### Vertex Detector

same VXD inside all three detectors (L, SD, and P)
 670,000,000 pixels [20x20x20 (μm)<sup>3</sup>]
 3 μm hit resolution
 inner radius = 1.2 cm

5 layer stand-alone tracking



LC Detectors, Jim Brau, Fermilab, April 5, 2002

## Impact Parameter Resolution



LC Detectors, Jim Brau, Fermilab, April 5, 2002

# Flavor Tagging



LC Detectors, Jim Brau, Fermilab, April 5, 2002

| Tracking                     |                             |                              |                             |  |
|------------------------------|-----------------------------|------------------------------|-----------------------------|--|
| Inner Radius<br>Outer Radius | <u>L</u><br>50 cm<br>200 cm | <u>SD</u><br>20 cm<br>125 cm | <u>P</u><br>25 cm<br>150 cm |  |
| Layers                       | <b>144</b><br>трс           | 5<br>Si drift or μstrips     | <b>122</b><br>трс           |  |
| Fwd Disks                    | 5<br>double-sided S         | 5<br>Si double-sided Si do   | 5<br>uble-sided Si          |  |
| B(Tesla)                     | 3                           | 5                            | 3                           |  |
|                              |                             | I C Detectors Tim B          | rau Fermilah April 5 2002   |  |



LC Detectors, Jim Brau, Fermilab, April 5, 2002

| Calorimeters      |              |                         |              |  |
|-------------------|--------------|-------------------------|--------------|--|
|                   | L            | <u>SD</u>               | <u>P</u>     |  |
| EM Tech           | Pb/scin      | W/Si                    | Pb/scin      |  |
|                   | (4mm/1mm)x40 | (2.5mm/gap)x40          | (4mm/3mm)x32 |  |
| Had lech          | Pb/scin      | Cu or Fe/RPC<br>(or Pb) | C Pb/scin    |  |
| Inner Radius      | 196 cm       | 127 cm                  | 150 cm       |  |
| EM-outer Radius   | 220 cm       | 142 cm                  | 185 cm       |  |
| HAD-outer Radius  | 365 cm       | 245 cm                  | 295 cm       |  |
| Solenoid Coil     | outside      | outside                 | between      |  |
|                   | Had          | Had                     | EM/Had       |  |
| EM trans.         |              |                         |              |  |
| Seg.<br>Had trans | 40 mr        | 4 mr                    | 30 mr        |  |
| seg.              | 80 mr        | 80 mr                   | 80 mr        |  |



#### Muon Detection

#### Model L

 $\begin{array}{ll} 24\times5\ cm\ Fe\ plates\ +\ RPCs\\ \sigma_{r\theta}\ \approx\ 1\ cm\ (x\ 24)\ \ \sigma_{z}\ \approx\ 1\ cm\ (x\ 4)\\ coverage\ to\ \ \sim\ 50\ mrad \end{array}$ 

### NLC Cost Estimates

General considerations: Based on past experience Contingency = ~ 40% Designs constrained

#### HE IR

| L  | 359.0 M\$ |
|----|-----------|
| SD | 326.2 M\$ |

#### LE IR

| 2 | 21 | 0. | 0 | M\$ |
|---|----|----|---|-----|
|   |    |    |   |     |

# NLC Cost Estimates

|                   | L      | SD     | Р      |
|-------------------|--------|--------|--------|
| 1.1 Vertex        | 4.0    | 4.0    | 4.0    |
| 1.2 Tracking      | 34.6   | 19.7   | 23.4   |
| 1.3 Calorimeter   | 48.9   | 60.2   | 40.7   |
| 1.3.1 EM          | (28.9) | (50.9) | (23.8) |
| 1.3.2 Had         | (19.6) | (8.9)  | (16.5) |
| 1.3.3 Lum         | (0.4)  | (0.4)  | (0.4)  |
| 1.4 Muon          | 16.0   | 16.0   | 8.8    |
| 1.5 DAQ           | 27.4   | 52.2   | 28.4   |
| 1.6 Magnet & supp | 110.8  | 75.6   | 30.5   |
| 1.7 Installation  | 7.3    | 7.4    | 6.8    |
| 1.8 Management    | 7.4    | 7.7    | 7.4    |
| SUBTOTAL          | 256.4  | 242.8  | 150.0  |
| 1.9 Contingency   | 102.6  | 83.4   | 60.0   |
| Total             | 359.0  | 326.2  | 210.0  |

## Example I ssues

- 1. What are the physics reasons for wanting exceptional jet energy (mass) resolution? How do signal/backgrounds and sensitivities vary as a function of resolution? Is mass discrimination of W and Z in the dijet decay mode feasible, and necessary?
- 2. How does energy flow calorimetry resolution depend on such variables as Moliere radius,  $\Delta\theta/\Delta\phi$  segmentation, depth segmentation, inner radius, B field, number of radiation lengths in tracker, etc.?
- 3. What benefits arise from very high precision tracking (e.g. silicon strip tracker); what are the limitations imposed by having relatively few samples, by the associated radiation budget? What minimum radius tracker would be feasible?
- 4. Evaluate the dependence of physics performance on solenoidal field strength and radius.

