J. Brau LCWS 2006 - Bangalore March, 2006

# Monolithic CMOS Pixel Detectors for ILC Vertex Detection

C. Baltay, W. Emmet, H. Neal, D. Rabinowitz Yale University

Jim Brau, O. Igonkina, N. Sinev, D. Strom University of Oregon

## **ILC Vertex Detectors**



August 16, 2005





J. Brau LCWS 2006 March, 2006

SiD Vertex Layout



## SiD Vertex Detector



| <ul> <li>BARREL</li> </ul> |  |
|----------------------------|--|
|----------------------------|--|

- 100 sensors
- $1750 \text{ cm}^2$

| Table I: CMOS Detector Barrel Configuration | 1 |
|---------------------------------------------|---|
|---------------------------------------------|---|

| Layer | Radius | Total Length | No. of Chips | Chip Size         |
|-------|--------|--------------|--------------|-------------------|
|       | (cm)   | (cm)         |              | $(\mathrm{cm}^2)$ |
| 1     | 1.4    | 12.5         | 12           | $12.5{	imes}1.2$  |
| 2     | 2.5    | 12.5         | 24           | $12.5{	imes}1.2$  |
| 3     | 3.6    | 12.5         | 20           | $12.5{	imes}2.2$  |
| 4     | 4.8    | 12.5         | 20           | $12.5{	imes}2.2$  |
| 5     | 6.0    | 12.5         | 24           | $12.5{	imes}2.2$  |

Table II: CMOS Detector Forward Disk Configuration

- FORWARD
  - 288 sensors
  - $-2100 \text{ cm}^2$

| Annulus | Inner Radius    | Z                                                                                                                                                                                                           | No. of Chips                                                                                                                                                                                                                                                                                        | Chip Size                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | (cm)            | (cm)                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                     | $(cm^2)$                                                                                                                                                                                                                                                                                                                                                                                       |
| 1       | 1.6             | 7.6                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                  | $1.5{	imes}0.9$                                                                                                                                                                                                                                                                                                                                                                                |
|         | 3.1             | 7.6                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                  | $4.4{	imes}2.2$                                                                                                                                                                                                                                                                                                                                                                                |
| 2       | 1.6             | 9.5                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                  | $1.5{	imes}0.9$                                                                                                                                                                                                                                                                                                                                                                                |
|         | 3.1             | 9.5                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                  | $4.4 \times 2.2$                                                                                                                                                                                                                                                                                                                                                                               |
| 3       | 2.0             | 12.5                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                  | $1.1{	imes}0.9$                                                                                                                                                                                                                                                                                                                                                                                |
|         | 3.1             | 125                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                  | $4.4 \times 2.2$                                                                                                                                                                                                                                                                                                                                                                               |
| 4       | 2.0             | 18.0                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                  | $1.1{	imes}0.9$                                                                                                                                                                                                                                                                                                                                                                                |
|         | 3.1             | 18.0                                                                                                                                                                                                        | 24                                                                                                                                                                                                                                                                                                  | $4.4 \times 2.2$                                                                                                                                                                                                                                                                                                                                                                               |
|         | Annulus 1 2 3 4 | Annulus         Inner Radius           (cm)         1           1         1.6           3.1         3.1           3         2.0           3.1         3.1           4         2.0           3.1         3.1 | Annulus         Inner Radius         Z           (cm)         (cm)           1         1.6         7.6           3.1         7.6           2         1.6         9.5           3.1         9.5           3         2.0         12.5           4         2.0         18.0           3.1         18.0 | Annulus         Inner Radius         Z         No. of Chips $(cm)$ $(cm)$ $(cm)$ 1         1.6         7.6         24           3.1         7.6         24           2         1.6         9.5         24           3.1         9.5         24           3         2.0         12.5         24           4         2.0         18.0         24           4         3.1         18.0         24 |

#### **ORIGINAL IDEA** – Hierarchical array (Macro/Micro) w/SARNOFF

#### Monolithic CMOS Pixel Detectors



Two active particle sensitive layers:

```
Big Pixels - High Speed Array - Hit trigger, time of hit
Small Pixels - High Resolution Array - Precise x,y position, intensity
```

