Detectors for the Next Linear Collider

Jim Brau Univ. of Oregon

> Snowmass July 9, 2001

Requirements physics → subsystems

LC Physics Resource Book High Energy IR: L, SD Low Energy IR: P

Performance studies

Cost estimates

Detectors, Jim Brau, Snowmass, July 9, 2001

IR Issues

Small spot size issues nm vertical stability required ⇒ permanent magnets for QD0 and QF1 passive compliance + active suppression 15 ns response within bunch train

Beam-beam interaction broadening of energy distribution (beamstrahlung) 5% of power at 500 GeV backgrounds e⁺e⁻ pairs radiative Bhabhas low energ tail of disrupted beam neutron "back-shine" from dump hadrons from gamma-gamma

IR Issues

e+e- pairs

Hits/bunch train/mm² in VXD, and photons/train in TPC

Detector Requirements

Vertex Detector

physics motivates excellent efficiency and purity large pair background from beamstrahlung \rightarrow large solenoidal field (\geq 3 Tesla) pixelated detector [(20 µm)² \rightarrow 2500 pixels/mm²] min. inner radius (< 1.5 cm), ~5 barrels, < 4 µm resol, thickness < 0.2 % X₀

Calorimetry excellent jet reconstruction eg. W/Z separation use energy flow for best resolution (calorimetry and tracking work together) fine granularity and minimal Moliere radius charge/neutral separation → large BR²

Detector Requirements

Tracking

robust in Linear Collider environment isolated particles (e charge, μ momentum) charge particle component of jets jet energy flow measurements assists vertex detector with heavy quark tagging forward tracking (susy and lum measurement)

Muons

<u>high efficiency</u> with small backgrounds secondary role in calorimetry ("tail catcher")

Particle ID dedicated sub-system <u>not</u> needed for primary physics goals at high energy some particle ID might be built into other subsystems eg. dE/dx in TPC

LC Physics Resource Book Detectors

Low Energy IR One option is presented P (precision)

Resource Book L Detector

Detectors, Jim Brau, Snowmass, July 9, 2001

Resource Book L Detector

Resource Book SD Detector

Detectors, Jim Brau, Snowmass, July 9, 2001

Detectors, Jim Brau, Snowmass, July 9, 2001

Resource Book HE Detector Comparison

	L	<u>SD</u>
Solenoid	3 T	5 T
R(solenoid)	4.1 m	2.8 m
BR ² (tracking)	12 m²T	8 m²T
R _M (EM cal)	2.1 cm	1.9 cm
<u>trans.seg</u> R _M	3.8 0.6 (6th layer Si)	0.26
R _{max} (muons)	645 cm	604 cm

Resource Book P Detector

5 barrel CCD vertex detector 3 Tesla Solenoid inside hadron calorimeter TPC Central Tracking ($25 \rightarrow 150$ cm) Pb/scintillator or Liq. Argon EM and Hadronic calorimeter EM 30 x 30 mrad² Had 80 x 80 mrad² Muon - 10 10cm iron plates w/ gas chambers (RPC?)

Vertex Detector

same VXD inside all three detectors (L, SD, and P)
670,000,000 pixels [20x20x20 (μm)³]
3 μm hit resolution
inner radius = 1.2 cm

5 layer stand-alone tracking

Detectors, Jim Brau, Snowmass, July 9, 2001

Detectors, Jim Brau, Snowmass, July 9, 2001

Flavor Tagging Precision

Detectors, Jim Brau, Snowmass, July 9, 2001

Detectors, Jim Brau, Snowmass, July 9, 2001

	Calorimeters		
	L	<u>SD</u>	<u>P</u>
EM Tech	Pb/scin	W/Si	Pb/scin
	(4mm/1mm)x40	(2.5mm/gap)x40	(4mm/3mm)x32
Had Tech	Pb/scin	Cu or Fe/RP((or Pb)	C Pb/scin
Inner Radius	196 cm	127 cm	150 cm
EM-outer Radius	220 cm	142 cm	185 cm
HAD-outer Radius	365 cm	245 cm	295 cm
Solenoid Coil	outside	outside	between
	Had	Had	EM/Had
EM trans.			
seg.	40 mr	4 mr	30 mr
Had trans.			
seg.	80 mr	80 mr	80 mr

Muon Detection

Cost Estimates

General considerations: Based on past experience Contingency = ~ 40% Designs constrained

HE IR

L	359.0 M\$
SD	326.2 M\$

LE IR

2	21	0.	0	M\$
	~ '	0.	U	

Cost Estimates

	L	SD	Р
1.1 Vertex	4.0	4.0	4.0
1.2 Tracking	34.6	19.7	23.4
1.3 Calorimeter	48.9	60.2	40.7
1.3.1 EM	(28.9)	(50.9)	(23.8)
1.3.2 Had	(19.6)	(8.9)	(16.5)
1.3.3 Lum	(0.4)	(0.4)	(0.4)
1.4 Muon	16.0	16.0	8.8
1.5 DAQ	27.4	52.2	28.4
1.6 Magnet & supp	110.8	75.6	30.5
1.7 Installation	7.3	7.4	6.8
1.8 Management	7.4	7.7	7.4
SUBTOTAL	256.4	242.8	150.0
1.9 Contingency	102.6	83.4	60.0
Total	359.0	326.2	210.0

Cost Estimates

Detectors, Jim Brau, Snowmass, July 9, 2001

Snowmass Study Questions

http://sbhep1.physics.sunysb.edu/~grannis/lcquestions.txt

III. Detectors

- 1. What are the physics reasons for wanting exceptional jet energy (mass) resolution? How do signal/backgrounds and sensitivities vary as a function of resolution? Is mass discrimination of W and Z in the dijet decay mode feasible, and necessary?
- 2. How does energy flow calorimetry resolution depend on such variables as Moliere radius, $\Delta\theta/\Delta\phi$ segmentation, depth segmentation, inner radius, B field, number of radiation lengths in tracker, etc.?

Snowmass Study Questions (continued)

- 3. What benefits arise from very high precision tracking (e.g. silicon strip tracker); what are the limitations imposed by having relatively few samples, by the associated radiation budget? What minimum radius tracker would be feasible?
- 4. Evaluate the dependence of physics performance on solenoidal field strength and radius.

Conclusions

Three detectors are under being studied for the Snowmass "Orange Book"

L - conventional large detector, optimized for High Energy

- SD silicon detector, designed to optimized energy flow "alternative high energy detector"
- P upgraded SLC/LEP class detector, designed for the lower energy LC operation

Initial cost estimates:

L	359 M\$
SD	326 M\$
Ρ	210 M\$