# The R&D Program

- Many topics require work
- The follow few transparencies list many of the issues
- see also
  - the following talks
  - the report from the International R&D committee

| The R&D     | energy flow<br>need detailed simulation                                    |
|-------------|----------------------------------------------------------------------------|
| Program     | followed by prototype beam test demonstration                              |
| riogram     | further develop physics cases for excellent energy flow                    |
|             | eg. Higgs self-coupling, WW/ZZ at high energy, recon of top and W          |
| Calorimotry | for anomalous couplings?, others (SUSY, BR(H>160))                         |
|             | integrate E-flow with flavor tagging                                       |
|             | study readout differences for Tesla/NLC                                    |
|             | importance of K0/Lambda in energy flow calorimeter                         |
|             | parametrize E-flow for fast simulation                                     |
|             | forward tagger requirements                                                |
|             | study effect of muons from collimators/beamline                            |
|             | further development of simulation                                          |
|             | clustering                                                                 |
|             | tracking in calorimeter                                                    |
|             | digital calorimeter                                                        |
|             | study parameter trade-offs (R seg, layers, coil location, transverse seg.) |
|             | in terms of general performance parameters                                 |
|             | in terms of physics outcome                                                |
|             | refine fast-sim parameters from detailed simluation                        |
|             | integrate electronics with silicon detectors in Si/W                       |
|             | reduce silicon detector costs                                              |
|             | engineer reduced gaps                                                      |
|             | mechanical/assembly issues                                                 |
|             | B = 5 Tesla?                                                               |
|             | can scintillating tile Ecal compete with Si/W in granularity, etc.?        |
|             | crystal EM (value/advantages/disadvantages)                                |
|             | barrel/endcap transition (impact and fixes)                                |

| The R&D           | refine the understanding of backgrounds<br>tolerance of trackers to backgrounds                                                                        |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program           | will large background be a problem for the TPC (field distortions, etc)                                                                                |
|                   | are ionic space charge effects understood?                                                                                                             |
| The second second | study alignment and stability of silicon tracker                                                                                                       |
| I racking         | what momentum resolution is required for physics.                                                                                                      |
|                   | eg. Higgs recoil, slepton mass endpoint, low and high energy                                                                                           |
|                   | understand tracker material budget on physics                                                                                                          |
|                   | physics motivation for dE/dx (what is it?)                                                                                                             |
|                   | detailed simulation of track reconstruction, especially for a silicon option,                                                                          |
|                   | complete with backgrounds and realistic inefficiencies                                                                                                 |
|                   | include CCDs (presumably) in track reconstruction                                                                                                      |
|                   | timing resolution                                                                                                                                      |
|                   | readout differences between Tesla/NLC time structure                                                                                                   |
|                   | role of intermediate layer                                                                                                                             |
|                   | forward tracking role with TPC                                                                                                                         |
|                   | alignment (esp. with regard to luminosity spectrum measurement)                                                                                        |
|                   | develop thorough understanding of trade-offs in TPC silicon options                                                                                    |
|                   | large volume drift chamber (being developed at KEK)                                                                                                    |
|                   | development of large volume TPC (large European/US collaboration at work)                                                                              |
|                   | development of silicon microstrip and silicon drift systems                                                                                            |
|                   | (being developed in US & Japan)                                                                                                                        |
|                   | study optimal geometry of barrel and forward system                                                                                                    |
|                   | two track resolution requirements (esp. at high energy)                                                                                                |
|                   | this impacts calorimetry - how much?                                                                                                                   |
|                   | study K0 and Lambda efficiency                                                                                                                         |
|                   | Impacts calorimetry?   LC Detectors, Jim Brau, Fermilab, April 5, 2002     2D via 2D silicon tracker   LC Detectors, Jim Brau, Fermilab, April 5, 2002 |
|                   | 2D vs. 5D shicon tracker 36                                                                                                                            |

#### The R&D Program Vertx Det resolve discrepancy in Higgs BR studies understand degradation of flavor tagging with real physics events compared to monojets (as seen in past studies) understand requirements for inner radius, and other parameters what impact on physics develop hardened CCDs develop CCD readout, with increased bandwidth develop very thin CCD layers (eg. stretched) segmentation requirements (two track resolution) 500 GeV u,d,s jets pixel size

requirements for purity/efficiency vs. momentum on physics channels understand role in energy flow (work with calorimetry) detailed simulation prototype beam tests mechanical design of muon system development of detector options, including scintillator and RPCs

#### **Muons**



### North American Leadership

New leadership of Physics and Detectors Working Group (established by lab directors)

> Jim Brau, co-leader Mark Oreglia, co-leader

Executive Committee Ed Blucher Dave Gerdes Lawrence Gibbons Dean Karlen Young-kee Kim Jeff Richman Rick van Kooten

## North American Leadership

Facilitate the progress of the working groups in developing the plans for the LC experiments

Issues of focus the variables of the LC - how important to physics? time structure energy spectrum energy reach and expansion, luminosity two detectors? Positron polarization Gamma-gamma electron-electron and gamma-electron advance the understanding of key detector issues eg. energy flow calorimetry background tolerance vertex detector readout

# Coming Meetings

- North American
  - June 27-29, UC-Santa Cruz
- Other regions
  - April 12-15, St. Malo, France (DESY/ECFA)
  - July 10-12, Tokyo, Japan (5th ACFA Workshop)
- International
  - August 26-30, Jeju Is., Korea (LCWS 2002)

## Conclusions

The goals for the Linear Collider Detectors will push the state-of-the-art in a number of directions.

eg. finely segmented calorimetry for energy-flow measurement pixel vertex detectors (approaching a billion pixel system) integrated readout

Many techniques remain to be understood and developed. see the following talks

Please get involved in your local effort and connect to the North American effort.

come to Santa Cruz, June 27-29