J. Brau LCWS 2006 March, 2006

## **Summary**

- Investigation of Hierarchical Approach
  - Macro/Micro Hybrid (50 um ⊕ ~5 um)
  - $\Rightarrow$  Macro only, reduced to 10-15 um pixel
- Completed Macropixel design
  - 645 transistors
  - Spice simulation verified design
  - TSMC 0.18 um -> 40-50 um pixel
- Next phase under consideration
  - Complete design of Macro pixel
  - Deliverable tape out for foundry (this year)
- Future
  - Fab 50 um Macro pixel design
  - Then, 10-15 um pixel (Macro pixel)

### Array Designs

#### **High-speed** arrays

• Designed for quick response.

- Threshold detection only.
- Large pixels (~50 x 50  $\mu m$ ).
- Transmits X,Y location and time stamp of impact.



#### **High-resolution arrays**

- Designed for resolution and querying.
  - Smaller pixel size (~5 x 5  $\mu m).$
  - Random access addressability.

- Records intensity.

 Provides intensity information only for pixel region queried.



J. Brau LCWS 2006 March, 2006

### Macropixel Array Architecture



## **Background Hits Dominate Vertex Detector**

- Events of interest are relatively rare -
  - less than 1 Hertz.
  - hit rate in Vertex Detector dominated by background.
- Detailed calculations yield an expected background estimate of

#### 0.03 hits/mm<sup>2</sup>/Bunch Crossing

- However, with considerable uncertainty on this level of background.
  - Difficult calculation.
  - Background will depend on final choice of collider design details.

## **The Macropixel Array is Critical**

- Big Pixel size (initially 50 um x 50 um) limits the tolerance to higher backgrounds.
- Therefore important to strive to reduce Big Pixel size.
  - Reducing the Big Pixel size to 10 um x 10 um (or even 15 um x 15 um) makes detector much more tolerant to backgrounds.
  - Macropixel Array (Big Pixel size) of 10-15 um might not need complement of micropixels
    - simplified design of single layer of "Macropixels"
    - with time information
    - Might not need analog information.

## What Limits the Macropixel Size

- Compress Big Pixel size, retaining storage of hit time information for 4 hits/pixel/bunch-xing
- Area needed with present technology (0.25 um?)
  - Comparator/counter/latch, etc., circuit
  - Storage of up to 4 hits, i.e., 14 bits x 4 deep
- Process Technology how does pixel size scale as process technology goes 0.25 um, 0.13 um, etc?
  - What do you need to go to 10 um x 10 um pixels?
  - Can you estimate the progress of this technology?
  - What's available today?
    - Much more interesting what will be available 5 years from now when we need to fabricate the actual devices?;
- How much does it help to reduce max number of time stamps stored to 2 or 3?

### **Readout Procedure and Speed**

- First, some numbers:
  - Consider chips 22 mm x 125 mm = 2750 mm<sup>2</sup> -
  - Total no. of 10 um x 10 um pixels =  $27.5 \times 10^6$  pixels/chip -
  - Total hits .03 x 2820 x 2750 = 2 x  $10^5$  hits/chip/bunch train
- How long does it take to interrogate a pixel to see if it has a hit (presumably look of a single bit flag?)
- How long does it take to read out one hit pixel
  - X info (up to 2200) 12 bits + parity = 14 bits
  - Y info (up to 12500) 14 bits + parity = 16 bits
  - Time (up to 3000) 12 bits + parity
- = 14 bits

44 bits total

- $2 \times 10^5$  hits/chip x 44 bits/hit / 50 MHertz = 176 msec
- Might divide each chip into parallel readout streams (10-20) to accommodate higher background rates?

### SARNOFF Response to Question

Estimation of Overall Readout Time vs. Pixel Size



## **Charge Spreading**

- Important to minimize charge spreading
  - pixel size sets scale that would reduce need for analog information.
- How small can we keep the charge spreading?
  - Thickness of expitaxial layer 10 to 15 um
  - Possible approach full depletion of epitaxial layer
    - requires high resistivity? few kohm-cm? or less?
  - Depletion voltage, field in epilayer?



