS	0.30 X ₀
ATLAS	0.28 X ₀
LC	0.05 X ₀
Vertex Detector	layer thickness
CMS	1.7 % X ₀
ATLAS	1.7 % X ₀

Vertex Detector granularity CMS 39 Mpixels ATLAS 100 Mpixels LC (Telsa) 800 Mpixels

ECAL granularity (detector elements)CMS76 x 103ATLAS120 x 103LC(Tesla)32 x 106

Unburdened by high radiation and high event rate, the LC can use

6 times less material in tracker
vxd 3-6 times closer to IP
35 times smaller pixels and 30 times thinner vxd layers
> 200 times higher ECAL granularity (if it's affordable)

LC Detectors, Jim Brau, Fermilab, April 5, 2002

IR Issues

Time structure

NLC (JLC)

190 bunches/train ⇒ 1.4 ns bunch spacing ⇒ crossing angle (20 mrad) - (8 mrad for JLC) might want to time-stamp within train?

Tesla 2820 bunches/train \Rightarrow 950 µsec long no crossing angle, but could have one very much higher duty cycle (how to deal with?)

LC Detectors, Jim Brau, Fermilab, April 5, 2002

IR Issues

Small spot size issues

nm vertical stability required ⇒ permanent magnets for QD0 and QF1 passive compliance + active suppression 15 ns response within bunch train (NLC)

Beam-beam interaction

broadening of energy distribution (beamstrahlung)

~5% of power at 500 GeV

backgrounds

e⁺e⁻ pairs radiative Bhabhas low energ tail of disrupted beam neutron "back-shine" from dump hadrons from gamma-gamma

IR Issues

e⁺e⁻ pairs

 \mathbf{e}^{\pm} and photon background in tracing detector 120 VXD 1 TeV ↔ 500 GeV limit -11000,000 VXD Hit Density (hits/mm2/train) photon Phosen Flux (2,000 e 0.1 0.01 20 0 4 5 6 7 8 9 10 з 6 7 89 100 Radius (cm)

Hits/bunch train/mm² in VXD, and photons/train in TPC

Vertex Detector

physics motivates excellent efficiency and purity large pair background from beamstrahlung \rightarrow large solenoidal field (\geq 3 Tesla) pixelated detector [(20 µm)² \rightarrow 2500 pixels/mm²] min. inner radius (< 1.5 cm), ~5 barrels, < 4 µm resol, thickness < 0.2 % X₀

<u>Calorimetry</u> excellent jet reconstruction eg. W/Z separation use energy flow for best resolution (calorimetry and tracking work together) fine granularity and minimal Moliere radius charge/neutral separation → large BR²

Tracking

robust in Linear Collider environment isolated particles (e charge, μ momentum) charged particle component of jets jet energy flow measurements assists vertex detector with heavy quark tagging forward tracking (susy and lum measurement)

Muon system

<u>high efficiency</u> with small backgrounds secondary role in calorimetry ("tail catcher")

Particle ID

dedicated system <u>not</u> needed for primary HE physics goals particle ID built into other subsystems (eg. dE/dx in TPC)

Beamline requirements

Beam energy measurement

Need 50-100 MeV (10⁻⁴) precision
SLD WI SRD technique is probably adequate (needs work)
TESLA plans BPM measurement pre-IP (needs work)
Luminosity spectrum

acolinearity of Bhabhas
question - can it be extracted from WI SRD?

What about effect of beam disruption

Polarization measurement

SLD achieved 0.5% - same technique at NLC should give 0.25% TESLA plans only before IP (is this okay? NLC bias says no) Positron polarization helps dramatically

LC Detectors **Tesla TDR Detector** American High Energy IR 1.) L conventional large detector based on the early American L (Sitges/Fermilab LCWS studies) 2.) SD (silicon detector) motivated by energy flow measurement **JIC** Detector

3 Tesla

LC Detectors

TESLA TDR

- "pixel" vertex detector
- silicon/W EM calorimeter (energy-flow)
- 4 T coil

LC Detectors, Jim Brau, Fermilab, April 5, 2002

LC Detectors, Jim Brau, Fermilab, April 5, 2002

Resource Book L Detector

LC Detectors, Jim Brau, Fermilab, April 5, 2002

Resource Book L Detector

LC Detectors, Jim Brau, Fermilab, April 5, 2002

Resource Book SD Detector

LC Detectors, Jim Brau, Fermilab, April 5, 2002

Resource Book SD Detector

LC Detectors, Jim Brau, Fermilab, April 5, 2002

Resource Book HE Detector Comparison

	L	<u>SD</u>
Solenoid	3 T	5 T
R(solenoid)	4.1 m	2.8 m
BR ² (tracking)	12 m²T	8 m²T
R _M (EM cal)	2.1 cm	1.9 cm
<u>trans.seg</u> R _M	3.8 0.6 (6th layer Si)	0.26
R _{max} (muons)	645 cm	604 cm

Resource Book P Detector

5 barrel CCD vertex detector 3 Tesla Solenoid inside hadron calorimeter TPC Central Tracking ($25 \rightarrow 150$ cm) Pb/scintillator or Liq. Argon EM and Hadronic calorimeter EM 30 x 30 mrad² Had 80 x 80 mrad² Muon - 10 10cm iron plates w/ gas chambers (RPC?)