- Entire P-epi region is assumed to be depleted and p++ substrate region is not depleted.
- Electron is the minority carrier in p++ substrate and p-epi.
- Electrons generated in the p++ substrate will diffuse around but can not travel far because they recombine quickly with holes that are abundant in the p++ sub.
- Electrons generated in the epi-region are forced move toward N-well diode region by the electric field and do not have the chances of recombination.
- In conclusion, spread is minimum even if the CMOS wafer is not thinned. Epi-thickness and electric field are the factors to determine the lateral spread function.

## Read Noise

- Minimum ionizing particle leaves ~ 88e<sup>-</sup> /micron in expitaxial layer
  - 10 um thick epi x 88e-/um = 880 electrons
- GOAL signal to noise of 10 to 20
  - Can we keep read noise below 50 e- or so?
  - This consideration determines thickness of the exitaxial layer.

### **Power Consumption**

- Keep power to ~100 millwatts/chip (goal)
   ~4 mW/cm<sup>2</sup>
- Trade-off noise with power
- Make design choices which optimize noise/power tradeoffs

#### **Macropixel Block Diagram**



## **Power Dissipation Analysis**

|         | Component       | Optimized<br>Power Dissipation | Before<br>Optimization |
|---------|-----------------|--------------------------------|------------------------|
| Analog  | Detector        | 9.9uW                          | 11.7uW                 |
|         | Comparator      | 27.0uW                         | 35.1uW                 |
|         | Sub_total       | 36.9uW                         | 46.8uW                 |
| Digital | Timing Logic    | 0.05uW                         |                        |
|         | Counter/Decoder | 0.07uW                         |                        |
|         | Mem. Array      | ~ 0uW                          |                        |
|         | IO Interface    | 0.01uW                         |                        |
|         | Sub_total       | 0.13uW                         |                        |
|         | Total           | 37.03uW                        |                        |

Additional 67- to 100-fold reduction expected by power cycling analog components (0.37 – 0.55 uW)

J. Brau LCWS 2006 March, 2006

## **Other Considerations**

- Dark Current
  - Keep it small
  - Sarnoff will reset array on each bunch
    - Should not be a problem
- Operating Temperature
  - Sarnoff expects modest cooling (≤0°C adequate)
- Device Thickness
  - Thinning below 50 um looks feasible
- B Field Lorentz angle

## **Spice Model Verification of Design**



J. Brau LCWS 2006 March, 2006

### **SARNOFF** Response to Question on Future

Technology Roadmap: Macropixel size estimation vs. Mixed-signal Process Technologies



# **CONCLUSION**

- Completed macropixel design
  - 645 transistors
  - Spice simulation verifies design
  - TSMC 0.18 um -> 40-50 um pixel
- Next phase under consideration
  - Complete design of macro pixel
  - Deliverable –tape out for foundry
- Future
  - Fab 50 um pixel chip
  - Then, 10-15 um pixel

### **EXTRAS**

### **Possible Plan of Action**

- Start with estimating the parameters (Big Pixel size, etc.) that we can expect to build in ~ 5 years
- 2. Work toward an ultimate design with:
  - a) Single layer of Macro Pixel Array
  - b) Approach 10  $\mu$  x 10  $\mu$  pixels
  - c) Detect hits above some threshold
  - d) Store up to 3 or 4 time stamps/pixel
  - e) No analog information
  - f) Approach other parameters discussed
- 3. Detailed Design of Macropixel Array
- 4. Build prototype with whatever pixel size possible at that time for testing and proof of principle
- 5. Plan to build ultimate devices ~ 5 years from now

### Micro Pixel Array Architecture



#### Power Reduction Method



- Activate the Detector and the Comparator during the Bunch Train and deactivate rest of the time
- Power Reduction Ratio = 1/67 to 1/100 (0.552  $\mu$ W to 0.37  $\mu$ W)

#### Time Structure for the TESLA Design



Background Calculation:

At 1.5 cm from Interaction Point with 3 Tesla field expect 0.03 hits /mm²/bunch crossing

Will use this number for the entire detector